
Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 34 (1981)

Artikel: Material modeling of plain concrete

Autor: Chen, Eugene Y.-T. / Schnobrich, William C.

DOI: https://doi.org/10.5169/seals-26878

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 18.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-26878
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


% 31

Material Modeling of Plain Concrete
Un modèle non-linéaire et tridimensionel pour le béton est proposé
Modellbildung für das Verhalten von Beton

EUGENE Y.-T. CHEN and WILLIAM C. SCHNOBRICH
Research Assistant Professor
Department of Civil Engineering,
University of Illinois at Urbana-Champaign
Illinois, USA

SUMMARY
A nonlinear three dimensional material model for plain concrete is proposed. This
model consists of a plasticity-based constitutive relation for the quasiductile behavior
of concrete; a principal-stress and a principal-strain-based criterion to monitor the
initiation of cracks in tension dominated regions as well as cracking due to the poisson
effect; a relative-strain-based concept to gauge the cross-crack stress and stiffness
transfer; and a strain-based crushing criterion to indicate the local failure of concrete.
Some numerical examples to test the proposed model are also included.

RÉSUMÉ
Ce modèle consiste en une relation constitutive pour le comportement quasiductile du
béton qui est basée sur la théorie de la plasticité; à l'aide d'un critère exprimé en
fonction des contraintes et dilatations principales on peut contrôler le début de la
fissuration dûe à la traction ou aux effets de Poisson; un concept basé sur les
dilatations relatives permet d'estimer le transfert de contraintes et de rigidité à travers
les fissures tandis que la rupture locale du béton est déterminée en fonction d'un
écrasement limite. On vérifie le modèle à l'aide de quelques exemples numériques.

ZUSAMMENFASSUNG
Für den Beton wird ein nichtlineares, dreidimensionales Materialmodell vorgeschlagen,
welches auf der Plastizitätstheorie basiert. Mit diesem Stoffgesetz wird das quasiduktile
Verhalten von Beton beschrieben; ein Hauptspannungs- und ein
Hauptdehnungskriterium wird benützt, um den Rissbeginn in Zugzonen, als auch infolge
des Poisson-Effekts zu erfassen; ein Konzept, welches auf Relativdehnungen beruht,
erlaubt die Abschätzung der Spannungs- und Steifigkeitsübertragung durch Risse
hindurch; und ein auf Stauchungen gegründetes Bruchkriterium beschreibt das örtliche
Versagen des Betons. Anhand einiger numerischer Beispiele wird das vorgeschlagene
Modell überprüft.
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1. INTRODUCTION

Reinforced concrete is by far one of the most commonly used construction
materials. This composite material demonstrates a highly nonlinear behavior
caused by cracking, crushing, aggregate interlock, bond slip, dowel action,
shrinkage and creep, etc. Because reinforced concrete involves so many
nonlinear phenomena interacting with one another, the formulation of a

"complete" analytical model is very difficult. Consequently, most of the
research related to behavior of reinforced concrete structures has been of an
experimental nature. Within the past several years there has emerged however
an attempt to supplement the experimental effort with numerical analysis.
Activity has grown quite rapidly in this endeavor and much progress has been
reported [3, 4, 16, 17]. Among the various analytical tools available the
computer based finite element method has been accepted as the most powerful
one. However, even with the large scale general purpose computer programs
accessible today, it is felt that the incompleteness of material models for
reinforced concrete is still the biggest limiting factor to the current
capacity of structural analysis. The focus of this paper is cast on the three
dimensional nonlinear constitutive relations and failure criterion for plain
concrete subjected to short term monotonie loading.

2. MATERIAL CHARACTERISTICS AND IDEALIZATION

Concrete exhibits an intrinsic brittleness (low tensile strength) through the
formation of cracks. Microcracks exist even before any mechanical load is
applied. Both the strength and stiffness of concrete are largely determined
by the details of the microcracking process [7, 9]. Concrete, when subjected
to multiaxial compression, will exhibit an increasing "pseudo-plastic"
behavior as the hydrostatic pressure increases. This "pseudo-plastic"
behavior phenomenologically resembles the plastic response experienced by
ductile metals. The difference between the two types of materials is that in
ductile metals plastic flow is caused by lattice dislocation due to material
imperfection, while in concrete it is the result of microcracking.

Based on experimental observations, the general response of concrete can be
classified into two stages. A "quasi-ductile" stage characterized by
"pseudo-plastic" behavior, followed by a brittle failure herein referred to as
"crushing". Microcracking plays an important role in the first stage. The
growth and the later bridgement of microcracks into a continuous pattern
directly leads to the final crushing of concrete. Depending on the loading,
the length of the first, the quasi-ductile, stage will vary. With
unreinforced concrete if the loading involves a dominant or significant
tension the material is considered failed as soon as cracking occurs.

Because concrete resembles partly the ductile metal behavior and partly the
brittle ceramic behavior, an elastic plastic fracture material idealization is
adopted in this study to delineate the observed (phenomelogical) time
independent behavior of concrete.
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3. MATHEMATICAL PRELIMINARIES

In general, the stress tensor defining the state of stress at a point can be
depicted as a point in a nine dimensional Eculidean stress space. This stress
tensor can be decomposed into two parts; the hydrostatic stress part, a and
the deviatoric stress part, S^, as follows:

a. S.. + a • 6;. (1)ij ij m ij w
where am an<i °£- ~ am • *-n which S is the Kronecker
delta. J J m lJ *0

Because the stress tensor is real and symmetrical (in the absence of body and
surface couples), a set of three orthogonal principal stress directions exist.
These directions can be used as a reference frame to describe the same stress
point in that space but now involving only three coordinates. A convenient
alternative to this principal stress reference is the Haigh-Westergard
coordinate system. The geometric representation of these two systems in three
dimensional Euclidean stress space is given in Fig. 1 where

ç |ON| —2
/3

p |np| /2J^

"J cos 1(y) 0 < 9^ < 60° (2)

0 < 02 1 60°
e2 3 cos (-y),

3/3 J3
y 2 3/2

2

I.. a,, 3a
1 kk m

J2 " 2 Siâ ' Sij

J„ TT S. • S.. • S,
3 3 13 3 k ki

In these equations is the projection of the stress tensor on the hydrostatic
axis, il 1//T(1,1,1 ; p is the projection of the stress tensor on the
deviatoric plane tt -plane); 9^, and 02 are Lode angles (angles of
similarity) with 6^ + @2 60 ; I, is the first invariant of the stress
tensor; and J2> and J, are the second and third invariants of the deviatoric
stress tensor. The sign convention used throughout this study is tension (+),
compression (-).
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4. PLASTICITY IN CONCRETE

In order to apply the traditional incremental theory of plasticity to concrete
four things have to be defined apriori: (1) the ultimate strength condition
which sets the upper bound of the attainable stresses; (2) the initial yield
condition which marks the beginning of plastic flow; (3) the flow rule which
relates the plastic strain increments to stress increments; (4) the hardening
law which dictates the evaluation of the subsequent yield conditions.
Geometrically, the initial and subsequent yield conditions can be represented
as different surfaces in stress space analogous to the aforementioned ultimate
strength condition (Fig. 2). The initial yield surface is a surface that can
only be reached by elastic action. If the straining is continued beyond the
current yield surface, a new subsequent yield surface will be developed
resulting in some additional plastic flow (microcrack growth in concrete).
Upon unloading then reloading, no irrecoverable deformation will occur until
this new subsequent yield surface is reached.

Test results indicate that the maximum attainable stresses constitute a convex
surface in stress space. The shape of this surface resembles that of a
Mohr-Coulomb surface. In the principal stress space this ultimate strength
surface follows closely that of a smooth six-fold symmetric conical shape with
convexly curved meridians which do not intersect the negative hydrostatic
axis. This six-fold symmetry supports the macroscopic isotropy assumption for
concrete. Because of the symmetry only a 60° spanned region bounded by the
tensile meridian, p and the compressive meridian, p is essential in
defining the ultimate strength surface. If o^, ct^, cr^) are principal
stresses in descending order, then the tensile meridian, pt> corresponds to
the stress condition that a^; while the compressive meridian, p

corresponds to that of a^ > aOnce these two bounding meridians are
defined, intermediate meridians, p which correspond to various stress
combinations can be interpolated using the Lode angle.

Based on test results [2, 8, 14] and least square fitting [12], the tensile
and compressive meridians can be expressed as functions of the hydrostatic
parameter, ç:

-6.4899 + 2.9458 /5.0343 - Ç/|f^|
c

C

(3)
P

-TT -3.6199 + 2.9458 /1.6907 - Ç/|f ' I

f c
c

in which f is the uniaxial compressive strength of concrete (Fig. 3). Both
the tensile and compressive meridians intersect the positive hydrostatic axis
at Ç/ f 5 -0.18064. It means that concrete cracks under hydrostatic tension
when ç/cf -0.18064.c

By fitting hyperbolas to the corners of the Mohr-Coulomb type failure locus on
the deviatoric plane (Fig. 4), the ultimate strength surface can be expressed
as

f(a..) - [(1-S2ej) Pl + s2e2 p2] 0 (4)

where
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1 t 3i
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When applied to the biaxial case, the proposed ultimate strength criterion in
Eq. 4 correlates well with the standard test results of Kupfer et al. [8]
(Fig. 5).

It is convenient to assume that the initial and subsequent yield conditions
have the same functional form as the ultimate strength criterion defined in
Eq. 4

f(oij,(o) JlT2 - to[(l-S202)
P;L + S202 p2] 0 (5)

where w is now added as the hardening parameter to monitor the change of the
yield condition. For concrete the initial value for w, which corresponds to
the initial yielding, varies in the range of 0.3 to 0.5. The ultimate value
for w which corresponds to the ultimate strength is 1. The values in between
the initial and the ultimate cases correspond to various intermediate yield
conditions.

In this study it was found that with the selected surface an associated flow
rule (Fig. 6) does not hold for the whole spectrum of the response of
concrete. An equivalent nonassociated flow rule is thus gradually mobilized
as the stress level increases. The equivalent nonassociated flow rule is
proposed through the use of a piecewise continuous yield surface together with
its associated flow rule (Fig. 7). By properly adjusting the angle as
yielding progresses, in other words tuning the inclination of each
infinitesimal piece on the yield surface, an overstiffening effect can be
assuaged while maintaining symmetry in the elastic-plastic constitutive
relations. The modified <j> angle designated by is defined as

** - * [(1-S202) + (S202) *ç] (6)

in which
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tan
1

(-||) and <J>^ <(>w [1- — J"1

with
1 +

ah

ah + 0.18064
c

and

d> =1, when 0 < w < w
Tw — — c

w-w
1 - when w < w < 1

1-w c — —
c

where w is the hardening parameter at which an overstiffening effect becomes
significant. Generally this corresponds to the onset of mortar cracking at
w 0.7 to 0.8.

c

Based on the modified <f> angle, the outward normals of the hypothesized
piecewise continuous yield surface can be written as

,*s d£ 3f ,dJ2, 9f ,dJ3, ma (tan $ • + — • (^-) + — • (j—)
ij 2 ij 3 ij

Because this paper is concerned only with short-term monotonie loading, an
isotropic hardening law is used.

If we assume elastic unloading behavior of concrete together with the
associated flow rule and the consistency condition (neglecting the viscosity
effect) [10], the incremental elastic plastic constitutive relation can be
expressed as

D. • a • a • D
nmn mn rs rskl,da. [D. J——- ] • de,ij ijkl Y + a • D -a klmn mnrs rs

• de,ljkl kl

where D.. D D are elastic constitutive coefficients; D??..
are ela^tic-pli??ic rconsti?uïive coefficients; a a^ are the outward
normals to the yield surface; and Y --gjj wiïfi dX rlhe instantaneous
constant of proportionality used in the flow rule.

5. CRACK MODELING IN CONCRETE

In this study the smeared crack approach is adopted. The advantage of using
this approach lies in the fact that it avoids the constant changing of
structure topology. The smeared crack representation, which corresponds to an
averaging (smoothing) procedure of local discontinuities, allows an equivalent
continuum treatment with localized material anisotropy. It simplifies the
solution algorithms substantially. Also, it fits well into the approximate
nature of the finite element method with C -continuity of displacement and
bounded nonsingular strain and stress fields. However, it should be noted
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that the smeared crack representation tends to diffuse the cracking system.
Consequently, no single crack can dominate the behavior.

Experimental observation from different sources all indicate that maximum
tensile deformation measured by the maximum tensile strain component is a
dominant parameter in predicting brittle fracture of concrete [1]. The
Poisson effect may cause some inconsistency when this so called "principal
strain criterion" is subjected to multiaxial stress conditions [13].
Nevertheless, the simplicity of this criterion and the fact that it is used
only for crack initiation in completely intact concrete make its use feasible.
Consequently, it is assumed that the plane of cracking in concrete is normal
to the direction of maximum tensile strain component.

Because an orthogonal set of opening cracks is enforced in this study, the
direction for any subsequent crack formed in the uncracked subspace following
an initial crack is thus fixed. A stress-based new crack initiation criterion
is used. This stress-based criterion is very similar to the commonly used
"principal stress criterion", except that the direction of this potential
crack is pre-defined.

6. RELATIVE STRAIN ACROSS THE CRACK

In the framework of continuum mechanics, a crack may be looked upon as a
separation of two neighboring material particles. Upon cracking certain
components of displacements will become discontinuous, which implies "relative
movement" between the two sides of the crack surface. Because displacements
and strains are related through kinematic equations, it is conceivable within
a continuum treatment to assume that a set of relative strains exist which
represents the relative movement across the crack. As a matter of fact, these
"relative strain" quantities are what have been measured across a crack in the
experiments through the use of mechanical strain gauges.

In the equivalent continuum treatment of cracked concrete (smeared crack
approach), the "relative strain" can be defined as the elastic portion of the
corresponding total strain. Before cracking occurs a complete bonding exists
between two neighboring particles. It is this bonding that allows them to
deform or to be strained together. Once cracking starts, a separation which
implies relative movements between these two neighboring particles will occur.
These relative movements can be interpreted as a relaxation of the deformation
(straining) of one particle with respect to the other. Since the plastic
portion of deformation (straining) is nonrecoverable, it is logical to assume
that the elastic portion must account for the relaxation and hence the
corresponding relative movements. This "relative strain" is more a
mathematical than physical parameter. It is used to gauge the local
cross-crack stress and stiffness transfer [5].
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7. CROSS-CRACK CONSTITUTIVE RELATIONS

Let n, s. and t be a set of righthanded orthogonal coordinate directions with n
normal and s., t_ tangential to the cracked surface.

The 3-D cross-crack constitutive relations in terms of stress and relative
strain components across the crack, can be described in a matrix form as
follows

a
n

k
nn CO

a
s

k
sn

k
ss

CTt ktn kts
>

nt

st

tt

(9)

in which K is the cross-crack normal stiffness coefficient; K K... arenn s Q frthe cross-crack shear stiffness coefficients; Kgn, Ktn are the cross-crack
coupled shear stiffness coefficients; ^ns> ^ ^ are cross-crack
dilatant-contractant stiffness coefficients;nsand Rgt> K are the cross-crack
cross-shear stiffness coefficients.

Upon replacing the stress and relative strain components in Eq. 9 by the
corresponding stress and relative strain increments a set of incremental
cross-crack constitutive relations are thus obtained. The assumption in doing
so is that the interface stiffness coefficients are path independent in the
sense that they are functions only of the current total stresses and the
accumulated relative strains.

The stiffness coefficients in Eq. 9 are generally unsymmetrical. Because a
symmetric matrix is always desirable from a programming point of view, Eq. 9

is modified so that a symmetric constitutive matrix is achieved as shown in
Eq. 10.

A a
n

A a
s

Aat

k

4(k +k
2 ns sn

i(k +k i(k +k2 ns sn 2 nt tn

I(kst+kts)

2(kst+kts>

tt

Ae

Ae

Ae

(10)

In the following section, the cross-crack constitutive relations defined here
are referred to as the "CSST Model."

8. POST-CRACKING MODEL FOR CONCRETE

Once cracking occurs, the material coordinate system is locally fixed due to
the crack introduced anisotropy. Cracks in orthogonal directions can occur
simultaneously or subsequently whenever the crack initiation criterion is met
in an intact subspace of concrete. This allows concrete to have
multi-directional cracking. Upon cracking, Eq. 8 written in the current
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principal strain directions (material coordinate directions) needs to be
modified to account for the existence of cracks and to simulate the
post-cracking behavior of concrete. For this purpose, the CSST model is used,
while the constitutive relations for the intact concrete are still enforced in
the unracked subspace of concrete.

In this study a gradual stress releasing is implemented through the gradual
activation of the CSST model after cracking occurs. This is done by using
stress-level-dependent activating factors for the CSST stiffness coefficients
when averaging them with those coefficients in Eq. 8 to obtain the final
elastic-plastic-fracture stiffness. Letting the numbers 1, 2, 3 represent the
current material coordinate directions, the fracture constitutive relations
can be written as follows

all
'

°12 w .(CSST
1 vModer 0 0

°13

021

a22 0 w .(CSST
2 Model

0

ff23

°31

°32 0 0 W -(CSST
3 Model

a33

r *|

611

e12

e13

l21

e22

E23

E31

e32

E33

(11)

The activating factors, VL, i=l,2,^ are defined as follows: W.= 0 if there
is no active crack normal to the i direction; otherwise

W. — (12)
1 (l-oj)n

where w is the current hardening parameter; and n is a curve fitting
parameter. __ Multiplying __

the stiffness coefficients in the CSST model with a
factor of (e^./e^Jwhere e and e.. are accumulated relative strains and
total strainS respectively^"' EquatioS 11 can be written in tensor notation as

aij - W * D«kl * Ekl <13)

From Eq. 13 the "path independent" incremental fracture constitutive relations
can be written as

W • Dfjkl • Aekl (14)

Combining Eqs. 8 and 14 under the current local material coordinate system, we



40 MATERIAL MODELING OF PLAIN CONCRETE %

get

A0u l+w •Kj'ki + w,D«ki] -Aeki Diîki -Aeki (15)

where are the current elastic-plastic-fracture stiffness coefficients.

In general the are not symmetric, because the fracture destroys the
continuity originally existing in the intact material. However, in this study
an equivalent continuum mechanics approach is used which approximates the
fracture effect by changing the material properties. Hence it is proposed to
symmetrize the elastic-plastic-fracture stiffness coefficients by letting

nepf nepf epf nepf _ /nepf nepf _epf _epf
ijkl jikl ijlk klij ijkl jikl ij lk klij^

(16)

In order to be consistent with other parts of the structure, have to be
transformed from their local material coordinate system into tne predetermined
structural coordinate system.

9. STRAIN-BASED FAILURE CRITERION

The failure criterion prescribes the stress and/or strain condition at which
the concrete loses all of its stiffness as well as load carrying capacity. In
this study a strain-based failure criterion is adopted. Concrete is
considered crushed when

-£34- > R (17)
eo - e

in which e is the equivalent uniaxial strain defined in Eq. 18; £ is
defined in68q. 22; and R£ is defined in Eq. 21 (Fig. 8). 0

10. EQUIVALENT UNIAXIAL STRESS AND STRAIN

In order to evaluate the parameter Y in Eq. 8 as plastification occurs, the
plastic hardening modulus, H, has to be calibrated apriori. A commonly used
approach in calculating H is to deduce from the multidimensional condition a
pair of quantities, the equivalent uniaxial stress, a and the strain e

By doing so the well documented uniaxial test resultse8an be generalized e9nd

extrapolated. In this study it was found that concrete behavior is very
sensitive to the use of an equivalent uniaxial strain once cracks have
occurred. This is because the fracture introduced softening effect damages
the consistency and integrity of the equivalent uniaxial stress-strain
approach used in the plasticity theory. With this drawback in mind, the
following definition for the equivalent uniaxial strain is used in this study.
It is made up of an elastic part, and a plastic part,

to. J f " I

e ee + eP —S + £P (18)
eq. eq. eq. g eq.

where w is the current hardening parameter defined as w - a / la |; f and
eq. o c
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E are the uniaxial compressive strength and the initial modulus of elasticity
respectively; and ep is the accumulated equivalent uniaxial plastic strain
defined in Eq. 23. eq"

In this study the generalized uniaxial compressive stress-strain relationship
of Saenz is used [15], Fig. 8.

E • e

a - e<! (19)
eq. e e « e 0

1 +(R+R -2) - (2R-1) (-f3-^)2 + R(-SS^)3
E

0 0 0

The equivalent uniaxial tangent modulus is

E • [1+(2R-1) 0^-)2 - 2R(^-)3]
E

!s - (20)
dËeq-

[l+(R+Rp,-2) - (2R-1) ("^)2+ R(^f^)3]
E 0 0 0

in which a and e are the peak strength and corresponding strain under the
current stress combination, and and a^ are the maximum strain and
corresponding stress under the current stress combination. The remaining
tepms in Eqs. 19 and 20 are defined by the following equations:

°0
ES -

c0

*E |:
ao

Ra ^ <21>

ef
R

e eQ

rE(RÖ-1) 1_
R - 2

(re-D2 Re

In order to find o eQ» Of and under the current stress combination, the
following algorithm is used.

1) Extend a line from the origin in the stress space through the current
stress point until it penetrates the ultimate strength surface. Then
calculate its length.
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2) Find the ratio, r, between the length just calculated and the length
corresponding to the uniaxial compression case.

3) o0 r - f;
4) eQ e - [r-T-(T-l) ], if r _> 1;

(22)

Eq ec"[-1.6 r^ + 2.25r + 0.35r], if r < 1

where T is taken to be three in this study; and e is the measured
uniaxial compressive strain at f^.

5> af a0/Ra

6) ef Re
• eo

Due to the lack of strain data the empirical formula proposed by Darwin and
Pecknold is used to find e [Darwin, Fecknold, 1974]. Because it is
impossible to define a^ and on any rigorous experimental basis. it is
assumed that R0= 4 and Re= 4 realizing that Ra and R£ do not have to be the
same. Since and £ are calculated differently, the secant modulus, E is
not a constant value Sut a function of the current stress combination. 8

If the strain hardening hypothesis is used then w w(e^ where eR is the
accumulated equivalent uniaxial plastic strain defined a§* e<^*

1/2 1/2
îàeP Im •(de?."de? fm *dX*(a. "a. (23)

eq. ' eq. ' p lj 1J ' p l] lj
where d£R: are the incremental plastic strain; and m is the equivalent
uniaxial plastic strain scaling factor. ^

m
P /s?+2

(24)

f
in which

&
Sf tan(0+(|)*)

0 cos ^(/2/3)
*It is noted that for hydrostatic insensitive materials <(>=<(> =0 and

m - /2 /3
P

If elastic unloading is assumed, then the plastic hardening modulus, H, can be
related to the initial and tangent moduli as follows

da
H SSLi t (25)

j p Eder -, teq. 1- —
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From Eqs. 18, 23 and 25 the parameter Y in Eq. 8 can be determined as

1/2
Y -

H
m • (a. • a. (26)

3u) dA 3o> la0l P ^ ^
11. NUMERICAL STUDY

The proposed constitutive relations are used to simulate the responses of
concrete subjected to uniaxial, biaxial, and triaxial compressive loadings.
The test and simulated results are shown in Figs. 9-17.

It was found during the study of triaxial loadings, that the phenomenon which
is termed yielding in this study existed even under pure hydrostatic stress.
This is due to the inelastic compaction of concrete. In order to obtain
reasonable results therefore this presence of "yielding" under hydrostatic
stress had to be considered. "Classical" plasticity theory, however, does not
allow such nonlinear behavior when the material is in a pure hydrostatic
stress state. This finding suggests then that a more general approach when
using a plasticity theory for concrete in the future may be one that possesses
two yield functions, one for volumetric and one for deviatoric response.
These two analytical models should be able to interact with each other, so
that the shear dilatation and compaction phenomena observed in experiments can
be considered.

12. CONCLUSIONS

The smeared crack representation with material sampling points at the
integration points proves to be reliable. This statement is valid if the
sampling points are not too far away from each other. Consequently, local
irregularities will not be overlooked due to the inherent averaging process.
Based on this argument, reduced integration should be used with care.
Depending on the real stress distribution, sometimes more integration points
are needed simply to describe the crack pattern and hence to monitor the
nonlinearized material properties with higher precision.

Having been verified on many occasions, the equivalent uniaxial stress-strain
approach in a plasticity theory works well with ductile materials. As for
concrete, this approach requires further tuning and generalization in order to
better reflect the cracking effect.

The equivalent nonassociated flow rule, using a piecewise continuous yield
surface to maintain a symmetrical elastic-plastic constitutive matrix, gives a
better uniaxial compressive response of concrete than the associated flow rule
would.

The "relative strain" parametrization in handling the cross-crack stress and
stiffness transfers is a reasonable approach within the realm of continuum
mechanics. Besides being a mathematical quantity the "relative strain" also
has its practical implication in the mechanical strain gauge measurement
across a crack.
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Fig. 1 Haigh-Westergard Coordinate System

Fig. 2 Yield and Ultimate Strength Surfaces



1% E.Y.-T. CHEN - W.C. SCHNOBRICH 47

/>/lfcl

-8 -7 -6 -5 -4 -3 -2-10 I

f/lfcl

Fig. 3 Tensile and Compressive Meridians

Fig. 4 Hyperbola Fitting
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Fig. 5 Biaxial Tests of Kupfer et al

Surface
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Fig. 9 Uniaxial Compression of
Plain Concrete,

1 f^ ] 1275 psi

Fig. 10 Uniaxial Compression of
Plain Concrete,

I f' I 3005 psi1 c1



50 MATERIAL MODELING OF PLAIN CONCRETE

4600.

4000.

I'c 4440 pel

6600.

8000.
§

E2600.
9
9
* 2000.
P
9

1600. SAENZ'S Equation
9 • • Proposed Modal

1000.

600.

0
260.

500. 1000. 1600. 2000. 2600.
760. 1260. 1760. 2260.

9TRPIN, MICRO IN. PCR IN.

9000.
1 1 - 7180 psi

7000.

6000. y
S 6000. /R
e y§4000. f
P /f8000. /y SAENZ'S Equation

2000. / • • • Proposed Model

1000.

0 /0 600. 1000. 1600. 2000. 2600.
260. 760. 1260. 1760. 2260.

9TRPIN, MICRO IN. PCR IN.

Fig. 11 Uniaxial Compression of Fig. 12 Uniaxial Compression of
Plain Concrete, Plain Concrete,

j f^I 4440 psi |f^| 7180 psi

Strain, micro in. per in.

Fig. 13 Biaxial Compression of Plain Concrete,
a 2 0.2



E.Y.-T. CHEN - W.C. SCHNOBRICH 51

Stroin,micro in. per in.

Fig. 14 Biaxial Compression of Plain Concrete,
a 2 0.5a^

Strain, micro in. per in.

Fig. 15 Biaxial Compression of Plain Concrete,
a2 - 0.52a^
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Strain,micro in. per in.

Fig. 16 Biaxial Compression of Plain Concrete,
a2 0. 7a^

Strain, micro in. per in.

Fig. 17 Biaxial Compression of Plain Concrete,
°1 a2
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