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Finite Element Modelling of Reinforced Concrete Structures
Eléments finis pour ie calcul de structures en béton armé

Finite Elemente zur Berechnung von Stahlbetontragwerken

J.H. ARGYRIS G. FAUST K.J. WILLAM
Professor of Aeronautics  Research Associate Privatdozent

Institute of Statics and Dynamics for Aerospace Systems, University of Stuttgart
Stuttgart, Fed. Rep. of Germany

SUMMARY
The state of the art in finite element modelling of reinforced concrete structures is examined in three
areas

e the spatial idealisation of composite structures,
e the constitutive models for the short-term behaviour of concrete under triaxial conditions, and
e the computational implications of rate type-constitutive formulations on the structural ievel

RESUME
L 'application de la méthode des éléments finis aux structures en béton armé est considérée sous trois

aspects

e |'idéalisation spatiale des structures composites,
® les lois constitutives des matériaux pour le comportement tridimensionnel,
e les questions de calculs des structures pour un comportement inélastigue des matériaux

ZUSAMMENFASSUNG
Der Beitrag beschaftigt sich mit der Finiten Element Methode und ihrer Anwendung im Stahlbeton-
bau. Drei Themen werden untersucht,

e die raumliche ldealisierung des Verbundwerkstoffes,

e die Formulierung von Stoffgesetzen fUr das Kurzzeitverhalten im dreiaxialen Bereich, und

e die rechentechnischen Fragen bei der Behandlung von inelastischen Werkstoffvorgangen auf der
Tragwerksebene
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1. INTRODUCTION

Modern computational techniques and, in particular, the finite element method have been
used in nonlinear analysis of reinforced concrete structures for more than a decade [1], \_2],
13], \_4] In spite of intensive research activities on the refinement of reinforced concrete
models there are still several open questions, partly also because they have never been posed
before the advent of computers in structural mechanics. Another source of discomfort are the
difficulties in the prediction of the ultimate load behaviour of such simple structures as deep
and over-reinforced beams. In contradistinction to simple limit analysis concepts of beams
we recognise that two- and three-dimensional finite element idealisations trace the entire
history of structural degradation starting from tensile cracking to the nonlinear deformation
behaviour in compression up to crushing and debonding and other interactive effects between
concrete and reinforcement. Therefore, the finite element model is today primarily a tool
for interpreting experimental observations and for studying constitutive assumptions and their
effects on the overall performance of the structure rather than a new method for standard de-
sign problems. Clearly, nonlinear sofutions are very costly, especially if fwo- or three-
dimensional idealisations are used and, in particular, if the limit load behaviour is of pri-
mary concern. In this case the integrity or rather the stability of the structure has to be
assessed at increasing load levels whereby the overall nonlinear response behaviour is ap-
proximated by a series of linearised steps.

The long-term serviceability is normally assessed in the linear regime. Implicitly it is assumed
that the dead and life loads are sufficiently small so that the nonlinearity in the elastic and
inelastic deformations can be neglected. This is necessary for long-term creep predictions
with the effective modulus methods, however, it is no prerequisite for step-by-step time
marching strategies in which cracking and other nonlinear concrete effects are traced with the
appropriate time-operators. This approach lends itself also to the finite element solution of
environmental transients which con be readily combined with the time dependent inelastic
analysis of structures. In this case the partitioned solution scheme leads to a staggered com-
putational path in which the thermal and hygral effects are normally introduced into the
equation of motion in the form of thermal expansion and shrinkage (one-way thermomechanical
and hygrothermal coupling).

At this stage it might be worthwhile to reflect upon the underlying postulates for the finite
element modelling of reinforced concrete structures. Clearly, the combined effect of spatial
idealisation, constitutive assumption and computational path is critical for the predictive
value of the final solution. In the following, these three aspects will be discussed and
assessed in the light of recent finite element developments. The lack of agreement among
leading researchers in this context is an indication that there is still a need for a better
understanding of the mechanics of reinforced concrete structures and its characterisation in
a computer-oriented solution environment. Certainly, there is some justification for self-
criticism of the complexity and cost of extensive finite element studies, however, this com-
puter-oriented method gives us a chance to project constitutive observations onto the struc-
tural level and to examine their effects on the overall response of the structure.

2. STRUCTURAL IDEALISATION

The finite element method is most successful when we are dealing with composite structures.
The heterogeneity can be readily modelled with separate elements including special elements
for the interface conditions. -
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The spatial idealisation of reinforced concrete structures requires homogenisation at various
levels:

(i) the configuration of the composite and

(ii) the fracture response at localised failure.

In the following, these two aspects are briefly examined together with a discussion of mod-
elling aspects of reinforced concrete frames, plates and shells.

2.1 Modelling of the composite material

On the microscale the heterogeneous composition of concrete, the cement stone, aggregate
and adhesive bending is modelled with the same ease as the composite action of concrete,
steel reinforcement and their various interaction mechanisms on the macroscale. On an even
larger scale, the composite may be homogenised entirely and described by equivalent iso-
tropic or anisotropic material properties. This latter approach is certainly suitable for fibre-
reinforced concrete, however, for the usual reinforced concrete structures this averaging
technique is only appropriate if the global behaviour of the structure is of interest in the
working stress regime. Clearly, tensile cracking and other specific concrete phenomena can
be considered in this case only by the corresponding degradation of the "equivalent" material
properties. This indicates the basic shortcoming of homogenisation which can only account
for the combined response behaviour in the form of an average.

In reinforced concrete the large difference of concrete and steel behaviour is normally ac-
counted for by a discrete approach where the configuration and mechanical behaviour of
each constituent is modelled individually by appropriate finite elements. Perfect bond is
usually assumed in order to reduce the number of degrees of freedom and to avoid the inher-
ent difficulties in assigning appropriate bond properties. In this way, the complex inter-
action problem is circumvented, however pull-out effects as well as tension stiffening, dowel
action and spalling cannot be accounted for directly except by "corresponding" medifica-
tions of the stiffness and strength properties of the constituents.

2.2 Modelling of the fraciure process

Another major problem arises at the ultimate load analysis of reinforced concrete components.
Here progressive cracking and gradual damage accumulation leads eventually to the localisa-
tion of discrete failure zones. The numerical modelling of the entire response spectrum is one
of the open problems in the finite element analysis of reinforced concrete components. There
are basically two approaches for the spatial idealisation of cracking, damage and localised
fracture, the

- smeared crack model, and the
- discrete crack model.

Computationally the smearing approach is far more convenient since the topology of the
idealised structure remains intact and all local discontinuities due to cracking, fracture and
localised damage are distributed evenly over the element domain. This averaging procedure
fits the scope of continuum mechanics or rather strength of material and the nature of the
finite element displacement method where continuity of the displacement field and bounded-
ness of the stress field are inherent properties.
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In contrast, the discrete crack approach poses complex computational problems since the
topology and the finite element mesh changes with the history of crack propagation. Tradi-
tionally, the question of fracture initiation and fracture propagation is here dealt with within
strength of material concepts in which e.g. tensile cracking is defined in terms of maximum
stress or strain. In this case, the entire fracture model depends primarily on the spatial ideal-
isation and thus fracture is a question of mesh refinement rather than one of an objective
measure of stress intensity or damage per unit volume. Therefore, recent attempts are directed
towards the development of fracture mechanics concepts for the failure prediction of concrete.
The main difficulty is here that linear fracture mechanics provides only a statement of stabil-
ity or rather catastrophic failure of a given crack, while slow crack propagation necessitates
additional concepts such as blunting, localized plastification at the crack tip and also large
deformations. Here the J -integral and alternative energy criteria are rather promising
candidates since they are combined measures of stress and strain. It is intriguing that such
models also account for gradient effects as long as they are referred to a unit volume which
has e.g. the size of the aggregate. These lafter concept requires however further studies and
is the subject of current research activities.

2.3 Modelling of flexural components

A particularly difficult modelling task is the finite element idealisation of flexural components
where the dimensionality of the structural configuration is normally reduced by one with the
aid of the Kirchhoff hypothesis. The development of consistent beam, plate and shell ele-
ments is however by no means frivial even for the simple case of linear elastic behaviour and
a homogeneous cross-section. The Kirchhoff kinematics complicates unduly the construction
of sound displacement models which maintain the convergence requirements as well as full
compatibility before and after deformation. This is particularly true for curved shell elements
but also for flat elements where the different order of expansion for membrane and bending
action is often a source of serious discomfort. Alternatively, these kinematic difficulties are
avoided by mixed and hybrid models or so-called degenerate solid elements which do not
enforce the Kirchhoff kinematics and allow for shear deformations. These so-called degener-
ate solid elements lead to an excessive number of degrees of freedom if cubic expansions are
used. Therefore, selective integration is used in order to capture the bending behaviour with
a lower expansion and a smaller number of degrees of freedom. This corresponds to a de-
composition of the sirain energy into different components and a balancing of membrane,
bending and transverse shear contributions by reduced integration.

For nonlinear and inelastic material behaviour the situation becomes even more complex. In
this case the integration over the thickness has to be carried out by numerical integration
which corresponds in the case of piecewise constant approximations to the familiar layering
of the cross-section. Clearly, the data volume and the computational effort for evaluating
the element properties increases proportionally with the number of layers but the total number
of structural degrees of freedom remains constant. There are various proposals to by-pass the
layered idealisation of bending problems e.g. by using stress resultants (first and higher order
moments) and the corresponding integral formulation of the material law. All these homo-
genisations through the thickness suffer from severe shortcoming of a continuous stress dis-
tribution over the thickness which excludes non-monotonic and non-proportional loading
paths in elasto-plasticity (restriction to the deformation theory of plasticity). Moreover, the
interaction of inelastic membrane and bending behaviour can be properly incorporated only
for cases when the two sets of principal axes coincide while transverse shear effects are
neglected altogether. This transverse shear is also problematic in the layered approach be-
cause it exceeds the plane siress formulation adopted in the Kirchhoff models. The degenerate
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solid elements offer some resolution since they can resort to a full three-dimensional material
law. On the other hand the selective integration introduces here another complication since
the individual contributions to the strain energy are evaluated at different pivot points.

In summary, the modelling of frame, plate and shell elements is rather complex due to the
peculiar behaviour of reinforced concrete. The layered approach is however sufficiently
general although debonding and shear failure have to be excluded if we adhere to the Kirch-
hoff kinematics. For this reason the notion of a pure displacement model is normally given
up and equilibrium considerations are invoked in order to incorporate transverse shear effects
in a global fashion and to account for tension stiffening because of finite crackspacing.

3. CONSTITUTIVE MODELS

The finite element analysis of reinforced concrete structures is restricted primarily by the
shortcomings of the underlying constitutive models. Although the spatial idealisation can

be refined to capture every detail of the structural configuration within the scope of sophis-
ticated two~ and three-dimensional finite element packages, the material characterisation of
the concrete and the interface conditions is rather limited. As a matter of fact, rather simple
constitutive postulates are normally adopted for the strength and the deformation behaviour
under biaxial and triaxial conditions. For ultimate load studies these assumptions must cover
the entire loading regime because the post-failure range is often crucial for the overall re-
serve strength and the redistribution capacity of indeterminate structures. This stress transfer
introduces locally non-proportional loading paths with extensive unloading regimes although
the external loading is still increasing monotonically. The material degradation due to pro-
gressive damage leads finally to localised fracture in which high gradients mobilise additional
strength reserves beyond the data which are normally obtained from uniform stress specimens.
The influence of different loading rates is usually neglected for short-term loadings, however
in dynamic environments and quasistatic creep problems it dominates the response behaviour
and must be included. The ultimate failure behaviour of reinforced concrete composites de-
pends to a large extent on the interface properties between concrete and steel. Clearly,
under extreme loading conditions these effects become very important and affect the overall
performance of the composite structure.

In the foilowing, two aspects of the mechanical behaviour are considered, the strength and
the deformation characteristics of concrete when subjected to uniaxial and mulfiaxial load-
ings. Historically, the bulk of experimental work was and still is directed towards the re-
sponse in uniaxial compression, while the other facets of the mechanical behaviour are ex-
pressed in terms of this fundamental property. Because of the experimental difficulties, multi-
axial testing was primarily concerned with the evaluation of the strength properties. Only
recently have deformation data become available for test set-ups which are truly triaxial [5]
Therefore, the failure models are in general more advanced than the corresponding nonlinear
deformation models in the pre- and post-failure regime. In some cases strength and deforma-
tion behaviour are considered to be entirely independent properties while other models such

, as hypoelastic and endochronic formulations contain no explicit sirength statements whatso-
ever. At this stage it is worthwhile to scrutinise some established constitutive concepts for
the multiaxial behaviour of concrete under short-term loading in the light of the recent re-
sults from the international testing program ]_5]
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3.1 Strength models

We consider here the general case of triaxial concrete strength which should cover also the
biaxial and uniaxial cases. The numerous papers on the subject indicate however that the
generalisation of the uniaxial sirength values to friaxial conditions is by no means a trivial
task .

There are two basic postulates which are normally adopted in order to simplify the construc-
tion of triaxial failure conditions

- isotropy, and
- convexity in principal siress space.

The first assumption is introduced because of the triple-symmetry in the triaxial stress space
and the inherent simplification of the failure model. In reality, progressive damage leads
certainly to oriented anisotropies near ultimate behaviour which require however the formula-
tion of failure conditions in the six-dimensional stress space instead of the three-dimensional
space of principal siresses. Because of the inherent complexity and the lack of experimental
evidence it is reasonable to assume "isotropic" behaviour up to failure and even thereafter in
the post-failure regime.

Clearly, the maximum shear strength increases with hydrostatic compression and exhibits a
pronounced dependence on the third stress invariant (synonymous to the direction in the de~
viatoric plane). In summary, it is widely accepted that the failure condition is a function of
all three stress invariants [6], | 7] and that it is poorly reproduced by the axisymmetric
Drucker-Prager cone or paraboloid formulated originally by Schleicher,

Convexity is an assumption which is supported by global stability arguments in plasticity.
Clearly, there are some questions on the validity of this postulate for concrete, particularly
if local material instabilities are considered in the post-failure regime. For the initial failure
surface however convexity in the principal stress space is generally accepted even though it
does not necessarily imply convexity in the six-dimensional stress space because of the non-
quadratic form of the third invariant. It is intriguing that an alternative representation in the
strain space may also introduce non-convex surfaces in spite of a convex strength model in
stress space. In principle, a strain representation of failure has computational advantages if
we think of finite element displacement models and material stability studies. However, the
failure condition is in strain space certainly far more irregular than in stress space.

There are two basic groups of failure models depending on the smoothness of the failure surface.
The first class with discontinuous vurvatures follows essentially the traditional Mohr-Coulomb
criterion with tension cut-off IB], [9} The second class rests on the concept of an extended
Drucker-Prager model which includes the effect of the third stress invariant {1 0], L'l l] . From
a numerical standpoint the discontinuities complicate the analysis since the failure surface
has to be divided into subregionsand due to difficulties of defininga unique stress transfer path
at the corners. On the other hand, the discontinuous failure description furnishes additional
information on the type of failure (tensile-cracking or shear sliding) and the direction of
failure. In contrast the continuous descriptions can not provide statements of this sort if no
additional concepts such as normality are invoked.

A recent comparison of the iriaxial test data of the international program indicates that the
continuously curved strength models with all three stress invariants yield a close overall
approximation of the experimental results ]_]2]. The Fig. 1 illustrates the construction of the
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five parameter model by the authors [l 0] which is made up of an elliptic approximation of

the deviatoric trace and a parabolic_description in the Rendulic plane. Fig. 2 shows the
triaxial strength data of the BAM |7 |in comparison to the hydrostatic prediction of the fivepara
meter model using the least square valuesof[j 2], The corresponding deviatoric results are dis-
played in Fig. 3 for &4=- 125 {c . Fig. 4 shows the trace in the biaxial plane ¥,=¢
which is the most severe test of the triaxial failure model because of the large magnification

of approximation errors due to the very acuté’angle of intersection. The plots indicate satis-
factory agreement whereby the sirength ratios &z~ $¢/fc and «u: jul§, are fixed from

the biaxial concrete data. Thus the deviatoric radial vectors §., . at a given section

B‘;'E are the only free optimisation variables for fitting specific triaxial strength data.

The failure surface in stress space is certainly a first step towards defining the concrete be-
haviour under triaxial conditions. Clearly, we have to pose additional questions such as -
what happens to the failure surface when the loading path reaches this strength constraint?

In one limiting case of ideally plastic behaviour, the failure surface remains fixed in stress
space while in the other limiting condition of ideally brittle behaviour it collapses suddenly
to another configuration of residual strength. The actual post-failure behaviour in compression
but also in tension lies certainly somewhere in between these two extremes (continuous soften-
ing in kinematically constrained specimens). On the other hand, the material already de-
grades progressively in compression before the limiting strength is reached. Therefore, if we
consider hardening the failure mode! can be also utilised to define the nonlinearity in the
pre-failure regime. This leads us to the general question of nonlinear deformation behaviour
in the pre- and post-failure regime (hardening-softening models for triaxial conditions) and

its representation for triaxial conditions.

3.2 Nonlinear deformation models

Two classes of constitutive models can be distinguished

(i) algebraic stress=strain laws based on a total (finite) formulation, and
(ii) differential stress-strain laws based on an incremental (infinitesimal) formulation.

The first class involves invariably nonlinear algebraic equations (secant laws) which arise
e.g. in nonlinear elasticity (hyperelasticity) and the deformation theory of plasticity. The
main advantages of this secant stiffness formulation are primarily numerical such as the full
error control via unbalanced load iteration (no drift) and the unproblematic treatment of sof-
tening. The principal disadvantages are well-known, the total stress-strain laws restrict the
range of application to primarily monotonic loading regimes. This limitation is rather

severe since there are only very few actual problems without iocal unloading due to stress
redistribution and with a frozen pattern of principal axes. In praxis, however, these effects
are disregarded and many developments for the ultimate load analysis of statically undeter-
mined problems resort to the total form of the stress-strain law because of its simplicity.

The differential rate models involve invariably tangential stress-strain laws which arise typical-
ly in hypoelasticity, plasticity, endochronic theory or alternative inelastic evolution laws.

The main advantages of this tangential stiffness formulation are linearity (the tangential mate-
rial law normally depends on the state variablés - stress, strain etc. - but not on their dif-
ferentials) and the broad range of application to non-monotonic, non-proportional loading
regimes. In contrast to hypoelastic and endochronic models a proper loading condition is
introduced in the flow theory of plasticity which separates elastic from inelastic behaviour.
Therefore, nonlinearity and damage are mobilised only if a certain stress-threshold (the yield
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condition) is exceeded while no damage can accumulate below that value. Furthermore,
normality and convexity guarantee a stable material law in accordance with the dissipation
inequality which is violated by variable moduli techniques in which a loading concept is
introduced arbitrarily in order to distinguish loading and unloading branches {13]. It should
be noted that a pure rate formulation does not result by mere differentiation of the secant
moduli in the total formulation of the stress-strain law []4 ,

The principal disadvantages of the rate models are well-known, they are primarily numerical
since they require step by step integration. The accumulation of the linearisation errors
might lead to a considerable drift if truly finite increments are used for advancing the tan-
gential approach and if a refined error control is lacking. Moreover, the tracing of soften-
ing branches is complicated by local singularities at the limiting points for which geometric
stiffness effects might be important and should be included.

Broadly speaking there are three families of constitutive relationships according to the under-
lying theory of nonlinear elasticity, elasto-plasticity and endochronic or internal variable
theory, respectively. In spite of a centennium of concrete technology there is still no single
constitutive model which covers all facets of the mechanical behaviour of concrete. Therefore,
we must be satisfied at this stage with phenomenological models which reproduce specific
aspects of the response behaviour without violating fundamental principles of mechanics.
Clearly, the modelling itself is an underdetermined problem because of the inherent non-
linearity and even more so because of the history dependence. This latter property alters the
scope of the formulation from a relatively "simple" description of nonlinear equilibrium states
(algebraic approach) to the far more demanding characterisation of an evolutionary process
(differential approach).

This family of constitutive models describes the nonlinear deformation behaviour irrespectively
of path-dependence. Their application is primarily directed towards monotonic loading
regimes where no distinction must be made between loading and unloading behaviour. A
priori, there is no limitation as far as proportional loading is concerned as long as an objec-
tive formulation is used which assures invariance with regard to coordinate transformations.
The orthotropic models [l 5] ' ['I 6], {1 7], [183 however assign different material properties
to each principal direction, which should therefore remain fixed during the entire loading
history if not a co-rotational definition of stress rate is used such as the Jaumann stress rate.

The principal task of constructing a nonlinear deformation model for multiaxial conditions can
be recognised best from the uniaxial compression behaviour shown in Fig. 5. The hardening
branch is fully defined by the initial modulus of elasticity E, and the maximum strength &,
where the tangent modulus approaches zero, E;=C . The associated strain &. defines the
ductility when the maximum stress is reached. This tells us immediately that for a three-
dimensional extension of the uniaxial law there is additional information required on the
triaxial failure strain beyond the strength values discussed before. An alternative formula-
tion resorts to the secant modulus = 8./&. at triaxial failure which is however only
another statement of the failure strain &. which is normally very strongly path-dependent.
As a result, there is no simple approach for constructing a nonlinear deformation model which
should start initially with the linear elastic properties and should then introduce progressive
damaging up to singular behaviour of the tangential material law at the maximum strength
value. If we proceed further into the softening regime, and this is of utmost importance for the
evaluation of the reserve strength, we have to define an additional rupture strain ¢, and
possibly also a reserve strength G, . For general triaxial conditions this property is very
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difficult to define, thus ideal plasticity is often assumed up to a maximum rupture strain £ .
where full strength degradation rakes place, &, = C.

There have been several proposals of the tangential material law; most noteworthy are the
developments of a nonlinear secant formulation [19] for Es and p, introducing a non-
linearity index as a scalar measure of "equivalent" triaxial stress. A very recent proposal
[18_] adopts the concept of the equivalent orthotropic strain in |1 7] in order to construct an
incremental orthotropic material law with the aid of the five parameter strength model. The
orthotropic properties are however somewhat in conflict with the usual definition of hypo-
elasticity which exhibits stress induced anisotropy [20] but not orthotropic tangent moduli
with reference to principal directions limiting the range of application ot proportional load-
ing if not a so-called objective stress rate is used.

In contradistinction fo the engineering models above there are some developments which
follow the classical concepts of hyper~- and hypoelasticity. It is intriguing that there are no
attempts to describe the nonlinear deformation behaviour of concrete in terms of a strain
energy function U= W{&) where the total stress-strain law

U
€ 5¢ (3.1)

corresponds to the secant relationship

!

: 3’ =~
::—. ES& with E'.\; Te—-— t (3.2)
The associated rate law derives by differentiation of (3.1)

3 ‘ el
§-E&  win E- 5esc 3.3)

Clearly, a quodratic power expansion of W (&) corresponds to linear stress-strain behaviour
with B = Cough. Thus a fourth order strain energy function would be required in order to ob-
tain a rate formulation (3.3) of grade two. For isotropic conditions the strain energy can be
expressed in terms of the sirain invariants W(&)= W( 3%, 3z, 1'\3) , however a fourth order
expansion still involves 9 material constants whose identification poses certainly a formidable
problem.

Traditionally, this task is simplified by decomposing the strain energy into hydrostatic and
deviatoric components. As long as interaction effects remain negligible, which is certainly
true for metals, the response due to hydrostatic stresses is purely hydrostatic and that due to
deviatoricstresses purely deviatoric. Therefore, the strain energy decomposes into

UCEY = W) » U, 1) (3.4)

In Y_ZI] it was shown that the deviatoric component 1L cannot depend on the third in~
variant 34 of deviatoric strains, thus Uy = U, (1,) . As a result, the modelling of non-
linear elastic deformation reduces to the evaluation of two single functions which describe
the nonlinear volumetric and deviatoric behaviour
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by = 3k (33 Es (3.5)
and
t
FA = 163(313 Eg\ (3.6)

in [22-3 the K and & -approach was expressed in terms of the octahedral stress and strain
components and applied successfully to interprete biaxial and recently also triaxial concrete
data 1_23]. It was however noted that under truly triaxial conditions there is noticeable cou-
pling between the hydrostatic response and the deviatoric loading. Therefore, the decomposi-
tionof W = u\,('l.\* W, (3{) is debatable and some form of coupling has to be introduced, -
see e.g. }:243.

It is intriguing that the incremental -G formulation is made up of two components and
cannot be simplified to an expression involving only the tangent moduli Dﬂ since differenti-
ation of (3.6) yields

ag, - z(ed-é-%éa{ * ngaé\) (3.7)

where %J]: = _'}Z _E::;_;l‘. e:\At‘d and G Gge j:_‘-\_ﬁ_‘- (3.8)

The resulting tangential material law is therefore identical with the equivalent elastoplastic
hardening von Mises formulation if K= coxst and monotonic loading is considered only.

This leads us to the direct formulation of a differential material law within the theory of
hypoelasticity where

$-E1 E-EGE) ©9

In the concrete literature the only attempt {20] develops an incremental constitutive law of
grade one (linear in stress). Higher order expansions are forbidding because of the large
number of material'parameters although hypoelasticity is restricted a priori to isotropic con-
ditions. In this context it is intriguing that the associated failure criterion can be identified
with singularities of the tangential material law when et ET=O .

Since most of the early finite element work on physical nonlinearities was directed towards
elastoplastic computations it was natural to adopt hardening plasticity formulations for the
nonlinear deformation behaviour of concrete in compression.

in contrast to the hypoelastic rate formulation the flow theory of plasticity accounts for path-
dependence via the loading criterion. The inherent postulate of linear elastic unloading is
certainly a first improvement when compared with the purely elastic formulation, however
the lack of an elastic hysteresis for repeated unloading-reloading conditions exhibits
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also shortcomings when compared with the experimental evidence in [25](fhe endochronic
and rate dependent viscoplastic formulations offer here some improvement).

In plasticity theory the difficulties with the identification of the tangent moduli in (3.9)
are avoided altogether by resorting fo the concept of a flow rule which controls the evolution
of the inelastic deformation M in terms of the yield surface f(s,‘) =0

q-5 2k wn TR (3.10)

oL denote e.g. the current values of the five parameter yield surface in PO}, [27_1 . The
associated hardening rule determines the rate of change of the current yield surface and the
normality condition 2§28 the direction of inelastic strain rate j;l ;

The first finite element applications to concrete in compression resorted to the well-established
concepts of the Huber-Mises theory disregarding hardening due to volumetric compression. In
this case a single hardening function suffices to describe the nonlinear deviatoric action in
terms of the von Mises equivalent stress-strain diagram. This is equivalent to the tangential
shear modulus of the nonlinear elastic ¥-G  formulation above,where KT= coush .

In order to include hydrostatic effects, the Drucker-Prager extension of the von Mises model
was adopted in \_26] whereby two intersecting conical yield surfaces were necessary in order
to obtain satisfactory agreement with the triaxial failure surface in tension and compression.
There is no longer a unique hardening function which covers the entire loading regime. As

a matter of fact, the same disturbing observation was made by the authors in }:27] where the
five parameter model was adopted to describe hardening by an affine expansion of all para-
meters and softening by a translatory shift along the hydrostatic axis. The range of motion is
shaded in Fig. 6 while Fig. 7 illustrates the corresponding hardening in uniaxial and biaxial
compression .

In a recent publication [28] a three-parameter elasto-plastic strainhardening theory was pre-
sented for biaxial conditions in which the equivalent plastic strain rate was decomposed into
two tensile and one compressive plastic strain parameters. Extending this approach to tri-
axial conditions the current configuration of the five parameter model []0 is now de- .
fined by 5 independent hardening fun.ci:f.ions ®, .-+ dg in terms of the inelastic work Afj“l'
or the inelastic strain measure ¥ = 5(‘ ‘)y‘ To this end the increment of equivalent plastic
strain '_’L is decomposed into the five plastic strains W Me by the mapping

s B with TR . 3.1

The decomposition factors [3: define the participation of each plastic strain 7; in the
overall hardening-softening whereby the sum of increments equals the increment of equivalent
plastic strain increment % . The individual hardening rules for each parameter «, of the
five parameter yield surface are now
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The hardening functions 3‘1 ('VLB define the motion of the current yield surface in terms of
the plastic strain values v; and thus the equivalent plastic strain 4 . For an assumed dis-
tribution of participation factors @&: the hardening functions & (0 must be identified
from triaxial test data. Clearly, this is not a trivial task, also because the resulting yield
surface must satisfy certain convexity requirements. Certainly in the simplest case of an af-
fine expansion of the yield surface the current strength parameters &; must have the same
mormalised value which would correspond to the isotropic hardening plot in Fig. 6.

The formation of the ensuing differential material law follows the usual congepts of hardening
plasticity, see e.g. [27], whereby the evaluation of the consistency rule '%—‘-= o for de-
termining ¥ involves now differentials with regard to the five strain hardening parameters
R g s

In completion we should note the intriguing development of endochronic time models which
provide a very accurate description of the nonlinear concrete behaviour [29] . Since no
proper justice can be done to this topic in this context we only recall that there is little dif-
ference between plasticity and endochronic theory when a loading condition is introduced

30| except for the formulation in total strain space and the infricate mappings relating total
strain with endochronic time. Without the unloading condition the endochronic model pre-
dicts continuous damage accumulation even at very low stress levels which has been criticised
particularly for dynamic applications [31]. An interesting alternative to the endochronic
theory was presented recently in [32} where the incremental plasticity theory for hardening
was combined with an elastic fracturing theory for softening, thus bypassing the difficulties
with non-positive definite tangential material with the aid of a total secant formulation. _
Different aspects of all these constitutive modeis for concrete were examined recently in L33-_\.

4, COMPUTATIONAL ASPECTS

On the structural level the total and differential forms of constitutive laws lead immediately
to the well-known secant and tangential stiffness methods after appropriate discretisation
with finite elements. The former approach determines directly the steady state equilibrium
configuration by an iterative search technique while the latter traces the entire evolution
path up fo a certain state by fangential linearisation. The rate formulation involves thus the
numerical integration of the entire process during which path-dependent effects are readily
accounted for in contradistinction to the total equilibrium approach.
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In the following, we examine different forms of incremental solution strategies for tracing
the path of evolution of inelastic material processes. For illustration we will concentrate on
elastic-viscoplastic material behaviour where the step by step integration is carried out in
real time instead of a mechanically equivalent loading parameter which is used for rate-
independent material problems.

The finite element method for elastic and inelastic material problems is well established.
Therefore, we restrict ourselves to a brief summary of incremental equilibrium (principle of
virtual power)

¢ , t
XS-‘*A: §r = jé‘u A, 4T ¢ jSu AP, 48 @.1)
[
and the four classes of elastic-inelastic solution strategies whnch arise from different time
integration methods of the constitutive rate equations %

4.1 Initial load methods

First we recall the traditional initial load strategies where the time operator is partitioned
into an elastic and inelastic component. The elastic stiffness is used here as reference stiff-
ness which is maintained constant during the entire evolution of the viscoplastic rate process

= 46) -4 (&8 “

In the case of the direct forward approach the inelastic growth law is approximated by the
explicit statement

Ml = Mt ‘.l = at 4, 4.3)

where §, indicates that only known state variables at the beginning of the time step are
used §.- {(G,\. The corresponding stress increment follows from the hypoelastic law

26 - E(2y- & §.) (4.4)

Substituting (4.4) into (4.1) yields the classical forward initial load method without iteration

Kae=sR-2Y, vt de-v-r, (4.5)

where K denotes the elastic stiffness matrix and A 3y  the initial loads due to the in-
elastic strain increment ) N =4t$. . The corresponding implicit formulation of the inelastic
growth law involves yet unknown stresses within the time step At and thus requires itera-
tion. The successive substitution method leads to a predictor-corrector scheme which updates
the stress increment (4.4) according to the current values of the state variables, e.g. at the
end of the time step if an overstable backward time operator is used

E(Ar v ) (4.6)

1,4\
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On the structural level we recover the iterative initial load method

et s
K ar - AR+ A3, @4.7)

in which the inelastic strain increment is corrected iteratively according to the current stress
values within the time step At .

4.2 Gradient methods

The application of the initial load methods is severely constrained by the time step restriction
for stability and convergence I34], ]_35] . Although the resulting time marching strategy
assures a very accurate viscoplastic solution it is rather expensive when the entire transient
response history has to be integrated. The tangential stiffness methods are able to overrule
these time step restrictions and thus provide more flexibility although at the cost of more
elaborate computations.

In the case of the forward gradient approach the stress increment is defined by

O fom -\ .. N\
b8 - E (g -sf) v € & %{r) (4.8)

In the forward strategy the tangential material law E: and the inelastic growth law "'.»
are both evaluated at the beginning of the time step. Therefore no iteration is required and
the computation on the structural level corresponds to the simplest form of the incremental
tangential stiffness method without iterative correction

Roap - R+ blz 4.9)

In this method the time steps are limited by accuracy rather than stability. Moreover, the
viscoplastic overstress model introduces elastic unloading effects when too large time steps
are used. In this case, when the long-term steady state conditions are of prime concern, the
backward gradient approach must be used in spite of the computational complexities with the
resulting Newton -Raphson scheme,

i
In the Newton-Raphson technique the residual J of the incremental constitutive relations
is reduced fo zero

61 er.&r{:- 'S o 4 -4 aJ‘ =0  (4.10)

The resulting stress corrections at the end of the time step are then
Y i Y 3
48 =ET(c\g‘¢r ) 4.11)

where the tangential material law is evaluated at the end of the time step

£ (€ by
T (, a‘) 4.12)
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| 4
On the structural level the unbalanced load due to the change of internal stresses 48
at the end of the time step

XS{ASSA\‘,A 'Z‘~j$f5‘f it (4.13)
v v

Substituting (4.11) into the incremental equilibrium condition (4.13) yields the tangential
relation for the displacement correction 41

KiAr§ 2*3 (4.]4)

ur denotes here the tangential structural stiffness corresponding to E in 4.12) and ¥*
the unbalanced load due to the constitutive error & ° 4.10)

TR\ (B by g ERET )-8 419

As indicated before, the straight Newton-Raphson algorithm calls for formation and factorisa-
tion of the structural gradient matrix E; at each cycle of iteration. The computational
effort can be reduced by updating the tangential stiffness only occasionally, e.g. at the
beginning of a new time step (modified Newton-Raphson technique). In the limit we main-
tain the elastic stiffness as structural gradient matrix during the entire viscoplastic process
and recover the iterative initial load method above. However, the convergence limitations
of this approach ask for alternative computational strategies such as the quasi-Newton
methods. The most promising candidate is the BFGS-algorithm of Broyden-Fletcher-Goldfarb
and Shanno which was developed originally in the context of optimisation and which was
subsequently applied to different finite element problems [35] \_36—5 [371

4.3 BFGS-method

The quasi-Newton method is essentially a search technique for the new solution §* accord-
. +(
ing to

L Y 4% (4.16)

using the secant relation

i where 5% - r“' _ rk—\
k% 3{ ' 41 @.17)
and T‘?f .'F‘é. - .Fﬁ.ﬂ

The vector Jﬁ. denotes the search direction and Sy, the scalar which satisfies the ortho-
gonality condition

4:,_1: . =C (4.18)
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The BFGS-method is based on a series of rank two modifications which can be directly
applied in order to update the inverse iK™

k} T w) k; (T - o W) 4.19)

where the new search direction follows from

v (4.20)
d.- K, F,

The scalar S is obtained by line search for zero ‘Fﬁ along a& if the orthogonality con-
dition (4.18) exceeds an assumed threshold. The modification vectors ‘Uqand “f;_ are defined
as

», - .'F&-‘ (n ., (_f__%}_)“t) ,;{ . ‘ (4.21)

BTl

®, - <0 d¢ 4.22)

:m"'m

Note the index 9(_ is used here in order to distinguish the BFGS-iteration from the Newton
step (4.14) and the predicior-corrector method (4.7). Clearly, a sufficiently large number of
BFGS-modifications correspond to a single Newton step, thus asympiotically we maintain the
same range of convergence and circumvent the tight time step restrictions of the iterative
initial load method. On the computational side the BFGS-method involves repeated modifica-
tion of the triangular factor. The recursion formula (4.19) indicates that each iteration cycle
involves a series of vector operations on the right-hand side. Clearly, for an efficient solu-
tion the number of iterations must be limited to a small number since the computational effort
grows rapidly with each additional iteration. Normally, 3 - 7 iterations were sufficient to
attain satisfactory convergence for large time step viscoplastic solutions where the elastic
stiffness is retained as reference stiffness.

COMPUTATIONAL DIRECT FORWARD | ITERATIV CORRECTION
METHOD =0 >0
INITIAL LOAD | Dim de<dt, | NIM gr<ar
E N Kar«sR+23; | Mar's 4R 23]
TANG. STIFFNESS | DTS N-R
E— K, M 4r = aR+ 20y | K] o' < F/
BFGS:w, | =&+ 5 0y

Table 1: COMPUTATIONAL STRATEGIES FOR VISCOPLASTIC ANALYSIS



J.H. ARGYRIS — G. FAUST — K.J. WILLAM 101

The four computational strategies are summarised in Table 1. The BFGS-method belongs to
the class of iterative gradient methods, although the viscoplastic implementation operates
with a constant elastic reference stiffness analogous to the iterative initial load method. The
initial load methods exhibit stringent stability and convergence limits Aty st. which
severely restrict the time steps [34 . It is intriguing that for rate independent plasticity no
such convergence limit exists if the NIM-method is implemented within the initial stress
formulation 38] .

4.4 Viscoplastic solution of pressurised cylinder

For illustration we consider a thick-walled cylinder which is subjected to increasing internal
pressure. Both the nonlinear response behaviour and the limit load behaviour are of interest
when a viscoplastic overstress model is used to predict the transient phase up to steady state
conditions. For simplicity a nonhardening viscoplastic model using (4.2) is used with &, consh
in order to compare the steady state solution with that of the elastic - ideally plastic solu-
tion of Prager and Hodge [39 .

Fig. 8 shows the basic lay-out and the idealisation with axisymmetric finite elements. The
particular material properties are taken from a previous study I40] and are typical for a mild
steel with

E = Zsuoc“ s< Y =00

?

(4.23)
5‘= Wric P, )x= \(3"s Sec":&'\

Fig. 9 shows the load-displacement relationship under increasing pressure. The solid line in-
dicates the steady state elastic - ideally plastic solution which bounds the nonlinear response
between the elastic limit p, = 12968y and the plastic limit pressure p, =24011 pst . In
the viscoplastic analysis various pressure levels ( p: =13, 18, 21, 24 and 25 x 103 psi )
were applied directly without incrementation, and the ensuing viscoplastic response was
traced starting from the initial elastic overstress condition up to the steady state solution
which approaches asymptotically the elastic-plastic response at 1> s . Even for an inter-
nal pressure of p: =24000 pst a stable steady state solution was reached while for

pr = 25000 p2r  the remaining overstress resulted in continuous outward flow.

The infrinsic performance of the previous computational strategies is illustrated with the
equivalent stress history at the inside wall. Fig. 10 compares the prediction of the BFGS-
algorithm with that of the direct forward methods with and without tangential stiffness. In
the case of the DIM forward initial load scheme the constant time steps bt=|xc lead to elas-
tic unloading because of the critical time step for stability M¢=11¢ . In contrast the im-
plicit BFGS algorithm provides high accuracy and exhibits far less numerical damping than
the DTS forward gradient strategy. Note that the elastic stiffness matrix was retained in the
BFGS and the DIM algorithms during the entire viscoplastic process while satisfactory con-
vergence was obtained with the BFGS quasi~Newton method within 2 - 3 iterations.

Finally, the rapid deterioration of the forward gradient solution is shown in Fig. 11 where the
equivalent stress distribution across the cylinder wall is plotted for a larger time step of

bt=10 . In this case , only the backward time operator is suitable for predicting the steady
state condition within a single time step since the initial elastic overstresses relax to zero

and lead to oscillations if they are included in the forward and midstep algorithms. As a
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matter of fact, the forward gradient method utilises only the initial elastic information at
the beginning of the time step for the evaluation of the tangential stiffness matrix. This
aspect leads to forward gradient predictions which are completely erroneous for large time
steps such as At -leco , while the BFGS-algorithm yields still satisfactory results of the
steady state elastic plastic solution within 13 iterations.

In conclusion, the BFGS-quasi-Newton method is very flexible = it provides very accurate
solutions in the transient response regime and it readily accomodates very large time steps
when the limiting steady state plastic solution is of primary concern. The viscoplastic solution
is obtained with an elastic stiffness matrix which remains constant during the entire time
history analysis. Therefore the BFGS-algorithm corresponds formally to the traditional initial
load methods where the entire inelastic process is converted into equivalent driving forces

on the right-hand side.
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