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A Kinematic and Isotropic Hardening Plasticity Model for Plain Concrete under General Triaxial
Stress Conditions

Modèle à écrouissage cinématique et isotrope du béton, dans des états de contraintes triaxiales

Kinematisch und Isotrop verfestigend-plastisches Modell für Beton unter allgemeinen räumlichen
Spannungszuständen

B. HERMANN
Civil Engineer
RambcSII & Hannemann
DK 2830 Virum, Denmark

SUMMARY
A new plastic model valid under general triaxial conditions is formulated and comparisons with
experimental data are carried out. The model requires knowledge of only the elastic modulus,
Poisson's ratio, and the compressive and tensile strengths.

RESUME
Un nouveau modèle valable pour des états de contrainte généraux est décrit et comparé avec des
résultats expérimentaux. Le modèle ne nécessite que la connaissance de quatre paramètres: le
module d'élasticité, le coefficient de Poisson et les résistances à la compression et à la traction
maximales.

ZUSAMMENFASSUNG
Ein neues plastizitätstheoretisches Modell für allgemeine räumliche Spannungszustände wird
beschrieben und mit Versuchsresultaten verglichen. Nur vier Parameter müssen bekannt sein, nämlich
Elastizitätsmodul und Querdehnungszahl sowie einachsige Druck- und Zugfestigkeit.
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1. INTRODUCTION

The purpose of this paper is to investigate the possibilities and limitations of
a plasticity model based on Drucker's postulates [l] for plain concrete under
general trixial conditions. This is done by proposing a new model with two sets of
yield surfaces. The model involves both isotropic and kinematic work-hardening,
but it requires knowledge only of the elastic modulus E, Poisson's ratio v, the
uniaxial compressive strength f and tensile strength f^_. The results of the
model are compared to experimentaï data.

2. THE NEW PLASTICITY MODEL

The concrete is assumed to be isotropic in the initial state as well as after
deformation, and therefore the formulation of the analytical equations will be given
in principal strains and stresses ch only. The invariants are designated

Wa3' Z2 i(ai2+022+a32) ' *3 I(al3+°23+a33)

1 2I' I --T- I. the 2. deviatoric invariant2 2 6 1

(1)

and

1 2 2 2.
el+E2+e3 ' 2 2" 1 +£2 3 >' 1/ 3 3.

3" 1 2 3
' (2)

respectively.

The model is closely related to a failure criterion, and in this formulation a

"parabolic" criterion proposed by N.S.Ottosen [2] is chosen.

The reason for this can be seen from the comparisons made in Figure 1. In this
figure the intersection curves between some analytical failure surfaces and a

plane containing the hydrostatic axis and one principal stress-axis in the
principal stress space are shown. Also some results from experimental tests are shown.
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A test series performed by Launay et al. [3] indicates that the failure surface is
not axisymmetric about the hydrostatic axis. Analytically this means that the third
stress-invariant enters into the equation for the failure surface. The abovemention-
ed analytical failure surface takes account on this dependence. See [2].

It is now assumed that in the principal stress-space the yield surfaces are of the
shape indicated in Figure 2. One of the main characteristics of this figure is that
the yield surfaces are all cut by the hydrostatic axis. The extension of the linear-
elastic domain (the shaded area in Figure 2) implies that hydrostatic tension is

Vl^9 60°

Fig. 2.

assumed to be linear-elastic until failure. Further it can be observed that the
yield surfaces have relatively "sharp corners" in the vicinity of the failure surface

in order to reflect the sudden volume-expansion that occurs in a compression
test just before failure. This gives rise to a mathematical inconvenience that can
be circumvented by using two different sets of yield surfaces as shown in Figure 3

Fig. 3.

Analytically the surfaces can be expressed as
(I + p - a)2 I'

fi A + _ J o (3)
a '

ß

and
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f ».a..-!
2 2 2

fc P2

• — + B- (b (1 - —)
fc p2 1

p2
1=0 (4)

The entering constants and the function A(0) are explained in the following.

is used instead of I.

j Arccos

The relationship is
I

2 2 3

3 V2 +
27 IL

(I2
3/2 (5)

p^ and are the two parameters whereby the instantaneous yield surfaces are uniquely
determined, and the ratio are chosen to be constants that must be determined

empirically. For each value of eq. (3) is the equation of an ellipsoid, a is
now determined so that the circle of toppoints of the ellipsoid are common with
the surface

gl
A
_2

A I
• &'2 + b- (y - j-)

c c
1 0 (6)

A, B, Ac and A(0) are determined as for the failure criterion adopted herein. For
each value of and constant 0 eq. (3) is the equation of a parabola.

The two sets of yield surfaces are treated entirely separate. The contributions to
the plastic strain-increments when the stress-point is moving outside the f^-surface
respectively the, f2*-surface are superposed, i.e.

dspl depl(1) + depl(2) (7)il l
When the stress-point moves outside or on the instantaneous f^-surface p^ is determined

so that the stress-point is always lying on the instantaneous f^-surface which
implies dp^ 0

When the stress-point moves inside the instantaneous f^-surface dp^ 0. p^ is
determined in a similar way. The initial values of p. and p„ are designated p'
and p^

The total plastic strain-increments can now be written as

dEpl dspl(1> + dspl(2)IX X
G ÜI

9a.
x

dpl + G2 3a.l
dp, (8)

where and G^ are^functions of the stresses, the strain-history and the hydrostatic
plastic work W This amount of work can be determined from hydrostatic

compression tests, but because of lack of data from such experiments it is
proposed to put

with

dW

G1

P1
e (hyd)
dPl

a.
X 3a.

for

for

w-Pi
e (hyd)

E

f

dp j
> 0

dp j 0

"Ï1
for

+a!p
"Il Pj > p;

for -It < Pl

(9)

(10)
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a^ Cj and t are constants to be determined empirically. In an analogous way it
_ £cis proposed to put

G

with

H2(IJ,,P2)

8f2
a. -r—1 do

1

E

f *2
VP2
1-P0

(11)

for dp^ > 0

for dp 0
(12)

a2, c2 and are constants to be determined empirically.

Now it is possible to give most of the constants, that remain to be determined, a
physical interpretation. For further details see [4].

After having studied some available experimental data it is suggested to put
a 2.4

c 7 x 10

:-°"15 fc ' pi : - 0.57 f 0.70 a :-6.5 fc,, bx 1.1,

tl l.f an =- 3.5 x 10 6/f
2 C c2 0.8 t2 1 .6

With these values for the constants the results of the model are compared to
experimental data in Figures 4-14 reproduced from [4]. The only variables in these
comparisons are E, v, f^ and f The first eight figures show comparisons with
plane stress-experiments performed by Kupfer et al. The following ones show
comparisons with various triaxial experimental results in which two principal stresses

are kept at constant values different from zero. Even though the correspondis
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ance between model and experiments is quite fair attention should be drawn towards
two inherent limitations in traditional plasticity models like the one just
outlined above.

3. TWO IMPORTANT LIMITATIONS IN A TRADITIONAL PLASTICITY MODEL

The first limitation to be pointed out in connection with a traditional plasticity
model based on Drucker's postulates concerns the normality condition. Both the
normality and the convexity conditions are derived by Drucker under the assumption

that the elastic proporties of the material remain constant under plastic
deformation. Experimental tests indicate that for plain concrete this condition is
fairly well fulfilled as long as the stress-state is not too near failure. But
when the stress-state is near failure then the condition is no longer fulfilled.
See Figure 15.

Strain

Fig. 15. (Reproduced after [8]).

The second limitation concerns the softening after failure. If, in an uniaxial
compression test, the strain is controlled, a stress-strain relationship as shown
on Figure 16 can be obtained. For failure calculations this must be of importance
in statically indeterminate structures. The importance of this effect has among
others been examined by N.S.Ottosen and S.I. Andersen (see [5]. A plasticity model

Fig. 16.

based on Drucker's postulates is not able to reflect this softening-effect, simply
because one of the postulates requires that the material is not unstable in this way.

On this background it seems natural to look for other theoretical bases for the
constitutive equations to be used especially for failure calculations.

>9/2
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4. OTHER THEORETICAL BASES FOR CONSTITUTIVE EQUATIONS FOR CONCRETE

Two other kinds of models that are both closely related to a traditional
plasticity theory shall be mentioned. The first kind of model is based on Il'iushin s

postulate of plasticity. See [6]. When startpoint is taken in this postulate it is
possible to model softening.

The constitutive equations in an endochronic theory are derived from thermodynamic
conditions. The basic equations are the 1. and 2. laws of thermodynamics with the
usual time "t" measured with a clock replaced by an endochronic time measure "z"
depending both on time "t" and a strain measure "ç".

"ç" is related to the arc-length of the path followed by the strain-point in a six-
dimensional strain-space during deformation. With this kind of model it is possible
to reflect softening as well as non-linearity at unloading. A formulation of the
theory is given by Valanis [7]. Bazant et al. [8] and Argyris et al. [9] have^
formulated specific constitutive equations for plain concrete based on the
principles suggested by Valanis.

5. CONCLUSIONS

As a conclusion it can be said that although a traditional plasticity model can be

a better approximation than a linear elastic model, it seems probable that other
theoretical bases are even better suited for describing the stress-strain relationship

for plain concrete. This seems especially to be true in the vicinity of failure

i.e. for failure calculations. For reinforced concrete members the situation
is different because of the interaction with the steel.
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