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Direct Design by Concrete Flow
Dimensionnement direct en considérant la transition des forces dans le béton

Direkte Bemessung durch Betrachtung des Kraftflusses im Beton

D.H. CLYDE

Professor of Civil Engineering
University of Western Australia
Nedlands, W. Australia

SUMMARY

The paper presents a method of handling the equations for axial force, bending moment, shear force
and torsion. The principal stress failure criterion for concrete, which is in mixed force and geometry
variables, is re-written as a criterion in force variables only. This enables the longitudinal force
requirements for shear and torsion to be simply obtained and incorporated in the beam axial force
and flexure equations with which the designer is familiar. The method is general and adaptable to
any cross-section shape or reinforcement layout and the equations are in a form suitable for direct
design.

RESUME

La méthode présentée traite les équations pour une sollicitation par flexion, par une force axiale, par
un effort tranchant et par un moment de torsion. Le critére de rupture pour le béton est exprimé a
nouveau en termes de forces. Ainsi on peut incorporer les forces agissantes longitudinalement dues a
la torsion et au cisaillement dans les éguations bien connues qui décrivent I'action de la flexion et de
la force normate. La méthode est générale et on peut I'adapter & une forme de poutre et une disposi-
tion de I'armature quelconque. Les éguations résultantes permettent un dimensionnement pratique.

ZUSAMMENFASSUNG

Es wird eine Methode zur Handhabung der fir eine Beanspruchung durch Biegung, Normalkraft,
Querkraft und Torsion geltenden Beziehungen dargestellt. Die Bruchbedingung des Betons wird in
Kraftgrossen ausgedrickt. Damit konnen die Langskrafte infolge Torsion und Querkraft in die ubli-
chen Beziehungen fur Biegung und Normatkraft einbezogen werden, mit denen der Ingenieur ver-
traut ist. Die Methode ist allgemein und kann flr beliebige Querschnittsformen und Bewehrungsan-
ordnungen angepasst werden. Die auftretenden Gleichungen eignen sich fir eine direkte Anwendung
bei der Bemessung.
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1. INTRODUCTION

The safety stage comparison of design in structural concrete is, by international
concensus, made at the level of member cross-section action. By this choice the
design problem is decomposed into two modelling sub-problems, one above and one
below the comparison level {1]. The higher level problems which will not be con-
sidered in this paper is the mapping of all loadings into the load-effect space.
The lower level problem is most appropriately treated as a plasticity problem and
consists of mapping the bounds of the safe domain in the same load-effect space.
The most general such space is six-dimensional consisting of axial force, two
bending moments, two shears and a twisting moment. A definitive stage of modell-
ing in a two-dimensional axial force and bending space was reached some years ago
[2] [3] and this led, possibly without adequate appreciation of the consequences,
to the adoption of internal action as the comparison level. The most serious
consequence has been a forced semi-rational empiricism when it comes to adding
the shear dimension [4] and dissatisfaction by the profession with the resulting
complexity of rules.

There has also been steady progress toward a consistent rational approach. The
state of the art is reviewed by Thurlimann [5]. He presents the assumptions and
principles and develops a rigorous approach via the space truss concept in which
both upper and lower bound principles are satisfied simultaneously. The starting
point is the failure criterion for concrete at a level intermediate between cross-
section action and stress, namely force per unit length applied to a concrete
sheet. This will be called force flow as a generalisation of the accepted term
shear flow. The criterion is a very simple one, a square one in principal force
flow space. However complete definition of a principal stress and hence of a
principal force flow requires the specification of a geometrical variable, orien-
tation, as well. As a result the crack orientation (or principal compression
orientation) plays a major part in the section analysis. The practising designer
appears, however, to find such techniques esoteric and unrelated to the models
with which he is familiar. He is familiar with the equations for axial force and
bending applied to the right cross-section and the purpose of this paper is to
show how terms for shear and torsion may be directly included in these familiar
equations.

2. THE CONCRETE FORCE FLOW CRITERION t Cst

If we define Cx as the longitudinal force
per unit length when the shear flow is
denoted by Cyxg (Figure 1) Thiirlimann's C..d
square criterion restricts C; and Cz to xs X
the range 0 < Ci,2 < CP where C" = kFit ,dS
t being the thickness of the sheet and k

a factor modifying the cylinder strength C,sds
FL .
Fgrce flows transform according to the
same transformation of axes laws as
stresses. Hence the limit

Cxds

0 £ C;,2 implies that

C +C C. - CH2
2= e -

2 2 dx

which simplifies to :-
2
Cys - CxCs = O (1)

Figure 1. Concrete Sheet Element
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Similarly C;,» € CI' implies that

2 _ n _ n _
C.o - (C co(C CJ <0 (2)
Relationship (1) is the important one for designing under-reinforced beams and
will be the key to most important design cases. The boundary where (1) co-incides
with (2) is readily shown to be

n

Cx + CS = C (3)

and satisfaction of (3) is the key to certain over-reinforced cases.

For design purposes it will be shown that the very simple inequality (1) is
extremely powerful but to understand the physical significance the designer must
be aware that failure controlled by (1) is dilatant. Any sheet failing by satis-
faction of (1) is dilating in the x and s directions thus imposing on reinforce-
ment in these directions a tensile strain and hence a tensile force. The apparent
anomaly of compatibility of concrete under compression and parallel steel under
tension is thus resolved.

The analytical demonstration of this dilatancy is achieved by simple application
of the flow rule of plasticity theory [6] which yields

€ =-2AC e =A(C"-cC)
X S X S
. s no_
es = - A Cx (4) ES = A {C Cx) (4a)
YXS= 2 )\ CXS Y)(S= 2)\ CXS

3. APPLICATION TO MODE 1 TORSION, SHEAR AND BENDING

The failure state of a properly reinforced beam subjected to torsion, shear and
bending is modelled using the dilatant concrete sheet subsystem by choosing the
concrete sheets in the form of a polygonal tube which is restrained from bursting
by the tensile stirrup force. The limit on this restraint against dilation is
set by the stirrup yield strength but the effectiveness of this 1limit is set by
the effectiveness of the force transfer between sheet and stirrup.

The potential circumferential force flow controlled by the stirrup is given by :
£
g = AN (5)

This is the limit which applies in criterion (1) so that if the required shear
flow st can be determined then the required value of Cx follows from (1)} namely

c 2 c?
Xs XS
Ck= € ° &t (6)
S WWX
S

The statics of determining values of C,; is well established in the space truss
theory. If the dilatant sheets circumscribe an area Ag then the shear flow in
these sheets due to twisting moment T is given by

C..= = (7
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or for a rectangular section v
T
st_ 2y12 (8)
Zz X

For a simple rectangular beam,
shear flows due to shear force
V are given by : Z,

.V (9) [
st © 2y, ////1
The effects of T and V are additive on A Y,

one face and subtractive on the other
A -
so that the faces carry force flows as ;c—”’zj
follows in the x direction ;- P ’
s ™~
M P
T
rd
Agt
z vV

Figure 2. Rectangular Section and Loading

@\ CI.=Cxl.X Z1

A

Ci=Cxyx v, ™ Ci=Cyy x v,
CXS? C2: Cx2 X Z,

(a) Shear flows (b) Associated Longitudinal Forces

Figure 3. Rectangular Beam.

C = 2Y1Z1 2y1 cC =c = 2Nz c = Yizi_ 2na (10)
X1 Af X2 Xy Af X3 Af
WoWy W WYy W WYy

S -] S
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The resultant force C; on the ith face is
the product of Cyj and the length of the
ith face (Figure 3) and is located at the
mid-point. These forces are readily
incorporated in the equations for axial
force and flexure, if an additional com-
pressive force C, is assumed on one of
the faces as the compressive stress block
due to bending. For failure mode 1 (sagg-
ing bending) it will act on the Cy face so
that the equations are :-

Ci + Cy + C3 + Cy + CO - Astfsy

y - (C1 + Ca)zjl—

if

P (11)

It

(A f

st'sy CZ) M (12)

Figure 4. Forces in beam flexure equations.

Equation (11) is the standard one for determining the neutral axis location but
the simplifying assumption implicit in all theories such as this is that the loca-
tion of the compressive stress block resultant is known so that lever arms in [12]
are independent of the solution of (11). No new theory would be required to pro-
duce more rigorous forms where the magnitude of C, would determine the depth of
the stress block and the lever arm would depend in turn on this. Substituting
from (10 in (12) produces

S50 A 5 | A S
: _2ya1z) 2yazi 2y’ oyr o Zyazi o 2y v
L WL AL,y Z1Y1 ANEy T2 AR Y173 153
S S s

In _a design situation no further development is needed. A trial selection of

MY would immediately lead to a solution for Astfsy and vice versa since all
other terms would be numerical ones at this stage. Hence the desigher can obtain
design parameters directly by an equation with which he is familiar. The power
of the method is that exactly the same procedure may be adopted for more complex
cross-sections and the tensile reinforcement need not be treated as equivalent
stringers because the moments of individual bars may be included in the moment
equation. The practical advantages of relating the analysis to familiar equations
are obvious. As an analytical approach it has an important advantage in common
with the space truss theory over the author's earlier more complex approach {7]
and the skew bending theory [8] because it can analyse the Collins' [9] reductio-
ad-absurdum beam with all steel external to the concrete as a standard case.

The analytical extension of (13) is trivial but confirms that the simple steps do
in fact produce an interaction relationship identical with the space truss theory
and rigorous skew bending theory. Re-arrangement of terms in (13) readily leads
to -

M T '}
Hb * &Tb) * (Vb) £ 1 where M, = Asfsyd (14)
To = 2y121 Awfwy ASthX, V, = 2y, Awfwy AStst

© S yl + z1 0 3 y1
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4. ECCENTRICITY OF COMPRESSIVE FORCE

Derivation of mode 3 (top yielding) and mode 2 (side yielding) equations is
equally direct, and the resulting interaction relationships are equally consist-
ent with space truss and skew bending. Of greater significance is the new insigt
that the method offers into the complete identification of all longitudinal
forces and their location so that the statics of the final design is thoroughly
understood by the designer.

For the mode 1 case given above, the inequality of the shears in the two y legs
means that C, must be eccentric (Figure 4) for zero moment about the second axis,
i.e.

Cye = (Cs - C1) %2 (15)
But e has maximum value %z, and when this is satisfied in (15) and C, is solved
from (11) using a value of Ag.fg sy which satisfies (12), (15) becomes -

Ty, (v, 2V 7
5 > (To) )Ty, T (16)

What is significant is that (16) is the mode 2, sideways bending, interaction
equation with zero top steel. In fact locating Cy at %z; leads to simultaneous
derivation of the mode 1 and mode 2 failure criteria. The equation now becomes:-

Astfsy + %Ascfsy - (Cy+ Co+ Ca+ Cu+ Cy) =P (17)
ASthY Y1 - CZ)’I' %(Cﬁ Cg) Ya =M (12)
aAstfsy Zy + %Ascfsy y1- Cazi- %(C2+ Cy)z1= 0 (18)

Equation (12) is unchanged and leads to the mode 1 equation and equation
(18) satisfies equilibrium in lateral flexure and leads directly to the mode 2
interaction relationship

A f 2 2 e
(1 s SCsy o (T VE, 2 Y1
12(1 * Astfsy) [To) * (VO) * TOVO Y1+ z1 (19)

Again (17) is not d1rect1y involved in the steel design but evaluation of C, from
it would be a step in the establishment of the requirements of the eccentrlc com-
pression crushing area in a rigorous analysis since C; to Cy are all in a dilatant
tensile strain, state. In fact the equations may be seen to be those of a rigid
plastic analysis with a skew neutral axis such that C, acts at the corner posit-
ion assumed and the rest of the section is in tensile strain state.

It is not proposed to discuss the mode 3 equations since they do not illustrate
any new aspect of the method, but they would, of course, be written and utilised
in a practical design situation. If they showed that A . needed an increase to
cover the hogging bending situation this would not require any iteration for the
rectangular beam, because, although C, would now be at a bottom corner, equation
(18) would apply to this case as well. The advantages of the method do not lie
in a particular formula which it can generate but in the inderstanding it can
provide to the designer as to why the reinforcement is required and the control
it gives him in decision-making as to how much is required. Some other aspects
in which it assists the designer and potential refinements will now be discussed.

5. WEB CRUSHING IN SHEAR

The minimum thickness of the concrete sheet implicit in the solution may be
derived if (3) is assumed to heold at failure. In the beam design equations
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considered, for instance, this leads to :-

c2 A f
XS Py W W.X
Af s
W WYy
t = 2 (20)
= KE?!
C

The case of web crushing in shear is readily treated by the method. The equation
for under-reinforced design in shear is (13) with T = 0. If the web width is such
that t as determined by (20} is greated than % then design for web crushing is
required. In that case design of the stirrup to yield simultaneously with the
crushing is readily achieved. Knowing C, from (6), (3) becomes :-

2

(cxs)2 n (g_) Awfw b
C TGO ot pE— v =Ry (21)
S = WW!
S
Solving £OF v , o = /E‘Q(kF'E - A—“Lf—‘f’)i) ' (22)
g 2y’ 2y 3 c2 s

This semi-circular relationship between V and Cg is the one that was derived by
Nielsen and Braestrup [10] for reinforced concrete web crushing and by Chitnuyan-
ondh et al [11] for prestressed concrete web crushing. However, when coupled with
the general theory it goes further than these methods because it then allows Cy to
be obtained since Cy and Cg must sum to C" . Hence the associated longitudinal
steel equations may be written. In the resulting design the strain rates will be
the sum of (4) and (4a). .

6. CONCLUSIONS

A general method has been presented for the organization of the calculations which
follow from the basic assumptions of plasticity theory when applied to reinforced
concrete members subjected to axial force, bending, shear and torsion. The design-
er's problem has been transformed into writing the equilibrium equations for the
resultants of longitudinal internal stresses, a problem with which he is familiar
from the establishment of the interaction equations for axial force and bending.
The method is independent of the shape of the cross-section or of the disposition
of the reinforcement on the faces of the member. The limits of under-reinforce-
ment can be identified and the web crushing case for beam shear may be designed
directly.

NOTATION

b web thickness
e eccentricity of (g
f fwy yield stress for Ag¢, Age, Ay steel
reduction factor for F!
(i) perimetral co-ordinate used in x,s co-ordinate system
{ii)} stirrup spacing used in Awfwx
concrete sheet thickness
beam co-ordinate system
area bounded by shear flow
steel area on bottom face
steel area on top face
stirrup area
compressive force due to P,M,
compressive force due to Cyj on the ith sheet

st

th ®
vw o -
ot =
-
~

O

ﬂnz>>>>>¢ﬁ

=0
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Cxs> Cgs Cxg forces per unit length, force flows, on concrete sheet
Fé concrete cylinder strength
M bending moment
P axial force
T twisting moment
Vv shear force
My, Py, Tp Vo, ultimate values of M,P,T,V when acting alone
€ 3 £ , ? strain rate
X 3 Xs
A scalar multiplier
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