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Some Examples of Lower-Bound Design of Reinforcement in Plane Stress Problems

Dimensionnement de l’armature et problemes d'états plans de contrainte, en appliquant la méthode
statique

Beispiele zur Bemessung der Bewehrung nach der statischen Methode bei Problemen mit ebenen
Spannungszustanden

M.P. NIELSEN

Dr. techn, Professor

The Technical University of Denmark
Lyngby, Denmark

SUMMARY

The paper demonstrates how simple statically admissible stress fields can be used for the determina-
tion of reinforcement in plane stress problems, and presents some standard formulae for the necessary
amount of reinforcement as a function of stresses. The problems treated are shear, torsion and com-
bined bending, torsion and shear in beams.

RESUME

On montre comment on peut utiliser des champs de contraintes statiquement admissibles et simples
pour l'analyse des problémes avec états plans de contrainte. Des formules sont données pour dimen-
sionner |'armature en fonction des contraintes. On traite les problémes du cisaillement et de la torsion
dans une poutre ainsi que I'action combinée de la flexion, de la torsion et du cisaillement,

ZUSAMMENFASSUNG

Es wird gezeigt, wie fur Probleme mit ebenen Spannungszustinden einfache statisch zuldssige Spannungs-
felder angewendet werden konnen. Zur Ermittlung der erforderlichen Bewehrung in Abhangigkeit der
Spannungen werden Formeln angegeben. Behandelt werden die Beanspruchung von Balken durch Quer-
kraft und Torsion sowie die kombinierte Beanspruchung durch Biegung, Torsion und Querkraft.
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A

1. INTRODUCTION

It is the purpose of this paper to demonstrate that reinforcement design according
to the theory of plasticity in many plane stress problems can be done with advan-
tage by using simple lower bound solutions in connection with the author's rein-
forcement formulas, [1],{4],[5] and [6]. The methods were originally propocsed in
(61, in an internal report. Alternative methods dealing with the same problems
have been developed by Thiirlimann and his associates,[8] and [9].

We shall begin by giving a short summary of the reinforcement formulas and the theo-
ry on which they are based. The basic assumption are that both concrete and steel
can be treated as rigid, perfectly plastic materials. The yield condition for the
concrete is assumed to be the usual square yield locus —0C§(H.§O P —GC§(%2§O y
where 0O, and O are principal stresses (tension positive) and GC the compressive
strength. The tensile strength is thus assumed to be zero. The reinforcement
bars are assumed to be able to carry only forces in their longitudinal direction.
While the assumption for the reinforcement can be easily justified, the assumption
concerning the concrete has a more doubtful connection to reality. The basic rea-
son for this is that although the ductility of the concrete is rather high in com-
pression, the stress falls drastically, when the peak of the stress-strain curve has
been reached. Therefore, the theoretical results often have to be modified. One
way of doing this is to introduce an effective compressive strength vdJ_ , where v
is a so-called effectivity facteor, a lower bound of which is representing some kind
of average stress in the actual strain region. The effectivity factor, however, also
has to take care of other defects of the theory, see [10].

Considering for simplicity only orthogonal reinforcement in the directions x and y ,
see fig.1.1, and letting Aa represent the reinforcement area in the x-direction
per unit length measured in %he y-direction, O the yield stress of the reinforce-
ment in the x-direction, ¢, 0 and T , the s%resses which have to be carried,

and finally letting t beigg tKe thicﬁXess, the reinforcement formulas can, using

similar notation for the y-direction, be written, [6]:

¢ > - > -
Case 1 g, = ]Txylva Gy l ITxy[/Va
A 0] A a
ax fx ay fy (1.1), (1.2)
= — + = e——— = +
Utx t 0x iTxy'va Oty t 0y ’Txy!/va
= + .
o, |Txyr(v& 1/V o) (1.3)
% < < -
Case 2: 0 < 0.0 o, ITxyNa
Reinforcement is only necessary if 0_0 <1 2
X ¥y = xy
T 2
a =0 g = (1.4), (1.5)
tx ty v ld [
X
TXY 2
o, = lcx]u + (=92 (1.6)
X
Case 3: ©_ 2> 0 o <=7 o
Case 3;: o 20, y <l l7vE
Reinforcement is only necessary if UXO <1t 2

Yy Xy
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2

T
- Xy -
Oy = Oy * o Cn =W (1.7), (1.8)
Y
TXY 2
q = [Gyl(l e P (1.9)

Y

The guantities Ot and Gt defined by (1.1) and (1.2) are the yield forces of
the reinforcement Bars peryunit area of the concrete (equivalent reinforcement
stresses). They represent the tensile strength of the reinforced material in
the x- and y-directions, respectively. The quantity o is given by

o = X (1.10)

and a is the compression stress in the concrete. The above formulas determine
the op?imum value of A__+A .
ax ay

If for some reason the rein-
forcement in one direction

y is known, or if the optimum
value of the total reinforce-
ment of the structure is found

UY for other inclinations of the
.__..IXY compressive stresses than
found above, see section 2,
the following formulas deter-
N //ﬂi mine the necessary amount of
N i 5
T reinforcement:
/\\"P \ Xy
AN o =o +ylt. | (1.11)
N _ X tx X Xy
AN < \\ o,
1
o =0 +=|T (1.12
N 3 ty y Y[ xyI ;
AN
a T |y + 2
o = |t (y+=) (1.13)
o b xy VY
b
Figure 1.1
The quantity <vY>0 can be determined if Ot or Ot is known. The relation be-
tween 7Y and the angle ¢ determining the éirectlgn of the concrete stress is
Y=tgQ, see fig.1.1. The formulas (1.11) - (1.13) can also be used instead of
(1.1) - (1.9) if minimum reinforcement is not locked for. 1In this case, Y can

theoretically be arbitrarily chosen. However, in order to avoid yielding of the
reinforcement for service lcads, limitations should be put on the choice of Yy ,
see the following.

Having determined the necessary reinforcement by means of the above formulas, it
is often found advantageous to use another, perhaps more economical or practical
distribution of the reinforcement. 1In the case of homogeneous stress fields, it
should be ncted that the reinforcement theoretically might be distributed in any
other way resulting in the same statical equivalence of the reinforcement forces.
Sometimes, for instance in slabs and shells, such a transformation changes the
compression forces in the concrete and, if so, the concrete stresses of course
have to be calculated taking account of these extra forces, Also the complete
equilibrium of the whole transforqed stress field at the boundaries should be con-
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sidered. Examples of reinforcement transformations are given in the following.

2. SHEAR IN BEAMS

Consider a stringer beam, i.e. a beam with the tensile and the compression zone
concentrated in stringers, see fig.2.1. The distance between the stringers is h.
Let us determine the shear reinforcement in a zone with constant shear force Q.
If the shear zone has the thickness b , the reinforcement may be determined
using the homogeneous statically admissible stress field

Q

UX = Gy =0 Txy =T =gy (2.1)

The necessary reinforcement in the
x- and the y-direction and the
concrete stress O is determined
by (1.11)-(1.13). "We find

Compression stringer
f—
e = .
‘b/ )M Otx T cotb (2.2)
h 1‘ l =
/ Q Oty T tgb (2.3)
o sl O, = T(cotBd + tgh) (2.4)
Tensile stringer T X
¢y where the meaning of €0 1is shown

in fig.2.1. 1If the shear zone is
reinforced accordingly, i.e. rein-
forced in both directions x and y,
the stringers have to carry the
forces

M
= = — 5
Figure 2.1 & & h £245)

However, such a shear reinforcement is more expensive than necessary, although it
has the advantage of giving zero stringer force at a simple support, a fact which
may facilitate the design of this part of the beam because of the small anchorage
length of the tensile reinforcement required. The shear reinforcement in the
x—-direction can be avoided since the total force in this direction Qcot8 can
be carried by the stringers. This means that the stringers have to carry the
forces
=

+%Qcot6 C = —%Qcote (2.6), (2.7)

w1
==

The result implies that we have to reinforce for a tensile stress in the y-direc-
tion determined by (2.3), to secure that the stringers can carry the forces (2.6)
and (2.7) and that the concrete stress & determined by (2.4) can be carried by
the concrete. Formula (2.6} shows that at-a simple support, the tensile stringer
must be able to carry half the reaction times cot®, i.e. proper care must be
taken to anchorage the reinforcement at an end section.

The same result would, of course, be found if the bending moment was assumed to be
carried by the stringers and a uniformly distributed compressive stress Tcotf in
the shear zone. The above results can be obtained even in other ways, see for in-
stance [10].
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The total amount of reinforcement can, of course, be minimized with respect to 6.
The optimum value © is different from that corresponding to the formulas in sec-~
tion 1 because of the special way, in which the x-reinforcement is arranged. The
result of the optimization shall not be given here since other requirements often
determine the most practical 6-value . The reader is referred to [3].

1f reinforcement in other orthogonal directions is preferred for som reason, the
stress field (2.1) in the shear 2zone just have to be transformed to these direc-
tions. An extremely simple result is found when the shear zone is reinforced in
the principal directions where only reinforcement in one direction is required.

If the beam has variable depth, see
‘é%:::}cHth fig.2.2, we may reinforce for the

stress field:
Cy
6.=0; o =21LtgR ;
B 1:? X Ty h '
1
lt Q TXY =T = E(Q—T tg R) (2.8)

h which is easily seen to satisfy the
T _X equilibrium equations and the boun-

* T dary conditions. The o -stress ge-
y nerally is small and can’be neglected.
Doing so, the formulas (2.2)-(2.4)
are still wvalid. If in (2.7) C is
replaced by the horizontal component
C.. , see fig.2.2, the formulas (2.6)
and (2.7) are valid too.

Figure 2.2

If a beam has stronger flanges than necessary to carry the stringer forces, it
would be natural to utilize the bending and the shearing strength of the flanges
tco. The most simple way of doing this, when applying a lower bound method, is to
superimpose the above stress fields on a stress field, corresponding to ordinary
beam action in a frame system composed by the flanges, the end sections and, if
necessary, some compressive struts in the shear zone. Fig.2.3 illustrates how such
a stress field can be determined in a simple example. The bending moments are here
chosen in accordance with the yield mechanism shown in the figure. When the ratio
between the bending moments in the
hinges have been selected, the va-
¥ lues of the bending moments can be
determined by the work equation.
Having done this, the normal forces
and the shear forces can be deter-
mined by equilibrium equations.

Frame system

tioned, the reinforcement in the
flanges and the shear zone can be
calculated.

The effectivity factor v of the

Mechanism concrete is rather well known in

4 Superimposing the stress fields men-

Figure 2.3

[8] and [14].

the case of beam shear. Alsoc limi-
tations to be put on cotf in order to
secure satisfactory behaviour for

the working load have been proposed.
The reader is referred to [10],[121,

The stress fields treated in this section can as an approximation be used for other
loading systems than those giving constant shear force, see [10]. The stress fields
are not applicable for deep beams or beams with large concentrated loads near the
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supports, where arching action is capable of carrying all, or a significant part,
of the load. A number of simple statically admissible stress fields for this case
have been developed in [4] and [5]. An upper bound method is described in [10].

3. TORSION

An immediate application of the reinforcement formulas of section 1 to torsion
problems is possible for a thin walled, closed section. For such-a section a pure
shear field

! v
B -center line be 2 Bt

V being the torsional moment, A the area
within the center line of the secgion, s
the arc length along the center line, and t
the thickness, is statically admissible, see
fig.3.1. The formula (3.1) is Bredt's for-
mula. The area of the longitudinal bars and
the area of the bars along the center line

y is determined by (1.1) and (1.2) or (1.11)
Figure 3.1 and (1.12), the first mentioned formulas

giving minimum amount of reinforcement. The

concrete stress is determined by (1.3) or (1.13). The concrete stress of course
has to satisfy the condition oy v Gc'

The same simple stress field is statically admissible in any scolid section if (3.1)
is applied to a thin walled closed section lying within the concrete area of the
section. The thickness t of the thin walled section of course has to be sc large
as to render it possible to satisfy the condition 0, S VO,

e e
L

(3.1)

In many cases, the reinforcement does not have to be placed in the center line of
the closed section, A statically eqguivalent reinforcement lay-out can be used if
proper care is taken to design the end sections as in the case of shear in beams.

Consider, as an example, a rectangular section, see fig.3.Z.

A
Pl
If the yield stresses in both rein-
forcement directions are equal to
0. , we get by means of {1.1) and
(f.2) the following reinforcement
areas per unit length:
v
- = = — 3.2
- Bax T Pas T 7nob ¢ 3.2]
The total amount of longitudinal
reinforcement is thus
Ay +b
. | 14 A = V(b +b) (3.3)
Figure 3.2 <F—~—B~————i % hb o

which can be concentrated in the corners, each of the corner bars having an area
of A /4 . The reinforcement along the center line can for small sections be
chosen as closed stirrups as shown in fig.3.2 to the right. For large sections,
closed stirrups in the individual wall sections can be used as illustrated in fig.
3.2 to the left.

For a long rectangular section, the bars in both reinforcement directions can be
placed outside the thin walled section as long as both reinforcement layers are
placed symmetrically with respect to the middle plane, see fig.3.3. In this case,
we are in fact concerned with pure torsion in a slab, the action of which has been
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more deeply studied in [2], to which the
reader is referred.

In fig.3.4, thin walled sections which can
s s & & 8 [ be used for the reinforcement calculation
y ] in some other cases of solid sections have
been illustrated.

For circular sections, the concrete cover
is in danger of spalling off, which has

Figure 3.3 ,
actually been observed in tests, see [7].

Only very little is known about the effec-

tivity factor VvV of the concrete in the

case of torsion, but results are under way * .

Until more refined resulits are available

one has to rely upon crude but generally

conservative code rules, see for instance

[14]. Limits on Y have been studied in
Figure 3.4 [11], see also [9] and [14].

4. COMBINED BENDING, SHEAR AND TORSION

In the case of combined bending, shear and torsion in a thin walled closed section,
the necessary amount of reinforcement can be determined by means of the reinforce-
ment formulas of section 1 too. Considering as a simple example a box section
acted upon by a bending moment M_ , a shear force © and a torsional moment V,
see fig.4.1, one statically admissible stress field cdn be found using the Navier
distribution of the normal stresses O from the bending moment, the correspon-

ding Grashof distribution of the shearxstresses sz from the shear force @ and
the Bredt distribution (3.1} of the shear stresses sz from the torsional Homent
V . However, a more suitable statically admissible st¥ess distribution is found

by distributing the normal stresses. from MZ uniformly, for instance, along the
top and bottom flanges. The corresponding shear
stress diagram then is linear in the individual
walls. Having determined the stress distribution,
the reinforcement formulas immediately give the
necessary amount of reinforcement. Other thin wal-
led closed sections can be treated in a similar way.
For a solid section, the same methcd as described
for pure torsion can be used, i.e. a thin walled
section, lying within the concrete area, is selected
l for carrying the stresses. Consider as an example
Figure 4.1 Y a solid rectangular section. If reinforcement is
supplied in the longitudinal direction and a circum-
ferential direction, perpendicular to this, and if the yield stress of the steel is
the same in both directions, then for a section acted upon by a torsional moment
V the reinforcement formulas (1.1) and (1.2) require the total longitudinal rein-
forcement to carry a force P, =a, 0. , which can be calculated by means of (3.3).
The corresponding reinforcement area can be placed as one fourth of the total area
in each corner.

Small bending moments MZ y l.e. MZQE%“V(h+b)/b can be carried by moving a part of

the reinforcement in the compression zone to the tensile zone, i.e. the force in
the longitudinal reinforcement in the top flange can be reduced by M _/h and the

force in the longitudinal reinforcement in the bottom flange has tobe increased by Mz/h.

* Current research seems to show that empirical formulas for V can be given very
similar forms for bending and torsion problems, see [13].
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1
If M, >3V (h+b}/b the longitudinal reinforcement

in the top flange can be chosen to be zero, while
the force in the longitudinal reinforcement in the
bottom flange still has to be increased by Mz/h .

H t3

If the section is acted upon by a shear force Q too,
- the reinforcement can be determined by adding thé shear
stress in the thin walled section from @ to the
stresses from V and M . In one of the gertical.walls,
the shear stresses from Q add to the shear stresses
from V and in the other gne, they subtract to the
shear stresses from V . The concrete stress in the
individual walls can be determined by means of the for-
mulas of section 1. The guantities t ., t,, t, and t.,
Figure 4.2 "y the meaning of which is shown in fig.2.2, of course 3
have to be fixed at values making it possible to satisfy
the condition Ob'i))oc in each wall. Other solid sections may be treated in a simi-
lar way.

As in the case of pure torsion, reliable information about the effectivity factor Vv
of the concrete is still missing in the case of combined bending, shear and torsion.

5. OTHER PLANE STRESS PROBLEMS

The reinforcement formulas can be applied to several other plane stress problems.

We shall, however, not be able to treat other cases in more detail here. A number

of statically admissible stress fields for deep beams, to which the reinforcement for-
mulas immediately apply, have been developed by the author, see [4] and [5]. The
formulas also apply to the determination of reinforcement in slabs and shells, see
[2]1,[4] and [5].
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