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V

Some Examples of Lower-Bound Design of Reinforcement in Plane Stress Problems

Dimensionnement de l'armature et problèmes d'états plans de contrainte, en appliquant la méthode
statique

Beispiele zur Bemessung der Bewehrung nach der statischen Methode bei Problemen mit ebenen
Spannungszuständen

M.P. NIELSEN
Dr. techn. Professor
The Technical University of Denmark
Lyngby, Denmark

SUMMARY
The paper demonstrates how simple statically admissible stress fields can be used for the determination

of reinforcement in plane stress problems, and presents some standard formulae for the necessary
amount of reinforcement as a function of stresses. The problems treated are shear, torsion and
combined bending, torsion and shear in beams.

RESUME
On montre comment on peut utiliser des champs de contraintes statiquement admissibles et simples
pour l'analyse des problèmes avec états plans de contrainte. Des formules sont données pour
dimensionner l'armature en fonction des contraintes. On traite les problèmes du cisaillement et de la torsion
dans une poutre ainsi que l'action combinée de la flexion, de la torsion et du cisaillement.

ZUSAMMENFASSUNG
Es wird gezeigt, wie für Probleme mit ebenen Spannungszuständen einfache statisch zulässige Spannungsfelder

angewendet werden können. Zur Ermittlung der erforderlichen Bewehrung in Abhängigkeit der
Spannungen werden Formeln angegeben. Behandelt werden die Beanspruchung von Balken durch Querkraft

und Torsion sowie die kombinierte Beanspruchung durch Biegung, Torsion und Querkraft.
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1 INTRODUCTION

It is the purpose of this paper to demonstrate that reinforcement design according
to the theory of plasticity in many plane stress problems can be done with advantage

by using simple lower bound solutions in connection with the author's
reinforcement formulas, [l],[4],[5] and [6]. The methods were originally proposed in
[6], in an internal report. Alternative methods dealing with the same problems
have been developed by Thürlimann and his associates,[8] and [9].

We shall begin by giving a short summary of the reinforcement formulas and the theory
on which they are based. The basic assumption are that both concrete and steel

can be treated as rigid, perfectly plastic materials. The yield condition for the
concrete is assumed to be the usual square yield locus -a - 0^ - 0 ~®c - 0^ - 0

where and a^ are principal stresses (tension positive) and 0 the compressive
strength. The tensile strength is thus assumed to be zero. The reinforcement
bars are assumed to be able to carry only forces in their longitudinal direction.
While the assumption for the reinforcement can be easily justified, the assumption
concerning the concrete has a more doubtful connection to reality. The basic reason

for this is that although the ductility of the concrete is rather high in
compression, the stress falls drastically, when the peak of the stress-strain curve has
been reached. Therefore, the theoretical results often have to be modified. One

way of doing this is to introduce an effective compressive strength VCT where V

is a so-called effectivity factor, a lower bound of which is representing some kind
of average stress in the actual strain region. The effectivity factor, however, also
has to take care of other defects of the theory, see [10].

Considering for simplicity only orthogonal reinforcement in the directions x and y
see fig.1.1, and letting A represent the reinforcement area in the x-direction
per unit length measured ina?he y-direction, 0^ the yield stress of the reinforcement

in the x-direction, 0 a and T the stresses which have to be carried,
and finally letting t being tKe thic^Xess, the reinforcement formulas can, using
similar notation for the y-direction, be written, [6]:

Case 1: cr > - It |Va a > - |t | /VcT
x 1 xy1 y

1 xy'

a
A o ACTax fx ct + | x | Va a —1——— er + I t I /Va (1 •1 ' ' <1 •2 >

tx t x ' xy1 ty t y
1

xy1

CT |t | (Va+1/V~a) (1.3)b 1 xy1

Case 2 : CT < 0„a CT < -1T IVä
x y x 1 xy1

Reinforcement is only necessary if CT CT < T
2

x y xy

xy (1.4), (1.5)
la |

ct. 0 a CT +tx ty y
T

ab Kl(1 + (^)2) (1-6>
x

Case 3: o > a a a <-It l/Va
x y y

1 xy1

Reinforcement is only necessary if a a < T
2

x y xy
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a CT +tx x
xy a. 0

ty (1.7), (1.8)

(l + (f^)2) (1.9)

The quantities 0 and 0 defined by (1.1) and (1.2) are the yield forces oftx tythe reinforcement bars per unit area of the concrete (equivalent reinforcement
stresses). They represent the tensile strength of the reinforced material in
the x- and y-directions, respectively. The quantity a is given by

a fx
7fy

and 0 is the compression stress in the concrete.
the optimum value of A + A

ax ay

(1.10)

The above formulas determine

If for some reason the
reinforcement in one direction
is known, or if the optimum
value of the total reinforcement

of the structure is found
for other inclinations of the
compressive stresses than
found above, see section 2,
the following formulas determine

the necessary amount of
reinforcement :

0tx a + y tx 1 xy1

0^ 0 + — Tty y y1 xy1

xy
<y + y>

(1.11)

(1.12)

(1.13)

Figure 1.1

The quantity y > 0 can be determined if 0^_ or a is known. The relation
between y an£l the angle (p determining the direction of the concrete stress is
Y=tgcp, see fig.1.1. The formulas (1.11) - (1.13) can also be used instead of
(1.1) - (1.9) if minimum reinforcement is not looked for. In this case, Y can
theoretically be arbitrarily chosen. However, in order to avoid yielding of the
reinforcement for service loads, limitations should be put on the choice of y
see the following.

Having determined the necessary reinforcement by means of the above formulas, it
is often found advantageous to use another, perhaps more economical or practical
distribution of the reinforcement. In the case of homogeneous stress fields, it
should be noted that the reinforcement theoretically might be distributed in any
other way resulting in the same statical equivalence of the reinforcement forces.
Sometimes, for instance in slabs and shells, such a transformation changes the
compression forces in the concrete and, if so, the concrete stresses of course •

have to be calculated taking account of these extra forces. Also the complete
equilibrium of the whole transformed stress field at the boundaries should be con-
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sidered. Examples of reinforcement transformations are given in the following.

2. SHEAR IN BEAMS

Consider a stringer beam, i.e. a beam with the tensile and the compression zone
concentrated in stringers, see fig.2.1. The distance between the stringers is h,
Let us determine the shear reinforcement in a zone with constant shear force Q

If the shear zone has the thickness b the reinforcement may be determined
using the homogeneous statically admissible stress field

0=0 0 T T r§- (2.1)
x y xy bh

Compression stringer

The necessary reinforcement in the
x- and the y-direction and the
concrete stress is determined
by (1.11)—(1.13). We find

O. X cotGtx
er X tg0ty
0' X(cot0 + tg0)

(2.2)

(2.3)

(2.4)

where the meaning of 0 is shown
in fig.2.1. If the shear zone is
reinforced accordingly, i.e.
reinforced in both directions x and y
the stringers have to carry the
forces

Figure 2.1
T C —

h (2.5)

However, such a shear reinforcement is more expensive than necessary, although it
has the advantage of giving zero stringer force at a simple support, a fact which
may facilitate the design of this part of the beam because of the small anchorage
length of the tensile reinforcement required". The shear reinforcement in the
x-direction can be avoided since the total force in this direction Q cot9 can
be carried by the stringers. This means that the stringers have to carry the
forces

T J+±Qcot0
M 1

C h"2QcOt0 (2.6), (2.7)

The result implies that we have to reinforce for a tensile stress in the y-direc-
tion determined by (2.3), to secure that the stringers can carry the forces (2.6)
and (2.7) and that the concrete stress determined by (2.4) can be carried by
the concrete. Formula (2.6) shows that at"a simple support, the tensile stringer
must be able to carry half the reaction times cot 0 i.e. proper care must be
taken to anchorage the reinforcement at an end section.

The same result would, of course, be found if the bending moment was assumed to be
carried by the stringers and a uniformly distributed compressive stress X cot0 in
the shear zone. The above results can be obtained even in other ways, see for
instance [10].
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The total amount of reinforcement can, of course, be minimized with respect to 0.
The optimum value 0 is different from that corresponding to the formulas in section

1 because of the special way, in which the x-reinforcement is arranged. The
result of the optimization shall not be given here since other requirements often
determine the most practical 0-value The reader is referred to [3].

If reinforcement in other orthogonal directions is preferred for som reason, the
stress field (2.1) in the shear zone just have to be transformed to these directions.

An extremely simple result is found when the shear zone is reinforced in
the principal directions where only reinforcement in one direction is required.

i nMIt Q| s

T_

'y

If the beam has variable depth, see
fig.2.2, we may reinforce for the
stress field:

0

bh

Zx^tgl
(Q-T tg ß) (2.8)

Figure 2.2

Vand

xy
which is easily seen to satisfy the
equilibrium equations and the boundary

conditions. The a -stress
generally is small and can^be neglected.
Doing so, the formulas (2.2)-(2.4)
are still valid. If in (2.7) C is
replaced by the horizontal component

see fig.2.2, the formulas (2.6)
(2.7) are valid too.

If a beam has stronger flanges than necessary to carry the stringer forces, itwould be natural to utilize the bending and the shearing strength of the flanges
too. The most simple way of doing this, when applying a lower bound method, is to
superimpose the above stress fields on a stress field, corresponding to ordinary
beam action in a frame system composed by the flanges, the end sections and, if
necessary, some compressive struts in the shear zone. Fig.2.3 illustrates how such
a stress field can be determined in a simple example. The bending moments are here
chosen in accordance with the yield mechanism shown in the figure. When the ratio

between the bending moments in the
hinges have been selected, the
values of the bending moments can be
determined by the work equation.
Having done this, the normal forces
and the shear forces can be determined

by equilibrium equations.
Superimposing the stress fields
mentioned, the reinforcement in the
flanges and the shear zone can be
calculated.

The effectivity factor v of the
concrete is rather well known in
the case of beam shear. Also
limitations to be put on cot0 in order to
secure satisfactory behaviour for

Figure 2. 3 the working load have been proposed.
The reader is referred to [10],[12],

[8] and [14].

Frame system

Mechanism

The stress fields treated in this section can as an approximation be used for other
loading systems than those giving constant shear force, see [10]. The stress fields
are not applicable for deep beams or beams with large concentrated loads near the

29/21
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supports, where arching action is capable of carrying all, or a significant part,
of the load. A number of simple statically admissible stress fields for this case
have been developed in [4] and [5]. An upper bound method is described in [10].

3. TORSION

An immediate application of the reinforcement formulas of section 1 to torsion
problems is possible for a thin walled, closed section. For such a section a pure

shear field

Figure 3.1

center line xs 2A0t
(3.1)

V being the torsional moment, A_ the area
within the center line of the section, s
the arc length along the center line, and t
the thickness, is statically admissible, see
fig.3.1. The formula (3.1) is Bredt's
formula. The area of the longitudinal bars and
the area of the bars along the center line
is determined by (1.1) and (1.2) or (1.11)
and (1.12), the first mentioned formulas
giving minimum amount of reinforcement. The

concrete stress is determined by (1.3) or (1.13). The concrete stress of course
has to satisfy the condition < v a

The same simple stress field is statically admissible in any solid section if (3.1)
is applied to a thin walled closed section lying within the concrete area of the
section. The thickness t of the thin walled section of course has to be so large
as to render it possible to satisfy the condition 1 v °c •

In many cases, the reinforcement does not have to be placed in the center line of
the closed section, A statically equivalent reinforcement lay-out can be used if
proper care is taken to design the end sections as in the case of shear in beams.

Consider, as an example, a rectangular section, see fig.3.2.

teg

Figure 3.2

If the yield stresses in both
reinforcement directions are equal to
a we get by means of (1.1) and
(1.2) the following reinforcement
areas per unit length:

A A
ax as 2hbo, (3.2)

The total amount of longitudinal
reinforcement is thus

\ V (h + b)
hb o.

(3.3)

which can be concentrated in the corners, each of the corner bars having an area
of - The reinforcement along the center line can for small sections be
chosen as closed stirrups as shown in fig.3.2 to the right. For large sections,
closed stirrups in the individual wall sections can be used as illustrated in fig.
3.2 to the left.
For a long rectangular section, the bars in both reinforcement directions can be
placed outside the thin walled section as long as both reinforcement layers are
placed symmetrically with respect to the middle plane, see fig.3.3. In this case,
we are in fact concerned with pure torsion in a slab, the action of which has been
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-I I * a B 1 B B.

Figure 3.3

Figure 3.4

more deeply studied in [2], to which the
reader is referred.

In fig.3.4, thin walled sections which can
be used for the reinforcement calculation
in some other cases of solid sections have
been illustrated.
For circular sections, the concrete cover
is in danger of spalling off, which has
actually been observed in tests, see [7].

Only very little is known about the effec-
tivity factor V of the concrete in the
case of torsion, but results are under way *
Until more refined results are available
one has to rely upon crude but generally
conservative code rules, see for instance
[14], Limits on Y have been studied in
[11], see also [9] and [14],

4. COMBINED BENDING, SHEAR AND TORSION

In the case of combined bending, shear and torsion in a thin walled closed section,
the necessary amount of reinforcement can be determined by means of the reinforcement

formulas of section 1 too. Considering as a simple example a box section
acted upon by a bending moment M a shear force Q and a torsional moment V,
see fig.4.1, one statically admissible stress field cXn be found using the Navier
distribution of the normal stresses a from the bending moment, the corresponding

Grashof distribution of the shear stresses T from the shear force Q and
the Bredt distribution (3.1) of the shear stresses T from the torsional Xoment
V However, a more suitable statically admissible stress distribution is found
by distributing the normal stresses.from M uniformly, for instance, along the

top and bottom flanges. The corresponding shear
stress diagram then is linear in the individual
walls. Having determined the stress distribution,
the reinforcement formulas immediately give the
necessary amount of reinforcement. Other thin wal-
led closed sections can be treated in a similar way.
For a solid section, the same method as described
for pure torsion can be used, i.e. a thin walled
section, lying within the concrete area, is selected
for carrying the stresses. Consider as an example
a solid rectangular section. If reinforcement is
supplied in the longitudinal direction and a

circumferential direction, perpendicular to this, and if the yield stress of the steel is
the same in both directions, then for a section acted upon by a torsional moment
V the reinforcement formulas (1.1) and (1.2) require the total longitudinal rein-

Figure 4.1

rNV

Mz x

Qy

forcement to carry a force P
A. AA °f which can be calculated by means of (3.3)

The corresponding reinforcement area can be placed as one fourth of the total area
in each corner.
Small bending moments M M <ttV (h+b)/bz — 2 can be carried by moving a part of
the reinforcement in the compression zone to the tensile zone, i.e. the force in
the longitudinal reinforcement in the top flange can be reduced by M /h and the
force in the longitudinal reinforcement in the bottom flange has tobe increased by Mz/h.

* Current research seems to show that empirical formulas for V can be given verysimilar forms for bending and torsion problems, see [13].
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H l

Figure 4.2

the condition
lar way.

O, < V 0b c

If >2" V (h+b)/b the longitudinal reinforcement
in the top flange can be chosen to be zero, while
the force in the longitudinal reinforcement in the
bottom flange still has to be increased by Mz/h •

If the section is acted upon by a shear force Q too,
the reinforcement can be determined by adding th^ shear
stress in the thin walled section from Q to the
stresses from V and M In one of the Vertical walls,
the shear stresses from Q add to the shear stresses
from V and in the other Xne, they subtract to the
shear stresses from V The concrete stress in the
individual walls can be determined by means of the
formulas of section 1. The quantities tQ, t^, t2 and t.,
the meaning of which is shown in fig.4.2, of course
have to be fixed at values making it possible to satisfy

in each wall. Other solid sections may be treated in a simi-

3 '

As in the case of pure torsion, reliable information about the effectivity factor V

of the concrete is still missing in the case of combined bending, shear and torsion.

5. OTHER PLANE STRESS PROBLEMS

The reinforcement formulas can be applied to several other plane stress problems.
We shall, however, not be able to treat other cases in more detail here. A number
of statically admissible stress fields for deep beams, to which the reinforcement
formulas immediately apply, have been developed by the author, see [4] and [5]. The
formulas also apply to the determination of reinforcement in slabs and shells, see
[2],[4] and [5].
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