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V

Reinforced Concrete Corbels — Some Exact Solutions

Consoles en béton armé — quelques solutions complètes

Stahlbetonkonsolen — einige vollständige Lösungen

B.C. JENSEN
Lie. techn.
Ingeniörfirmaet Axel Nielsen A/S
Odense, Denmark

SUMMARY
The paper presents some equations for the load carrying capacity of reinforced concrete corbels.
The solutions are exact solutions based on the classical theory of plasticity.

RESUME
La résistance ultime des consoles en béton armé est examinée en appliquant la théorie classique de la

plasticité. Quelques solutions complètes sont obtenues.

ZUSAMMENFASSUNG
Die Tragfähigkeit von Stahlbetonkonsolen wird mit Hilfe der klassischen Plastizitätstheorie untersucht.
Einige vollständige Lösungen werden angegeben.
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1. INTRODUCTION

In this paper some lower and upper bounds for the load carrying capacity of
reinforced concrete corbels will be presented.

The solutions are based on the
assumptions of zero tensile
strength in concrete and plane
stresse field. Concrete and
reinforcement are idealized to rigid-
perfectly plastic materials. The
bars carry forces in the axial
directions only. The yield criterion

of concrete is the well
known square yield criterion, see
fig. 1. From the work on shear
problems carryed out in Denmark,
it is known that the strength of
concrete cannot be expected to be
the normal uniaxial compressive
strength f see f.ex. [l]. The
same condition is well known from
normal bending calculations. To
take this into account we introduce

the effective compressive
strength Vf where V < 1. Fig. 1. Square yield criterion for concrete.

HORIZONTAL CONCENTRATED REINFORCEMENT

2.1 Lower bound solutions

Consider the stress de-
stribution shown in fig.
2. The force T in the
reinforcement is
transferred to the concrete
at the length EF. In the
regions ABC and DEF

there are hydrostatic
compression. In the
region BCDF there is
unsocial compression. The
hydrostatic stress is
equal to the unaxial
stress, and both are
equal to the concrete
strength v f
From right-angled
triangles in fig. 2 we get Fig. Stress destribution.

(a + -|)2 + (h-y)2 (a-|)2+ h2 - (x2 + y2 (1)

From this equation we get

x -a + /a2+2y(h-y) (2)



A B.C. JENSEN 295

The lower bound, solution is thus

P x v a (3)

Using T /h we get

T

a -V £ + /(vfa«2 2 V^ V -V fh h (U)

Maximum for (4) is found for ^/h g. However, the tensile force T is equal to
the compression force at the region EF, i.e.
T y v f < A fc - y

(5)

Here is A the area of the reinforcement^ and f is the yield strength. We introduce

the degree of reinforcement $ fy Fr&n (5) we then get y î>h/v but
with maximum ^/h g. c

Inserting in (1+) we get

a
T

a

-V ^ +2 4>( V - 4>)

-v £ + v/(f + g

V
< —
— 2

V
> —- 2

(6a)

(6b)

These equations are lower bound solutions if the reinforcement is placed with an
effective height he h - g y or

h(l-P)
V

$ < FT (Ta)

(Tb)

If the effective
height is less than
given in equation J
the stress destribu-
tion in fig. 3 can
be used.

The stress destribu-
tion is in fact the
same as in fig. 2,
except the region
GHDE. In this region
we have uniaxial
stress equal to the
concrete strength
Vf

c

The lower bound
solutions are found in
the same way as (6),
and we get

>.

Fig. 3.

T

Ö~
-v ^ + ^(v—)2 + $( 2 V - $)

Stress destribution
hp

$ < v-

-V f + v/(f )2 (f )2

h
bp

> v h

(8a)

(8b)
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These lower bound solutions are valid when he is less than given in (j). If he
is greater we cannot use this consideration because the tensile force in the
reinforcement now is
determined by the
distance h - h At the6limit h he the lower
bound in this way will
be zero. .p

If he is greater than
given in (7) we can
use the stress destri-
bution in fig. U. In
this case the tensile
force is transferred
to the concrete as a
shear stress x T/z.
In the region ABC

there is hydrostatic
compression and in
region BCDF there is
uniaxial compression.
All stresses are equal
to the concrete
strength V f
From right-angled triangles in fig. U we get

tF

>

I tDHHUr__ _t

B

A
x

c
- tF rf"

Fig. It. Stress destribution.

(a-£)2^2 (he ~2^2 2^2x2 -y2 (a+f) (he -|)2 (9)

From (9) we find

x -a + /az + y 2 he - y}

Also from geometrical considerations we get

hP/ &2 + y(2 h - y J+ y a - h a
z — S H—

h - Z
e 2

(10)

(11)

How we regard the equlibirum of the triangle DEF. The moment equation gives

a va
2 2

2L+JL (12)

And then the load P turns out to be

P a z V0c(-a + /a2 + y(2 h^ - y) (13)

This force is equal to the vertical force on AC.

Maximum for (13) is found for y he. However, horizontal projektion gives

T y vac T z-i Afy (il*)

This means that y $ h/v but with maximum y h Inserting in (13) we get
the same lower bound solutions as in (8), which then i a general lower bound
solution. The stress destribution in fig. U can of course be used instead of
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the stress distribution
in fig. 2 and fig. 3.
However, the way of
transferring the tensile
force to the concrete is
quite different.

2.2 Upper bound solutions

The failure mechanism is
shown in fig. 5- Part II
rotates the angle a about
A. The yield line AB has
pure compression and AC

is a tensile crack. The
tensile crack reaches
the upper side of the
corbel at an arbitrary
place inside the load.
The work equation consist

of 3 contributions
WE, WjR, WIC from the
external force, the
reinforcement and the
concrete

z

Fig. 5- Failure mechanism.

The contributions are

p(a + x)a

WIR Afy(he "y)a

WIC ^ Vfc(x2 + y2^a

(15)

(16)

(IT)

The work equation W W.
±Li IR

+ then yields

_P_ s v(x2+ y2)+ 4>h(hP-y)
a. + x

(18)

where $ (A f )/(hfy c'

Minimizing with respect to x and y we get

y

-a + /a2 $ h (2 h
$ h

V 1 "e v

Inserting in (18) we get the minimum

(19)

(20)

-L _v + / (v ~)2 + $(2vy - $) (21a)
c

The upper limit for the validity of (21a) is the contribution 0 from the
reinforcement, that is he y or $ (he/h). If the degree of reinforcement is
greater we get
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a~ ~ Vh + V /(h)2 + (1h")2 $ - v if (21b)
c

The upper "bound solutions (21) are identical with the lower bound solutions (8).
The solutions therefore are exact.

3. INCLINED REINFORCEMENT

3.1 Lower bound solutions

In case of inclined
reinforcement. The stress
destribution is shown
in fig. 6. In the
regions IKFD, KLGF and
CDEB there are uniaxial
compression and in the
regions ABC, DFE and
FGE there are hydrostatic

compression. All
stresses are equal to
the concrete strength.
The side EF is
perpendicular to the
reinforcement and the
reinforcement is passing
through the middle of
EF. Fig. 6. Stress destribution.

From the geometri we
can find two different expressions for the diagonal BD. Then we get

(a (x+Xj))2+(he~(a + |x)tan 0 + gy)2 -(x2+ y2)

(a + gx - gXj)2 + (he - (a + gx)tan 0 - gy)2

In this we have Xj y tan 0 and from (22) we find

2a tan 0 -y-a + /a* + y(2 h

(22)

(23)

The lower bound solutions is thus

P v a (x + x.)n 1 ' (2U)

and we get

P— V y tan 0 + v /az +y(2h - 2a tan 0 - y) -va
c

Maximum for (25) is found for

y hg - a tan + sin 0 Ai 2 +(- a
qe 'cos 0

2a h tan I

e

(25)

(26)

However the tensile force must be equal to the compression force on the side EF,
which yields
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y V f < A f cos
c - y

(27)

This means that
$

V, fiy -- h cos ü
V

and with the maximum given by (26).

Inserting in (25), and using x P/h, we get the lower bound solutions

(28)

ttsinO-V^+ZCdy1)2 + 4> cos 0 2 V - 2 y- V tan 0-0 cos 0
h h h h

c I v-y tan 0 - V-y (1 + tan20)+ —^-r / (~ry")z +(
h h cos 0 kh

p z a n„
x, —q) — tan 6
h cos 0 h

(29a)

(29b)

(29a) is valid when

cos 0 < V — tan 0 + — sin 0/h 2 +( ^ aT ~ 2 a h th h e cos 0 e
(30)

3.2 Upper bound solutions

The failure mechanism is
the same as in fig. 5,
see fig. 7-

The contributions to the
work, equation from
concrete and from the
external load are given by
(17) and (16). The
contribution from the rein- j?
forcement is determined
by the distance from A

perpendicular to the
reinforcement. This
distance is (h -y) cos 0

+ x sin 0, and the work
equation then is

P _ I v(x2 + y2)+ $ h( (he - y )cos 0 +

a a + x

Fig. 7- Failure mechanism.

(31)

Minimum is found for
$

y — h cos 0

-a + /a2 + — h cos 0 2 he •

V

0
2 a tan 0 - — h cos 0

(32)

(33)

Inserting in (31) we find an upper bound solution equal to (29a). The upper limit
for the validity of this equation is the contribution 0 from the reinforcement,

that is

(h -y) cos + x sin 0 (3U)

Inserting (33) in (3l) we get (26), and then we get the same limit as in (30).
If (30) is not fulfilled, the upper bound solution is (29b).
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it. CONCLUSION

The developed upper bound solutions are identical with lower bound solutions.
Therefore the solutions (8) and (29) are exact solutions.

In the same way as here, the load carrying capacity of corbels with destributed
reinforcement and with
combined horizontal and
inclined reinforcement
can be found. Fig. 8
shows the stress destri-
bution with horizontal
and inclined reinforcement

It is noteworthy that
the failure mechanism
in all cases is a sort
of bending-shear
failure. Only in a very
special case, a sliding
failure gives the right
upper bound solution.
The sliding failure
mechanism corresponds
to the stress destri-
bution in fig. 2, where
the yield line will
appear between C and D. Fig. 8. Stress destribution.
The load carrying capacity

for corbels presented in [l] is therefore only exact when (7) is fulfilled.
The results presented here can of course be transferred to the shear capacity of
beams without shear reinforcement.

Just now we carry out a comparesion of the equations with tests.
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