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Reinforced Concrete Corbels — Some Exact Solutions
Consoles en béton armé — quelques solutions complétes

Stahlbetonkonsolen — einige vollstandige Losungen

B.C. JENSEN

Lic. techn.

Ingenidrfirmaet Axel Nielsen A/S
Odense, Denmark

SUMMARY

The paper presents some equations for the load carrying capacity of reinforced concrete corbels.
The solutions are exact solutions based on the classical theory of plasticity.

RESUME

La résistance uttime des consoles en béton armé est examinée en appliquant la théorie classique de la
plasticité., Quelques solutions complétes sont obtenues.

ZUSAMMENFASSUNG

Die Tragfahigkeit von Stahlbetonkonsolen wird mit Hilfe der klassischen Plastizitdtstheorie untersucht.
Einige vollstandige Losungen werden angegeben.
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1. INTRODUCTION

In this paper some lower and upper bounds for the load carrying capacity of re-
inforced concrete corbels will be presented.

The solutions are based on the
assumptions of zero tensile
strength in concrete and plane
stresse field. Concrete and rein- &
forcement are idealized to rigid- )2
perfectly plastic materials. The
bars carry forces in the axial
directions only. The yield crite-
rion of concrete is the well > o,
known square yield criterion, see
fig. 1. From the work on shear
problems carryed out in Denmark,
it 1s known that the strength of
concrete cannot be expected tc be
the normal uniaxial compressive
strength £ , see f.ex. [1]. The
same condiftion is well known from
normal bending calculations. To

take this into account we intro- (-vfe , -vfc)
duce the effective compressive
strength\)fc, where v < 1. Fig. 1. 8Square yield criterion for concrete.

2. HORIZONTAL CONCENTRATED REINFORCEMENT

2.1 Lower bound soluticns

Consider the stress de-
stribution shown in fig. a
2. The force T in the
reinforcement is trans- [)1 E

ferred to the concrete ////’\\\ K
at the length EF. Inthe 1 gu -
regions ABC and DEF

there are hydrostatic F
compression. In the re-

gion BCDF there is un- £
axial compression. The
hydrostatic stress is

‘equal to the unaxial 5
stress, and both are

equal to the cdncrete
strength\)fc.

A C 7

,r_L._‘z ,*_;)F

From right-angled tri-
angles in fig. 2 we get  Fig. 2. Stress destribution.

2.9

{(a + 5

24(h-y)? = (a-2)%+ n? - (32 + y2) (1)

From this equation we get

x =-a + va?+2y(h-y) {2)
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The lower bound solution is thus
P =
X Vo, (3)

Using T = P/h we get

T
—_ = =y
o

c

+ \/(v%)z + 2\)% (v -v %) (%)

g o

Maximum for (4) is found for Y/h = . However, the tensile force T is equal to

the compression force at the region EF, i.e.

= < AT
T=yv fc < ¥y (5)
Here 1s A the area of the :r'e:Lnforcemeﬂtf and f is the yield strength.hWe intro-
duce the degree of reinforcement ¢ =‘HE¥" Fr%m,(B) we then get y =07 /v but
1 c

with maximum ¥Y/h = 3.

Inserting in (4) we get

a v
T VS /(\)%)2 + 2 ¢(v-9) °< 3 (6a)
g a P I I AV
¢ vyt \)‘/(E) + 3 ¢ > 3 (6b)

These equations are lower bound solutions if the reinforcement is placed with an
effective height hy = h-}y or

(Ta)

Ml role

(To)

If the effective

height is less than

given in eguation 7

the stress destribu-

tion in fig. 3 can a

P
be used. §
a¥n

The stress destribu-
tion is in fact the D E
same as in fig. 2,
- _,r
£

except the region T e
GHDE. In this region F
we have wmilaxial

stress equal to the B
concrete strength >‘I

v |
¢

. ¥
The lower bound solu- A % &
tions are found in : = =
the same way as (6),
and we get Fig. 3. Stress destribution

a T h
* A+ 2y Te—cb) d <v

+ \)/(%)2 + (uf)2 &>V

-y —he- (8a)
h
—f (8b)

T
—(j_

5l oe

c Y
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These lower bound solutions are valid when h, is less than given in (7). If he

is greater we cannot use this consideration because the tensile force in the re-

inforcement now is de-

termined by the di-

stance h—h . At the

limit h = hg the lower

bound in this way will

be =zero. p

If h, is greater than
given in (7) we can ; Dy 1414 i44° "
use the stress destri- T E|] * 7
bution in fig. 4. In

this case the tensile F
force is transferred o
to the concrete as a

shear stress 1 = T/z. B
In the region ARC >{
there is hydrostatic

compression and in A C

region BCDF there is . X z
uniaxial compression. .

A1l stresses are equal

to the concrete Fig. 4. Stress destribution.
strength\)fc.

From right—angled triangles in fig. L we get

(a-2)% + (b =P -x*-y% = (a+5)? + (n-%)° (9)

From (9) we find

x =-a+ JaZ + y(2he = 7) (10)

Also from gecmetrical considerations we get

he/ a‘ + y(2he—yf+ ya- hea

7 = ool
h, - L
€ 2
Noew we regard the equlibirum of the triangle DEF. The moment equation gives
2 2
G = VO £_t2.y_ (12)
c Z

And then the load P turns out to be

P=oggz= \)Oc(—a + va‘ + y(2he— y) ) gy

This force is equal to the vertical force on AC.
Maximum for (13) is found for y = h,. However, horizontal projektion gives

= =T z-< AT 1h
T =yvo, s B, (1h)
This means that y = ¢ h/v , but with maximum y = h_. Inserting in (13) we get

the same lower bound solutions as in (8), which then i a general lower bound
solution. The stress destribution in fig. L4 can of course be used instead of



‘ B.C. JENSEN 297

the stress destribution
in fig. 2 and fig. 3.
However, the way of
transferring the tensile
force to the concrete is
quite different.

2.2 Upper bound solutions

The failure mechanism is
shown in fig. 5. Part IT
rotates the angle 0 about
A. The yield line AB has c
pure comp?ession and AC A¢/ 7
1s a tensile crack. The -

tensile crack reaches
the upper side of the -
corbel at an arbitrary o
place inside the load. I A

S

iy

The work equation con-
sist of 3 contributions B A
Wg, WiR, WIic from the x |
external force, the re- :
inforcement and the con-

crete. Fig. 5. TFaililure mechanism.

The contributions are

g

W

Pla + x)a (15)

1l
fi=d
H

)
|

e

Q

IR y e (16)

e 1 2 2
e Qvfc(x + y%a (17)

The work equation WE = WIR + wIC then yields
_2v(x®* y2)+ oh(he-y)
a +

P _ )
f b
c

where © = (A fy) /(1 fc)

Minimizing with respect to X and y ve get

¢
y =3h - (9)

&n,, . _&h
\)(Ehe \))

x = —-a + va? + (20)

Inserting in (18) we get the minimum

a Wy By o e
—_— = =y — + — . S
o VT ‘/Nh) +<I>(2\)h &) (21a)
The upper limit for the validity of {2la)} is the contribution 0 from the rein-
forcement, that is hg =y or ¢ = (ha/h). If the degree of reinforcement is
greater we get
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he

Lo gl +V/(3)2 4 (Eha)2 3> v = (21b)

o h
c

The upper bound sclutions (21) are identical with the lower bound solutions (§).
The solutions therefore are exact.

3. INCLINED REINFORCEMENT

3.1 Lower bound solutions

In case of inclined re-
inforcement. The stress

destribution is shown T a P
X

K

F

in fig. 6. In the re- “\b
gions IKFD, KIGF and
CDEB there are uniaxial ¥
compression and in the
regions ABC, DFE and
FGE there are hydrosta- D E
tic compression. All o
stresses are equal to = H >I
the concrete strength. c E
>
"4

The side EF is perpen-
dicular to the rein- ]
forcement and the re- 2;18
inforcement is passing z A By
through the middle of .

EF. Fig. 6. Stress destribution.

From the geometri we
can find two different expressions for the diagonal BD. Then we get

(a =3(x+x,))2+(n_~(a + dx)tan 6 + 3y)? ~(x?+ y?)

= (a + 3x - 3x,)%+(h - (a + Ix)tan6 - Iy)? (22)

In this we have x; = y tan 0 and from (22) we find

x = -a + ya? + y(QIEE— 2atanf -y) (23)

The lower bound solutions is thus

P=vo(x+ x,) ' (24)

and we get

-OP—=\)ytan6+\)/aT+y(2he—2atan8—y) -va (25)
¢

Maximum for (25) is found for

= - . Z < -
y =h, - atanb +S1n9/he +(cos e)2 2a h, tan® (26)

However the tensile force must be equal to the compression force on the side EF,
which yields
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yvf < ATf cosH
c - y

This means that
)
=--h s 0
vy \) co

and with the maximum given by (26).

Inserting in (25), and using T = P/h, we get the lower bound solutions

oy
. -y 2 Ay2 =} _sa
dsinb-v +vﬂvh) + ®cos 8(2 =Y -2

" vtan ©® — ®cos 6)

oy
L B _
(o] e a 2 V g 2 a 2
I -y 2 — -
\)——h tan 6 \)h(l+tan B+ cos B \/(h) +(hcose)

Z ahg
2

tan 6

{29a) is wvalid when

h

e a V - 2 12
< -y = -

®cos § < viT -V tan 0+ s:Lne;/he +(cose

)2~2ahetan6

3.2 Upper bound soluhbions

The failure mechanism is
the same as in fig. 5,
see fig. 7.

The contributions to the

work equstion from con-

crete and from the ex- ¢ 2] 7
ternal load are given by
(17) and (16). The con-
tribution from the rein- o ¥
forcement is determined A
by the distance from A
perpendicular to the re- J ;I
inforcement. This di- ¥
stance is (h ~y)cos 8 .
+ x sin 6, and the work

equation then is Fig. 7. Failure mechanism.

P _2v(x®+y?)+oh((Pe-y)cos O+ x sinb)
OC a + x

Minimum is found for

¥ %hcos@

x = —a + /a? +%hcose(2he— 2atan8—%hcos 8)

(27)

(28)

(292)

(29b)

(30)

(31)

(32)
(33)

Inserting in (31) we find an upper bound solution equal to (29a). The upper 1li-
mit for the validity of this equation is the contribution 0 from the reinforce-

ment, that is

(he—y)cose +x 5in 8§ =0

(34)

Inserting (33) in (31) we get (26), and then we get the same limit as in (30).

If (30) is not fulfilled, the upper bound sclution is (29b).
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L. CONCLUSION

The developed upper bound solutions are identical with lower bound solutions.
Therefore the solutions (8) and (29) are exact solutions.

In the same way as here, the load carrying capacity of corbels with destributed
reinforcement and with

combined horizontal and

inclined reinforcement

can be found. Fig. 8

shows the stress destri-

bution with horizontal

and inclined reinforce- | P

ment. ‘

It 1s noteworthy that l//f&j
the failure mechanism

in all cases is a sort

of bending-shear

failure. Only in a very

special case, a sliding

failure gives the right

upper bound solution.

The sliding failure

mechanism corresponds ’

to the stress destri-

bution in fig. 2, where

the yield line will

appear between C and D. Fig. 8. Stress destribution.

The load carrying capa-

city for corbels presented in [1] is therefore only exact when (7) is fulfilled.

The results presented here can of course be transferred to the shear capacity of
beams without shear reinforcement.

Just now we carry out a comparesion of the eguations with tests.

5. REFERENCES

[1] Nielsen, M.P., M.W. Brzstrup, B.C. Jensen, & F. Bach: Concrete Plasticity,
Special Publication, Danish Society of Structural Science and Engineering,
Copenhagen 1978, pp 129.
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Limit Values of Local Stresses
Valeurs limites des pressions locales

Grenzwerte der drtlichen Pressung

M. IVKOVIC M. ACIC

M.Sc., Civ. Eng. M.Sc., Civ.Eng., PhD
University of Belgrade University of Belgrade
Belgrade, Yugoslavia Belgrade, Yugoslavia
SUMMARY

On the basis of their own experimental investigations, the authors have determined the actual load
when {ocally loaded concrete elements are brought into a limit state of collapse. Also, applying the
condition of concrete collapse they have arrived at the minimum value for the critical load by con-
structing statically possible stress fields, separated by discontinuity planes. It has been shown that
the collapse load, determined in this way, is very near to the collapse locad cbtained on the tested
specimens,

RESUME

Sur 1a base de leurs essais, les auteurs ont déterminé les pressions locales correspondant & |'état de
rupture des éléments en béton chargés localement, Les valeurs inférieures de la charge ultime de tels
éléments ont été calculées en construisant des champs discontinus de contraintes et en appliquant
un certain critére de rupture pour le béton. Les valeurs théoriques concordent bien avec les valeurs
expérimentales.

ZUSAMMENFASSUNG

Auf der Grundlage eigener Versuche haben die Autoren die dem Bruchzustand lokal belasteter Beton-
elemente entsprechenden ortlichen Pressungen ermittelt. Ebenso wurden durch Konstruktion dis-
kontinuierlicher, statisch zuldssiger Spannungsfelder und Anwendung der Bruchbedingung fiir Beton
untere Grenzwerte flr die Traglast berechnet. Diese rechnerischen Werte stimmen gut mit den experi-
mentell ermittelten Uberein.
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1. TEST RESULTS AND DISCUSSION

The paper presents the results from experimental and theoretical investigations in
the behaviour of locally loaded concrete elements in the state of Timit strength.

These investigations are the part of a very large research programme, which is still
under way at the Faculty of Civil Engineering in Belgrade, and were undertaken in
order to verify some assumptions for the innovation of the actual Yugoslav Code for
Reinforced Concrete Structures.

The loading was of static character and was gradually increased, approximately with
that velocity of Toading which is applied to a standard testing of a cube, the side
of which was 20 cm. The load was transmitted to the specimen through a very rigid
steel "stamper". The processing of contact surface of the "stamper" and the concrete
specimen was the same as reguired in testing standard cubes. The compressive strength
of concrete was ranging from 20 to 50 MPa.

Characteristic results of experimental investigations, statistically proéessed, are
shown in Figs. 1,2 and 3. Fig. 1 shows a case of local loading along the whole
thickness of the element d, and Figs. 2 and 3 illustrate the cases when the locally
loaded surface Foin both directions is of less dimensions than the dimensions of the
examined concrete element in the plan.

Instead of the ratio FO/F, the ratios of the sides a/b for parallelepipeds are ap-
plied to the abscissa of the diagram, that is,the ratios d/D for cylinders. The
ratios of compressive stresses (32(=PZ/F0) and the strength of the prism /S?P are
applied to the ordinate, when P, is the force under which the specimen collapsed,
and F0 is a locally loaded surface.

On the basis of the results of experimental tests the following observation can be
given:

a) Local compressive stresses are grouped around the curved forms of the hyperbola
with asymptotes ﬁ511/3pr =1 and a/b = 0, that is, d/D = 0.

b) The influence of the quantity of locally loaded surface F, upon the change of
local compression ﬂgpq’is practically negligible in the interval 2/3xa/d< 1,
that is 2/3=< d/D<<1 and up to the relation a /b >1/2 .... (d/D > 1/2) the change
is very slight. When the realtion a/b = 1/3 the stress ranges from 1,5 to 3,0/53pp.
By further reduction of the relation a/b, that is, d/D, local compressions increase
progressively, so that for the realtion 0,10 they may increase from 12 to 15 ﬁb[*
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b h dlem]
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16,0 : Case1;Case2.
'i‘ Fl, ::;::
14,0 }
15/30Case 1
! h
12,0 For
: 10/10-Case 2 E5
10,0 ‘ |
D/h
8,0 0 10/10-Casel ——
! %x15/30-Case 1
* 10/10-Case 2
6,0 — 10/10- — —
. A0/10Casel =\ 5-case 2
5,0 | ¥ |
4.0 o\ ~| 15/20-Case
3 Y. “., /"-._-. " F -
3,0 o /ﬂ_O__D_/d JL‘O‘ ,'—F(-/Foﬂ"HD_ i
A YU)
2,0 ¢ D% /d? | &
1.0 ' ' : ﬁ-:t. e o=
Fig. 3 Soljtion by I,,statnc Ifnelds dl[:)
0 o1 02 0313 05 2/3 10

¢) The local compression ﬁSZ upon the specimens of the same dimensions and quality
of concrete and of the same relation of the sides a/b is very dependent on that
whether the Toading acts along the whole thickness d of the specimen or only partial-
ly. In the first case (Fig. 1) the model is under conditions that are nearer to the
biaxial stress state, so that local compressions, even in small relations F,/F = a/b,
reach comparatively modest values, Thus, on the tested shear wall of dimensions 40cm,
40cm, 6cm, for which it may be said that it sufficiently correctly - for practical
purposes - satisfies the conditions of biaxial stress states, a local compression

ﬁ3z ~ 2 ﬁBpr is obtained, when Fy/F = a/b = 0,10. In the second case, when the
dimensions of Tocally loaded surface F, in both directions are less than the dimensi-
ons of the total surface F (Figs. 2 and 3), the specimen is under the conditions o
triaxial stress state and it is also understandable why very high stresses occur in
the "wedge" that is under the triaxial stresses of compression.
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d) A good approximation of experimental results of Timit local compressions for
very thin elements, that means for the plane state of stress, fives the formula

B, = e VFrr, (1

For the elements which are of considerable thickness, loaded along all the thickness,
as well as for triaxial stressed elements, (Figs. 2 and 3) a satisfactory approxima
tion of experimental results is achieved by the formula with square root.

B, = eV F/Fo (2)
The formula
pt—_— 1,4 pprVE/T:o > (3)

given in the actual Yugoslav Code for Reinforced Concrete, is not proved by these
experiments. It gives larger values than the experimental ones.

2. THEORETICAL ANALYSIS OF LOAD CARRYING CAPACITY
BY APPLYING EXTREME PRINCIPLES

For the determination of load carrying capacity of locally loaded elements the
condition of plasticity collapse of concrete suggested in the paper /3/ has been
used. This condition, for the biaxial stress state, in the system O

1—€;, (where
51 652 are principle stresses), is:

—_— = _ — 2 —_ -2 el gy il e
A+ _g, (6,+8,)+ __';\2(651+62)+ _3_2‘7 (6,+6,)- 2 (6,48,-6,6,)-0 (4)
when

Pom BT 5 Ar=2fl - Jpec s Agm2-CRe- (e Agmau

252 R = =
=P T3 5 GmGfe; €=/

M=Bz/Ber ; ﬁs=f5sfﬁpr3 3=§1"§2

A uniaxial tensile strength of concrete is indicated by (EE, the strength of the
prism by ﬂﬁpp, where the strength in pure shear is indicated by [35 = 61 =-——62 ,
and the ratio of strengths of concrete in equal biaxial compressions to the strength
of prism is indicated by\% .

For triaxial stress state the condition of plasticity-collapse of concrete /3/ is
given by the expression

fo =AGC.+B (5)



(3) (i} i) (i) o)
5 =By /Por =0,0 0 By -
Yy P Bz /Por p(l)= 61 ;52 ; tm=61—2'6—2‘""" (i=1,2,3)

cC 2 o= 18° 30'

'i' 3 _lL 6= 32° 20’ 5;”:0,900 Tm
g= 32° 00’ x 3G
- 1 6: ’=5L)= ,z(azs;
A A 0,285 -6
5
5 w31 H®
o| Ox
— S ) s ._N__;r—
\\ ©
p NS
= v x;;;:
o |
o~ (2)
5| Oche )
01
2) .(2) & X
61( =6X 35 \’
B 15 B 0 52 -0,108
B B (,
v (T T TR T T 6(3,) f(p, Tm) | 9 BnTn) N
S (Bs =121} 6, =1,000
o 3) .(3)
o, : B! B =6, =1,395"
=L _ Y + Compression
S S S - Tension : VTm

*) The values of stresses obtained are to be
multiplied by PBpr

Fig.4
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where To = To /Popr 3 éo =6, /Rpr

M T AV(6,-6,)7+(6,-69)%+(6,-6,)7  6,= 5 (6,+6,+63)
represent octahedral shear and normal stress. For/L{= 0,10, the constantg A and B
are A = 0,700 and B = 0,238. .
In this paper the Timit Toad is
defined by statically possible
fields, constant stresses, associated
with the regions of discontinuity,

which, as it is known, give the

lowest value for loading when the
collapse of locally Toaded specimen
occurs. Figs. 4 and 5 show the
constructions of statically possible
fields made of fields made of fields
of constant stresses connected by
plane of discontinuity BS and CS

(SO and SO). Fig. 4 shows such a
field for a biaxial stress state in
the systemp-Gn [P=C61+62)/2 :
Tm=(6,-6,)/2], in locally load-

ed surface, with the re1atibn a/b =

= 1/3. From the diagram, in Fig. 1,

one can see that the solutions by

means of these fields are in good
agreement with resuits experimentally
obtained in testing a shear wall con-

sidered to have been under the con-

3y ditions of biaxial stress state.
Xy

INRERNERENERERIR

Fig. 5 shows statically possible
Fig.5 fields of stresses for locally loaded

cylindrical specimens in the coordinate system p, Uy when the collapse condition is
used for triaxial stress state given by Eq.(5) for the case of rotational symmetry.
It has been shown that the assumptions made about the relations of stress in radial
and tangential directions 652/ E53 = 1 and E52/ ES3 = 0,5, in well constructed
field, have been proved by the tested specimens. Thus, Fig. 3 gives the results of
the solution by means of "static fields", when 62 = 0,5 63... (6226,,.,63= 6¢ )
which, as it is seen, represents the lower value of the actual limit load of
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rotationally loaded cylindrical bodies. When 652 = 653, the condition (5) in the
system p, Uyy has the form

Tm= 0,597p + 0,203 (6)
while when E;z = 0,5 '€53, the condition (5) overpasses the hyperbola Fig.5
shows one possible construction of static fields by introducing friction into the
contact plate of specimens with massive plates - "stampers".

3. CONCLUSIONS

On the basis of aforementioned theoretical analysis one may observe that by means

of statically possible fields, one can prognosticate very simply the Teast Tow
value of loading, which brings the concrete specimen into the state of collapse.

A good agreement of results of such theoretical solutions with the results obtained
on concrete specimens shows that the application of static fields has its full justi-
fication. In addition, the previous analyses show thatthe conditions must be precise
in that when to apply Eq. (1), and when Eq. (2). The investigations of the authors
have shown that Eq. (1) may be appiied only when the locally loaded concrete element
is in the biaxial stress state, while, Eg. (2) may be applied to the concrete
elements with triaxial stress state. Eg. (3), given in Yugoslav Standards, and in
the standards of some others countries, is not acceptable for the previous stress
states. It gives considerably larger values than the ones obtained by the authors

in their tests. Some preliminary investigations of the authors pointed out that Eq.
(3) can be used in defining local limit stress in concrete elements which are in the
state not far from the plane deformation, However, more precise conclusions, con-
cerning it, may be given only after detailed experimental tests, which the authors
have in plan to make.
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The Anchorage Strength of Reinforcement Bars at Supports
L'ancrage des armatures a |'appui

Verankerung der Bewehrungsstabe bei Auflagern

U. HESS
Technical University of Denmark
Lyngby, Denmark

SUMMARY

The theory of plasticity is used to attempt a solution of anchorage and splicing problems for deformed
reinforcing bars.

The paper reports calculations on anchoring of one and two bars in the support zone of a beam.

RESUME

La théorie de la plasticité est appliquée a I'étude des problémes de |'ancrage et du recouvrement des
armatures. Des calculs sont présentés pour l‘ancrage d’une et de deux barres d’'armature dans la zone
d’appui d’'une poutre.

ZUSAMMENFASSUNG

Die Plastizitatstheorie wird auf Probleme der Verankerung und der Uberlappung von Bewehrungs-
staben angewendet. Berechnungen flr die Verankerung von einem oder von zwei Bewehrungsstaben
im Auflagerbereich eines Balkens werden dargestelit.
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1. INTRODUCTION

Until quite recently, only a few rational theories concerning the anchorage
strength of reinforcement bars and the strength of splices have been formulated.
Tepfers made an attempt in his dissertation [1], and some investigators have
tried to solve the problem using the finite element method (see for instance
Tepfers [1] , Lutz [2], etc.).

Since the mid sixties, a research group in Denmark has been investigating the
application of the theory of blasticity on concrete structures. Research was
earlier mainly centered on the problems of shear in beams, shear in joints and
punching shear (see Nielsen et al. [3]).

It thus seemed natural to examine whether the same theory and methods could be
used to solve the problems of anchoring and splicing of reinforcement bars.

Such an investigation has now come so far that it is possible to report the
first results.

2. BASIC ASSUMPTIONS
The work is based on the following assumptions:

1) The concrete is considered a rigid-plastic material with the modified
Coulomb failure criterion as yield condition and the angle of friction
@ = 37°. As it is well known, concrete is not perfectly plastic. This is
taken inte account by reducing the concrete cylinder strength o with
an empirical effectiveness factor v . €

2) Deformations in the concrete are determined by the normality condition
(the associated flow rule).

G,y AC
(G, T ) g, |
y_)/ — 0—1 E:1 :
/ (e, €,)
———— -O-S

Figure 1: Modified Coulomb Failure Cri- Figure 2: Rigid-plastic Stress-strain

terion for plane strain with Relation valid for the
the Associated Flow Rule. Reinforcement.

3) The reinforcement bars are assumed being rigid plastic, and only able
to carry longitudinal stresses,

In the following calculations the upper bound theorem will be used.

The upper bound theorem can be defined as:

A load found by the work egquation, for a geometrically possible failure

mechanism, is greater than or equal to the yield load.
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3. THE LOAL FAILURE MECHANISM

Concerning the failure along a bar it is assumed that there is no adhesion
between the concrete and the reinforcement bar.

concrete 1_
vC
7 L 7 L s
7 e LTI
y N ¥ reinforcement bar
P Vs
- — —— = = = - - Q

Figure 3: The Local Failure Mechanism

Consider an idealized reinforcement bar with idealized ribs. If the bar is moved
in the direction ;s (the same direction as the force P , see figure 3) , the
concrete in front of the ribs will yield and the yield plane form an angle vy
with the bar axis. The surrounding concrete is then pushed axisymmetrically

away from the bar.

The displacement of the surrounding concrete relative to the reinforcement bar is:

Figure 4

If we denote the angle between v_and v as o , the external work is W
- ; c cs e
= PIIVCS]] cosa . The internal work Wi is:

if Y > Arctan (§0 :

k2 ,Cc
Wi = 1|vcs|| (d4+k) ;ﬁgzg;-{vg—(1—51n(a-y)) +

sin{a-v)siny®

+ 0
t 1-sin@

where £ is the length of the anchorage and d the diameter of the reinforcement
bar.

If 0 <y < RArctan (EP g

- = ) a £
Wi = '{vcsll (d+2k - atany)w E_ESE? .
vo

* {—52(1-sin(a—y)) + 0 Sin(a—Y)—sinm}

t I~-sinQ

The expressions have been calculated for plane strain condition. Concerning the
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basic expressions, see for instance Nielsen et. al. [3] or Jensen [4].

Putting We = Wi we obtain the work equation:

«

If Y > Arctan (-E) :

b _ T (d+k)k \ l-gin(o-v) % sin(a-y)-sinQ }
ldwac Gc da cosasiny 2 l1-sing

where p = Gt/cc

Lf 0 < y < Arctan (2?:
P ___ 1 _ (d+2k-atany) (v l-sin(a-vy) P sin(u—y)-sin(p}
Edwcc o d cosy cosa 2 P 1-sin@

In the above expressions we have not taken into account the internal work car-
ried out in the surrounding concrete and reinforcement (for instance work car-
ried out in stirrups).

The expressions are only strictly correct if the surrounding concrete is dis-
placed axisymmetrically to the bar axis, i.e. the concrete has to crack along
an infinite number of radii.

N\

ZIN

Figure 5: Yield Lines around a Bar.

This is not always so in practice. For instance, the surrounding concrete at a
normal anchorage or splice in a beam is not displaced axisymmetrically.

Despite this fact, the expressions are used without modifications in the follo-
wing, assuming the error to be without importance.

4. ANCHORAGE OF ONE REINFORCEMENT BAR
Consider first the case where a single bar is anchored along a beam support,

having a uniformly distributed support reaction r. The failure pattern is
assumed to be as shown in figure 6.
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An;

N

r. r

T

B 3]

Figure 6: Yield Lines at the Anchorage of One Bar

When the reinforcement bar is displaced longitudinally the concrete will yield

in front of the ribs and force the parts I and II to rotate about A and A
respectively. 1 1T
The bearing capacity Tt/0 of such an anchorage becomes a function of the an-
gles o, vy and B, the geometry and the dimensionless stress x/c from the
reaction. As the upper bound theorem is used ,T/Uc is to be minimgzed with
respect to o, vy and g .

Minimum has been found numerically by a computer. The result is shown in figure
7, compared with tests made by Rathkijen [5].

In the calculations the effectivity factor v has been put equal to 0.50 and
the dimensionless tensile strength o = 0.025.

o,
0.6
05f 88—
0.4 &Mg’ | o lw
' ®
03r @ calculated using
02/~ v=050 p=0025
0.1+ ® test 1
0.0
00 01 0.2 03 Trlo

Figure 7: Comparison between Tests and Calculations on the
anchoring of Kamsteel 42 ¢gl14

i

Figure 8: The Testbeams used by Rathkjen [5]
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5. ANCHORAGE OF TWO REINFORCEMENT BARS

If two bars are anchored, there are several possible failure patterns. In the
calculations referred to here, 4 failure patterns have been studied.

o) (<} Figure 9: Failure 1, the Cover
Splits into One Piece.

e () Figure 10: Failure 2, the Cover
~ S8plits into Three Pieces.

Figure 11: Failure 3, the Corners
-— © © —_— Split into Two Pieces
f2) o) Figure 12: Failure 4, the Corners
Split into One Piece.
V4

One more mechanism could be studied. A failure where triangle formed bodies are
pressed out below the reinforcement often occurs. But since the beams used for
comparison did not have the wide bar spacings necessary for this mechanism to
occur, this has been left out of consideration.

The expressions to be minimized are very extensive and the minimizations have
to be made numerically on a computer.

The feollowing figures show some of the results. The calculations are again
compared with tests made by Rathkjen [5].
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T/o, Tioe [
4.8 05 o (@°% the main bar
e i
051+ ,//”’ 051 is yielding
®
0.4 ;45{/ e Io OI 0.4 % I I
® 2 L J ®
3 037
0:% ccr{.culqted -
021 u?g%gzaso 0.2 using v=0.50
0.1f i't <t 0.1 p=006
es ® test
0.0 ' —t 0.0 | ;
00 021 0.2 0.3 0.4 05 rioc 0.0 0.1 0.2 03 0.4 05 rio.
Figure 13: Kamsteel 42 ¢14. Compari- Figure 14: Kamsteel 42 ¢ 10, Comparison
son between Tests and between Tests and Calculati-
Calculations. ons.
'[Ic-c t/O'c
07
0.6 . V/_g tr):lénuin bar
| G ® yields
0.5 0,5<L/0/°
0L o i | L]
_—T® |o ol g

0.3t 0.3}
0.2 ® calculated using calculated using
: ® v=050 p=0.06] 0.2 rice= 0.3
0.4 ® ® test 0.1 v=0.70 p=006
. ® test
0.0 } L 0.0 ; ;
0.0 0.1 0.2 03 0.4 05 rlo. 0.0 10 20 7

Figure 15: Tentor-steel 56 @gld4. Compa- Figure 16:
rison between Tests and
Calculations.

Comparison between Tests and
Calculations of the Anchoring
of Kamsteel 42 ¢l14 with Stir-
rups at the Supports.

Figures 13, 14 and 15 show the anchorage strength T/cc as a function of the

dimensionless support stress r/oc

The calculations have been carried out with data corresponding to Danish Kam-
steel 42 ¢14 mm and #10 mm and Tentor-steel 56 ¢14 mm.

The effectiveness factor v was 0.50 and the dimensionless tensile strength

p = ot/oc was 0,06,

Figures 16 and 17 show the anchorage strength T/Gc
rup strength in the anchorage zone.
2AS o

The parameter Y = ———
£ a g,

as a function of the stir-

is used as a dimensionless stirrup strength.
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Tl T'/U‘C
0.77 - e o
to — [ L_JEI
. - L v 0.7
06T & L& “Tthe main bar k) YD
054 ¢e yields 0.6 — ' =
S =]
0.4 —» — ] 05 e c./d=20
0.3} o] I cid=10
' calculated using 03t AT c1¢=05
0.2 rlg, =03 v=070, p=006- -
s test.no pull out of the @testpull out of the 0.2 calculated using
0.4 main bars. main bars. | 01 v=055 p=0.05
0.0 ! | | ' | |
00 10 20 30 40 50 ¢ 90, i 5 3 L cd
Figure 17: Comparison between Tests Figure 18: Calcultated Strength t/c
and Calculations of the as a Function of the Covers
Anchoring of Kamsteel 42 c and C1 3 ’
¢14 with Stirrups at the
Supports.

Figure 18 shows the anchorage strength t/c as a function of the bottom cover
¢ and the side cover ¢, , both ¢ and c¢, made dimensionless by division by
d. No tests have been found to compare with, but the variation of the covers
gives the effect we would expect, i.e. in principle the same as described by
Tepfers [1].

6. CONCLUSION

As we have seen, the theory of plasticity is able to explain the influences of
parameters as the support stress r/crc , and the stirrup strength ¥ in an
acceptable way.

There are some shortcomings in the v-values, i.e. we have different values for,
for instance, anchoring of one or two bars and anchoring with or without stir-
rups. Some of these difficulties are due to shortcomings in the model and others
are due to the well known difficulties with plastic calculations of unreinforced
concrete {see for example Jensen [4]).

Future work will have to be centered on eliminating these shortcomings and ex-
tending the theory to, for instance, the splicing problem or the anchoring of
three or more bars.
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Some Examples of Lower-Bound Design of Reinforcement in Plane Stress Problems

Dimensionnement de l’armature et problemes d'états plans de contrainte, en appliquant la méthode
statique

Beispiele zur Bemessung der Bewehrung nach der statischen Methode bei Problemen mit ebenen
Spannungszustanden

M.P. NIELSEN

Dr. techn, Professor

The Technical University of Denmark
Lyngby, Denmark

SUMMARY

The paper demonstrates how simple statically admissible stress fields can be used for the determina-
tion of reinforcement in plane stress problems, and presents some standard formulae for the necessary
amount of reinforcement as a function of stresses. The problems treated are shear, torsion and com-
bined bending, torsion and shear in beams.

RESUME

On montre comment on peut utiliser des champs de contraintes statiquement admissibles et simples
pour l'analyse des problémes avec états plans de contrainte. Des formules sont données pour dimen-
sionner |'armature en fonction des contraintes. On traite les problémes du cisaillement et de la torsion
dans une poutre ainsi que I'action combinée de la flexion, de la torsion et du cisaillement,

ZUSAMMENFASSUNG

Es wird gezeigt, wie fur Probleme mit ebenen Spannungszustinden einfache statisch zuldssige Spannungs-
felder angewendet werden konnen. Zur Ermittlung der erforderlichen Bewehrung in Abhangigkeit der
Spannungen werden Formeln angegeben. Behandelt werden die Beanspruchung von Balken durch Quer-
kraft und Torsion sowie die kombinierte Beanspruchung durch Biegung, Torsion und Querkraft.
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A

1. INTRODUCTION

It is the purpose of this paper to demonstrate that reinforcement design according
to the theory of plasticity in many plane stress problems can be done with advan-
tage by using simple lower bound solutions in connection with the author's rein-
forcement formulas, [1],{4],[5] and [6]. The methods were originally propocsed in
(61, in an internal report. Alternative methods dealing with the same problems
have been developed by Thiirlimann and his associates,[8] and [9].

We shall begin by giving a short summary of the reinforcement formulas and the theo-
ry on which they are based. The basic assumption are that both concrete and steel
can be treated as rigid, perfectly plastic materials. The yield condition for the
concrete is assumed to be the usual square yield locus —0C§(H.§O P —GC§(%2§O y
where 0O, and O are principal stresses (tension positive) and GC the compressive
strength. The tensile strength is thus assumed to be zero. The reinforcement
bars are assumed to be able to carry only forces in their longitudinal direction.
While the assumption for the reinforcement can be easily justified, the assumption
concerning the concrete has a more doubtful connection to reality. The basic rea-
son for this is that although the ductility of the concrete is rather high in com-
pression, the stress falls drastically, when the peak of the stress-strain curve has
been reached. Therefore, the theoretical results often have to be modified. One
way of doing this is to introduce an effective compressive strength vdJ_ , where v
is a so-called effectivity facteor, a lower bound of which is representing some kind
of average stress in the actual strain region. The effectivity factor, however, also
has to take care of other defects of the theory, see [10].

Considering for simplicity only orthogonal reinforcement in the directions x and y ,
see fig.1.1, and letting Aa represent the reinforcement area in the x-direction
per unit length measured in %he y-direction, O the yield stress of the reinforce-
ment in the x-direction, ¢, 0 and T , the s%resses which have to be carried,

and finally letting t beigg tKe thicﬁXess, the reinforcement formulas can, using

similar notation for the y-direction, be written, [6]:

¢ > - > -
Case 1 g, = ]Txylva Gy l ITxy[/Va
A 0] A a
ax fx ay fy (1.1), (1.2)
= — + = e——— = +
Utx t 0x iTxy'va Oty t 0y ’Txy!/va
= + .
o, |Txyr(v& 1/V o) (1.3)
% < < -
Case 2: 0 < 0.0 o, ITxyNa
Reinforcement is only necessary if 0_0 <1 2
X ¥y = xy
T 2
a =0 g = (1.4), (1.5)
tx ty v ld [
X
TXY 2
o, = lcx]u + (=92 (1.6)
X
Case 3: ©_ 2> 0 o <=7 o
Case 3;: o 20, y <l l7vE
Reinforcement is only necessary if UXO <1t 2

Yy Xy
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2

T
- Xy -
Oy = Oy * o Cn =W (1.7), (1.8)
Y
TXY 2
q = [Gyl(l e P (1.9)

Y

The guantities Ot and Gt defined by (1.1) and (1.2) are the yield forces of
the reinforcement Bars peryunit area of the concrete (equivalent reinforcement
stresses). They represent the tensile strength of the reinforced material in
the x- and y-directions, respectively. The quantity o is given by

o = X (1.10)

and a is the compression stress in the concrete. The above formulas determine
the op?imum value of A__+A .
ax ay

If for some reason the rein-
forcement in one direction

y is known, or if the optimum
value of the total reinforce-
ment of the structure is found

UY for other inclinations of the
.__..IXY compressive stresses than
found above, see section 2,
the following formulas deter-
N //ﬂi mine the necessary amount of
N i 5
T reinforcement:
/\\"P \ Xy
AN o =o +ylt. | (1.11)
N _ X tx X Xy
AN < \\ o,
1
o =0 +=|T (1.12
N 3 ty y Y[ xyI ;
AN
a T |y + 2
o = |t (y+=) (1.13)
o b xy VY
b
Figure 1.1
The quantity <vY>0 can be determined if Ot or Ot is known. The relation be-
tween 7Y and the angle ¢ determining the éirectlgn of the concrete stress is
Y=tgQ, see fig.1.1. The formulas (1.11) - (1.13) can also be used instead of
(1.1) - (1.9) if minimum reinforcement is not locked for. 1In this case, Y can

theoretically be arbitrarily chosen. However, in order to avoid yielding of the
reinforcement for service lcads, limitations should be put on the choice of Yy ,
see the following.

Having determined the necessary reinforcement by means of the above formulas, it
is often found advantageous to use another, perhaps more economical or practical
distribution of the reinforcement. 1In the case of homogeneous stress fields, it
should be ncted that the reinforcement theoretically might be distributed in any
other way resulting in the same statical equivalence of the reinforcement forces.
Sometimes, for instance in slabs and shells, such a transformation changes the
compression forces in the concrete and, if so, the concrete stresses of course
have to be calculated taking account of these extra forces, Also the complete
equilibrium of the whole transforqed stress field at the boundaries should be con-
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sidered. Examples of reinforcement transformations are given in the following.

2. SHEAR IN BEAMS

Consider a stringer beam, i.e. a beam with the tensile and the compression zone
concentrated in stringers, see fig.2.1. The distance between the stringers is h.
Let us determine the shear reinforcement in a zone with constant shear force Q.
If the shear zone has the thickness b , the reinforcement may be determined
using the homogeneous statically admissible stress field

Q

UX = Gy =0 Txy =T =gy (2.1)

The necessary reinforcement in the
x- and the y-direction and the
concrete stress O is determined
by (1.11)-(1.13). "We find

Compression stringer
f—
e = .
‘b/ )M Otx T cotb (2.2)
h 1‘ l =
/ Q Oty T tgb (2.3)
o sl O, = T(cotBd + tgh) (2.4)
Tensile stringer T X
¢y where the meaning of €0 1is shown

in fig.2.1. 1If the shear zone is
reinforced accordingly, i.e. rein-
forced in both directions x and y,
the stringers have to carry the
forces

M
= = — 5
Figure 2.1 & & h £245)

However, such a shear reinforcement is more expensive than necessary, although it
has the advantage of giving zero stringer force at a simple support, a fact which
may facilitate the design of this part of the beam because of the small anchorage
length of the tensile reinforcement required. The shear reinforcement in the
x—-direction can be avoided since the total force in this direction Qcot8 can
be carried by the stringers. This means that the stringers have to carry the
forces
=

+%Qcot6 C = —%Qcote (2.6), (2.7)

w1
==

The result implies that we have to reinforce for a tensile stress in the y-direc-
tion determined by (2.3), to secure that the stringers can carry the forces (2.6)
and (2.7) and that the concrete stress & determined by (2.4) can be carried by
the concrete. Formula (2.6} shows that at-a simple support, the tensile stringer
must be able to carry half the reaction times cot®, i.e. proper care must be
taken to anchorage the reinforcement at an end section.

The same result would, of course, be found if the bending moment was assumed to be
carried by the stringers and a uniformly distributed compressive stress Tcotf in
the shear zone. The above results can be obtained even in other ways, see for in-
stance [10].
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The total amount of reinforcement can, of course, be minimized with respect to 6.
The optimum value © is different from that corresponding to the formulas in sec-~
tion 1 because of the special way, in which the x-reinforcement is arranged. The
result of the optimization shall not be given here since other requirements often
determine the most practical 6-value . The reader is referred to [3].

1f reinforcement in other orthogonal directions is preferred for som reason, the
stress field (2.1) in the shear 2zone just have to be transformed to these direc-
tions. An extremely simple result is found when the shear zone is reinforced in
the principal directions where only reinforcement in one direction is required.

If the beam has variable depth, see
‘é%:::}cHth fig.2.2, we may reinforce for the

stress field:
Cy
6.=0; o =21LtgR ;
B 1:? X Ty h '
1
lt Q TXY =T = E(Q—T tg R) (2.8)

h which is easily seen to satisfy the
T _X equilibrium equations and the boun-

* T dary conditions. The o -stress ge-
y nerally is small and can’be neglected.
Doing so, the formulas (2.2)-(2.4)
are still wvalid. If in (2.7) C is
replaced by the horizontal component
C.. , see fig.2.2, the formulas (2.6)
and (2.7) are valid too.

Figure 2.2

If a beam has stronger flanges than necessary to carry the stringer forces, it
would be natural to utilize the bending and the shearing strength of the flanges
tco. The most simple way of doing this, when applying a lower bound method, is to
superimpose the above stress fields on a stress field, corresponding to ordinary
beam action in a frame system composed by the flanges, the end sections and, if
necessary, some compressive struts in the shear zone. Fig.2.3 illustrates how such
a stress field can be determined in a simple example. The bending moments are here
chosen in accordance with the yield mechanism shown in the figure. When the ratio
between the bending moments in the
hinges have been selected, the va-
¥ lues of the bending moments can be
determined by the work equation.
Having done this, the normal forces
and the shear forces can be deter-
mined by equilibrium equations.

Frame system

tioned, the reinforcement in the
flanges and the shear zone can be
calculated.

The effectivity factor v of the

Mechanism concrete is rather well known in

4 Superimposing the stress fields men-

Figure 2.3

[8] and [14].

the case of beam shear. Alsoc limi-
tations to be put on cotf in order to
secure satisfactory behaviour for

the working load have been proposed.
The reader is referred to [10],[121,

The stress fields treated in this section can as an approximation be used for other
loading systems than those giving constant shear force, see [10]. The stress fields
are not applicable for deep beams or beams with large concentrated loads near the
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supports, where arching action is capable of carrying all, or a significant part,
of the load. A number of simple statically admissible stress fields for this case
have been developed in [4] and [5]. An upper bound method is described in [10].

3. TORSION

An immediate application of the reinforcement formulas of section 1 to torsion
problems is possible for a thin walled, closed section. For such-a section a pure
shear field

! v
B -center line be 2 Bt

V being the torsional moment, A the area
within the center line of the secgion, s
the arc length along the center line, and t
the thickness, is statically admissible, see
fig.3.1. The formula (3.1) is Bredt's for-
mula. The area of the longitudinal bars and
the area of the bars along the center line

y is determined by (1.1) and (1.2) or (1.11)
Figure 3.1 and (1.12), the first mentioned formulas

giving minimum amount of reinforcement. The

concrete stress is determined by (1.3) or (1.13). The concrete stress of course
has to satisfy the condition oy v Gc'

The same simple stress field is statically admissible in any scolid section if (3.1)
is applied to a thin walled closed section lying within the concrete area of the
section. The thickness t of the thin walled section of course has to be sc large
as to render it possible to satisfy the condition 0, S VO,

e e
L

(3.1)

In many cases, the reinforcement does not have to be placed in the center line of
the closed section, A statically eqguivalent reinforcement lay-out can be used if
proper care is taken to design the end sections as in the case of shear in beams.

Consider, as an example, a rectangular section, see fig.3.Z.

A
Pl
If the yield stresses in both rein-
forcement directions are equal to
0. , we get by means of {1.1) and
(f.2) the following reinforcement
areas per unit length:
v
- = = — 3.2
- Bax T Pas T 7nob ¢ 3.2]
The total amount of longitudinal
reinforcement is thus
Ay +b
. | 14 A = V(b +b) (3.3)
Figure 3.2 <F—~—B~————i % hb o

which can be concentrated in the corners, each of the corner bars having an area
of A /4 . The reinforcement along the center line can for small sections be
chosen as closed stirrups as shown in fig.3.2 to the right. For large sections,
closed stirrups in the individual wall sections can be used as illustrated in fig.
3.2 to the left.

For a long rectangular section, the bars in both reinforcement directions can be
placed outside the thin walled section as long as both reinforcement layers are
placed symmetrically with respect to the middle plane, see fig.3.3. In this case,
we are in fact concerned with pure torsion in a slab, the action of which has been
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more deeply studied in [2], to which the
reader is referred.

In fig.3.4, thin walled sections which can
s s & & 8 [ be used for the reinforcement calculation
y ] in some other cases of solid sections have
been illustrated.

For circular sections, the concrete cover
is in danger of spalling off, which has

Figure 3.3 ,
actually been observed in tests, see [7].

Only very little is known about the effec-

tivity factor VvV of the concrete in the

case of torsion, but results are under way * .

Until more refined resulits are available

one has to rely upon crude but generally

conservative code rules, see for instance

[14]. Limits on Y have been studied in
Figure 3.4 [11], see also [9] and [14].

4. COMBINED BENDING, SHEAR AND TORSION

In the case of combined bending, shear and torsion in a thin walled closed section,
the necessary amount of reinforcement can be determined by means of the reinforce-
ment formulas of section 1 too. Considering as a simple example a box section
acted upon by a bending moment M_ , a shear force © and a torsional moment V,
see fig.4.1, one statically admissible stress field cdn be found using the Navier
distribution of the normal stresses O from the bending moment, the correspon-

ding Grashof distribution of the shearxstresses sz from the shear force @ and
the Bredt distribution (3.1} of the shear stresses sz from the torsional Homent
V . However, a more suitable statically admissible st¥ess distribution is found

by distributing the normal stresses. from MZ uniformly, for instance, along the
top and bottom flanges. The corresponding shear
stress diagram then is linear in the individual
walls. Having determined the stress distribution,
the reinforcement formulas immediately give the
necessary amount of reinforcement. Other thin wal-
led closed sections can be treated in a similar way.
For a solid section, the same methcd as described
for pure torsion can be used, i.e. a thin walled
section, lying within the concrete area, is selected
l for carrying the stresses. Consider as an example
Figure 4.1 Y a solid rectangular section. If reinforcement is
supplied in the longitudinal direction and a circum-
ferential direction, perpendicular to this, and if the yield stress of the steel is
the same in both directions, then for a section acted upon by a torsional moment
V the reinforcement formulas (1.1) and (1.2) require the total longitudinal rein-
forcement to carry a force P, =a, 0. , which can be calculated by means of (3.3).
The corresponding reinforcement area can be placed as one fourth of the total area
in each corner.

Small bending moments MZ y l.e. MZQE%“V(h+b)/b can be carried by moving a part of

the reinforcement in the compression zone to the tensile zone, i.e. the force in
the longitudinal reinforcement in the top flange can be reduced by M _/h and the

force in the longitudinal reinforcement in the bottom flange has tobe increased by Mz/h.

* Current research seems to show that empirical formulas for V can be given very
similar forms for bending and torsion problems, see [13].
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1
If M, >3V (h+b}/b the longitudinal reinforcement

in the top flange can be chosen to be zero, while
the force in the longitudinal reinforcement in the
bottom flange still has to be increased by Mz/h .

H t3

If the section is acted upon by a shear force Q too,
- the reinforcement can be determined by adding thé shear
stress in the thin walled section from @ to the
stresses from V and M . In one of the gertical.walls,
the shear stresses from Q add to the shear stresses
from V and in the other gne, they subtract to the
shear stresses from V . The concrete stress in the
individual walls can be determined by means of the for-
mulas of section 1. The guantities t ., t,, t, and t.,
Figure 4.2 "y the meaning of which is shown in fig.2.2, of course 3
have to be fixed at values making it possible to satisfy
the condition Ob'i))oc in each wall. Other solid sections may be treated in a simi-
lar way.

As in the case of pure torsion, reliable information about the effectivity factor Vv
of the concrete is still missing in the case of combined bending, shear and torsion.

5. OTHER PLANE STRESS PROBLEMS

The reinforcement formulas can be applied to several other plane stress problems.

We shall, however, not be able to treat other cases in more detail here. A number

of statically admissible stress fields for deep beams, to which the reinforcement for-
mulas immediately apply, have been developed by the author, see [4] and [5]. The
formulas also apply to the determination of reinforcement in slabs and shells, see
[2]1,[4] and [5].
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Direct Design by Concrete Flow
Dimensionnement direct en considérant la transition des forces dans le béton

Direkte Bemessung durch Betrachtung des Kraftflusses im Beton
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SUMMARY

The paper presents a method of handling the equations for axial force, bending moment, shear force
and torsion. The principal stress failure criterion for concrete, which is in mixed force and geometry
variables, is re-written as a criterion in force variables only. This enables the longitudinal force
requirements for shear and torsion to be simply obtained and incorporated in the beam axial force
and flexure equations with which the designer is familiar. The method is general and adaptable to
any cross-section shape or reinforcement layout and the equations are in a form suitable for direct
design.

RESUME

La méthode présentée traite les équations pour une sollicitation par flexion, par une force axiale, par
un effort tranchant et par un moment de torsion. Le critére de rupture pour le béton est exprimé a
nouveau en termes de forces. Ainsi on peut incorporer les forces agissantes longitudinalement dues a
la torsion et au cisaillement dans les éguations bien connues qui décrivent I'action de la flexion et de
la force normate. La méthode est générale et on peut I'adapter & une forme de poutre et une disposi-
tion de I'armature quelconque. Les éguations résultantes permettent un dimensionnement pratique.

ZUSAMMENFASSUNG

Es wird eine Methode zur Handhabung der fir eine Beanspruchung durch Biegung, Normalkraft,
Querkraft und Torsion geltenden Beziehungen dargestellt. Die Bruchbedingung des Betons wird in
Kraftgrossen ausgedrickt. Damit konnen die Langskrafte infolge Torsion und Querkraft in die ubli-
chen Beziehungen fur Biegung und Normatkraft einbezogen werden, mit denen der Ingenieur ver-
traut ist. Die Methode ist allgemein und kann flr beliebige Querschnittsformen und Bewehrungsan-
ordnungen angepasst werden. Die auftretenden Gleichungen eignen sich fir eine direkte Anwendung
bei der Bemessung.
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1. INTRODUCTION

The safety stage comparison of design in structural concrete is, by international
concensus, made at the level of member cross-section action. By this choice the
design problem is decomposed into two modelling sub-problems, one above and one
below the comparison level {1]. The higher level problems which will not be con-
sidered in this paper is the mapping of all loadings into the load-effect space.
The lower level problem is most appropriately treated as a plasticity problem and
consists of mapping the bounds of the safe domain in the same load-effect space.
The most general such space is six-dimensional consisting of axial force, two
bending moments, two shears and a twisting moment. A definitive stage of modell-
ing in a two-dimensional axial force and bending space was reached some years ago
[2] [3] and this led, possibly without adequate appreciation of the consequences,
to the adoption of internal action as the comparison level. The most serious
consequence has been a forced semi-rational empiricism when it comes to adding
the shear dimension [4] and dissatisfaction by the profession with the resulting
complexity of rules.

There has also been steady progress toward a consistent rational approach. The
state of the art is reviewed by Thurlimann [5]. He presents the assumptions and
principles and develops a rigorous approach via the space truss concept in which
both upper and lower bound principles are satisfied simultaneously. The starting
point is the failure criterion for concrete at a level intermediate between cross-
section action and stress, namely force per unit length applied to a concrete
sheet. This will be called force flow as a generalisation of the accepted term
shear flow. The criterion is a very simple one, a square one in principal force
flow space. However complete definition of a principal stress and hence of a
principal force flow requires the specification of a geometrical variable, orien-
tation, as well. As a result the crack orientation (or principal compression
orientation) plays a major part in the section analysis. The practising designer
appears, however, to find such techniques esoteric and unrelated to the models
with which he is familiar. He is familiar with the equations for axial force and
bending applied to the right cross-section and the purpose of this paper is to
show how terms for shear and torsion may be directly included in these familiar
equations.

2. THE CONCRETE FORCE FLOW CRITERION t Cst

If we define Cx as the longitudinal force
per unit length when the shear flow is
denoted by Cyxg (Figure 1) Thiirlimann's C..d
square criterion restricts C; and Cz to xs X
the range 0 < Ci,2 < CP where C" = kFit ,dS
t being the thickness of the sheet and k

a factor modifying the cylinder strength C,sds
FL .
Fgrce flows transform according to the
same transformation of axes laws as
stresses. Hence the limit

Cxds

0 £ C;,2 implies that

C +C C. - CH2
2= e -

2 2 dx

which simplifies to :-
2
Cys - CxCs = O (1)

Figure 1. Concrete Sheet Element
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Similarly C;,» € CI' implies that

2 _ n _ n _
C.o - (C co(C CJ <0 (2)
Relationship (1) is the important one for designing under-reinforced beams and
will be the key to most important design cases. The boundary where (1) co-incides
with (2) is readily shown to be

n

Cx + CS = C (3)

and satisfaction of (3) is the key to certain over-reinforced cases.

For design purposes it will be shown that the very simple inequality (1) is
extremely powerful but to understand the physical significance the designer must
be aware that failure controlled by (1) is dilatant. Any sheet failing by satis-
faction of (1) is dilating in the x and s directions thus imposing on reinforce-
ment in these directions a tensile strain and hence a tensile force. The apparent
anomaly of compatibility of concrete under compression and parallel steel under
tension is thus resolved.

The analytical demonstration of this dilatancy is achieved by simple application
of the flow rule of plasticity theory [6] which yields

€ =-2AC e =A(C"-cC)
X S X S
. s no_
es = - A Cx (4) ES = A {C Cx) (4a)
YXS= 2 )\ CXS Y)(S= 2)\ CXS

3. APPLICATION TO MODE 1 TORSION, SHEAR AND BENDING

The failure state of a properly reinforced beam subjected to torsion, shear and
bending is modelled using the dilatant concrete sheet subsystem by choosing the
concrete sheets in the form of a polygonal tube which is restrained from bursting
by the tensile stirrup force. The limit on this restraint against dilation is
set by the stirrup yield strength but the effectiveness of this 1limit is set by
the effectiveness of the force transfer between sheet and stirrup.

The potential circumferential force flow controlled by the stirrup is given by :
£
g = AN (5)

This is the limit which applies in criterion (1) so that if the required shear
flow st can be determined then the required value of Cx follows from (1)} namely

c 2 c?
Xs XS
Ck= € ° &t (6)
S WWX
S

The statics of determining values of C,; is well established in the space truss
theory. If the dilatant sheets circumscribe an area Ag then the shear flow in
these sheets due to twisting moment T is given by

C..= = (7
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or for a rectangular section v
T
st_ 2y12 (8)
Zz X

For a simple rectangular beam,
shear flows due to shear force
V are given by : Z,

.V (9) [
st © 2y, ////1
The effects of T and V are additive on A Y,

one face and subtractive on the other
A -
so that the faces carry force flows as ;c—”’zj
follows in the x direction ;- P ’
s ™~
M P
T
rd
Agt
z vV

Figure 2. Rectangular Section and Loading

@\ CI.=Cxl.X Z1

A

Ci=Cxyx v, ™ Ci=Cyy x v,
CXS? C2: Cx2 X Z,

(a) Shear flows (b) Associated Longitudinal Forces

Figure 3. Rectangular Beam.

C = 2Y1Z1 2y1 cC =c = 2Nz c = Yizi_ 2na (10)
X1 Af X2 Xy Af X3 Af
WoWy W WYy W WYy

S -] S
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The resultant force C; on the ith face is
the product of Cyj and the length of the
ith face (Figure 3) and is located at the
mid-point. These forces are readily
incorporated in the equations for axial
force and flexure, if an additional com-
pressive force C, is assumed on one of
the faces as the compressive stress block
due to bending. For failure mode 1 (sagg-
ing bending) it will act on the Cy face so
that the equations are :-

Ci + Cy + C3 + Cy + CO - Astfsy

y - (C1 + Ca)zjl—

if

P (11)

It

(A f

st'sy CZ) M (12)

Figure 4. Forces in beam flexure equations.

Equation (11) is the standard one for determining the neutral axis location but
the simplifying assumption implicit in all theories such as this is that the loca-
tion of the compressive stress block resultant is known so that lever arms in [12]
are independent of the solution of (11). No new theory would be required to pro-
duce more rigorous forms where the magnitude of C, would determine the depth of
the stress block and the lever arm would depend in turn on this. Substituting
from (10 in (12) produces

S50 A 5 | A S
: _2ya1z) 2yazi 2y’ oyr o Zyazi o 2y v
L WL AL,y Z1Y1 ANEy T2 AR Y173 153
S S s

In _a design situation no further development is needed. A trial selection of

MY would immediately lead to a solution for Astfsy and vice versa since all
other terms would be numerical ones at this stage. Hence the desigher can obtain
design parameters directly by an equation with which he is familiar. The power
of the method is that exactly the same procedure may be adopted for more complex
cross-sections and the tensile reinforcement need not be treated as equivalent
stringers because the moments of individual bars may be included in the moment
equation. The practical advantages of relating the analysis to familiar equations
are obvious. As an analytical approach it has an important advantage in common
with the space truss theory over the author's earlier more complex approach {7]
and the skew bending theory [8] because it can analyse the Collins' [9] reductio-
ad-absurdum beam with all steel external to the concrete as a standard case.

The analytical extension of (13) is trivial but confirms that the simple steps do
in fact produce an interaction relationship identical with the space truss theory
and rigorous skew bending theory. Re-arrangement of terms in (13) readily leads
to -

M T '}
Hb * &Tb) * (Vb) £ 1 where M, = Asfsyd (14)
To = 2y121 Awfwy ASthX, V, = 2y, Awfwy AStst

© S yl + z1 0 3 y1
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4. ECCENTRICITY OF COMPRESSIVE FORCE

Derivation of mode 3 (top yielding) and mode 2 (side yielding) equations is
equally direct, and the resulting interaction relationships are equally consist-
ent with space truss and skew bending. Of greater significance is the new insigt
that the method offers into the complete identification of all longitudinal
forces and their location so that the statics of the final design is thoroughly
understood by the designer.

For the mode 1 case given above, the inequality of the shears in the two y legs
means that C, must be eccentric (Figure 4) for zero moment about the second axis,
i.e.

Cye = (Cs - C1) %2 (15)
But e has maximum value %z, and when this is satisfied in (15) and C, is solved
from (11) using a value of Ag.fg sy which satisfies (12), (15) becomes -

Ty, (v, 2V 7
5 > (To) )Ty, T (16)

What is significant is that (16) is the mode 2, sideways bending, interaction
equation with zero top steel. In fact locating Cy at %z; leads to simultaneous
derivation of the mode 1 and mode 2 failure criteria. The equation now becomes:-

Astfsy + %Ascfsy - (Cy+ Co+ Ca+ Cu+ Cy) =P (17)
ASthY Y1 - CZ)’I' %(Cﬁ Cg) Ya =M (12)
aAstfsy Zy + %Ascfsy y1- Cazi- %(C2+ Cy)z1= 0 (18)

Equation (12) is unchanged and leads to the mode 1 equation and equation
(18) satisfies equilibrium in lateral flexure and leads directly to the mode 2
interaction relationship

A f 2 2 e
(1 s SCsy o (T VE, 2 Y1
12(1 * Ast