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IV

Mesh Formulation of the Yield Line Method by Mathematical Programming

La formulation en mailles de la méthode des lignes de rupture par la programmation mathématique

Die Netzformulierung der Bruchlinienmethode mit Hilfe der mathematischen Programmierung

SUMMARY
The yield line method has been formulated as a mathematical programming problem using a mesh
description of a finite element network The fundamental structural relations have been transformed
to an equivalent primal-dual pair of mesh linear programs using the Kuhn-Tucker theory. These
programs, along with the primal dual pair of nodal linear programs derived previously, provide a
choice of four programs available for computation. A comparison has been made of the relative
computational effort required for these programs when using a simplex-based computer code.

La formulation en mailles développée pour la méthode des éléments finis a été appliquée à la méthode
des lignes de rupture. On a obtenu une paire ,,primal-dual" de programmes linéaires équivalente aux
relations structurales qui gouvernent la dite description, en utilisant la théorie de Kuhn-Tucker Ces

programmes offrent, avec la paire ,,primal-dual" de programmes linéaires déjà dérivée pour la description

nodale, un éventail de quatre programmes de calcul On a finalement comparé les difficultés de
calcul inhérentes à chacun de ces programmes en utilisant l'algorithme du Simplex

ZUSAMMENFASSUNG
Die Bruchlinienmethode wurde mit Hilfe einer Netzbeschreibung eines finiten Element-Netzes dargestellt.

Die grundlegenden strukturellen Beziehungen wurden unter Verwendung der Kuhn-Tucker
Theorie zu einem entsprechenden ,,primal-dualen" Paar von linearen Programmen transformiert Diese,
und das früher hergeleitete ,,primal-duale" Paar von linearen Programmen fur die Knotenbeschreibung,
liefern eine Auswahl von vier fur die Berechnung verfugbaren Programmen Schliesslich wurde der fur
jedes dieser Programme erforderliche relative Rechenaufwand bei Verwendung des Simplex Algorithmus
verglichen.
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J. MUNRO
Civil Engineering Department
Imperial College
London, England

RESUME

29/18



274 IV-MESH FORMULATION OF THE YIELD-LINE METHOD %

1. INTRODUCTION

The plastic limit analysis and synthesis of structural frames may be formulated
conveniently as linear programs (LPs) using either a mesh [l] or nodal [2]
description of the structure to formulate the fundamental static and kinematic
relations. Each description leads to a primal-dual pair of LPs and thus, for
the numerical computation, a choice must be made between four possible programs.
Whilst the nodal description is most commonly used, it has been shown [3] [*•]
recently that the required computational effort with respect to simplex-based
algorithms is greatly reduced when the mesh description is employed.

A particularly simple and convenient form of manually-computed plastic limit
analysis is embodied in the yield line method (YLM) [5J [6]. This method may
be automated to the plastic limit analysis [7] and synthesis [8] of r.c. slabs
through FEs and linear programming. The LPs formulated in this way have the
same algebraic structure as those obtained previously for frames using the nodal
description. Since the programs obtained from the mesh description for frames
had computational advantages, it would appear logical to seek a corresponding
mesh formulation for the slab problem and to see if these advantages carry over
to this different class of problem.

The nodal description commences with a statement of the (nodal) fundamental
kinematic relations and then seeks the corresponding static relations such
that an appropriate criterion of consistency is satisfied. The criterion
adopted [7J is that of static-kinematic duality (SKD) The mesh description
to be presented herein commences with a statement of the (mesh) fundamental
static relations and then derives the corresponding kinematic relations such
that SKD is maintained.

2. STATICS

The normal bending moments (m) at the FE sides are considered as the superposition
of a particular solution (m0) which equilibrates the loading and a

complementary solution (mc) which consists of a linear combination of independent
self-equilibrating moment fields.

The particular solution can be readily obtained if, as indicated on Fig. 1, the
slab is split into cantilevers.

m m + m
~o ~lc

(1)

Fig. 1: Cantilever Slabs
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Clearly, such a procedure Implies edge fixity. However, if other boundary
conditions pertain, then they can be Incorporated as outlined elsewhere [9]

The complementary solution (mc) will be based on a set of linearly independent
meshes. The simplest such set will be obtained from the FEs which are Incident
on each of the nodes except one. Such a set is shown in Fig. 2 and these meshes
are analogous to the regional meshes of frame theory [4],

Fig. 2: Linearly independent set
ot finite element meshes

For example, the complementary solution total normal bending moments at the
FE sides of the mesh represented in Fig. 3 may be expressed In terms of two
static parameters (p^ and P2) in the following form

'
msl~ sin ai COS a1 Pi

ms2 s Î n a2 COS a2 CsJ
a.

ms3 s î n a3 COS a3

ms4 sin % COS «i,

ms5. sin a5 COS
1

LA
Ö

(2)

Xh

Fig.3: Example of finite element mesh

Nàw, if relations (2) are established for all such regional meshes, then they
can be assembled In the following compact form

mc Bp (3)
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and the parameters g wi 11 be termed the mesh actions.
brium equations (1) become

Thus, the mesh equili-

m m + B p^0 ~ ~ w

KINEMATICS

The conditions of compatibility for every mesh must ensure that the modal
angular deformation rates (0) across yielding FE sides correspond to continuity
of vertical displacements. For example, for the FE sides of the mesh represented
in Fig. 3,

sin ai si n a2 sin a3 sin sin X 0

cos ai cos a2 cos a3 cos ak cos é2 0

é3

ÔA

é5

(5)

Now, if these compatibility conditions are imposed on every mesh of a FE system,
then they can be stated in the following compact form

B Ô 0 (6)

The contragredient relation connecting equations (3) and (6) is a manifestation
of their consistency with respect to SKD.

Once again, the special treatment of various boundary conditions is discussed
more fully elsewhere [9].

A. CONSTITUTIVE RELATIONS

The YLM employs a simple yield criterion
NT m - nu. £ 0 (7)

where m.,. is the vector of the magnitudes of plastic moments of resistance and
the normality matrix N is given by

5 [i i ~i]

where I is the identity matrix.

It is convenient to express the plastic modal deformations (ê) in terms of
non-negative components

0. xT - x7 where x* ^ 0 x7 > 0
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Thus

where

N x

+
X

X

(8)

» 0

and N is the normality matrix as previously described. Relations (8) constitute
the flow rule for the considered problem.

The parity rule linking the static and kinematic variables can be expressed in
the following complementary way.

T Th"1"
< N m - m*] * (9)

5. FUNDAMENTAL STRUCTURAL RELATIONS

The particular solution bending moments (mQ) may be expressed as the sum of those

(10)

due to dead load (m£jc)) and those due to live load (m^)

m m. + m.-o -do ~£o

If the m^o vector is expressed in terms of a single load parameter (X)

m m. + r X
-o -do ~o

(11)

where rQ is the vector of live load particular solution bending moments per unit
value of the load parameter (X).

Substituting from (11) into (A), the equilibrium equations become

m, + r X + B p-do ~o - £.
(12)

and the statical admissibility conditions are obtained by substituting from (12)
into the yield conditions (7).

atv 0 (13)

where

A H r>T n

bt n

N^ mdo

and t are non-negative slack variables.

The plastic collapse deformation rates (0) for a single-degree-of-freedom mode
are fixed only up to a single parameter whose magnitude remains arbitrary. It
will therefore be necessary to introduce some form of scaling so that the
problem will have a finite kinematic solution. A convenient scaling is

r N x 1

-o - -
(1 A)
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The compatibility relations (6) and the flow rule (8) lead to

BT N x 0 (15)

The kinematic admissibility conditions are obtained from equations (14) and (15)

[ rT n" 1

"

~0

_T
X

B N 0

or, more compactly,

A x b (16)

Thus, the full set of fundamental structural relations in mesh form becomes

Statical Admissibility

Kinematical Admissibility

Parity

Sense restrictions

A y-c+t=0
A x b

xT t 0

x » 0 t ^ 0

(17)

6. LINEAR PROGRAMS

The relations (17) constitute a linear complementarity problem (LCP). If they
are regarded as Kuhn-Tucker conditions [lOJ then, from Kuhn-Tucker equivalence,
their solution is also the solution of the following mesh primal-dual LPs of
the YLM

Min" z c^ x

A x b

x 5. 0

Max w b^ y

AV<c

Mesh Primal LP Mesh Dual LP

(18) (19)

7. SOLUTION BOUNDS

From the duality theory [11] of LP, it follows that the optimal values of the
two objective functions coincide and are equal to the collapse load (Ac) for
the YLM-FE model,

Wj. Xc (20)

Since the necessary compatibility requirements are satisfied, the plastic
collapse load parameter (Ac) for the YLM-FE model is an upper bound to the
collapse load parameter (A|) for the continuous model.

(21)
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Clearly, if the FE boundaries contain the yield lines of the true collapse mode
of the continuous model, then the strict equality applies in relation (21).

The upper bound nature of the YLM-FE model also applies when a nodal description
[7] is adopted. However, it has been shown elsewhere [9][12][13] that an FE

formulation using approximating field functions can be devised such that the
collapse load parameter is a lower bound on that of the continuous model.

8. COMPUTATIONAL EFFORT

If nc is the number of constraints and ny is the number of variables in the
standard form of an LP, then the computational effort involved in a simplex-
based computer code varies as (n^ nv). It can be shown that the primal (unsafe)
LP always involves less computation than the dual (safe) LP, irrespective of the
description (nodal or mesh) used. The choice therefore lies between the nodal
primal LP and the mesh primal LP for a YLM-FE model. The comparison between
these two programs with respect to computational effort depends, to some extent,
on the boudnary conditions. However, as the number of FEs increases and the FE

network tends to an infinitely fine one, then the influence of boundary conditions
becomes less important and the nodal primal LP tends to require kS0% of the
computational effort of the corresponding mesh LP.

Another important consideration is the complexity of data preparation and
organisation prior to entering the simplex-based code. Here the position with
regard to the mesh description is, as yet, less satisfactory. However, this
was also considered to be a disadvantage with respect to the mesh LPs for frames,
but recent developments have largely overcome the problems and further research
should improve the position with regard to slabs.

9. CONCLUSIONS

The mesh description, which has proved to be particularly convenient with
respect to frames, can readily be adapted to a YLM-FE model of a reinforced
concrete slab. The mesh primal-dual LPs for the slab problem have the same
algebraic form as those for frames. Whilst the data preparation may require
more attention, the computational effort required for the solution of the mesh
primal LP is generally considerably less than that for the corresponding nodal
primal LP.
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