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Optimization of Reinforcement in Slabs by Means of Linear Programming
Optimalisation de I'armature des plaques par la programmation linéaire

Optimierung der Bewehrung von Platten mit Hilfe der linearen Programmierung

H. PEDERSEN
Structural Engineer
Cowiconsult
Virum, Denmark

SUMMARY

This paper is concerned with the development of a numerical method for designing reinforced con-
crete slabs by linear programming. The total amount of reinforcement necessary in a slab with given
concrete dimensions, subjected to given loads and with a given arrangement of the reinforcing bars,
is minimized. The linear programming problem is formulated using the principles of the lower bound
method. The continuum problem is discretized by means of equilibrium finite element types. The
linearized vield conditions are established in a number of discrete points to ensure a safe stress field.

RESUME

Le développement d’'une méthode numérigue est présenté pour le dimensionnement de dalles en
béton armé a V'aide de la programmation linéaire. Le volume total de I'armature nécessaire pour une
dalle dont la géométrie, le chargement et le systéeme d’armature sont donnés, est minimalisé. Le
programme linéaire est formulé en appliquant les principes de la méthode statique de la théorie des
charges ultimes. Le probleme continu est discrétisé par des éléments finis du type modéle équilibre,
Les conditions d'écoulement linéarisées sont établies pour un nombre de points afin d’assurer la
stabilité du champ de contraintes,

ZUSAMMENFASSUNG

Die Entwicklung eines numerischen Verfahrens zur Bemessung von Stahlbetonplatten mit Hilfe der
finearen Programmierung wird dargestellt. Der insgesamt erforderfiche Aufwand an Bewehrung far
eine Platte mit gegebenen Abmessungen, gegebenen Lasten und einer vorgewah!ten Bewehrungsan-
ordnung wird minimiert. Gestitzt auf die statische Methode wird das lineare Programm formuliert.
Das kontinuiertiche Problem wird mit Finiten Elementen vom Gleichgewichtstyp diskretisiert. Die
Stabilitat des Spannungszustandes wird gesichert, indem die linearisierten Fliessbedingungen fur
die Anzahl diskreter Punkte aufgestellt werden.
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1. INTRODUCTION

Bound methods of limit analysis have proved to be powerful tools for the determi-
nation of the ultimate limit load for many structures, Also in the calculations

of reinforced concrete slabs plastic theory has been successfully used for years.
Johansen [1] formulated the yield-line theory leading to upper bound solutions which
theoretically are unsafe solutions.

Since then, many attempts have been made to create safe methods. The establishment
of a general plastic theory for reinforced concrete slabs has made it possible to
use lower bound methods giving results on the safe side. The major part of this work
was done by Nielsen [2] in the early sixties. Based on the theory of perfectly
plastic materials, Nielsen [2] formulated the general yield conditions for ortho-
tropic slabs.

The great advantages of using lower bound methods are really achieved when computer-
izing the construction of the equilibrium solutions., The statically admissible stress
fields can be created for instance by means of finite element methods. Overall equi-
librium regquirements result in a set of linear equations in the stress parameters.

A safe stress field is ensured by establishing the yield conditions in a set of dis-
crete points in each element.

Many authors have adopted this approach in the evaluation of the bearing capacity

for a given slab subjected to proportional loading. As the yield conditions are not
linear, the optimization problem is non-linear. If the yield conditions are linear-
ized, one gets a case of linear programming, LP, which can be solved by general
available standard routines. Calculations of this kind for concrete slabs have been
performed by Anderheggen and Knépfell [3] and knépfell [4]. For materials governed by
the Tresca yield criteria, Faccioli and Vitiello [5] have carried out a similar cal-
culation.

Most of the numerical methods leading to LP-problems include both upper- and lower
bound techniques expressing the anology between the duality of the limit analysis
theorems and the duality theorem of LP.

It has been concluded by the author [6] that with the present knowledge of the exist-
ing optimization techniques - especially concerning reliability and efficiency - an
automatic limit design method for practical use should be based on LP. Moreover, it
is stated that using LP no results can be achieved by upper bound methods that cannot
be preduced by lower bound methods alone. The most economic design will often be ob-
tained by varying the reinforcement over the slab area. This case can be treated di-
rectly by the lower bound method but can hardly be done by upper bound methods. Fur-
ther, it has been demonstrated by the author [7] that based on lower bound technicues
the limit analysis problem as well as the limit design problem can easily be handled
by means of the same computer programme. Thus the LP-problem should be formulated
using the principles of the lower bound method.

The general approach adopted here in the development of a rational and safe design
method was at first presented by Wolfensberger [8], who used Hillerborgs [9] strip
method to generate a parametric moment field.

In this paper, only thin slabs are dealt with. The Kirchoff plate theory is adopted
and the material is assumed to be rigid plastic. The optimization criteria is the
minimum of the total amount of tensile reinforcement. The arrangement of the rein-
forcing bars can be chosen a priori to ensure a design for direct practical use.
Arbitrarily reinforced slabs with given directions of the reinforcing bars can be
handled. Slabs with various geometry and different types of boundary conditions, to-
gether with column supports are dealt with. The design is carried out for a set of
given loading cases.

As examples to illustrate the method designs of an isotropic square built-in slab
and a flat plate construction are shown.
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2. MATHEMATICAL FORMULATION OF THE DESIGN PROBLEM

Equiljbrium element types are used to descretize the continuum problem. The moment
field for the slab is represented by the NM global parameters contained in the vector
M. The moment field for an element, e, is given by the nm parameters mﬁ. The re-
lation between these and the global parameters is for each element given by:

n® =g xn (2.1)

By means of interpolation functions the moments referring to a global X-y-system,
m = (mx,mxy,my), can be expressed in the form:

m:iex'lge (2.2)

For each element the boundary forces,zf, necessary to express the required statical
continuity conditions are calculated from:

= x°xn® (2.3)

By means of (2.1-3) all equilibrium requirements such as internal requirements, con-
tinuity requirements along the element boundaries and the statical boundary condi-
tions lead to a set of linear equations in the glcbal parameters:

K *M=p (2.4)

where the vector P represents the effects of the given loads.

The design variables, which are the steel areas, for the slab are estabéished in the
ND-dimensional design vector D. For each element the plastic moments, m_ = (m

r
m. , m e m'! , m' , m' ), see section 4, are expressed by the releva;g steeTxareas
bgy Fxy Fx Fy Fxy

=£:Je)(D+e

2.5
Dtm (2.5)

e
m
~p

e i . :
where EP o are plastic moments due to given reinforcement.
r

By means of (2.1-2) and (2.5)" the linearized yield conditions set up in some a
priori selected points for each element, lead to a set of linear inequalities in
the global moment parameters and the design variables:

Rl x M + R x D < R (2.6)
-~ ~d —’\0

where Bo expresses the contribution of given reinforcement in (2.5).

Several explicit linear constraints in the design variables such as given inter-
vals for certain steel areas, desired linear relationships between different steel
areas etc. can be handled. For clarity, such relationships will be assumed to be
included in (2.6).

The total amount of reinforcement is expressed as a linear function in the design
variables:

Z=¢cXxXD (2.7)
In this way, the design problem is formulated as a case of LP:

minimize:

N
1
0
X
W

Pdc

I
L)
]
=
v
i}
1A

subject to KX and: 1x + 2 X 50 (2.8)
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3. ELEMENT TYPES, STATICAL EQUATIONS

For many equilibrium slab elements used in elastic calculations the corresponding
stress field can be used here directly to generate parametric statically admissible
fields. Two such element types are given below, i.e. the triangular element with a
constant moment field, TRIC, and the triangular element with a linear moment field
TRIL. A direct way can also be used to derive applicable element types considering
only the statical properties. An example of this is given by the rectangular element
RECT. For the element matrices the reader is referred to reference [6].

Triangular element, TRIC

The geometrical and statical properties of the element are shown in Fig. 3.1. The
element parameters can be chosen as:

e _ T
RT= My, My Myy) (3:4)

The only vertical forces acting at an element are the concentrated corner forces
due to discontinuities in the torsional moments. These are established in the vector:

e T
L = (Pyr Py, P3) (3.2)
p mv3
1 x 1 /
& S v mb2 \mb:!
r a 2 -
* my2 1 P2
s o
3 mb!
ERA
Fig. 3.1: Triangular element, TRIC S
' b

y
It is thus seen that only concentrated forces acting at the nodes of the element
mesh can be handled.

Triangular element, TRIL

This element is due to Veubeke [10], who used it in elastic slab analysis.

The moment field is linear and can thus be represented by nine parameters for each
element., The analysis is most easily carried out in a local ablique reference system
as shown in Pig. 3.2 where sign conventions and the nine parameters are also shown.
The parameters are: ‘

e= (""' -_ E)T
= R Bpr B3

where m = (m;, m;{—}-r-, mg'—) (3.3)

Fig. 3.2 Triangular element, TRIL. Fig. 3.3 Boundary forces.
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The corresponding boundary and nodal forces, shown in Fig. 3.3, are contained in
the following vector:

£ = m m.,, m ., M., Koy Koy Kooy P., P, P} 3.4)
L = (myg, Moge Wyqr Mgy Myge Mane Kypr Kyge Kogs Pyy Py, Py) (3.4

Line loads with constant intensity along element boundaries and concentrated loads
acting at the nodes of the element mesh can be handled.

Rectangular element, RECT

The slab area is subdivided into rectangular elements by lines parallel to the axes
of the global reference system,

The moment field for an element is given by the ten parameters:

T S e T e A ;T (3.5)
BT Wy Ty Tyt Tyt Txyt Txyt Uyt Ty’ Px’ Py : )

These parameters are shown in Fig. 3.4. The variation of the m -moment is parabolic
in the x-direction and constant in the y-direction. Analogous for the m_-moment. The

torsional moment m_ is represented by a hyperbolic paraboleid and is tFus linear at
the element boundaries.

my,

o “
*51 Px . Py i“‘E" Ly

e T

Mo W "

A ™ ¥ 4
y
Fig. 3.4 Rectangular element, RECT Fig. 3.5 Boundary forces.

The Kirchoff' shear forces and the concentrated forces acting at the corners of the
element, see Fig. 3.5, are expressed by the following vector:
r® = (K,., Kooy Koo K,y Py, P, Poy P )T (3.6)
~ 127 7237 347 147 1t T2' "3 T4 )
One equation needs to be satisfied to ensure internal equilibrium. From the EF'
matrix one gets directly: '
1 3 2 4 *
m + - -m = 11 - - 3.7
xy mXY mXY Xy 5 XYy (p Py pY) ( )
Distributed loads with constant intensity for each element, line loads acting at element
boundaries and concentrated lcads acting at the nodes can be handled.

4. YIELD CONDITIONS

Yield conditions for arbitrarily reinforced concrete slabs have been derived by many
authors on the basis of Johansen's suggestions for the moments in a yield-line. For

ingtance, this has been done by Brastrup [11], who used polar diagrammes to formu-
late the yield conditions.

_ _ _ _ 2
ml = (mFx mx)(mFy my) + (mxy mny) <0
= ' [ — ' 2
@, = (mFX + mx)(mFy + my) + (mxy mny) 0

(4.1)
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Here, m is the numerical value of the positive yield moment in pure bending in an

X—-section and m'x is the numerical value of the negative yield moment in that section.

Analogous for m v and m' ., m, and méx are the plastic torsiocnal moments due to

reinforcement ag the bo%%om and” the top ¥espectively. The yield conditions (4.1) in-

clude the conditions for orthotropic slabs (m = m' = 0) as a special case, see
Fxy Fxy

reference [2].

A safe linearization of the yield conditions has been suggested by Wolfensberger [8],
leading to the following eight inequalities:

+

S + M ~ (mxy —-mnyl =1
+
- mFY * my B (mXY - mFXY) S ¢ (4.2)
-m! -m Y -m' ) <0
x X Xy Fxy
- wl - + i
mFy my (mxy mny) = h

This linearization has also been used in reference [3] and [4].

As the relationships between the plastic moments and the corresponding steel areas
are assumed to be linear, which is a gocd approximation for such small degrees of
reinforcement for which the yield conditions (4.1) are valid, the linearized con-
ditions (4.2) are also linear in the design variables. The plastic moments are
assumed to be constant within each element and are given by the vector m- as shown
in section 2, For example, the linear expression for Mo is:

2 2
mFx = Fl cos u1 + .t F FND cos uND (4.3)

where u, is the angle relative to the x-axis for the reinforcement with steel area
D,. If %he reinforcement with steel area D, is not to be represented at the bottom

i
o% the element the Fi—factor for m_ , m and m is set to zero.

Fx Fy Fxy

From the given arrangement of reinforcing bars formulated in (4.3), the linear ob-
jective function is derived automatically. The c,-value simply represents the slab
area in which the reinforcement with corresponding steel area Di is extended.

For the element type with constant moment field, TRIC, the linearized vyield cindi-
tions only have to be established at one point per element. For the element with
linear moment field, TRIL, establishment in the three corners of each element will
ensure overall fulfillment. For the rectangular element, RECT, the yield conditions
(4.2) are set up in the corners and in the centre of the element. For no loading cases
this alone can ensure a true lower bound solution, For the solution obtained the yield
conditions (4.1) are checked in a finer mesh and the solution is proportioned if needed
to fulfil (4.1) in all check-points.

5. NUMERICAL TREATMENT OF THE LP-PROBLEM

The LP-problem stated in (2.8) can be solved directly by means of many LP-codes.
However, it can be considerably reduced, and an easy way of treating different
loading cases simultaneously can be obtained by solving the linear equations (2.4)
first. By means of a rank-method, some moment parameters, M_, can be expressed in
terms of the redundancies, gu, by: a

r
= X
- T A (5.1)

where %0 represents a particular solution for the actual loading case.
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The LP-problem is then reduced to:

minimize: z = E’X R ) (5.2)
subject to: R XM + R X D <R

where the particular solution is now introduced into the Bo—vector.

If the slab is to be designed according to different lcading cases, one on%y has to

establish (5.1) once. For each loadjng case, i, the particular solution, M, is cal-

culated and the right-hand sides, R , in the linear constraints are obtained by sub-
: P F : O . :

stitution in (2.6). By this procedure the following LP-problem is formulated:

minimize: Z = < X R
. 1 2 1 :
subject to: R XM +R XD<R (5.3)
~a ~1 ~ R o)
- .n 02 - .n
and: R XM +R XD<KR

Solving this problem, the global optimum (according to the linear model) will be ob-
tained.

An approximate optimum can be achieved by solving the LP-problem:

minimize: Z = < X R
2 min
biject to: R X + R X DK
subjec o M R D < Eo (5.4)
min , 1 n
and: R, = min (R_ R .)
OIJ OIJI"'I ij

The design, considering more than one loading case, can also be carried out by
successive calculations. For the loading case, i, all reinforcement quantities as
obtained earlier are treated as given through m_ , and only necessary additional re-
inforcement, if any, is determined. ~P

The computer .time needed to solve the LP-problem, either (5.3) or (5.4), can be re-
duced by solving the corresponding dual LP-problem. Concerning this, the reader is
referred to reference [7].

Numerical calculations using the described method have been performed on the IBM/
360-system at the Technical University of Denmark, Copenhagen, using the MPS/360
linear programming code.

6. RESULTS

The design of two different types of concrete slabs with orthogonal reinforcement
(orthotropic slabs) is shown.

Square built-in slab

The isotropic square slab with clamped edges is designed using the RECT-element
{(m x - M = méx = mé =m_). The load is uniformlg distributed and denoted by p.
The resuT% is represegted gy the quantity p = pl /m,. In Fig. 6.1 the result is
shown as a function of the mesh size. ¥
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Fig. 6.1 Rectangular element. Fig. 6.2 Triangular elements.

This slab has alsc been calculated by means of triangular elements. The results

are given in Fig. 6.2 where n, is the number of elements in the considered eighth
part of the slab.

The results obtained by the TRIC-element have been determined by Anderheggen and
Kndpfell [3], who have alsc given the results according to the element here called
TRIL 1, This element has a linear moment field with continuous torsional moments
along element boundaries. Considering linear displacement fields for each element,
statical equilibrium requirements are established using virtual work methods. In
this way, overall equilibrium can never be ensured. Thus the results cobtained do
not represent true bound solutions.

In comparison, it should be mentioned that Chan [12], using non-linear optimization
has determined the value 41.78 for a computer time considerably larger than those

met here using linear programming. The exact solution of this problem is p=42.851
and was found by Fox [13].

Flat Plate Structure

For the uniformly locaded flat plate structure shown in Fig. 6.3, the total amount
of steel is minimized for different arrangement of the reinforcement. The RECT element
is used. The three cases: a) m =m =

m_'=m"'=m_~D,, b) =m = ~D,,
n 1
F; = mF' =m! ~D_, and c}) nm xFé‘ﬁ FY m, 2 L’ g;; = EF' =10 allmgﬁve thE same tot-1l
amount o¥ reinforcement denoged by X. In case a) is foung mF = 0,0685 pl .
Kz
1.00}- °
13
—mﬁ;A‘-# i‘ﬁ v ‘I 0_8\ /
! % A
. o e
>_‘**_m%-“+_'l lo N 04
__"1?—“* *" 12, i o2l 1Fc+Kyl A=Kz A
——ly
1 i 1 L L K]
01 02 Q3 04 433

Fig. 6.3 Flat plate structure. Fig. 6.4 Restricted top reinforcement.
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Johansen [14] suggests from yield-line calculations that if the bottom reinforcement
is homogenous throughout the slab, and the top reinforcement is homogenous only in

a square at the column (zerc elsewhere}, the latter must have an extension from the
centre of the column given by 1 = c¢ + 0.3 1, where ¢ is the radius of the circle
with the same area as the cross section of the column. This problem has been cal-
culated for different values of 1 (1 is shown in Fig. 6.3). The corresponding
amounts of reinforcement, AO, are givén in Fig. 6.4 as a function of ;o'

The results show that a minimum is obtained for lO ~c + 0.23 1, for which the
amount of reinforcement is reduced to Ao ~ 0.5 A.

7. FINAL REMARKS

Results show that linear programming methods require longer computer times compared
to those required for calculations on linear elasticity. However, continued devel-
opments in the field of electronic computers can be expected to result in reduced
prices so that practical design will be able to profit by these methods in the near
future.

Moreover, the advantages of these automatic methods in the area of practical design
should be emphasized. In this case, the alternative methods are normally not the
very sophisticated methods available in the field of structural analysis.

Concerning the finite element discretization, it should be mentioned that proce-
dures like the one adopted by Anderheggen and Kndpfell [3], leading to approximate
bound solutions, will probably be successful in practical design methods. This is
due to the fact that concerning calculations in practice, one will often accept a
design which is safe for a loading case a little different from the prescribed one.
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