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SUMMARY
The paper is concerned with the analysis of reinforced concrete slabs subjected to transient impulsive
loading. Tensile cracking, the plastic behaviour of concrete in multiaxial state of stress and the plastic
deformation of the reinforcement are taken into account Geometrical nonlinearity is included The
plate theories of Kirchhoff and Mindlin are used The problem is discretized spatially and temporally
by use of the finite element and finite difference methods, respectively Some static and dynamic
problems of slabs are analyzed and the results compared with experimental and numerical data
obtained elsewhere

Cet article traite de l'analyse des plaques en béton armé soumises à des charges transitoires et impulsives.

La fissuration, le comportement plastique du béton dans un état multiaxial de contrainte et la
déformation plastique des armatures sont prises en considération Les nonlinéarités géométriques sont
considérées. Les théories de Kirchhoff et de Mindlin sont utilisées Le problème est rendu discret
spatialement et temporellement par les méthodes des éléments finis et des différences finies Quelques
problèmes statiques et dynamiques sont étudiés et les résultats comparés avec des résultats numériques
et expérimentaux obtenus ailleurs

ZUSAMMENFASSUNG
Die vorliegende Arbeit befasst sich mit der Analyse von impulsartig belasteten Stahlbetonplatten Die
Rissbildung im Zugbereich, die plastischen Deformationen des Betons unter dem mehrachsigen
Spannungszustand und die plastischen Dehnungen der Stahlstabe werden berücksichtigt Geometrische
Nichtlinearitaten werden ebenfalls berücksichtigt Die Plattentheorien von Kirchhoff und Mindlin
werden verwendet. Die Diskretisierung des Problems erfolgt raumlich nach der Finite Elemente Methode

und zeitlich nach der Differenzenmethode Einige statische und dynamische Plattenprobleme
werden berechnet, und die Ergebnisse werden mit experimentellen und numerischen Resultaten anderer
Untersuchungen verglichen.

RESUME
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1. INTRODUCTION

In problems of reactor safety and protective structures extreme dynamic loads
can be encountered, and for safe and economic design the nonlinear behaviour of
the material and the structure has to be considered. Major sources of non-
linearity in reinforced concrete structures are the progressive cracking in
tension, the nonlinear response of reinforcing steel in tension and of concrete
under compression, and other nonlinearities related to reinforcement and its
interaction with concrete. In sudden loading the effect of high strain rate on
•the behaviour of concrete and steel should also be accounted for.

The finite element method has enabled the solution of the complicated problems
represented by the nonlinear behaviour of reinforced concrete structures.
Several studies on the nonlinear behaviour of reinforced concrete structures
subjected to static loads have been published in recent years, see [1-61 and
others. On the other hand, only few reports on dynamic analysis of reinforced
concrete are available [7-12].

The purpose of this paper is to report on the study of reinforced concrete slabs
subjected to transient impulsive loading. In initial state, elastic behaviour
is assumed for the composite material formed by concrete and reinforcement.
Tensile cracking of the concrete and the plastic behaviour of the concrete in
biaxial compression and of the reinforcing steel are taken into account. The
reinforcement is described as smeared and orientated steel layers. The equation
of motion is derived using the principle of virtual displacements in total
Lagrangian approach. The kinematic equations of plates are taken in accordance
with the theories of Kirchhoff and Mindlin. The problem is discretized
spatially and temporally by use of the finite element and finite difference methods,
respectively. Some static and dynamic problems of slabs are analyzed and the
results compared with available experimental or numerical values.

2. KINETIC AND KINEMATIC EQUATIONS

In total Lagrangian approach the pronciple of virtual displacements can be
written in the form [13]

SôEdV fôudV tôudA + piiôudV 0 o:

where S is the 2nd Piola-Kirchhoff stress, E the Green-Lagrange strain, f and t
the prescribed body force and surface traction, respectively, p the density, u
the displacement, and ü the acceleration. V denotes the initial volume of the
body and A^_ the part of the initial boundary on which the traction is given.
The use of finite element approximation u Nq results in matrix equation

R(q) + Mq Q (2)

where q is the vector of nodal displacements, and

R
T

B SdV, NTfdV +
T

NtdA, NTpNdV (3)

are the force of internal stresses, the load vector, and the mass matrix, re-
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spectively. The matrix B, dependent on the current state, is defined by the
strain variation <SE E6q. The incremental form of the equation of motion (2) is

1KtAq + M2q 2Q - 1R (U)

where

1Kt j 1BT1D1BdV (5)
V

o

is the tangent stiffness matrix. Left superscripts 1 and 2 refer to the
configurations of the body at times t and t + At, respectively. The constitutive
matrix D relates the stress and strain rates, S DE.

In Mindlin's thick plate theory, the assumption is made that normals to the
midplane remain straight but not necessarily normal to the midsurface after
deformation. The nonlinear strain-displacement relation can be written in the
form [1U]

£
X

u +w2 /2
>X ,x

£
J v +W2 /2

,y ,y
^

,y

V u +v +w w
,y ,X ,x ,y

+ z ip +tp
,y ,x

Yxz W +(0
,X

0

w +Q
>y J

0

where u and v are the in-plane displacements and w the deflection of the mid-
plane and tp and ip represent the rotations of the normal with respect to x-and
y-axes. The corresponding relationships of the thin plate theory of Kârmân-
Kirchhoff are obtained by setting cp -w ijj -w in equation (6).

sx *y

3. SOLUTION TECHNIQUE

The central difference method (CD) is used to solve the system of ordinary
differential equations (2). The solution q at time t is computed from
„ n+1 n+1formula

q 1
h2M~1(Q - R + 2q - q (7)n+1 n n hi hi-1

where h - t is the step length. The strain and stress increments are
calculated using equations

AE B»(Vl - AS DnAE

The internal force vector at time t is evaluated in accordance with equation
(3) using B and S S + AS. nThe initial condition for q is used ton+ 1 n+1 n o
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eliminate q in the first step 4Q (0.1 - q_1)/2At. The CD-scheme with diagonal
mass matrix is accurate and simple. As an explicit linear difference method its
step length is limited "by the largest natural frequency of the finite element
mesh.

In the solution of equation (U) the trapezoidal rule or the Newmark scheme with
parameters y 0.5 and ß 0.25 was applied

VU 4n + H/2 + hV/2
(8)

• p** 2**
q q + hq + h q A + h q /b

n+1 n ni n n+1

Use of these formulae results in an implicit scheme and therefore iteration has^
to be used at each time step. The displacement vectors an<l 1^+] i
and (i+1)^*1 iteration cycles correspond to configurations 1 and 2 m equation
(b). Use of equations (U) and (8)2 yields

{Kt,n+1 + ^/*2W+1 Qn+1 - Rn+1 + M ~ ^4+1 " + Vh + % ' (9)

where Aq^" + ^
~~ ^n+1" ^°r i~terati°n cycle !n is taken.

The iteration is+continued until || Aql+1 || <e|| q1^ - q || where £ is a tolerance
parameter. To account for the drastic changes Sue to cracking the tangent
stiffness K was updated in the first iteration cycle but held constant thereafter

in order to reduce computing time when using consistent mass matrix.

In Kirchhoff's plate theory a 2b degree of freedom rectangular element was used
with U nodes and the displacement parameters u, v, w, w w and w at each
node. Integration was performed by 2x2 Gauss quadraturêXforA?ila. In'mindlin's
plate theory 20 and 1+0 degrees of freedom rectangular elements were employed
with 1+ and 8 nodes, respectively. The displacement parameters at each node are
u, v, w, ip, and ij;. 2x2 Gaussian integration rule was used, exept in case of 20
DOF element only one Gaussian point for the shear deformation. In depthwise
direction the integration was carried out by Simpson's rule with J integration
points. Steel layers were considered separately at their proper places and
their effects added to the internal force vector and the tangent stiffness.

k. MATERIAL PROPERTIES

The behaviour of concrete is illustrated by the uniaxial stress-strain diagram
in Figure 1. At initial stage, concrete is linearly elastic, isotropic up to
the level 30 % of the compressive strength and of the tensile strength. Then
plastic strain hardening yield takes place according to a parabolic function.
Cracking occurs when a cracking criterion is satisfied. Cracking is brittle and
the stress at a discrete crack drops abruptly to zero. The descending part
after cracking in Figure 1, however, describes average cracking behaviour over a
finite distance and gradual release of tensile stress. In compression, strain
softening occurs after the compressive strength in two linear parts, of which
the latter corresponds the crushing region.

In multiaxial state of stress the yield criterion is defined as follows

F(a,ep) 3ag2J2 + ßaJ1 + yJ2 - a2 0
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Fig. 1. Uniaxial stress-strain
curve of concrete

Fig. 2. Biaxial yield and failure
criteria of concrete

where is the first invariant of stress tensor CT and the second
invariant of stress deviator J_ ct!.o!./2. The function2 ij ij
g 6 - (1 - 6)cos30 6 - (1 - 6)3/3J3/2J2/2 11

determines the shape of the yield locus in the deviatoric stress plane. J_ is
the third invariant of stress deviator aj •cr']£.0^/3. a, ß, Y, and 6 are
parameters to_be determined on the hasis of experimental data. The equivalent
yield stress a is a function of the equivalent plastic strain

ct ct(ep), dCT/dep Ep(ep), dep (2de?jdePj/3)1/2 (12)

It can be obtained from the uniaxial relationship by subtracting the elastic
strain. The initial yield stress in equation (10) is ct 0.3 fc. The yield
locus expands when ct increases. Ultimate size is reached when ct f
Parameters a, ß, and y are determined at this stage to fit the experimental results
for biaxial stress given in [15]. Using values: CT

^ -f"o, CT^ 0 ; CT^ -0.65 f
CT.. -1.25 f ; CTp CT -1 16 f one finds for compression-compression region
a 0.551 j ßC= -6.872 and y -0?l+23, and with values a. -f ct^ 0 ; ct^
-O.365 f CTj 0.075 fc; cr^ 0, ct f 0.1 f for tension-compression and
tension-tension regionsCa 27.U9, ß 7.28 and yC= -19.22. In tension-compression

and tension-tension regions the ultimate yield locus serves as cracking
criterion. Beyond the ultimate yield locus, the softening begins and the yield
locus shrinks, see Figure 2. The parameter 6 is chosen to be 1.1U in order to
keep the yield surface convex.

The associated flow rule is employed. The constitutive equation in "clastic flow
is accordingly

à 13)

where the elastoplastic constitutive matrix is

% c-^JL- (1U)
®P E + n C n

P
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C is the elasticity matrix of concrete,
the "basis of the yield function (10).

The vector n 3f/9a is determined on

The direction of the crack is taken perpendicular to the maximum tensile stress.
After complete cracking concrete behaves uniaxially in the crack direction. The
crack is assumed to close when the strain perpendicular to crack direction
becomes compressive. After cracking some shear resistance still exists due to
aggregate interlocking and dowel action. This is taken into account in reduced
shear modulus of concrete [b]

red

(1 - e/e. • 0.6 + 0.1+ G, £, < e <
tmax t tmax

0.1+ G, £ < e.tmax

15)

For the steel bars the elastic plastic linearly strain hardening idealization is
used. Reinforcement takes axial and shear stresses. Reinforcement is described
as smeared uniaxial layers. Complete compatibility between concrete and
reinforcement is maintained. The effect of bond slip is taken into account by
reducing the modulus of elasticity of reinforcement by 10-20 %.

5. NUMERICAL EXAMPLES

5.1 Statically loaded slabs

Two statically loaded slabs tested by Jofriet & McNeice [3] and Nilsson &

Johansson [11] were analyzed numerically and compared with experimental data.
In both cases good agreement was obtained.

5.2 Dynamically loaded beam

A freely supported beam tested in [7] was analyzed dynamically. The span, width
and thickness of the beam were 25^+0 mm, 152 mm and 305 mm, respectively.
Reinforcement of the beam was 1.23 %> The beam was loaded with a freely falling
mass of 1030 kg. The mass time curve was approximated bilinearly. Central
deflection vs. time curve is shown in Figure 3.

5.3 Dynamically loaded slabs

A clamped rectangular slab subjected to a jet force at the center is a structure
analyzed by Stangenberg [8] using a difference method. In present analysis 2x2
and 3x3 finite element meshes for plate quadrant were used. The calculated time
history of the deflection of the central point agrees closely weith the curve
given in [8] (Figure 1+).

The one way roller supported slab [11] with 2280 mm span, 1230 mm width and 80
mm thickness with reinforcing steel 0.17 % and 0.085 % was tested under a
uniformly distributed pressure load varying with time. The central deflection-time
history was determined using four isoparametric elements for a plate quadrant
(Figure 5)•



H.S. SINISALO - M.T.E. TUOMALA - M.J. MIKKOLA 245

guided mass 1030 kg
w (nm) falling freely fron" p 1.68 m

P(t) (approximated [7])
123.9kN

15

A =570 nm2 254
Js _ -P

l

10 20 30 40 50 60

Fie;. 3. Midspan deflection vs. time of RC beam^ E =1+!+ GPa, E =100 MPa,

f =60 MPa, f =6 MPa, V=0.2, p=.2l+E-8Ns /mm1', Es=210 GPa, Es -1 GPa,

fc=520 MPa, V=0.3, 5 elements for half span, time integration by
trapezoidal rule.

8

10 20 t (ms)

E
sFig, it. Deflection vs. time of rectangular plate under central jet force.

210 GPa, E =33 GPa, v=0.15, f =22.7 MPa, f =2.27 MPa, f =100 MPa,
p=0.2lE-8 fis /mm e =0.002, e =0.00U, e, =0.0002, K =SKirchhoff plate
J.-U 1« jn C-, 1 max ttheory, M Mmdlm plate theory.

experiment [15] -— Mindlin's plate
3 elements

[15Î 2x8 2-D 8-node elements

CL

40 t (ms)

P uniformly distributed over plate area

Fig. 5. One way roller supported slab under uniform pressure varying with time.
Central deflection vs. time.
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6. DISCUSSION

The numerical results obtained for the cases considered indicate that the method
describes satisfactorily the behaviour of reinforced concrete slabs at least
under static loading. More experimental evidence is needed for dynamic loading.
The development of the proposed model is in progress. Systematic study of the
factors, viz. cracking, elastic-plastic yield and strain rate effect of concrete,
aggregate interlocking, dowel action, etc., affecting the behaviour of
reinforced concrete structures and attempts to find realistic simplified models are
continued.
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