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Reinforced Concrete Modeling for Protective Structure Analysis
Modeéles pour I'analyse d’éléments de protection en béton armé

Modeltbildung far Stahlbeton bei der Berechnung von Schutzbauwerken

F.S. WONG J. ISENBERG
Associate Associate Partner
Weidlinger Associates Weidlinger Associates
Menlo Park, CA, USA Menlo Park, CA, USA
SUMMARY

A major limitation in 3D dynamic finite element analysis of protective structures is reinforced con-
crete modeling. The requirements of such a model and the approaches currently used are outlined in
this paper. The advantages and consequences of using a simple composite continuum model are
studied through a representative example. Promising directions of further research in this area of
reinforced concrete modeling are also indicated. ‘

RESUME

Une limite importante & I'analyse tridimensionelle dynamique d'éléments de protection en béton armé
est posée par le choix d'un modéle convenable. On montre les exigences posées a un tel modéle et on
présente quelques modéles souvent utilisés. Les avantages et les conséquences de i'adoption d’'un modéle
continu simple sont étudiés a 'aide d’un exemple typique. Des possibilités de recherches sont indi-
guées.

ZUSAMMENFASSUNG

Eine Hauptschwierigkeit, die bei der dreidimensionalen, dynamischen Finite Elemente Berechnung von
Schutzbauwerken auftritt, besteht in der Modellbildung fir Stahlbeton. Anforderungen an derartige
Moaodelle und heute Ubliche Vorgehensweisen werden dargestellt. Die Vorteile und Konseguenzen der
Anwendung eines einfachen Kontinuummodelis werden an einem Beispiel erldutert. Mogtiche Richtun-
gen weiterer Forschungstatigkeit werden angedeutet.
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1. INTRODUCTION

Major advances have been made in dynamic, three-dimensional, nonlinear finite
element methods in recent years[1] which enable the design of protective struc-
tures to be based on more rational estimates of structural response than was pre
viously possible[2]. Simulation of geometric details using up to 20,000 con-
stant strain hexahedral finite elements is possible and the cost of time-march-
ing analyses is of the order of one to three hours. Work in simulating the non-
linear multiaxial properties of soil surrounding the structure has resulted in
complementary advances [3]. Nonlinear models of reinforced concrete structures
have been proposed (e.g. [4-6]) but their application to analysis of protective
structures has lagged with the result that concrete modeling is the weakest as-
pect of the analysis.

The requirements for a reinforced concrete model of protective structures in-
clude its validity for short-time, monotonically-increasing deformation. There
is occasionally a need to represent one or two cycles of load or deformation,
but seldom more. The model must be valid for deformations up to and beyond
those associated with the maximum load. It must be compatible with integration
algorithms commonly used in dynamic, nonlinear analyses which include, at a mini-
mum, guarantees of uniqueness, continuity and stability of solution. In addi-
tion, the algorithms for computing the properties must be economical of computer
execution time and storage so as not to penalize overall execution time. Final-
1y, the model should be expressed in terms of a few empirical parameters (order
of 10) which can be defined by a limited experimental effort.

The types of concrete models which meet these criteria may be termed the continu-
um and structural element approaches. The continuum approach includes all models
expressing multiaxial stress-strain relationships. Examples include models

based on plasticity and endochronic theories and a variety of variable moduli
modeis. The structural element formulation of concrete properties in terms of
stress resultants (moments, membrane forces and shears) is attractive from the
standpoint of describing structural properties in natural structural terms. Pro-
blems such as describing combined flexural and membrane behavior in terms of
composite stress-strain relations, whose solution in the continuum approach re-
quires through-the-thickness integration [8], are avoided. The same types of
theoretical frameworks, including plasticity theory, can be used for the stress-
resultant formulation [9].

The purpose of this paper is to illustrate by an example the advantages and dis-
advantages of the plasticity theory, continuum approach to reinforced concrete
modeling. The example is a horizontal shelter which is subjected to airblast
and local airblast-induced ground motion.
The response of this hypothetical struc-
ture, which has complicated reinforcing F
patterns, is simulated with a three- i
dimensional, nonlinear finite element sl
analysis using the TRANAL computer pro- —
gram developed by Weidlinger Associates i SRS

0 - Full Scale (Ft.) for
all Figures

b. S8ide c. Back

2. EXAMPLE OF STRUCTURE TO BE ANALYZED

Methods of analyzing protective struc-
tures-will be illustrated by means of
the example shown in Fig. 1. This struc-
ture is made up of a rectangular head-
works section, including stiff frame,

FIGURE 1. 54 HEADWORKS.
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bearing surface and closure of door; and a transition section, which connects
the headworks to a long horizontal tube. The main detail to be represented in
the headworks frame is the circumferential reinforcing, including liner plate
around the jamb of the door opening. The door is composed essentially of plain
concrete poured into a steel tub; dowels connected to the interior of the tub
act as connectors. At the transition region the cross-section changes from rec-
tangular (headworks) to circular (tube). Both circumferential and longitudinal
reinforcement are especially heavy in the transition section, whose cross-sec-
tional area is significantly less than that of the front face of the closure
which receives the direct load.

The Toads on the structure derive from airblast applied to the front face and to
the berm which covers the tube. The direct airblast on the front is amplified
by dynamic reflection effects such that a high frequency pressure peak of about
seven times the overpressure is applied to the door. The result is that direct
airblast on the front of the closure is the dominant load in this example.

3. MODELING AND TEST OF STRUCTURE

3.1 Finite Element Discretization

Both the structure and soil media are represented by 3D continuum finite ele-
ments. The finite element model, consisting of about 20,000 hexahedrons, is
shown in Fig. 2. Sym-
metry is assumed about

the center vertical plane
of the tube so that only
half (the hinge side) of
the shelter and berm is
included. Special atten-
tion is given to details
in the closure and in the
headworks and transition
region (Fig. 3). The dy-
namic analysis is perform-
ed using TRANAL, an expli-
¢it 3D nonlinear dynamic
program for soil-structure ° : it seate (£0)
interaction analysis de- T —
veloped especially for
large-scale 3D problems
[10]. On a CDC 7600, ap-
proximately 20,000 elements
can be used with a solution
time of 2500 element-time

transition soil cover

(a} Plan View (b) Elevation View

12 115,15,
step per CP second., The sub- s N/, w o s
cycling feature permits dif- Rikm; EEEEE { ‘
ferent integration time steps = oo -
in structural and soil ele- TR T
ments; the penalty usually " PrEe
imposed on explicit integra- " \\F:
tion methods by stringent : o
requirements on time step is ey = f@y>>»ﬁ Ay
thereby imposed only where o i AR (o s nan s ose i
it is actually required, RN tiere o ‘“m;f I R ey e ke
rather than on all equations R section Glosure  trame et

lock cavity backplate

of the system. The total
computation time for the

FIGURE 3. 54 HEADWORKS MODEL (IJK ARE FOR ELEMENT/NODE ACCOUNTIRG) .
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example is 50 CPU seconds for 0.1 msec of simulation time.

3.2 Soil Model

The in-situ soil and backfill are modeled as elastic-plastic materials defined
by a modified Drucker-Prager yield function and a work-hardening cap (see Fig. 4
and also [7] ) together with an associated, plastic
potential flow rule. This formulation has been

found to represent properties of a variety of soil
and rock types [11, 12].

3,3 Structural Model

Both the plain concrete and structural steel are
modeled as elastic, perfectly plastic materials,
with associated flow rule (see failure envelope
in Fig. 4). The concrete has a yield surface

Failure envelope: /J"; = A - Cexp (-3Bp)

based on the dynamically enhanced compressive s A Ca TR
strength and the steel a von Mises' yield sur- i, slmascininsend® fe govamel By e eciared
face corresponding to A36 steel. The concrete e vrera ottt shon photent 2 et sopremmioe sen
strength is 10,000 psi for concrete in the clo- e o et gy tend Sl rele) we
sure and 6000 psi for concrete in other parts ‘

of the structure. The continuum elements which FIGURE 4. TYPICAL YIZLD SURFACE IN THE CAF MODEL

FOR COMPRESSIVE STRESSES.

model the steel plates in the closure and bearing
frame impose a stringent penalty on the local in-
tegration time step because of the dimension of
the steel plate (5 in.) and because of the need to use a minimum of two elements
across its thickness. The effect of the reinforcing steel in different parts of
the structure, i.e. headworks, frame, tube, etc., is modeled by adjusting the
amount of tension that the plain concrete model can accommodate. The basic
yield surface is otherwise unchanged.

3.4 Test Description

The test program involved subjecting a half-size structure tc blast loading us-
ing a high explosive simulation technique (HEST). Pressure generated within two
HEST cavities and applied to the entire width of the front-face, wingwalls and
soil berm covering the headworks is designed to match the prescribed loading.

The structure and its neighboring areas are heavi-
1y instrumented. There are approximately 400 P 5
channels of measurements, including concrete/

rebar strain measurements, interface stress
measurements, airblast pressures, accelerometers
and velocity gages as well as pretest and post-
test surveys. Some of the test data will be pre-
sented in Section 4 where they are compared with
results obtained from the finite element anal-

]I

i } PRETEST 5IM
4
]
i

q-16

ec)

.12

Impulse (HPa-3:

Pressure (MPa)

.98

ysis. The analysis was performed prior to the &vwwé oo
test event, based on predictions of airblast
loading and estimates of soil properties. sageiedlle - N

4. STRUCTURAL RESPONSE AND PERFORMANCE OF MODEL

= [ =
Due to inherent vibrations in the HEST cavity, I = =
the front load developed in the test differs from
that aSSumed 'i n the f'-i n]' te e'l ement ana] ys -i s, An FIGURE 5. COMPARISON OF FRONT-FACE LOADING USCD

IN ANALYSIS AND ACHIEVED IN TEST,

indication of this difference is given in Fig. 5,
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which compares the measurement of a pressure gage on the upper right corner of
the closure front face with its design value. While the peak HEST load is high-
er than the design value due to cavity vibrations, the impulse in the physical
test is 10% low at 6 msec after detonation.

A comparison of the motion of the center of the closure backplate is given in
Fig. 6. The initial peak is due to the front load and is higher for the test
structure due to the higher peak load realized in the test. Consequently, the
rebound is more severe in the test. There is also strong indication that the
closure frequency for the test structure is less than that simulated, probably
due to the support condition assumed in the analysis. Subsequent motion is
dominated by the relatively rigid motion of the support or headworks given in
Fig. 7. The spike at 1] msec coincides with the sudden failure of the transi-
tion section described later, and is absent in the analysis results. Despite
these differences, however, both the test data (measurement and posttest obser-
vations} and analysis support the fact that the closure/headworks remains elas-
tic, that the transient response of the closure is short-lived, and that the
closure/headworks then moves as a rigid body.

TEST (2615, 2609,
2612)

Velocity (IPS)

velocity (1FS)

Time (msec)

FIGURE §. COMPARISON OF VELOCITY/TIME HISTORIES AT CENTER OF CLOSURE BACKPLATE. FIGURE 7. COMPARISON OF MOTION AT READHORKS FLOOR (LONGITUDINAL COMPONENT) .

A comparison of the longitudinal tube concrete strain/time history jmmediately
behind the headworks is given in Fig. 8. The correlation between analysis and
test is in general quite good. Comparison of the circumferential strain at the
same location as given in Fig. 9 is less favorable. Whereas dilatancy is dicta-
ted by the reinforced concrete model, test data seem to indijcate the opposite.
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FIGURE 8. COMPARISON OF LONGITUDINAL STRAIN/TIME HISTORIES AT TUBE CROSS-SECTION FIGURE 9. COMPARISON OF CIRCUMFERENTIAL STRAIN/TIME HISTORIES AT TUBE CROSS-SECTION
BERIND, HEADWORKS,. BEHIND HEADWORKS (x = 2,995 m}.
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Both test and analysis indicate crushing failure of concrete at that location,
and posttest survey such as that reproduced graphically in Fig. 10 certainly
confirms this finding. The present plasticity model does not simulate strain
softening with resulting redistribution of load. Consequently, the longitudinal
stress in the concrete is maintained at 9000 psi as shown in Fig. 11. This re-
sults in higher computed strains. Furthermore, this load is transmitted to the
remainder of the tube section so that overall, a length of the tube from the
transition to about one tube dijameter behind is shown by the analysis to under-
go significant plastic deformation. Physically, crushing failure of the con-
crete at the transition practically isolates the tube portion from the head-
works, protecting the tube from further damage except for several major cracks
along construction flaws (Fig. 10), and allowing the headworks to move impul-
sively as the spike in the velocity-time histories of Figs. 6 and 7 show.

st x 10"

lomgitudfaal stress

FIGUREIIN. DRMAGE PATTERNQF 'TURE, ROSTTRST ORSERVATTON. FIGURE l1. LONGITUDINAL STRESS/TIME HISTORIES FOR FOINTS AT TUBE SECTION HALP-TUBE
: DIAMETER BEMIND HEADHORKS.

5. SUMMARY AND RECOMMENDATIONS

A major limitation in 3D dynamic finite element analysis of protective struc-
tures is reinforced concrete modeling. In this paper, we have outlined the re-
quirements of such a model and approaches currently used. The performance of a
simple composite continuum model is then studied, using a modified Prager-
Drucker yield surface with the associated flow rule, and a tension region deter-
mined by the proportion of steel reinforcement. The advantages and consequences
of using such a model are examined through a representative case study.

The simple plasticity model performs quite well when the inelastic deformation
is minor. In the case study presented, good qualitative and quantitative agree-
ments between test and analysis are obtained in portions of the structure which
remain basically elastic. The performance of the analysis model is not as good
in portions of the structure where extensive concrete failure occurs. Although
the analysis results succeed in identifying areas of extreme distress in the
structure, the concrete model is unable to reproduce some important features of
failure and post-failure. Specifically, the absence of strain softening and
load redistribution features in the model result in spreading out the zone of
inelasticity. Since the major objective of protective structure design (and
hence analysis) is not only its survivability and vulnerability in hostile en-
vironments, but also to strike a delicate balance between hardness and cost, it
is .essential that the reinforced concrete model used be able to discriminate
conditions of near-failure from failure, and to reproduce the effect of differ-
ent amounts of reinforcements and changes in reinforcement orientation.



‘ F.S. WONG — J. ISENBERG 221

Two directions of research in the area of reinforced concrete modeling for pro-
tective structure applications appear most promising. One approach is to re-
fine the continuum representation of plain concrete in the tensile cracking,
compressive failure and post-failure regions, which is then used in conjunction
with an explicit representation of the reinforcement. In this approach, the
dual-element strain-compatible finite element concept appears promising 4 .
The disadvantages of this approach are the additional input data required, nu-
merical stability, and possible difficulty in the interpretation of results so
obtained.

Alternately, structural elements can be used to model the structure. This is a
natural representation of inelastic flexural properties of the structure and
has an added advantage in that the model properties are easy to define experi-
mentally. This approach requires careful implementation in order to maintain
the efficiency required for large dynamic analyses 1 .
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Limit Analysis of Reinforced Concrete Shells of Revolution
Charge ultime de surfaces de révolution en béton armé

Traglast von rotationssymmetrischen Stahibetonschalen

E. RAUE

Dozent Dr. sc. techn,

Hochschule fir Architektur und Bauwesen
Weimar, German Democratic Republic

SUMMARY

The paper deals with a static and kinematic formulation of the collapse load problem of reinforced
concrete shells of revolution. A numerical method of finding the collapse load intensity, the collapse
mode and the stress resultants within the plastified zones is represented.

RESUME

L'article traite de la formulation statique et cinématigue de |a charge ultime de surfaces de révolution
en béton armé, L'article présente une méthode numérique permettant de déterminer la charge ultime,
le mode de rupture et les contraintes résultantes dans les zones plastiques.

ZUSAMMENFASSUNG

Eine statische und kinematische Formulierung des Traglastproblems von rotations-symmetrischen
Stahlbetonschalen wird gegeben. Eine numerische Methode zur Bestimmung der Kollapslast, des
Bruchmechanismus und der Spannungsresultierenden innerhalb der plastifizierten Bereiche wird
angegeben.
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1. INTRODUCTION

Tensile failure of concrete is the primary ingredient of the non-linear behaviour of concrete
structures. Crack-initiation and slow crack-propagation up to failure form a very complex
mechanicsm which is still not fully understood. Thus predictive statements must be treated
with considerable caution in view of the limitations of the underlying fracture model, the
high sensitivity of the constitutive parameters and the numerical distortion of the cracking
process.

In two previous publications by the authors [ 1, 2], the smeared finite element approach
to cracking was explored in detail. In particular the high sensitivity of the ultimate load of
a thick-wall tube was noted with regard to small variations of the tensile strength as well as
the finite element mesh. In view of the limited experimental evidence a careful study was
proposed for crack-initiation and crack-propagation in plain concrete in the presence of
large stress gradients. The primary objective was to assess the redistribution capacity of such
a tensile specimen during the cracking process. In particular, the question of slow crack
growth versus instable fracturing was of main concemn. From the standpoint of numerical pre-
diction, the study revolved around the fundamental postulates of smeared and discrete crack
analysis methods.

As an example for the analysis of cracking we consider a thick-walled concrete ring sub-
jected to internal pressure. This problem was selected to study the strength and deforma-
tion behaviour of a structural component with a non-uniform tensile stress field. The ex-
perimental study was carried out at the IBIW 11l of the Technical University Munich, the
results of which were reported recently in reference [3] . Parallel, numerical investiga-
tions were carried out at the ISD of University of Stuttgart, of which some results are re-
ported below [2] .

2. SMEARED CRACK APPROACH

It is this approach which is normally adopted for the ultimate load analysis of structures.

In compression, this method is fully acceptable for modelling degrading material behaviour
e.g. because of progressing micro-cracking in the form of nonlinear elastic, elastoplastic
and endochronic constitutive models, In tension, the limited strenght is of primary import-
ance, rather than the nonlinear deformation behaviour, In particular the discontinuous re-
duction of strenght to "no tension" behaviour is of interest in the case of brittle fracture.
The ensueing siress redistribution is normally accomplished by initial load iteration which
imposes this constritutive restraint by iterative correction of the linear elastic response, The
smeared approach distributes the effect of localized cracking over a contributory area, for
example a finite element, in which the strenght degrades continuously according to the
concepts of a continuum, Thus, the finite element method with its weak equilibrium state-
ments is particularly suited for the smearing or better the averaging of constitutive state-
ments in finite neighbourhoods.

At this stage there is no need for a detailed account of the finite element initial load
strategy, the basic concepts are well established and are summarized for the analysis of
concrete fracture for example in ref. [1] . In our example the pressurized ring is subjected
to biaxial tension-compression, whereby the circumferential tension is responsible for
radial cracking leading ultimately to fracture, Thus, the material behaviour is virtually
linear elastic up to the tension cut-off, from which on ideally brittle and ideally plastic
models bound the actual softening behaviour of the heterogeneous concrete material,
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FIG. 1 Configuration and axissymmetric idealisation

Fig. 1 shows the axissymmetric idealisation of the concrete ring with 18 QUAXC? ele-
ments and the underlying material data, Assuming that there is no axial effect due to fric-
tion at the supports or due to non-uniform shrinkage, we can restrict our analysis to a
single element layer, in which cracking takes place in the radial direction only. Clearly,
the axissymmetric idealization implies that the radial cracks are distributed uniformly over
the circumference and that the non tension zones reduce the thickness of the ring accord-
ingly. The material parameters are those of the original test data before they were adjusted
for the age of the actual experiment, whereby the splitting tensile strenght is used directly
as strength parameter  f, = (., = 1.55 N/mm? without further manipulation.

In the smeared crack analysis of brittle and ductile failure behaviour the excess tensile
tangential stress is redistributed whence the tensile strength f; is reached. In this way
the actual softening behaviour is bounded by the two limiting cases of discontinuous
strength reduction for no-tension behaviour and non strength reduction for ideally plastic
behaviour. Clearly, plain concrete exhibits primarily brittle behaviour in tension, how-
ever, the localization of discrete cracks is always accompanied by extensive microcrack-
ing over a finite neighbourhood (analogous to the tributory area of the smeared approach),
such that a continuous softening model would be most realistic, However, we should be
aware that this softening branch is actually not a material property, it rather depends on
the boundary conditions, the stress gradients or rather the redistribution capacity of the
structure and last not least on the inhomogeneous composition of concrete. In this spirit, the
softening model is a computational tool rather than a constitutive property for describing
the reserve strength of the structure beyond that of an isolated material point,

The results of the smeared crack analysis are compared in Fig. 2 with the experimental re-
sults at sector 8, when the primary crack leads ultimately to rupture. For the proper assess-
ment of the axissymmetric prediction the tangential strain data of the eight sectors is also
averaged along the inner and outer surface of the ring and along the midsurface. For com-
pletion, Fig. 3 shows the overall load-deformation behaviour at the three surfaces, in
which the circumferential variations of Fig. 2 are averaged. All figures iliustrate clearly
the low strength prediction of the brittle postulate and the high strength value of the duc-
tile model. Similar, the rupture strain more than doubles when we go from the brittle model
to the ductile one. The local behaviour in Fig. 2 illustrates the apparent ductility at the
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sector 8 with the primary crack, where the deformation increases continuously up to

g€ = 0.54 %% af rupture (this includes the crack opening). On the other hand the
average values of the eight sectors show strain levels which are of the order of those norm-
ally put forward by concrete technologists for the maximum level of tensiie strain
Eqve = 0.15% |

T et

FIG. 2 Comparison of numerical and experimental results at the inside of sector 8

[
{bar)

0 0i0  eyllel

FIG. 3 Average response behaviour at inside

The tensile strength valueof f, = 1.55 N/m m?  restricts the elastic regime fo
pressure levels below ptl. = 13.0 bar . Table | summarizes these numerical and
experimental results fogether with the average strain levels at the inner surface. We ob-
serve that the brittle failure model increases the maximum pressure only slightly from the
elastic limit pot, = 13.0 bar to pAL, = 16.62 bar, while the ductile failure model
mobilizes considerable strength reserves in the structure, PZS%, = 36.50 bar. Note that
these numerical strength values were obtained by an incremental iteration algorithm (initial
load method with constant stiffness), where the ultimate load capacity was determined by
successive refinement of the load steps. The actual failure load was localized by reducing
the load step down to 4P, = 0.2 bar near collapse and iterative corrections in order
to assure that the cracking process reached the outside ring surface at ultimate pressure.
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APPROACH B £, ;. = c;"(r)
[ bar] r= r. [ %os) [N/mmz]
Experiment 35,48 0,15 -

Elastic 13,00 0,06 f'I m
Brittle 16,62 0,16 f'“ ”I 4=1.55

Ductile 36,50 0,40 f

TABLE 1 Results of axissymmetric crack approach

The average response behaviour in Fig. 3 indicates clearly that there is some mechanism
which delays the actual response as compared to the elastic prediction. If we neglect this
initial stiffening regime, which is most likely coused by friction effects at the supports, then
the subsequent response regime is nearly linear elastic. The gradual softening due to intern-
al microcracking is most pronounced at the inner surface loading to a gradual deviation

from the initial linear elastic behaviour before failure, Note that a tensile bending strength
of fp= 405 N/mm? the most simple elastic failure postulate would lead to a very
accurate strength prediction of the ring pSf, = 33.86 bar , However, it is doubtful if
the high tensile bending strength can be mobilised and applied to the ring where the circum-
ferential stresses are entirely in tension (without crack arresters due to a compression zone).

Since the brittle and ductile failure models account for gradient effects by the stress redi-
stribution capacity of the structure, they should resort to the centric strength values,
Therefore, some gradual softening must be taking place in order to increase the ultimate
load capacity of the brittle failure model (the ultimate strength of the brittie model is in-
creased by approximately 20%), On the deformation side the ductility or rather the tan-
gential rupture strain reaches twice the value at the elastic limit, see Table 1.

Altogether, the experimental data would compare quite well with a continuous softening
model whose prediction of strength and ductility falls somewhere between the results the
ideally brittle and ductile failure approach. The brittle postulate is certainly too low even
if we would increase the strength of the value of the fensile bending test £ = 197 N/mm?
since radial cracking does not lead to a uniform reduction of the load carrying area. In con-
trast, the ideally plastic model infers unlimited ductility, a material property which cannot
be mobilized in plain concrete, not even in compression.
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3. DISCRETE CRACK APPROACH

The experimental evidence clearly indicates that the initial micro-cracking leads ultimate-
ly to the localization of a single discrete crack at failure. Therefore, the question arises if
a discrete crack analysis provides additional insight into the actual fracture mechanism. To
this end, we examine first the concepts of linear fracture mechanics where we essentially
start from an existing crack configuration and study its stability. Theredfter, we explore the
possibility of predicting slow (stable) crack growth in the tensile ring specimen.

For the discrete crack analysis we consider a quarter of the ring configuration which implies
symmetry along the x- and y-direction, With other words, we assume that the primary crack
along the positive direction of the x-axis is accompanied by a secondary crack in the nega-
tive direction. Recall that the formation of two opposite cracks was actually observed in
the experiment near the ultimate pressure.

¥ -oxis

symmetric

FIG. 4 Plane stress idealisation of discrete crack

Fig. 4 illustrates the finite element mesh with 144 QUAMC9 membrane elements. A dis-
crete crack is introduced simply by releasing the kinematic nodal constraints at the x-axis
of symmetry (for example in slow crack propagation the supressed degrees of freedom are re-
leased node by node according to the crack criterion).

Traditionally, the principal question of fracture mechanics circles around the stability of a
given crack configuration. In essence we start already from a predetermined discrete crack
and study stability (stationary crack versus unbounded crack growth) by comparing for ex-
ample the stress intensity H;  at the crack tip with the critical value  Kp. from
material testing. The basic postulate rests on the assumption that crack propagation is con-
trolled exclusively by the local stress intensity at the crack tip. Thus, the linear theory of
fracture mechanics is a priori not concerned with the initiation of cracks in intact speci-
mens without flaws and even less with the slow extension of a given crack. The crucial
stability problem is solved by testing of so~called fracture mechanics specimen which yield
the critical value of stress intensity or equivalent quantities such as the crack opening dis-
placement or the crack extension force.
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In what follows, we apply these concepts which were originally established for the brittle
fracture of metals. To this end a discrete crack is introduced along the x-axis of symmetry
by releasing the nodal degrees of freedom in this zone, The stress intensity factor is com-
puted for different crack lengths via the compliance method where K is a measure of the
energy release rate as the crack length a is increased by 4a . Clearly, there are several
other methods for the finite element analysis of  K; , such as the direct calculation from
the resulting stress or displacement field, via contour integrals or singularity elements and
nonlinear mappings. However, in conjunction with the finite element displacement method
the energy approach is the most appropriate global technique.

IN-::"”l ng}
20
15+
104
5
A 8

FIG. 5 Stress intensity K; and strain energy versus crack length @

Fig. 5 illustrates the variation of the stress intensity value  KH; in dependence of the
crack length o together with the elastic strain energy - U  for an internal pressure

p =5 bar . Note that both results yield a continucus increase of stress intensity and strain
energy with increasing crack length.

Traditionatly the discrete crack analysis was the first approach which was adopted for trac-
ing slow crack growth, Originally, this method was implemented by releasing the nodal
compatibility whence the principal tensile stress was reached. At this stage the stress con-
cenfration or rather the stress singularity at the crack root was removed by a coarse finite
element mesh (numerical damping) such that a simple strength criterion could be applied to
propagate cracking. In subsequent proposals less sensitive variables such as the crack-open-
ing displacement or the strain energy itself were utilized as criterion for crack extension. In
this context we recall that the critical value of stress intensity or energy release rate pre-
dicts only catastrophic fracture and not slow crack extension, Thus, the appropriate cri-
terion for crack initiation and slow crack propagation would have to be determined from a
set of additional test data (calibration experiments) with a rather restrictive regime of
application,

Independently of the choice of crack criterion it is intriguing that the discrete crack analy-
sis is never able to predict slow crack growth in the tensile ring specimen, Fig. 5 clearly
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shows that the energy (and correspondingly all local crack criteria) increases with the crack
length; thus the crack extension cannot be arrested without introducing additional dissipa-
tion mechanisms, such as damping of the numerical solution, due to the spatial discretisa-
tion or continuous softening and gradual damage accumulation, respectively. It is surprising
that in the case of a tensile stress field the discrete crack approach differs fundamentally
from the smeared approach, While the former model predicts catastrophic failure immediate-
ly upon local crack initiation without further redistribution, the latter method accomodates
slow crack extension with an associated stress redistribution, Thus spatial smearing of cracks
implies in reality numerical damping because of the spatial distribution of cracks over a
tributory area. In this way it corresponds fo an intuitive concept of damage accumulation
over a finite region, especially in conjunction with a gradual softening postulate, which is
equivalent to a continuous degradation of strength until the tributory area is fully damaged.

3. CONCLUDING REMARKS

Clearly, the physical performance of the pressurized ring exhibits three response regimes,
(i) the linear elastic region without damage, (ii) the hardening region with continuous
damage accumulation due to progressive micro-cracking, and (iii) the localization of dis-
crete cracks near the ultimate load accompanied by excessive damage accumulation up to
rrupture (continuous increase of strains at the expense of degrading strength).

None of the two numerical models is able to describe the entire process of cracking. Ob-
viously, the smeared crack approach is most appropriate for the second response regime,
which is however small in the present example, while the discrete crack method is better
suited ofter localisation of a discrete crack takes place, although no stable crack growth
can be predicted at this stage.

In our view point "smearing" and "continuous softening" are two computer-oriented
strategies which introduce dissipation for stabilizing unbounded crack growth in tensile
specimens. Clearly, other phenomena play a very important role for tensile fracture, here
we only mention the stochastic nature of the cracking process which starts with a random
distribution of strength and initial imperfections (flaws) and which continues with the proba-
bility of damage and damage accumulation with redistribution. In ref. [4 ] these stochastic
concepts have been used successfully for interpreting size and gradient effects in tensile
test specimens, However, at this stage the probabilistic fracture analysis of real concrete
components is still unrealistic because of the large number of nonlinear analyses necessary
for calculating the statistical distribution of strength,
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SUMMARY

The computer-oriented method for the analysis of reinfarced concrete beams in the nonlinear range
is based upon the finite-element approach. The method is suitable for the investigation of the
structural behaviour taking nonlinear material properties into consideration, and allows the simula-
tion of crack formation and crack propagation. The structures are analyzed as two-dimensional
problems.

RESUME ‘

La méthode, basée sur les &léments finis et sur le traitement électronique des données, est utilisée
pour 'analyse des poutres en béton armé dans le domaine non linéaire. Elte permet I'étude du com-
portement des poutres, tenant compte des caractéristiques non-lineaires des matériaux, ainsi que la
simulation de la formation et de la propagation de fissures dans le béton. La méthode de résolution
se limite a I'étude des problémes ptans.

ZUSAMMENFASSUNG

Die hier beschriebene EDV-orientierte Methode zur Analyse von Stahlbetonbalken im nicht linearen
Bereich beruht auf dem Finite-Element-Ansatz. Sie gestattet die Untersuchung des Tragerverhaltens
unter Berlcksichtigung nichtlinearer Materialeigenschaften sowie die Simulation der Bildung und
Fortpflanzung von Rissen im Beton. Die Lésungsmethode beschrankt sich auf ebene Probleme,
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l. INTRODUCTION

In this paper a method based on the finite element approach to simulate the
behavicur of reinforced concrete beams is presented. The solution method is
a combined iterative and step-by-step procedure based upon the matrix dis-
placement method. The beam~-structures are analyzed as plane stress problems,
For each load increment, repeated elastic solutions are performed until the
displacements meet a specific tolerance.

The mathematical model consists of an assemblage of triangular concrete plate
elements, steel bar elements and bond links., The displacement fields are
assumed to be linear for all three parts. The elastic constants which are
needed in the derivation of the element stiffness matrices are extrapolated
from the pertinent uniaxial stress-strain curves. For all elements, these
functions are approximated by piecewise linear polygons. The appropriate
values of the material constants are found by entering the stress-strain
diagram at the correspondent values of principal strains. The random change
in structural configuration due to cracking in the concrete is treated by
cutting the concrete triangular element in the direction perpendicular to
the principal tensile stress. Bond between concrete and steel reinforcements
is simulated by discrete spring-like bond links. The influence of time-
dependent effects such as creep or relaxation is neglected.

The method has proven toc be an effective tool for the study of crack propa-
gation,
Z, FINITE ELEMENT PROPERTIES

The finite element idealization relevant to this investigation is displayed
in Figure 1.

CONCRETE—~,
PANEL I~

STEEL——
ELEMENT

{STIRRUP}

o \_MAIN STEEL REINFORCEMENT

4 REGULAR CONCRETE NODE A CONSTRAINT
© ADDITIONAL STEEL NODE
© TWO ADDITIONAL STEEL NODES

Figure 1., Finite element assemblage of

a singly reinforced beam
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Three kinematically and geometrically dissimilar elements as shown in Fi-
gure 2 have been chosen as basic components of the model.

a) CONCRETE PANEL

For the concrete elements the constant-
strain triangular panel has been adop-
ted. This mainly because yielding takes
place throughout the whole element.
Thus, no problems arise in determing the
state of stress. The displacement func-

tions are: b) STEEL BAR Uiy %
¥ L//:h
v, Vi 1]
M
¥ Uix
u = ¢, X+ cC + C 1 A
X 1 2y 3 ) ! )
u = ¢, X+ c + c 2 ¢} BOND LINX
y 4 5Y 6 )
Uiz
YivY

The reinforcement occupies a relatively

small volume compared to that of the

concrete. It is therefore justifiable to

idealize the steel tendons by simple two- Figure 2.
force members.

Ko X;

Components of finite element
model

To account for bond slip, the steel must
be attached to the concrete by a special
connection mechanism. The bond link used
here is designed to allow for relative
displacements between the steel bars and
the concrete panels. The links are dimen-
sionless. Nevertheless, additional nodes
must be provided to permit relative dis-
placements between adjacent concrete and
steel nodes,

For steel and bond elements the displace-
ment function used is:

u, = ¢, x 4+ cC

i 7 8 39

In the assemblage of Figure 3 the nodes Figure 3.
of the steel bars and the connecting
springs originally occupy the same geo-
metrical position as their corresponding
concrete joints.

Configuration of bond links
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3. CONSTITUTIVE EQUATIONS

As constitutive equations for the concrete panels the following expressions
in terms of principal values were used:

Gl 1 Vzl 0 El
E1
0] = Vv n 0 £
2 1l - v12v21 12 2
a 0 0 0 €
e 34 L . L 3d

For steel and bond elements the constitutive equations are of the following
form:

9 ke 0 s

T2 O kKl | &

Where € and € are the relative displacements between the steel and the
corresponding concrete node.

The influence of a crack on a continuous triangular concrete element is
treated by introducing a cut in the direction perpendicular to the calcula-
ted principal tensile stress 0y,

In this new state the element no longer has any stiffness normal to the crack
surface (Figure 4). Consequentely, the concrete may be considered as a uni-
axial stress condition parallel to the second principal axis. This assumption
results in the following stress-strain relationship:

1 [ 1 e
ol o] 0 0 el
02 =10 E2 0 82
0 0 0 0 LE3

e ) b — —

CRACK
SURFACE

Figure 4. Cracked Element
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4. STIFFNESS MATRICES

The stiffness matrices of the three types of elements may be derived by the
standard equations

(<] - wrp]B] [

where [bJ is the strain-displacement transformation matrix and [D] the matrix
of elastic constants.

For the bond link the stiffness matrix is similar to the well-known matrix

for a two-force member. The matrix for the cracked concrete element reduces
to

[kn] -

o O O O O O
»
"
e ©
O
E

x32x31 0 0
0 0 0 0
- 2
X91%35 O e Eon

5, ITERATIVE PROCEDURE

The method presented here is based
upon an itexative, incremental load LY
approach. For each load increment,
the whole structure is repeatedly
solved as an elastic problem until v2
closure. Consider an arbitrary con-
crete element during load increment "
i. Assume that at the end of the
previous step the principal strains Ys
{ep,i-1} and stresses {op,i-1} have
been established. Based upon these 0 x|
values the element may be in any one 2
of the following conditions:

a. Type 1l: Elastic, isotropic .
Figure 5,

b. Type 2: Elastic, anisotropic . .
Arbitrary triangular concrete

¢. Type 3: Inelastic, anisotropic element

d., Type 4: Cracked

The four cases may be visualized diagrammatically in Figures 6 and 7.

In the present computer program, principal strains {e€;_;} are used to deter-
mine the relevant material constants, After the proper modulus of elasticity
Ei, and Poisson's ratio, V;, have been found for each element, the [D
matrices are .generated. 3
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Figure 6. Figure 7.
Classification of concrete elements Classification of concrete elements
in the elastic range in the inelastic range

The elemental stiffness matrices [ki] follow immediately
] =[][R]
i }
or, for cases 2, 3 and 4

L] = [=IRIP]R]

Next, the total stiffness matrix is assembled and solved for the incremental
displacements. The incremental strains are now evaluated as

{e;} = [b,] tav,}
and added to the total strains ei—l of the preceding step to give the new
total strains
{e.} = fe, .} + {ne}
i i-1 i

These values constitute a new strain situation with a corresponding new set
of principal strains {Ep,i}. The material properties of the following ite-
ration cycle are again extrapolated from the stress-strain curve. The ite-
ration is stopped after a specified tolerance is reached. Before proceeding
to the next increment, all total stress and strain values are updated and
stored. Similar treatment is imposed upon the reinforcements and bond links,
However, the procedure here is much less involved since the matric [D] re-
duces to a single term Ej.
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Example Problem 1: ;P-TOOO'OAP ‘p-rooova
249 zrz" ls"
£ | L
7E ,? | 25
—y 9"} 144" -t 97 lu
182" 12"
{a) SCORDEL!IS' BEAM A-1
o {PsSi} 1Ty (PSH)
~4000} +40,0004 \
~3000 30,000 E=10x 10° PSI
€ 31108 PSI Tx30110° PS)
+1210°% s &
T L]
:Z e ' wo® 2ni0°?
1
{b) MATERIAL PROPERTIES
Example Problem 1: Scordells’ Beam A-1
lp = 7000+ AP
L LML STEEL
o
| ML
NUMBER OF TRIANG. ELEMENTS NTEL = 864
NUMBER OF NODES (INCL, STEEL) NUMNOD = 493
NUMBER OF LOADS NLOAD s |
NUMBER Of BOUND. COND. NBOUND = 10

Mathematical Model of Beam A-1

a} CONCRETE

STRESSES oy =415 PS| o TS o, * 200 o 94

- ]

e | I B A N A

J 120 1Y) _! 120 AR e
.

Example Problem 1: Stresses at P = 8300 Lbs.
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Example Problem 2: 1"7”"”

N\

A 1.0IN? | J‘L:_

3 .-

=

180"
{a) BEAM 2
- 1PSI) a0y (PSIY «Py
5%
27801 $0,000 1 s N )
24751 4100043 o 3
Qe Slllo'i'!l €, 29510 PSI Kye 2.2010° 271N,
3 I 3 } H 2 A
'R ER .n e e i0? s e 1t e
+»300 ; : - - ;
38 ¢

{b} MATERIAL PROPERTIES
Figure 71, Exmimple Problem 2: Simple Beam Louded at Midspan

ST )

Figure 29, Example Problem 2;: Crack Pattern st P = 4000 Lbs.

Example Problem 3: 30-.+_3o‘—.‘
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FOR MATERIAL PROPERTIES, SEE FIGURE 27.

Figure 30. Example Problem 3: Simple Beam Loaded Symmetrically by
‘Two Concentrated Loads

P 10000008

alalaslsls

Figure 31. Exsmple Problem 3: Crack Pattern and Stress Distribution at P = 10, 000 Lbs.
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SUMMARY

The paper is concerned with the analysis of reinforced concrete slabs subjected te transient impulsive
joading. Tensile cracking, the plastic behaviour of concrete in multiaxial state of stress and the plastic
deformation of the reinforcement are taken into account. Geometrical nonlinearity is included. The
plate theories of Kirchhoff and Mindlin are used. The problem is discretized spatially and temporally
by use of the finite element and finite difference methods, respectively. Some static and dynamic
problems of slabs are analyzed and the results compared with experimental and numerical data ob-
tained elsewhere,

RESUME

Cet article traite de I'analyse des plagues en héton armé soumises a des charges transitoires et impul-
sives. La fissuration, le comportement plastique du béton dans un état multiaxial de contrainte et la
déformation plastique des armatures sont prises en considération. L.es noniinéarités géométrigues sont
considérées. Les théories de Kirchhoff et de Mindlin sont utilisées. e probléme est rendu discret
spatialement et temporellement par fes méthodes des éléments finis et des différences finies. Quelques
problémes statiques et dynamiques sont étudiés et les résultats comparés avec des résultats numériques
et expérimentaux cbtenus ailleurs.

ZUSAMMENFASSUNG

Die vorliegende Arbeit befasst sich mit der Analyse von impulsartig belasteten Stahlbetonplatten. Die
Rissbildung im Zugbereich, die plastischen Deformationen des Betons unter dem mehrachsigen Span-
nungszustand und die plastischen Dehnungen der Stahlstidbe werden berlcksichtigt. Geometrische
Nichtlinearitaten werden ebenfalls ber(icksichtigt. Die Plattentheorien von Kirchhoff und Mindlin
werden verwendet. Die Diskretisierung des Problems erfolgt rédumlich nach der Finite Elemente Metho-
de und zeitlich nach der Differenzenmethode. Einige statische und dynamische Plattenprobleme

werden berechnet, und die Ergebnisse werden mit experimentellen und numerischen Resultaten anderer
Untersuchungen verglichen.
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1. INTRODUCTION

In problems of reactor safety and protective structures extreme dynamic loads
can be encountered, and for safe and economic design the nonlinear behaviour of
the material and the structure has to be considered. Major sources of neon—
linearity in reinforced concrete structures are the progressive cracking in
tension, the nonlinear response of reinforcing steel in tension and of concrete
under compression, and other nonlinearities related to reinforcement and its
interaction with concrete. In sudden loading the effect of high strain rate on
‘the behaviour of concrete and steel should also be accounted for.

The finite element method has enabled the solution of the complicated problems
represented by the nonlinear behaviour of reinforced concrete structures.
Several studies on the nonlinear behaviour of reinforced concrete structures
subjected to static loads have been published in recent years, see [1-£] and
others. On the other hand, only few reports on dynamic analysis of reinforced
concrete are available [7-12].

The purpose of this paper is to report on the study of reinforced concrete slabs
subjected to transient impulsive loading. In initial state, elastic behaviour
is agsumed for the composite material formed by concrete and reinforcement.
Tensile cracking of the concrete and the plastic behaviour of the concrete in
bilaxial compression and of the reinforcing steel are taken into account. The
reinforcement is described as smeared and orientated steel layers. The equaticn
of motion is derived using the principle of virtual displacements in total
Lagrangian approach. The kinematic equations of plates are taken in accordance
with the theories of Kirchhoff and Mindlin. The problem is discretized spa-
tially and temporally by use of the finite element and finite difference methods,
respectively. Some static and dynamic problems of slabs are analyzed and the
results compared with available experimental or numerical values.

2. KINETIC AND KINEMATIC EQUATIONS

In total Lagrangian approach the pronciple of virtual displacements can be
written in the form [13]

J SSEAV - j £EUAV - J toudA + J plidudVv = 0 (1)

Vo Vo At Vo

where S is the 2nd Piola-Kirchhoff stress, B the Green-Lagrange strain, f and t
the prescribed body force and surface traction, respectively, p the density, u
the displacement, and i the acceleration. V_ denotes the initial volume of the
body and A, the part of the initial boundary on which the traction is given.
The use of finite element approximation u = Ng results in matrix equation

R(g) + Mg = Q (2)

where g is the vector of nodal displacements, and

R = J B'sav, Q= J Nray + J Ntaa, M = J NT pNav (3)

v v A Vv
e} (o] e}

are the force of internal stresses, the load vector, and the mass matrix, re-
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The matrix B, dependent on the current state, is defined by the
The incremental form of the equation of motion (2) is

Spectively.
strain variation 6E = Réqg.

2 1

1KtAq + Mg = g - 'R (W)
where
1Kt = J 5 5 may (5)
v
Q

1 and 2 refer to the con-
The constitutive

is the tangent stiffness matrix. Left superscripts
figurations of the body at timeg t and t + At, respectively.
matrix D relates the stress and strain rates, S = DE.

In Mindlin's thick plate theory, the assumption is made that normals to the
midplane remain straight but not necessarily normal to the midsurface after

deformation. The nonlinear strain-displacement relation can be written in the
form [14]
( 2 3 ¢
£ + 2
X Yx w,x/ w,x
£ v +W2 /2
¥ AN Y
= (u +v +tw W + zlp _+
YW Sy 7x BX 5y ,y w,x (6)
n
sz W,Xﬂ’ G
w o+ 0
sz 2 ¥ v

where u and v are the in-plane displacements and w the deflection of the mid-
plane and © and Y represent the rotations of the normal with respect to x—and
y-axes. The corresponding relationships of the thin plate theory of KArmén-
Kirchhoff are obtained by setting @ = -w < Vo= -w - in equation (6).

2 -]

3. SOLUTION TECHNIQUE

The central difference method (CD) is used to solve the system of ordinary
differential equations (2). The solution q,q 8t time Yo is computed from
formula

2
Aeq = B M (Qn

- Rn) + 2qn - a, (1)

where h = t - t_ is the step length. The strain and stress increments are

+ :
calculated Hsing equatlons

AE = B {(q ~ s

M - AS = DnAE

is evaluated 1n accordance with eguation
initial condition for qo is used to

The internal force vector at time t

. _ ntl
(3) using Bn+1 and Sn+1 = Sn + AS, fhe
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eliminate q_; in the first step éo = (q1 - q_,J)/2At. The CD-scheme with diagonal
mass matrix is accurate and simple. As an explicit linear difference method its
step length is limited by the largest natural frequency of the finite element
mesh.,

In the solution of equation (4) the trapezoidal rule or the Newmark scheme with
parameters Y = 0.5 and B = 0.25 was applied

qn+1 = qn * hqn/2 * hqnﬂ/2
(8)
_ . Due -
er = 9 + hqn + h qn/h + h qn+1/h.

Use of these formulae results in an implicit scheme and therefore iteration has
to be used at each time step. The displacement vectors q1+ and q111 in the 1
and (i+1)tD iteration eycles correspond to configurations 1 and 2 in equation
(4). Use of equations {L4) and (8)2 yields

i 24, i+1 i i 2 . ..
+ = = + M- U = + + .
(Kt,n+1 kM/b")Aq Qn+1 Rn+1 i (qn+1 qn)/h hqn/h 9y (9)
where Aq1+1 = q;:: — q; 1 For the first iteration cycle q;+1 = q, is taken.
The iteration 18 continued until ||Aq1+1||<ellql+1 -q |l where € 1s a tolerance

: + ;
parameter. To account for the drastic changes gué to ¢racking the tangent

stiffness K, was updated in the first iteration cycle but held constant there-
after in oraer to reduce computing time when using consistent mass matrix.

In Kirchhoff's plate theory a 24 degree of freedom rectangular element was used
with 4 nodes and the displacement parameters u, v, w, W _, W _, and v at each
node. Integration was performed by 2x2 Gauss quadraturéxform%la. n°Mndlin's
plate theory 20 and 40O degrees of freedom rectangular elements were employed
with 4 and 8 nodes, respectively. The displacement parameters at each node are
u, v, w, ¢, and Y. 2x2 Gaussian integration rule was used, exept in case of 20
DOF element only one Gaussian point for the shear deformation. In depthwise
direction the integration was carried out by Simpson's rule with 7 integration
points. Steel layers were considered separately at their proper places and
their effects added to the internal force vector and the tangent stiffness.

4. MATERIAL PROPERTIES

The behaviour of concrete is illustrated by the uniaxial stress—-strain diagram
in Figure 1. At initial stage, concrete is linearly elastic, isotropic up to
the level 30 % of the compressive strength and of the tensile strength. Then
plastic strain hardening yield takes place according to a parabolic function.
Cracking occurs when a cracking criterion is satisfied. Cracking is brittle and
the stress at a discrete crack drops abruptly to zero. The descending part
after cracking in Figure 1, however, describes average cracking behaviour over a
finite distance and gradual release of tensile stress. In compression, strain
softening occurs after the compressive strength in two linear parts, of which
the latter corresponds the crushing region.

In multiaxial state of stress the yield criterion is defined as follows

2 - -
F(o,ep) = 3ng J, + BGJ1 + yJ? - 02 =0 (10)
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- 01
Fig. 1. Uniaxial stress-strain Fig. 2. Biaxial yield and failure
curve of concrete criteria of concrete
where J, is the first invariant of stress tensor J. = O and J2 the second in-
variant of stress deviator J2 = Oijgij/e' The function
- 3/2
g=8—-(1- 8)cos38 =8 - (1 - 3/3J /2J (11)

determines the shape of the yield locus in the deviatoric stress plane. J. is
the third invariant of stress deviator J_ = og!.o! G ./3. o, B, Y, and § aFe
parameters to_be determined on the ba51530f exﬂeglmental data. The equivalent
yield stress ¢ is a function of the equivalent plastic strain

Py, dag/dae® = Ep(ep), ae? = (2d€ de- /3)1/2 (12)

It can be obtained from the uniaxial relationship by sgbtracting the elastic
strain. The initial yield stress in equation (10) is 0 = 0.3 £, The yield
locus expands when o increases. Ultimate size is reached when G = f Para-
meters a, B, and Y are determined at this stage to it the experlmen%al results
for biaxial stress glven in [15] Using values: 61 = —fc, 02 = 0; 0, = -0.65 f
O1 = -1.25 f J o, = .16 f one finds for compression-compression reglon
a = 0.551, B = —8 872 and Y —O h23, and with values ¢, = -f , 02 = 04 62 =
-0.365 £, o, = 0.075 £_; 0, = = 0.1 f, for tension-compressiof and
tens1on—%en51on regions o = 27. h9 é T 28 and Y -19.22. TIn tension-com-
pression and tension—tension regions the ultimate yield locus serves as cracking
criterion. Beyond the ultimate yield locus, the softening begins and the yield
locus shrinks, see Figure 2. The parameter & is chosen to be 1.14 in order to
keep the yield surface convex.

The associated flow rule is employed. The constitutive equation in plastic flow
is accordingly

o = Depe (13)

where the elastoplastic constitutive matrix is

T
p =c--2nn.C | (14)

ep E + nT Cn
P
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C is the elasticity matrix of concrete. The vector n = 3f/30 is determined on
the basis of the yield function (10).

The direction of the crack is taken perpendicular to the maximum tensile stress.
After complete cracking concrete behaves uniaxially in the crack direction. The
crack 1s assumed to close when the strain perpendicular to crack direction be-
comes compressive. After cracking some shear resistance still exists due to
aggregate interlocking and dowel action. This is taken into account in reduced
shear modulus of concrete [4]

€ tmax’

(1 - e/e ) 0.6 +0.h G, e, <ec<
Cpoq = e (15)

For the steel bars the elastic plastic linearly strain hardening idealization is
used. Reinforcement takes axial and shear stresses. Reinforcement is described
as smeared uniaxial layers. Complete compatibility between concrete and rein-
forcement is maintained. The effect of bond slip is taken into account by
reducing the modulus of elasticity of reinforcement by 10-20 %.

5. NUMERICAL EXAMPLES

5.1 Statically loaded slabs

Two statically loaded slabs tested by Jofriet & McNeice [3] and Nilsson &
Johansson [11] were analyzed numerically and compared with experimental data.
In both cases good agreement was obtained,

5.2 Dynamically loaded beam

A freely supported beam tested in [7] was analyzed dynamically. The span, width
and thickness of the beam were 25L0 mm, 152 mm and 305 mm, respectively. Rein-
forcement of the beam was 1.23 %. The beam was loaded with a freely falling
mass of 1030 kg. The mass time curve was approximated bilinearly. Central
deflection vs. time curve is shown in Figure 3.

5.3 Dynamically loaded slabs

A clamped rectangular slab subjected to a Jet force at the center is a structure
analyzed by Stangenverg [8] using a difference method. In present analysis 2x2
and 3x3 finite element meshes for plate quadrant were used. The calculated time
history of the deflection of the central point agrees closely weith the curve
given in [8] (Figure L).

The one way roller supported slab [11] with 2280 mm span, 1230 mm width and 80
mm thickness with reinforcing steel 0.17 % and 0.085 % was tested under a uni-
formly distributed pressure load varying with time. The central deflection-time
history was determined using four isoparametric elements for a plate gquadrant
(Figure 5).
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Fig. 5. One way roller supported slab under uniform pressure varying with time.
Central deflection vs. time.
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6. DISCUSSION

The numerical results obtained for the cases considered indicate that the method
describes satisfactorily the behaviour of reinforced concrete slabs at least
under static loading. More experimental evidence is needed for dynamic loading.
The development of the proposed model is in progress. Systematic study of the
factors, viz. cracking, elastic-plastic yield and strain rate effect of concrete,
aggregate interlocking, dowel action, etc., affecting the behaviour of rein-
forced concrete structures and attempts to find realistic simplified models are
continued.
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Comparison of Plastic Prediction with STANIL/1 Analysis
Comparaison de |'analyse plastique avec le programme STANIL/1

Vergleich plastischer Berechnungen mit Berechnungen nach STANIL/1
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SUMMARY

The Danish group led by M.P. Nielsen published in 1978 a plastic analysis for the prediction of the
ultimate shear failure load in beams. This method holds where unlimited ductility of steel and con-
crete can be assumed. In The Netherlands a nonlinear program, STANIL/1 is available to determine
in which cases the plastic approach is admissible. The program uses concrete beam elements with
main bending reinforcement and vertical web reinforcement, Results of some performed comparisons
will be shown.

RESUME

Le groupe danois de Nielsen a publié en 1978 une méthode plastique pour calculer les charges ultimes
de poutres soumises au cisaillement. Cette méthode est vaiable avec I'hypothése d'une ductilité iili-
mitée du béton et de |'acier. On a développé, aux Pays-Bas le programme non linéaire STANIL/1 a
I’'aide duquel on peut examiner si I'analyse plastique est applicable. Le programme utilise des éléments
de poutre de bhéton avec une armature principale de flexion et une armature de cisaillement. Quel-
gues résultats sont comparés.

ZUSAMMENFASSUNG

Nielsens Danische Gruppe publizierte 1978 eine plastische Methode zur Berechnung der Schubbruch-
fast von Balken. Diese Methode ist anwendbar, wenn ein unbeschranktes Verformungsvermogen von
Stahl und Beton angenommen werden darf. In den Niederlanden wurde das nichtlineare Rechenpro-
gramm STANIL/1 entwickelt, mit dessen Hilfe beurteilt werden kann, in welchen Fallen die plastische
Berechnung zulassig ist. Das Programm verwendet Beton-Balkenelemente mit Biegelangsbewehrung

und vertikaler Schubbewehrung. Die Ergebnisse einiger durchgerechneter Vergleiche werden dargestetlt.
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1. INTRODUCTION AND SCOPE

During the IASS-symposium on Nonlinear behaviour of reinforced spatial structures
at Darmstadt, 1978, a presentation has been given of the researchproject 'Beton-
mechanica' in The Netherlands. A number of subprojects is on its way for experi-
mental studies of a crackzone and a bondzone and also a subproject for numerical
models. One of these models is called in the framework of the total project the
Macro-model for framed structures. This Macro-model is a computerprogram Stanil/1
which enables us to analyse the nonlinear load displacement characteristics of
beams, columns and frames. The program can be used to confirm the results of an
_existing ultimate load prediction via a plastic analysis, but above that additio-
nal information is provided on deformation restrictions and on the needed strain
capacity of the reinforcement steel and the concrete.

The program Stanil/l is an extension of an existing program which has been pu-
blished by BLAAUWENDRAAD in 1972 [1]. That program had been based on the concept
of a so called 'layered' beam—element as has been used parallelly by other in-
vestigators [2], [3] . The element has proven to give very good results for load
combinations of pure bending and axial forces. However, the influence of shear
forces could not be simulated adequately. This problem has been solved in the
now presented new program Stanil/l which uses a beam-element taking shear defor-
mations and the action of vertical stirrups into account as well. The element-
-model will be briefly described in chapter 2.

NIELSEN, BRAESTRUP and BACH [4] presented a plastic analysis for the prediction
of the ultimate shear failure load in beams. This method, which is in line with
previous studies of THUERLIMANN et al [5], is used for the comparison with

the Stanil/l results. The plastic analysis is based on a theory of plasticity
using an equilibrium method, providing a lower bound solution and a mechanism
analysis, providing an upper bound solution. The method holds if unlimited duc-
tility of steel and concrete may be assumed. Tuning of the method with experimen-
tal results showed that it was necessary to introduce a web effectiveness factor.
In [4] this effectiveness factor was explained as to account for the limited duc-
tility of the concrete. In case of complete accordance of the theoretical plas-
tic model and the experimental results the web effectiviness factor should have
the value 1.0. In practice the factor varies between 0.7 and 0.9.

Comparing the program Stanil/l1 and the plastic analysis, it can be said that
Stanil/1 is more general. The ultimate load prediction of the plastic analysis
is a special case in the framework of Stanil/l. This program also is capable to
calculate the ultimate load, but does not need the introduction of a web effec-
tiveness factor. But more important, Stanil/1 provides information on the stiff-
ness under work load conditions and on the amount of cracking. Stanil/1 also
shows in which cases the strain capacity is insufficient to reach the plastic
prediction for the ultimate load.

In cases in which the plastic analysis is wvalid, at failure both the nonlinear
analysis of Stanil/l1 and the plastic analysis of NIELSEN et al. should give the
same results. To check this, in this paper two comparisons are presented. The
first comparison regards the ideal plastic model in which the web effectiveness
factor has the unit value. This situation can be simulated with Stanil/l by
making the axial concrete strains in the beam zero. This is the case for extre-
mely high percentage of main reinforcement in the tensile region and for a com-
pression flange which has an infinite rigidity. This comparison is shown in
chapter 3. The second comparison in chapter 4 regards a situation for which the

web effectiveness factor is less than unity. We use for this purpose experimen-—
tal results for real beams of LEONHARDT and WALTHER [6].
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2. THE MACRO-MODEL (STANIL/1)

2.1 General remarks about the beam-element

The beam-element has been based on an assumed field of displacements. Main ben-
ding reinforcement is schematized to two thin layers of steel; vertical stirrups
are 'smeared out' to distributed vertical strings; cracks are smeared out on the
beam. Nonlinearities are accounted for as follows: Each beam is divided over its
height into imaginary concrete layers and steel layers (longitudinal reinforce-
ment). Each layer may have different material properties corresponding to its
stress or strain state and these properties can be different along one layer in
the several cross—-sections. The steel properties are defined for uniaxial states
only but the concrete properties are defined for two-dimensional plane stress
states. The behaviour of a beam-element is derived from the behaviour of a num-—
ber of cross-sections of the beam-element , and the behavicur of the cross-sec-
tion can be derived by totalizing the material properties of all layers in the
cross-section in an appropriate way. Cracking and crushing of concrete are accoun-
ted for by modifying the material properties.

2.2 Possible deformations in the beam-element.

The assumed field of displacements allows for axial strains, bending and shear
deformations and is capable of simulating bond slip of the main bending reinfor-
cement and failure of the anchoring zone of this reinforcement. Above that ver-
tical strains are allowed to occur, so that each admissible two-dimensional strain
state can be simulated in the concrete, but also the stirrups can be activated.

In this way one may expect to simulate truss action in the beam, needing in that
case inclined concrete diagonals and vertical hangers.

Axial strains and bending deformations.

The chosen field of displacements allows a linear variation along the axis of the
beam of both the axial strain ey, and the curvature Kyy, needing a total of 7
degrees of freedom (u;, up, us and wy, w2, ¢;, ¢2), see fig. 1.

= X

1
)

e |

Fig. 1 Degrees of freedom and deformations for axial strain
eyx and curvature Kyy
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Shear deformation and tensile strain in stirrups.

More over the chosen field of displacements allows a linear variation along the
axis of the beam of both the shear deformation Yyxy and the vertical strain eg,
needing another 4 degrees of freedom (Y:i, Y2 and Ah;, Ahy), see fig. 2. This
implies that the shear deformation and the strain in the stirrups is constant
over the height of the beam. A perfect bond is assumed between the concrete and
the stirrups.

) i
<Y N

Fig. 2 Extra degrees of freedom and deformations for shear

and vertical gtrain e

Txy s

Steel—-concrete interaction.

In order to accomplish a stiffness-interaction between longitudinal reinforce-
ment and concrete, a possibility is created for relative movement between steel
and concrete, called bond slip. This is achieved by imagining a tubular bond-
-spring around the bars of reinforcement. The interaction takes place as follows.
Besides the already chosen field of axial displacements (u;, uz, u3) for concre-
te, a separate field of axial displacements is chosen for steel (interpolation
of the same degree as for concrete). The relative movement (bond slip) is found
as the difference between the displacements of steel and concrete, resulting in
three additional degrees of freedom (Auy, Auz, Aug) . Using these parabolic in-
terpolations for bottom and top reinforcement 6 additional degrees of freedom
are necessary.

The anchoring of the main reinforcement is in fact a complex threedimensional
state of strains and stresses. This is schematized with an extra point-spring
between each end of the main reinforcement and the concrete in that position.
Each spring results in an additional degree of freedom, being a relative axial
displacement Au.

2.3 Material properties.

The material properties of steel, concrete and bond can be inputted into STANIL/1
in multi-linear stress-strain relations c.g. multi-linear bond stress-slip re-
lation. The failure surface for concrete is derived from the relevant relation,
see fig. 3.
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Fig. 3 Possible stress-strain Possible stress-strain relation
relation for steel for concrete together with assumed

failure surface

The stress-strain relations that are used for concrete in biaxial stress-states,
are also derived from the uni-axial stress-strain relations. At present the re-
lations that are used can be expressed as: :

uncracked region: d Oxx E 0 0 d E€yx
d Oxy i 0 0 %E J d2exy

If in one of the principal directions, say direction 1,the tensile strength is
exceeded the relation used is:

cracked region: d 013 0 0 O d €11
d Ca2 = 0 E © d €22
d O;2 LO 0 ok%E d2e;p

in which o is a constant to simulate the effect of aggregate interlock. If in
future the other subprojects of 'Betonmechanica' on bond and cracking will be
finished, it is expected to improve the three by three stiffrnessmatrix and make
it more dependent of the strains €,:, €2, and €;»

Within the failure surface the stress-strain relation is regarded to be elastic.
A similar assumption is made for steel and bond, the failure criteria (one-di-
mensional) being constituted by the extreme strains respectively extreme slip
values given in the relevant relation.

3. COMPARISON FOR THE IDEAL MODEL (UNIT WEB EFFECTIVENESS FACTOR) .

NIELSEN et al. [4] found for beams with vertical stirrups a relation between the
nominal ultimate shearstress T and a coefficient w which is the mechanical de-
gree for the amount of stirrups.

Fig. 4 displays this relation. The nominal
shear stress T, is found by dividing the
shear force V through the web cross-sec-
tion area bh. The coefficient w is defi-
ned by the quantities p, £, and fo, of
which p is the degree of stirrup rein-
forcement, fy the yield strength of steel
and fo the yield strength of concrete.

The web effectiveness is indicated with iV w=2
the character U.

e

e

Fig. 4 Relation between T,, W and v
according Nielsen et al.
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As has been said in chapter 1, the unit web effectiveness factor corresponds
with a Stanil/l1 calculation for a beam with infinite rigid tensile and compres-
sion stringers. Fig. 5 shows which beam has been chosen and which material pro-

perties have been used. A 2107 MM2
' ) 'l =

2
%
L00 MM I o
‘ Ag =107 Mm2
2000 MM | 1000 MM | 2000 MM |
T i ot
STRUCTURE CROSS SECTION
N/ MM2
N/MM2
fct=1.8
2.0 :°Ioo
fe=-30
CONCRETE STEEL

Fig. 5 Survey of the structure that was investigated and
the stress-strain relations used for a unit web ef-
fectiveness factor.

The calculation with Stanil/l1 has been executed for several amounts of web rein-
forcement, corresponding with w-values 0.025, 0.05, 0.075, 0.1, 0.2, 0.35, 0.5
0.6 and 0.8. In fig. 6 the results are
plotted in the diagram for U = 1, showing ¢
perfect agreement. In all cases suffi- ra
cient concrete ductility seems to be en-
sured to allow a plastic approach. It
may therefore be concluded that in the
plastic shear capacity prediction the
web effectiveness factor is not needed
because of the limited ductility of con-
crete but because of the fact that the
axial strains caused by bending cannot o5 Cf:
be neglected in practical structures.

The ductility of the structure as a whole Fig. 6 Full agreement between Stanil/1
is then limited due to the additional results and plastic analysis
strains in the compressed concrete zone. for v =1

This will be the subject of chapter 4.

~—~NIELSEN et al. (¥ =1]
e STANIL/1

As has been said in chapter 1, the program Stanil/l provides also additional
information. In fig. 7 the load-deformation curves for the beams are shown for
a number of w-values. An extensive discussion cannot be given in this short pa-
per, but the most important phenomena will be summarized.

- The stiffness after cracking decreases with decreasing amount of stirrups.
The curves are less smooth in case of a low percentage web reinforcement. For
these cases the stress-strain relation for concrete has to be refined, espe-
cially the tension stiffening.

- The initial crack inclination is 45° put it changes with increasing load
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Fig. 7 Load deformation curves for beams with
infinitely strong main bending reinforcement

- At failure of the beam the web concrete yields for every value of w, but the
web reinforcement not always dces. Depending on the value of w one can notice
three regimes with different failure phencmena:

- For values of W greater than 0.5 the failure mode is web crushing; the stir-
rups do not yield at failure.

- For values of w between 0.1 and 0.5 the failure mode is also web crushing, but
now the stirrups do yield.

- Por values of w smaller than 0.1 the yielding web concrete does not crush. gow
the (average) strains in the yielding stirrups get very large and exceed 30 /oo.
In practice this will probably mean that stirrups crossing dominant cracks will
break. However, at this failure the shear deformation 2e,, has allready reached
a big value, which means that sufficient ductility can be ensured.

4, COMPARISON FOR PRACTICAL CASE (WEB EFFECTIVENESS FACTOR SMALLER THAN UNITY)

It has bkeen explained in chapter 1 that experimental results only correspond
with the plastic model of NIELSEN et al. when a web effectiveness factor smal-
ler than unity igs introduced in the plastic model. In [4] it has been shown

that test results of LEONHARDT and WALTHER agree with a plastic analysis forx

V = 0.86. Two of these tested beams (TAl and TA4) have been analysed with
STANIL/1. The load system is the same as applied in fig. 5. The distance be-
tween the support and the transverse load V wasg divided into three elements. The
T-shaped beams have been modelled for this purpose into beams with by reinforce-
ment steel in the compression zone with the same stiffness. This is allowable

if the failure mode is not controlled by the flange. The geometrical data and
material properties were taken from [6]. From experience gained so far we have
learnt that the use of the prism strength in Stanil/l1 shows a gocd agreement

with tests. The results of the analysis are shown in fig.8. It can be seen to
which extent they agree with the plastic analysis for vV = 0.86 of NIELSEN et al.
and with the test results of LEONHARDT and WALTHER. We may conclude that Stanil/!
is capable to predict the ultimate nominal shear load for such cases fairly well.
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Fig. 9 Comparison of
stirrup stresses
O0g from Stanil/l
and experiment

Fig. 8 Comparison of the ultimate
strength from Stanil/l and
experiment.

From the tests it is known in which way the steel stress Og in the vertical web
reinforcement develops when the shear load (and thus the nominal shear stress T)
increases. This experimental result is reproduced in fig. 9, together with the .
dashed lines which would apply if the truss-analogy would hold (with inclined
bars under 45 degrees). The shown curves were found by averaging the value of
four stirrups in a certain position along the beam. The Stanil/l results in

fig. 9 are averaged values for the corresponding points. These results fit in

a satisfactory manner with the experimental data, which means that the program
Stanil/l1 seems capable to simulate the beam phenomena under realistic conditions.
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Finite Element Analysis of Beam Shear Problems
Analyse du cisaillement d'une poutre par la méthode des éléments finis

Finite Elemente Berechnung von Schubproblemen in Balken
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Graduate Student Associate Professor Associate Professor
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SUMMARY

A non-linear finite element method of analysis was used to predict the behaviour of reinforced con-
crete beams. Special consideration was paid to the assumptions on change in stiffness of concrete
due to cracking and bond. The resuits were compared with test results. The method of analysis used
appeared to predict the behaviour of the beams subjected to shear and bending in terms of pattern
and propagation of cracks, mode of failure and the shear at the failure.

RESUME

L'étude du comportement des poutres en beton armé est faite a I'aide d’une analyse non linéaire par
la méthode des éléments finis, Les hypothéses concernant les changements de la rigidité du béton
dues a la fissuration et a I'adhérence sont considérées avec soin. Les résultats analytiques et expéri-
mentaux sont comparés. En appliguant la méthode décrite, on peut prédire le comportement d'une
poutre soumise a la flexion et au cisaillernent. On peut prédire la formation et la propagation des
fissures ainsi que le mode de ruine,

ZUSAMMENFASSUNG

Eine nichtiineare Finite Elemente Berechnung wird durchgefliihrt, um das Verhalten von Stahlbeton-
balken zu untersuchen. Den Annahmen Uber Steifigkeitsdnderungen infolge Reissen des Betons sowie
Verbund wird besondere Beachtung geschenkt. Den Ergebnissen werden Versuchsresultate gegeniiber-
gestellt. Die verwendete Methode gestattet die Voraussage des Verhaitens von Balken unter Biegung
und Querkraft. Insbesondere konnen das Rissbild und die Rissentwicklung sowie die Art des Versagens
verfolgt werden,



256 IV — BEHAVICUR OF BEAMS SUBJECT TO BENDING AND SHEAR

1. INTRODUCTION
1.1 Nature of the problem

The plastic behavior demonstrated by beams failing under the influence of bending
and shear is complex and diverse, because it is affected by a broad variation in
geometry of beams, distribution of reinforcing steel and boundary conditions.

For confident application of plastic theory information is desirable for the be-
havior of beams at various stages of loading. The finite element analyses are
one way of providing useful information. However, the idealization for the known
inelastic behavior of concrete and a gradual destruction of bond between steel
and concrete to be used in such methods of analysis is still in the process of
development.

1.2 Scope

An attempt was made by a parallel study of analyses and tests for refinement for
the method of analysis and better understanding of the behavior of the beams. A
non-tinear finite element method of analysis with several assumptions was used to
predict the behavior of beams with rectangular cross section, containing flexural
reinforcement only and subjected to bending and shear. The predicted results
were compared with test results.

2. FINITE ELEMENT MODEL
2.1 Non-linear analysis

The finite element program used for this study was a two dimensional program
which was a part of a general non-linear analysis program referred as COMPOSITE
IIT and developed by Kokubu, Yamada and Sakurai (1). In this two dimensional
analysis program conventional constant strain triangular elements and truss
elements are used. Non-linear behavior is idealized by piece-wise linear analy-
sis and modification of stiffness of elements according to stress or strain con-
ditions as appropriate. The increments for applied Toads can be prescribed to
any required magnitude including zero. When the losses of stresses occur in an
element due to cracking or crushing of concrete, the element stresses are trans-
formed into nodal forces for the nodes connected to that element. In the next
load increment, after modification of the stiffness of that element as required,
the calculated set of the nodal forces is applied to the structure. Thus the
relief of stresses in that element and redistribution of those stresses to the
neighboring elements are approximated.

Four assumptons were made for this study. Those assumptions concerned :
(1) stiffness of concrete, (2) failure criterion for concrete, (3) change in
stiffness due to cracking, and (4) bond between steel and concrete.

2.2 Stiffness of concrete

The material stiffness matrix is defined by a shear modulus G and a bulk modulus
K in this finite element program. The two moduli used for this study were
identical to the tangent moduli given by Kupfer et al. for each load increment.
If the moduli G and K are transformed into the modulus of elasticity E for a
case of uniaxial compression, the resulting stress strain relationship is as
indicated in Fig.1. If cracking occur in the concrete element, the procedure
of this section is over-ridden by the provision given in Section 2.3.
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2.3 Change in stiffness due to cracking

When the first cracking occurs, one of the axes of orthogonality is made coinci-
dent to the direction of the crack. Then, the coefficients in the material
stiffness matrix related to the stress component which caused cracking are made
equal to zero. If an element containing a crack is subjected to shear stress,
displacements parallel to the crack may occur. The resistance against such dis-
placements may be approximately expressed by the shear modulus, if the relation
between the displacement and the stress is known. However, information is not
sufficient for this behavior, and hence, it was assumed that the shear modulus
was not changed due to cracking. This behavior implies that the interfaces of

a crack are capable of transferring the same magnitude of shear as uncracked
concrete. When the second crackig occurs, the remaining coefficients in the
material stiffness matrix are made practically equal to zero (one thousandth of
the original values ).

2.4 Failure criterion

The criteria for crushing and cracking of concrete are identical to those pro-
posed by Kupfer et al., and are expressed in terms of principal stresses (2).
A graphical representation is given in Fig.2.

2.5 Bond

The strength and behavior of beams failing under the influence of shear and
bending was reported to vary with the bond characteristics of flexural rein-
forcement, and the reasons were explained by Kani (3), (4) in connection with
the stress trajectories. Among the factors related to bond and influencing those
trajectories, the variation in stress in flexural reinforcement with the dis-
tance from the section of maximum moment and distribution of flexural cracks
were considered to be more significant. Therefore, for this analysis flexural
cracks were forced to occur in the spacing approximately equal to those observed
in actual beams, but the reinforcing steel was rigidly connected to the nodes

of concrete elements without use of bond elements between the steel and the
concrete. The flexural cracks were allowed to occur in only predetermined
groups of elements by prescribing a very high value as fictitious tensile st-
rength of concrete for the elements where cracking should be prevented. The
elements for which cracking was prevented are indicated in Fig.3 with shades.

f .001

FIG.1 STIFFNESS OF CONCRETE FIG.2 FAILURE CRITERION FOR

CONCRETE
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2.6 Structural model

The structural model used for this analysis is an idealization of a beam with
rectangular cross section 15 cm in width, 25 cm in depth and 210 cm in length.
The distance between the compression surface and the centroid of the flexural
reinforcement, or effective depth, was 22 cm. The beam was simply supported and
subjected to two symmetrical concentrated loads. The distance between the point
of application of the 1oad and the support, or shear span, was 66 cm. The finite
element mesh layout and the boundary conditions are shown in Fig.3.

v

Cracking not allowed for shaded region
Reinforcing steel

|

FIG.3 FINITE ELEMENT IDEALIZATION

3.  COMPARISON OF PREDICTED AND OBSERVED BEHAVIOR
3.1 Loading

The Toad level, or applied shear was expressed as fractions of Vf]ex’ where Vﬂ

is a calculated shear which would cause flexural failure. When the concrete
strength was 27 Mpa and the yield point of the flexural reinforcement was equal
to 400 Mpa, and with the amount of flexural reinforcement equal to 11.6 cm?con-
sisting of 3-922 mm bars (3 percent of steel ratio), the shear Vjzex was 115 KN.
The loads were applied in 16 steps, or with an increment of 0.044 Vflex'

ex

The progressive propagation of cracks may not be predicted if the external loads
are kept to increase at each increment of analysis, because of the provision used
for this analysis in order to take into account of redistribution of stresses due
to crushing and cracking of concrete as stated in Section 2.1. A particular
analysis concerning this problem is to be reported in Section 3.7.

3.2 Cracking

Development of cracks with increasing load is shown in Fig.4 for the applied
shear equal to 0.18, 0.44 and 0.53 Vgiex . Cracks are denoted by outlining the
triangular elements where cracking was predicted, and by 1ines representing the
directions of the cracks in those diagrams. Flexural cracks in the tension sur-
face of the beam were allowed to occur at only prescribed locations as explained
in Section 2.5. At a shear equal to 0.44 Vsex inclined cracks appeared above
the flexural cracks in a section about the beam effective depth away from the
point of application of the load, at about the middle of the shear span, and in
a section about the effective depth away from the support and at a level about
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one third the beam depth from the tension side of the beam. Those cracks were to
increase in number at higher Toads, but those inclined cracks remained disconnect-
ed from each other. Long inclined cracks observed in beam tests were not pre-
dicted by this analysis. At a shear equal to 0.53 Vg, , cracking were predicted
in extensive portion of the top surface of the beam. At a section about the beam
effective depth away from the point of appTication of the load the uncracked
portion of concrete was significantly reduced due to development of inclined
cracks developing from the flexural cracks as well as cracks developed on top
surface of the beam.

V= 0.18 Vo,
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3.3 Stress trajectory

At a shear equal to 0.18 Vgjex cracking was Tocally contained in the region of
maximum moment, and the most portion of the beam remained elastic. The comp-
ressive and tensile stress trajectories indicated in Fig.4 followed smooth curves
which resembled arches and hanging arches. At a shear equal to 0.44 Vjex the
compressive stress trajectories dominated in the middle of the shear span and in
the compression zone in midspan sections. At a higher load directions of the
trajectories flattened in both the upper and lower portions of the beam as
apparent in the diagram for 0.53 Vgjex -

3.4 Crushing of concrete

The predicted crushing of concrete is denoted by a mark which has a shape of
small rhombus in Fig.4 for a shear equal to 0.53 V Crushing was predicted
in two sections in the beam. The first section was located adjacent to the
loading plate and in the region of the maximum bending moment. The second sect-
jon was situated about a beam effective depth away from the loading plate and in
the direction of the reduced moment. In this section crushing was predicted in
the narrowest path for the compressive stress trajectories.

3.5 Effect of bond

If the gradual breakage of bond between reinforcing steel and concrete was not
taken into account in this method of analysis, the predicted cracking and tra-
jectories are as indicated in Fig.5. Since the reinforcing bars were rigidly

connected to the surrounding concrete elements, all of these concrete elements
cracked. '
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FIG.5 BEAM WITH CRACKING ALLOWED FOR ALL ELEMENTS

3.6 Compressive principal stress

For a more quantitative representation of the stress trajectories plot was made
in Fig.6 for the distribution of the compressive principal stress along the verti-
cal cross section of the beam located at 0.54, 1.18, 1.82 and 2.74 times the beam
effective depth apart from the position of loading and for a section without
shear. Three curves in each section represent stresses for applied shears equal
to 0.18, 0.44 and 0.53 Vgley resspectively. At the lowest shear the distribution
of this stress was as expected by elementary beam theory. However, at higher
loads the distribution became markedly different. At the section closest to the
position of the load a concentration of the stress occurred near the top surface
of the beam. In contrast, at the next section moved toward the support the peak
value for the stress occurred some distance apart from the top of the beam. At
the sections closer to the support the distribution is more uniform and the peak
gradualy shifted downward. The manner in which those stresses are distributed is
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understandable by referring the pattern of cracking.
3.7 Progressive propagation of cracks

So far report has been made for the analyses where the external loads were
increased in increments at each increment of analysis. In order to predict the
possible progressive propagation of cracks, one series of analysis was made where
the external load was not increased after it reached 0.44 Vgjex. For the follow-
ing increments of analysis the loads applied to the structure were only those
resulting from stress redistribution. The results after three repetitions of
such analyses are indicated in Fig.7. The results demonstrated that a crack
propagated along the flexural reinforcement from the bottom end of an inclined
crack to the end of the beam without an increase in the external load when the
applied shear reached 0.44 V;Fiex-

L1

FIG.6 PREDICTED DISTRIBUTION OF COMPRESSIVE PRINCIPAL STRESSES FOR
SHEAR 0.18, 0.44 AND 0.53 Vf]ex

Propagated
cracks

vo%ox
w o~

VS

!

]

=
A>T

FIG.7 PREDICTED PROGRESSIVE PROPAGATION OF CRACKS ALONG REINFORCING
BARS AT A SHEAR 0.44 Vf]ex
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3.8 Failure of beam

In the beam failed in test the inclined crack propagated along the reinforcing
bars and at the seemingly same instance crushing occurred in the upper portion of
this inclined crack as well as cracks in the top surface of the beam. The shear
at failure was 0.39 Vgiex . The mode of failure appeared to coin¢ide with the
prediction described in Section 3.7 and indicated by Fig.7. The prediction for
the shear at failure was 0.44 Vgex , Or 12 percent higher than the measured.

The results predicted with monotonically increasing shear higher than 0.44 Veiex
and reported in Section 3.2 through 3.6 are probably more indicative for the
cases where the propagation of crack along flexural reinforcement was prevented
by some measure. For the latter cases failure could occur due to crushing of
concrete in the compression zone at cross sections some distance apart from the
point of application of the load. This crushing may be attributed to the reduct-
ion in dimension of the path for compressive stress trajectories due to develop-
ment of flexural and inclined cracks and cracks in the top surface of the beam.

4. CONCLUSIONS

The analytical and experimental study reported here was concerned with the shear
failure of the beams with a rectangular cross section, without web reinforcement
and where the ratio of shear span and beam effective depth was equal to three.
Within the scope of this study the following conclusions appeared relevant.

1. The finite element method of analysis used here appeared to predict the behav-
ior of the beams failing under the influence of shear and bending in terms of
crack pattern, mode of failure and the shear at failure, if adequate considerat-
ions are made for bond between flexural reinforcement and concrete, criterion for
crushing and cracking of concrete, and progressive propagation of cracks by the
procedure given in this study.

2. The suppression of occurrence of flexural cracks at prescribed locations used
in this study is a convenient practice to substitute a difficult but very import-
ant problem of idealizing the non-uniform bond between steel and concrete.

3. The finite element method of analysis used in this study enabled prediction of
progressive development of cracks along the flexural reinforcement near the fail-
ure load by a few increments of analysis where the external load was set equal to
zero and only the forces resulting from the stresses relieved from concrete
elements which failed were considered.
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Optimization of Reinforcement in Slabs by Means of Linear Programming
Optimalisation de I'armature des plaques par la programmation linéaire

Optimierung der Bewehrung von Platten mit Hilfe der linearen Programmierung
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Cowiconsult
Virum, Denmark

SUMMARY

This paper is concerned with the development of a numerical method for designing reinforced con-
crete slabs by linear programming. The total amount of reinforcement necessary in a slab with given
concrete dimensions, subjected to given loads and with a given arrangement of the reinforcing bars,
is minimized. The linear programming problem is formulated using the principles of the lower bound
method. The continuum problem is discretized by means of equilibrium finite element types. The
linearized vield conditions are established in a number of discrete points to ensure a safe stress field.

RESUME

Le développement d’'une méthode numérigue est présenté pour le dimensionnement de dalles en
béton armé a V'aide de la programmation linéaire. Le volume total de I'armature nécessaire pour une
dalle dont la géométrie, le chargement et le systéeme d’armature sont donnés, est minimalisé. Le
programme linéaire est formulé en appliquant les principes de la méthode statique de la théorie des
charges ultimes. Le probleme continu est discrétisé par des éléments finis du type modéle équilibre,
Les conditions d'écoulement linéarisées sont établies pour un nombre de points afin d’assurer la
stabilité du champ de contraintes,

ZUSAMMENFASSUNG

Die Entwicklung eines numerischen Verfahrens zur Bemessung von Stahlbetonplatten mit Hilfe der
finearen Programmierung wird dargestellt. Der insgesamt erforderfiche Aufwand an Bewehrung far
eine Platte mit gegebenen Abmessungen, gegebenen Lasten und einer vorgewah!ten Bewehrungsan-
ordnung wird minimiert. Gestitzt auf die statische Methode wird das lineare Programm formuliert.
Das kontinuiertiche Problem wird mit Finiten Elementen vom Gleichgewichtstyp diskretisiert. Die
Stabilitat des Spannungszustandes wird gesichert, indem die linearisierten Fliessbedingungen fur
die Anzahl diskreter Punkte aufgestellt werden.
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1. INTRODUCTION

Bound methods of limit analysis have proved to be powerful tools for the determi-
nation of the ultimate limit load for many structures, Also in the calculations

of reinforced concrete slabs plastic theory has been successfully used for years.
Johansen [1] formulated the yield-line theory leading to upper bound solutions which
theoretically are unsafe solutions.

Since then, many attempts have been made to create safe methods. The establishment
of a general plastic theory for reinforced concrete slabs has made it possible to
use lower bound methods giving results on the safe side. The major part of this work
was done by Nielsen [2] in the early sixties. Based on the theory of perfectly
plastic materials, Nielsen [2] formulated the general yield conditions for ortho-
tropic slabs.

The great advantages of using lower bound methods are really achieved when computer-
izing the construction of the equilibrium solutions., The statically admissible stress
fields can be created for instance by means of finite element methods. Overall equi-
librium regquirements result in a set of linear equations in the stress parameters.

A safe stress field is ensured by establishing the yield conditions in a set of dis-
crete points in each element.

Many authors have adopted this approach in the evaluation of the bearing capacity

for a given slab subjected to proportional loading. As the yield conditions are not
linear, the optimization problem is non-linear. If the yield conditions are linear-
ized, one gets a case of linear programming, LP, which can be solved by general
available standard routines. Calculations of this kind for concrete slabs have been
performed by Anderheggen and Knépfell [3] and knépfell [4]. For materials governed by
the Tresca yield criteria, Faccioli and Vitiello [5] have carried out a similar cal-
culation.

Most of the numerical methods leading to LP-problems include both upper- and lower
bound techniques expressing the anology between the duality of the limit analysis
theorems and the duality theorem of LP.

It has been concluded by the author [6] that with the present knowledge of the exist-
ing optimization techniques - especially concerning reliability and efficiency - an
automatic limit design method for practical use should be based on LP. Moreover, it
is stated that using LP no results can be achieved by upper bound methods that cannot
be preduced by lower bound methods alone. The most economic design will often be ob-
tained by varying the reinforcement over the slab area. This case can be treated di-
rectly by the lower bound method but can hardly be done by upper bound methods. Fur-
ther, it has been demonstrated by the author [7] that based on lower bound technicues
the limit analysis problem as well as the limit design problem can easily be handled
by means of the same computer programme. Thus the LP-problem should be formulated
using the principles of the lower bound method.

The general approach adopted here in the development of a rational and safe design
method was at first presented by Wolfensberger [8], who used Hillerborgs [9] strip
method to generate a parametric moment field.

In this paper, only thin slabs are dealt with. The Kirchoff plate theory is adopted
and the material is assumed to be rigid plastic. The optimization criteria is the
minimum of the total amount of tensile reinforcement. The arrangement of the rein-
forcing bars can be chosen a priori to ensure a design for direct practical use.
Arbitrarily reinforced slabs with given directions of the reinforcing bars can be
handled. Slabs with various geometry and different types of boundary conditions, to-
gether with column supports are dealt with. The design is carried out for a set of
given loading cases.

As examples to illustrate the method designs of an isotropic square built-in slab
and a flat plate construction are shown.
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2. MATHEMATICAL FORMULATION OF THE DESIGN PROBLEM

Equiljbrium element types are used to descretize the continuum problem. The moment
field for the slab is represented by the NM global parameters contained in the vector
M. The moment field for an element, e, is given by the nm parameters mﬁ. The re-
lation between these and the global parameters is for each element given by:

n® =g xn (2.1)

By means of interpolation functions the moments referring to a global X-y-system,
m = (mx,mxy,my), can be expressed in the form:

m:iex'lge (2.2)

For each element the boundary forces,zf, necessary to express the required statical
continuity conditions are calculated from:

= x°xn® (2.3)

By means of (2.1-3) all equilibrium requirements such as internal requirements, con-
tinuity requirements along the element boundaries and the statical boundary condi-
tions lead to a set of linear equations in the glcbal parameters:

K *M=p (2.4)

where the vector P represents the effects of the given loads.

The design variables, which are the steel areas, for the slab are estabéished in the
ND-dimensional design vector D. For each element the plastic moments, m_ = (m

r
m. , m e m'! , m' , m' ), see section 4, are expressed by the releva;g steeTxareas
bgy Fxy Fx Fy Fxy

=£:Je)(D+e

2.5
Dtm (2.5)

e
m
~p

e i . :
where EP o are plastic moments due to given reinforcement.
r

By means of (2.1-2) and (2.5)" the linearized yield conditions set up in some a
priori selected points for each element, lead to a set of linear inequalities in
the global moment parameters and the design variables:

Rl x M + R x D < R (2.6)
-~ ~d —’\0

where Bo expresses the contribution of given reinforcement in (2.5).

Several explicit linear constraints in the design variables such as given inter-
vals for certain steel areas, desired linear relationships between different steel
areas etc. can be handled. For clarity, such relationships will be assumed to be
included in (2.6).

The total amount of reinforcement is expressed as a linear function in the design
variables:

Z=¢cXxXD (2.7)
In this way, the design problem is formulated as a case of LP:

minimize:

N
1
0
X
W

Pdc

I
L)
]
=
v
i}
1A

subject to KX and: 1x + 2 X 50 (2.8)
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3. ELEMENT TYPES, STATICAL EQUATIONS

For many equilibrium slab elements used in elastic calculations the corresponding
stress field can be used here directly to generate parametric statically admissible
fields. Two such element types are given below, i.e. the triangular element with a
constant moment field, TRIC, and the triangular element with a linear moment field
TRIL. A direct way can also be used to derive applicable element types considering
only the statical properties. An example of this is given by the rectangular element
RECT. For the element matrices the reader is referred to reference [6].

Triangular element, TRIC

The geometrical and statical properties of the element are shown in Fig. 3.1. The
element parameters can be chosen as:

e _ T
RT= My, My Myy) (3:4)

The only vertical forces acting at an element are the concentrated corner forces
due to discontinuities in the torsional moments. These are established in the vector:

e T
L = (Pyr Py, P3) (3.2)
p mv3
1 x 1 /
& S v mb2 \mb:!
r a 2 -
* my2 1 P2
s o
3 mb!
ERA
Fig. 3.1: Triangular element, TRIC S
' b

y
It is thus seen that only concentrated forces acting at the nodes of the element
mesh can be handled.

Triangular element, TRIL

This element is due to Veubeke [10], who used it in elastic slab analysis.

The moment field is linear and can thus be represented by nine parameters for each
element., The analysis is most easily carried out in a local ablique reference system
as shown in Pig. 3.2 where sign conventions and the nine parameters are also shown.
The parameters are: ‘

e= (""' -_ E)T
= R Bpr B3

where m = (m;, m;{—}-r-, mg'—) (3.3)

Fig. 3.2 Triangular element, TRIL. Fig. 3.3 Boundary forces.
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The corresponding boundary and nodal forces, shown in Fig. 3.3, are contained in
the following vector:

£ = m m.,, m ., M., Koy Koy Kooy P., P, P} 3.4)
L = (myg, Moge Wyqr Mgy Myge Mane Kypr Kyge Kogs Pyy Py, Py) (3.4

Line loads with constant intensity along element boundaries and concentrated loads
acting at the nodes of the element mesh can be handled.

Rectangular element, RECT

The slab area is subdivided into rectangular elements by lines parallel to the axes
of the global reference system,

The moment field for an element is given by the ten parameters:

T S e T e A ;T (3.5)
BT Wy Ty Tyt Tyt Txyt Txyt Uyt Ty’ Px’ Py : )

These parameters are shown in Fig. 3.4. The variation of the m -moment is parabolic
in the x-direction and constant in the y-direction. Analogous for the m_-moment. The

torsional moment m_ is represented by a hyperbolic paraboleid and is tFus linear at
the element boundaries.

my,

o “
*51 Px . Py i“‘E" Ly

e T

Mo W "

A ™ ¥ 4
y
Fig. 3.4 Rectangular element, RECT Fig. 3.5 Boundary forces.

The Kirchoff' shear forces and the concentrated forces acting at the corners of the
element, see Fig. 3.5, are expressed by the following vector:
r® = (K,., Kooy Koo K,y Py, P, Poy P )T (3.6)
~ 127 7237 347 147 1t T2' "3 T4 )
One equation needs to be satisfied to ensure internal equilibrium. From the EF'
matrix one gets directly: '
1 3 2 4 *
m + - -m = 11 - - 3.7
xy mXY mXY Xy 5 XYy (p Py pY) ( )
Distributed loads with constant intensity for each element, line loads acting at element
boundaries and concentrated lcads acting at the nodes can be handled.

4. YIELD CONDITIONS

Yield conditions for arbitrarily reinforced concrete slabs have been derived by many
authors on the basis of Johansen's suggestions for the moments in a yield-line. For

ingtance, this has been done by Brastrup [11], who used polar diagrammes to formu-
late the yield conditions.

_ _ _ _ 2
ml = (mFx mx)(mFy my) + (mxy mny) <0
= ' [ — ' 2
@, = (mFX + mx)(mFy + my) + (mxy mny) 0

(4.1)
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Here, m is the numerical value of the positive yield moment in pure bending in an

X—-section and m'x is the numerical value of the negative yield moment in that section.

Analogous for m v and m' ., m, and méx are the plastic torsiocnal moments due to

reinforcement ag the bo%%om and” the top ¥espectively. The yield conditions (4.1) in-

clude the conditions for orthotropic slabs (m = m' = 0) as a special case, see
Fxy Fxy

reference [2].

A safe linearization of the yield conditions has been suggested by Wolfensberger [8],
leading to the following eight inequalities:

+

S + M ~ (mxy —-mnyl =1
+
- mFY * my B (mXY - mFXY) S ¢ (4.2)
-m! -m Y -m' ) <0
x X Xy Fxy
- wl - + i
mFy my (mxy mny) = h

This linearization has also been used in reference [3] and [4].

As the relationships between the plastic moments and the corresponding steel areas
are assumed to be linear, which is a gocd approximation for such small degrees of
reinforcement for which the yield conditions (4.1) are valid, the linearized con-
ditions (4.2) are also linear in the design variables. The plastic moments are
assumed to be constant within each element and are given by the vector m- as shown
in section 2, For example, the linear expression for Mo is:

2 2
mFx = Fl cos u1 + .t F FND cos uND (4.3)

where u, is the angle relative to the x-axis for the reinforcement with steel area
D,. If %he reinforcement with steel area D, is not to be represented at the bottom

i
o% the element the Fi—factor for m_ , m and m is set to zero.

Fx Fy Fxy

From the given arrangement of reinforcing bars formulated in (4.3), the linear ob-
jective function is derived automatically. The c,-value simply represents the slab
area in which the reinforcement with corresponding steel area Di is extended.

For the element type with constant moment field, TRIC, the linearized vyield cindi-
tions only have to be established at one point per element. For the element with
linear moment field, TRIL, establishment in the three corners of each element will
ensure overall fulfillment. For the rectangular element, RECT, the yield conditions
(4.2) are set up in the corners and in the centre of the element. For no loading cases
this alone can ensure a true lower bound solution, For the solution obtained the yield
conditions (4.1) are checked in a finer mesh and the solution is proportioned if needed
to fulfil (4.1) in all check-points.

5. NUMERICAL TREATMENT OF THE LP-PROBLEM

The LP-problem stated in (2.8) can be solved directly by means of many LP-codes.
However, it can be considerably reduced, and an easy way of treating different
loading cases simultaneously can be obtained by solving the linear equations (2.4)
first. By means of a rank-method, some moment parameters, M_, can be expressed in
terms of the redundancies, gu, by: a

r
= X
- T A (5.1)

where %0 represents a particular solution for the actual loading case.
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The LP-problem is then reduced to:

minimize: z = E’X R ) (5.2)
subject to: R XM + R X D <R

where the particular solution is now introduced into the Bo—vector.

If the slab is to be designed according to different lcading cases, one on%y has to

establish (5.1) once. For each loadjng case, i, the particular solution, M, is cal-

culated and the right-hand sides, R , in the linear constraints are obtained by sub-
: P F : O . :

stitution in (2.6). By this procedure the following LP-problem is formulated:

minimize: Z = < X R
. 1 2 1 :
subject to: R XM +R XD<R (5.3)
~a ~1 ~ R o)
- .n 02 - .n
and: R XM +R XD<KR

Solving this problem, the global optimum (according to the linear model) will be ob-
tained.

An approximate optimum can be achieved by solving the LP-problem:

minimize: Z = < X R
2 min
biject to: R X + R X DK
subjec o M R D < Eo (5.4)
min , 1 n
and: R, = min (R_ R .)
OIJ OIJI"'I ij

The design, considering more than one loading case, can also be carried out by
successive calculations. For the loading case, i, all reinforcement quantities as
obtained earlier are treated as given through m_ , and only necessary additional re-
inforcement, if any, is determined. ~P

The computer .time needed to solve the LP-problem, either (5.3) or (5.4), can be re-
duced by solving the corresponding dual LP-problem. Concerning this, the reader is
referred to reference [7].

Numerical calculations using the described method have been performed on the IBM/
360-system at the Technical University of Denmark, Copenhagen, using the MPS/360
linear programming code.

6. RESULTS

The design of two different types of concrete slabs with orthogonal reinforcement
(orthotropic slabs) is shown.

Square built-in slab

The isotropic square slab with clamped edges is designed using the RECT-element
{(m x - M = méx = mé =m_). The load is uniformlg distributed and denoted by p.
The resuT% is represegted gy the quantity p = pl /m,. In Fig. 6.1 the result is
shown as a function of the mesh size. ¥



270 IV — OPTIMIZATION OF REINFORCEMENT IN SLABS

-
§=c
44
-]
4285 fommm e
42 a -}
_P_L’ 41
a0} ™ — D A0k 33 X
e 39k T
3| 3gg  3BE—" g 508 T e 3
38,2 p— o —
as} u9 = | - | :
- -~ —

i 374, £ ar - P L/

r oL, DX, % ~ 4

363 4 36+ e

ek /; 3 e a TRIL 1
asl si/ L E ¥ . 3 / ° TRIL y

L 35 TRIC
34 314 Y q”(
il ] i ; < 3 ety
a2l e— 123 N ok

L 1 1 I 1 L i I N | R 1 1 i & L 1 i N 4 L 4 1 L 1 1 n

1 2 3 4 5 6 7 8 9 0N 121314 15 117 18 [1o] 20 30 40 50 60 70 ¢
Fig. 6.1 Rectangular element. Fig. 6.2 Triangular elements.

This slab has alsc been calculated by means of triangular elements. The results

are given in Fig. 6.2 where n, is the number of elements in the considered eighth
part of the slab.

The results obtained by the TRIC-element have been determined by Anderheggen and
Kndpfell [3], who have alsc given the results according to the element here called
TRIL 1, This element has a linear moment field with continuous torsional moments
along element boundaries. Considering linear displacement fields for each element,
statical equilibrium requirements are established using virtual work methods. In
this way, overall equilibrium can never be ensured. Thus the results cobtained do
not represent true bound solutions.

In comparison, it should be mentioned that Chan [12], using non-linear optimization
has determined the value 41.78 for a computer time considerably larger than those

met here using linear programming. The exact solution of this problem is p=42.851
and was found by Fox [13].

Flat Plate Structure

For the uniformly locaded flat plate structure shown in Fig. 6.3, the total amount
of steel is minimized for different arrangement of the reinforcement. The RECT element
is used. The three cases: a) m =m =

m_'=m"'=m_~D,, b) =m = ~D,,
n 1
F; = mF' =m! ~D_, and c}) nm xFé‘ﬁ FY m, 2 L’ g;; = EF' =10 allmgﬁve thE same tot-1l
amount o¥ reinforcement denoged by X. In case a) is foung mF = 0,0685 pl .
Kz
1.00}- °
13
—mﬁ;A‘-# i‘ﬁ v ‘I 0_8\ /
! % A
. o e
>_‘**_m%-“+_'l lo N 04
__"1?—“* *" 12, i o2l 1Fc+Kyl A=Kz A
——ly
1 i 1 L L K]
01 02 Q3 04 433

Fig. 6.3 Flat plate structure. Fig. 6.4 Restricted top reinforcement.
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Johansen [14] suggests from yield-line calculations that if the bottom reinforcement
is homogenous throughout the slab, and the top reinforcement is homogenous only in

a square at the column (zerc elsewhere}, the latter must have an extension from the
centre of the column given by 1 = c¢ + 0.3 1, where ¢ is the radius of the circle
with the same area as the cross section of the column. This problem has been cal-
culated for different values of 1 (1 is shown in Fig. 6.3). The corresponding
amounts of reinforcement, AO, are givén in Fig. 6.4 as a function of ;o'

The results show that a minimum is obtained for lO ~c + 0.23 1, for which the
amount of reinforcement is reduced to Ao ~ 0.5 A.

7. FINAL REMARKS

Results show that linear programming methods require longer computer times compared
to those required for calculations on linear elasticity. However, continued devel-
opments in the field of electronic computers can be expected to result in reduced
prices so that practical design will be able to profit by these methods in the near
future.

Moreover, the advantages of these automatic methods in the area of practical design
should be emphasized. In this case, the alternative methods are normally not the
very sophisticated methods available in the field of structural analysis.

Concerning the finite element discretization, it should be mentioned that proce-
dures like the one adopted by Anderheggen and Kndpfell [3], leading to approximate
bound solutions, will probably be successful in practical design methods. This is
due to the fact that concerning calculations in practice, one will often accept a
design which is safe for a loading case a little different from the prescribed one.
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Mesh Formulation of the Yield Line Method by Mathematical Programming
La formulation en mailles de la méthode des lignes de rupture par la programmation mathématique

Die Netzformulierung der Bruchlinienmethode mit Hilfe der mathematischen Programmierung

A.M.A. DA FONSECA J. MUNRO

Civil Engineering Department Civil Engineering Department
University of Oporto Imperial College

Portugat London, England
SUMMARY

The vield line method has been formulated as a mathematical programming problem using a mesh
description of a finite element network. The fundamental structural relations have been transformed
to an equivalent primal-dual pair of mesh linear programs using the Kuhn-Tucker theory. These
programs, along with the primal-dual pair of nogal linear programs derived previously, provide a
choice of four programs available for computaticn. A comparison has been made of the relative com-
putational effort required for these programs when using a simplex-based computer code.

RESUME

La formulation en mailles développée pour la méthode des éléments finis a été appliguée a la méthode
des lignes de rupture. On a obtenu une paire ,,primal-dual’” de programmes linéaires équivalente aux
relations structurales qui gouvernent la dite description, en utilisant la théorie de Kuhn-Tucker. Ces
programmes offrent, avec la paire ,,primal-dual’’ de programmes linéaires déja dérivée pour ta descrip-
tion nodale, un éventail de quatre programmes de calcul. On a finalement comparé les difficultés de
calcul inhérentes & chacun de ces programmes en utilisant Falgorithme du Simplex.

ZUSAMMENFASSUNG

Die Bruchlinienmethcde wurde mit Hilfe einer Netzbeschreibung eines finiten Element-Netzes darge-
steilt. Die grundlegenden strukturellen Beziehungen wurden unter Verwendung der Kuhn-Tucker
Theorie zu einem entsprechenden ,,primal-dualen’ Paar von linearen Programmen transformiert. Diese,
und das friiher hergeleitete ,,primal-duate’’ Paar von linearen Programmen fiir die Knotenbeschreibung,
liefern eine Auswahl von vier fir die Berechnung verflgbaren Programmen. Schliesslich wurde der fiir
jedes dieser Programme erforderliche relative Rechenaufwand bei Verwendung des Simplex Algorithmus
verglichen, ‘
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1. INTRODUCTION

The plastic limit analysis and synthesis of structural frames may be formulated
conveniently as linear programs (LPs) using either a mesh [1] or nodal [2]
description of the structure to formulate the fundamental static and kinematic
relations. Each description leads to a primal-dual pair of LPs and thus, for
the numerical computation, a choice must be made between four possible programs.
Whilst the nodal description is most commonly used, it has been shown [3][4]
recently that the required computational effort with respect to simplex-based
algorithms is greatly reduced when the mesh description is employed.

A particularly simple and convenient form of manually-computed plastic limit
analysis is embodied in the yield line method (YLM) fS][6 . This method may

be automated to the plastic limit analysis [7] and synthesis [8] of r.c. slabs
through FEs and linear programming. The LPs formulated in this way have the
same algebraic structure as those obtained previously for frames using the nodal
description. Since the programs obtained from the mesh description for frames .
had computational advantages, it would appear logical to seek a corresponding
mesh formulation for the slab problem and to see if these advantages carry over
to this different class of problem.

The nodal description commences with a statement of the (nodal) fundamental
kinematic relations and then seeks the corresponding static relations such

that an appropriate criterion of consistency is satisfied. The criterion
adopted [7] is that of static-kinematic duality (SKD) [1]. The mesh description
to be presented herein commences with a statement of the (mesh) fundamental
static relations and then derives the corresponding kinematic relations such
that SKD is maintained.

2 STATICS

The normal bending moments (@) at the FE sides are considered as the superposi-
tion of a particular solution (mg) which equilibrates the loading and a comple-
mentary solution (mc) which consists of a linear combination of independent
self-equilibrating moment fields.

TS Mt &

The particular solution can be readily obtained if, as indicated on Fig. 1, the
slab is split into cantilevers.

DK<

Fig.1: Cantilever Slabs
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Clearly, such a procedure

implies edge fixity. However, if other boundary

conditions pertain, then they can be incorporated as outlined elsewhere [9].

The complementary solution
meshes. The simplest such

(mc) will be based on a set of linearly independent
set will be obtained from the FEs which are incident

on each of the nodes except one. Such a set is shown in Fig. 2 and these meshes
are analogous to the regional meshes of frame theory [k].

Fig.2: Linearly independent set
of finite element meshes

For example, the complemen

tary solution total normal bending moments at the

FE sides of the mesh represented in Fig. 3 may be expressed in terms of two
static parameters (p1 and p2) in the following form

i mSI_ [ sin o,
m o = sin Qg
me3 sin ag
m_y sin Oy,

_mSS_ _snn Qg

Fig.3:

cos o, ] P

cos a, Py

cos ag (2)
cos a,

cos ag |

X2

2|
3
a3 k32 1
o1
A il RS A S — X%
5

Example of finite element mesh

Now, if relations (2) are established for all such regional meshes, then they
can be assembled in the following compact form

m = B
~C ~

R (3)
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and the parameters p will be termed the mesh actions. Thus, the mesh equili-
brium equations (1) become

T = m + E p (4)

3. KINEMATICS

The conditions of compatibility for every mesh must ensure that the modal

angular deformation rates (8) across yielding FE sides correspond to continuity
of vertical displacements. For example, for the FE sides of the mesh represented
in Fig. 3,

sin 0y sin Oy sin Qg sin Oy sin Gg 61 ) 0
cos a, COs 0, COS @y COS Oy  COS Qg éz ) 0
%3 (5)
éh
%)

Now, if these compatibility conditions are imposed on every mesh of a FE system,
then they can be stated in the following compact form

80 9 - 0 (&)

The contragredient relation connecting equations (3) and (6) is a manifestation
of their consistency with respect to SKD.

Once again, the special treatment of various boundary conditions is discussed
more fully elsewhere [9].

4, CONSTITUTIVE RELATIONS

The YLM employs a simple yield criterion

§T m - m € 0 (7)

~ o~

where m, is the vector of the magnitudes of plastic moments of resistance and
the normality matrix N is given by

vos -]

where | is the identity matrix.

It is convenient to express the plastic modal deformations (8) in terms of
non-negative components h

- - e -
8., = x, - X where X: > o , X 2 0
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Thus
B = Nx (8)
¥
where x = |=| 30
~ o ~

and N is the normality matrix as previously described. Relations (8) constitute
the flow rule for the considered problem.

The parity rule linking the static and kinematic variables can be expressed in
the following complementary way.

xT [ﬂTT - m*] = 0 (9)

~

B+ FUNDAMENTAL STRUCTURAL RELATIONS

The particular solution bending moments (mo) may be expressed as the sum of those
due to dead load (m ) and those due to live load (m

My, = My Mg \10)
[f the mR vector is expressed in terms of a single load parameter (),
To = Tdo + EOA (11)

where r, is the vector of live load particular solution bending moments per unit
value of the load parameter (A).

Substituting from (11) into (4), the equilibrium equations become

mo= My *t o +Ep (12)

and the statical admissibility conditions are obtained by substituting from (12)
into the yield conditions (7).

Aly - ¢+t =0 (13)
where
e I N Y T T
BT N P

and t are non-negative slack variables.

The plastic collapse deformation rates (Q) for a single-degree-of-freedom mode
are fixed only up to a single parameter whose magnitude remains arbitrary. It
will therefore be necessary to introduce some form of scaling so that the
problem will have a finite kinematic solution. A conventent scaling is

T

To N X = ! (14)
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The compatibility relations (6) and the flow rule (8) lead to
Bl N x = 0 (15)

The kinematic admissibility conditions are obtained from equations (14) and (15)

rT 1

~0 o~

el g ey 5 — S
B N 0

or, more compactly,

A x = b (16)
Thus, the full set of fundamental structural relations in mesh form becomes
Statical Admissibility Al y-c+t=0
Kinematical Admissibility A x=0b

T (17)

Parity X t= 0
Sense restrictions x>0 t> 0
6. LINEAR PROGRAMS
The relations (17) constitute a linear complementarity problem (LCP). If they

are regarded as Kuhn-Tucker conditions [10 then, from Kuhn-Tucker equivalence,
their solution is also the solution of the following mesh primal-dual LPs of
the YLM

Min z = cT X Max w = bT y
Ax=0>b AT ysec (18) (19)
x>0
Mesh Primal LP Mesh Dual LP
7. SOLUTION BOUNDS

From the duality theory [11] of LP, it follows that the optimal values of the
two objective functions coincide and are equal to the collapse load (A.) for
the YLM-FE model,

z, = w, = A ‘ (20)

Since the necessary compatibility requirements are satisfied, the plastic
collapse load parameter (A.) for the YLM-FE model is an upper bound to the
collapse load parameter (AS) for the continuous model.

Ao 2 A‘C‘ (21)
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Clearly, if the FE boundaries contain the yield lines of the true collapse mode
of the continuous model, then the strict equality applies in relation (21).

The upper bound nature of the YLM-FE modeil also applies when_a nodal description
[7) is adopted. However, it has been shown elsewhere [9][12][13] that an FE
formulation using approximating field functions can be devised such that the
collapse load parameter is a lower bound on that of the continuous model.

8. COMPUTATIONAL EFFORT

If n. is the number of constraints and n, is the number of variables in the
standard form of an LP, then the_computational effort involved in a simplex-
based computer code varies as (né nvg. It can be shown that the primal (unsafe)
LP always involves less computation than the dual (safe) LP, irrespective of the
description (nodal or mesh) used. The choice therefore lies between the nodal
primal LP and the mesh primal LP -for a YLM-FE model. The comparison between
these two programs with respect to computational effort depends, to some extent,
on the boudnary conditions. However, as the number of FEs increases and the FE
network tends to an infinitely fine one, then the influence of boundary conditions
becomes less important and the nodal primal LP tends to require 450% of the
computational effort of the corresponding mesh LP.

Another important consideration is the complexity of data preparaticn and
organisation prior to entering the simplex~based code. Here the position with
regard to the mesh description is, as yet, less satisfactory, However, this

was also considered to be a disadvantage with respect to the mesh LPs for frames,
but recent developments have largely overcome the problems and further research
should improve the position with regard to slabs,

9. CONCLUSIONS

The mesh description, which has proved to be particularly convenient with
respect to frames, can readily be adapted to a YLM~FE model of a reinforced
concrete slab. The mesh primal-dual LPs for the slab problem have the same
algebraic form as those for frames. Whilst the data preparation may require
more attention, the computational effort required for the solution of the mesh
primal LP is generally considerably less than that for the corresponding nodal
primal LP.
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Finite Element Aspects of Concrete Cracking
Etéments finis et fissuration du béton

Gesichtspunkte zur Rissberechnung im Beton

J.H. ARGYRIS G. FAUST K.J. WILLAM

Institut fir Statik und Dynamik der Luft- und Raumfahrtkonstruktionen
Universitat Stuttgart
Stuttgart, Fed. Rep. of Germany

SUMMARY

Two technigues are examined for the finite etement analysis of cracking: The smeared approach and
the discrete crack formulation are compared and illustrated with the example of a thick-walled con-
crete ring for which extensive experimental results have been made available by the IBIW i at the
Technical University Munich,.

RESUME

Deux procédés de calcul de la fissuration par la méthode des éléments finis sont examinés: e modéle
,.barbouillé” et la formation discrete de fissures sont comparés et iltustrés par ['exemple d'un anneau
de béton a paroi épaisse, pour lequel de nombreux résultats de mesures existent.

ZUSAMMENFASSUNG

Zwei Verfahren werden untersucht zur Rissberechnung mit finiten Elementen: Das verschmierte

Modell und die diskrete Rissformulierung werden am Beispiel eines dickwandigen Betonringes illustriert,
an dem umfangreiche Messdaten des IBIW 111, Technische Universitdt Minchen, vorliegen.
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INTRODUCTION

The knowledge of the inelastic behaviour and collapse of rein-
forced shell structures has been improved and increased in the
past by experimental research. BEarly theoretical estimations of
the collapse load wers mainly based on the investigation into
collapse modes and the use of a kinematical method similar to
that known as the theory of yield lines for plates. This method
permits to find an upper bound solution of the collapse load
problems; but it is hardly suitable for reinforced conmcrete shells
of more complex geometry and loading conditions.

Requirements on more generally applicable techniques led to the
further development of numerical methods. One of the main ways
of despribing mathematically the inelastic behaviour of struc-
tures and calculating the collapse loads is based on the two
fundamental theorems on lower and upper bounds and on the use

of optimization procedures for linear and non-linear programming.
A detailed description of the limit analysis of shells of
revolution under axi-symmetric loads as an optimization problem

by means of the Ritz method, the Bubnov-Galerkin method, the
collocation method,; the differenge method and the method of
finite elements is given in /1/.

METHOD OF SOLUTION
For rotationally symmetrig¢ shells under axi~symmetric one-

parameter loading the collapse load intensity l1s found by
solving the problem

max _ min A (DaBysl abysl s Tgs¥raRady) (1)
PgN@aN¢:NW:M¢ Vyavcahshp
p20 on R,
or
min max JA-(Poﬂw’N¢ansM¢a%waG;shskp) (2)

vw'v;’)ﬁllp N\{/ON¢’M¥D“¢’p

A=O in Vv
Ap§ 0 on RP
wlth the Lagrange functional
®n
[c' ...4.] .,.4 » .
A=p+ 2% Ty | [Vy~Ty Ve Ny + r, | cosyVy~sin¥v, N@
8o

+[~(r§11'r\i,)’~6;;']mv + r';" ~r;4cosv"r,i,-cosw§]M¢ /
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_# + A[o—£(y N oMy M )] ~[BrgtB 0 p + AP kas | (3)
- p{[roPW$?]Rpw +[?0P§6§]Rp;'+[PousiW] Rpx1
- [r o st‘.’T} Ry = [rons%{rg] B -[ro(—ns)md‘y] Rv}‘

In these expressions NT’ N¢ are the normal forces, MW’ M _ the
bending moments in the merlidional and circumferential direction,
respectivly, Vy» %c the velocities of displacements tangential
and perpendicular to the middle surface of the shell.dxw the
slope velocitys As hP flow parameters, and Rg the cosinus of

the normal direction at the edges of the shell.

Along the meridian s, = s = s the shell is subdivided into

n intvervals of the length As. The internal forces, displacement
velocities, and flow parameters are approximated by functions
of discrete argument (fige.)e.

FIGe 1

Assuming that NW'NQ'M¢ are constant within each interval jj
(j=1seeesn)s they can be written as vectors in the form
= ~ 502 ~ T
N‘! = [NW("),.'..N‘P(J')’.."N\P(n)]
N 8 ﬁ N os e N LN N T
P ’ p ~ [Ncp('l)' No()? ’th(n)]
i i H TIRE

o = [Hpcayreeeillyegyreesliyny]

Both displacement velocities and meridional bending moment were
approximated by their values at the discrete points j (J=Oseessn)

N@(s) —=

MQ(B) —
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‘;‘y(s) —pn V\F = :%?(o)jooo"&‘w(j),oo-’v.'\y(ni

¢ s E; v { I
V() Vg = [ Vgo) Vet e
M;y(S) —— M\y = ’M‘F(O)""’M‘Y(j)"'“m‘l’(n)j
The actual loading is replaced by concentrated forces pr(o),...,

p'?‘l,(n) and pf‘;(o):u.,p?g(n) at the points j.

As to the yield condition
£(NysN oyl ) £ e

it will in general he more convenient to express it by a set of
linear inequalities

N N,
¥ e
aps By + apl Ny + aFl By + aFi o 3 Ppy (i=lreeeom) (%)

For shells under congideration it is justified to neglect the
interaction between circumferential and meridional response
of the shell, and for practical calculations it will be sufficient

to approximate the yield locus in each direction by 6 or 7
gtraight lines (fig.?2)

I-N
-M M
—_g-—. e
FIG.2. N

Thus, instead of one flow parameter A a set of parametersA
(i=1,...,m) is obtained. Assuming allA ; to be constant w1th1n
each interval j (j=1,...,n) they can bhe written in the form
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7\.(3) —= A = [A.,]looos?\.i:ooughm]
where
X 3 cerXy o]
Ay o= [Ai(1)"“' i Mi(n)
By replacing the integration by a summation and the differential

operators by finite differences the Lagrange functional (3) is
transformed into

i e ;3 . "
A(p’NY'Ncp'M‘I"Mcp’V\Y’v;’A’?"p)—» A (p,'Nq,,NCP.M\I,,M(p,v\l,,vg.h.lp) (5)

Thus the original problem (1),(2) is réduced to thé minimization
or maximization of a function.

With the conditions

A = 0 o /\ = 0 A

V¥ (5) K<6) M (3
The static formulation of the collapse load problem is finally
obtained

=0 ()

P ——> maximum (71)
with
=1 MIFT - IF ~1 ~15(1)
(as) g, D3R Ny By, g0yl = (48)7'B, yRy Di "R My
+ E7’wR;46§ﬁ¢ + CAS)_1E1,yRQ§@ P = 0 (72)

“p ¥ == -2 (2)p 7
B By Bolly + By oSyl + (48) "E, Di™ R My

- Mz F -1 Z
- (a8)7'By, D3 CM, + (48)7'E, ,RP,p = 0 (73)
Ny =2 L = - Mo, =F
AFI N\Y * AF({ N(p * A;‘d‘:{E’? M‘I’ + AF? M(p = bFi (i=13e0eym) (7e4)
el zr ! o
] oo ] -
(AS) rO(n)EGM‘i’ + (AS) I‘ocn)Ms(n) P = 0 on Rp (706)

p = 0 (7.7)
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Considering the conditions

/\ = Q A = 0 A =0 A 30’—/-\-—&0 (8)
276D No(d) My () Mo P

the kinematic formulation is found to be

m__ _
Z Doy 7\.1 —~ minimum (901)
i=1
with
-’ ~ e~ =7 1 ~N "‘:,‘"
-(as) R Dt({_'])E,' \I’v\l’ + lic'R\{:li:.?"]"c Ve + Z AFg 7&: = 0 (942)
i=1
CyE vy + B Z "N‘PA* =
‘i’7‘¥\if \ifE'?i;;"‘ Ap{ A = (9¢3)
ix1
w] (1) --1 T 2
(As) R,D3 'Ry & ,] wv + (as)”™ °R D,g )E1 g z

m
- 77 -1 T4 PR
i="1

il

15T T Az (Vg T 2 My =

R‘l’ C‘YE'?a‘i’v\I’ + (as) G‘I‘DZE. )E'],l_;v;"' Z A]._‘.g A;’f = 0 (9.5)
1=1

~ple o T 7 g
(a3) RPRO ‘I’v‘il + (z.\.s)“lPCRQ 1 Vg

A, =1 -
+[kﬁ3) rO(O)MS(O)XQCO) + (AS)bdrO(n)Ms(n)ﬂw(nS} RPX ; 1 (906)

H

~ 3 ~
*1(0) = 913 To(oyy(oy = ©
hi(j) = ro(j)hi(j) = 0 (i=1....,m),(j=1....,n-1) (9'7)

N* ~
hi(n) = 035 ro(n)hi(n) = 0 .
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In this equations are

(055 +0,5 ) [+1 E
~0,5 O +0s5 D -1 41
D,gll)m o0 oo 209 ;] Dgfl)= ‘“D‘('_q) = se s
-0s5 0 +0,5 -] +1
h‘o’s +032 —61
H"'"I +1 7 Eszr‘l 0..000]
) +1 =2 +1
ol \
D1 = [y [ [ ] EGEEOOOOQ 01]
+1 =2 +1
+1 -1
Ry» Rys Cyo Sys Apss Apis AFi’ AFi’ Ry are diagonal mat;lces wi
% ; ~ ~ ~ e ~N
t;e dlago;al élements ro(j)’ rW(j)’ COST(j): 51nw(j), aFi(j)’
b4

gF?(J)' EFi(J)’ gFC{(J) (;im'h...:n): and r‘l’(j) ’(,j:’O,...sn).

According to the boundary conditions, the shell edges will either
belong to R, if they are loaded by external forces p?@(k):
pf§(k) and bending moments pMy (k=Oyn), or to R, if slopes
and displacements are restricted. Depending upon the boundary
condtions the matrices E1,W’ E1,;’ E?,W’ E7,§ are obtained by
modification of the matrices

1 h 0,5
1 05 055
E,‘ = . and E.? = ¢se s80 oo
1 0:5 0,5
L 1 05
=l [ J

For the solution of the collapse load problem in the form (7)
or (9) various optimization techniques for linear programming
are available.

The coefficient matrix will be formed very easilys because only
a few of the matrix elements differs from zero.
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Besides the collapse load intensity, the field of displacements
and internal forces in the plastified zones are found without
any additional computations. This is a eertain advantage in
comparison to methods, where the unknown functions are repre-
sented in form of series.

As the static and kinematic formulstions are dual to each other
the same collapse load intensity will bte obtained. Therefore,
it is not possible to characterize the results as upper or
lower bound solutions without additional considerations.

The method described in this paper was used for the investigation
into reinforced concrete cylindrical shells under various

loading conditions. The calculations were carried out by an
electronic computer of the type ROBOTRON 3005
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SUMMARY OF DISCUSSION - SESSION 4

Due to shortage of time there were only five discussions - from G. Mehlhorn,
A.M.A., Da Fonesca, T. Kawai and E. Anderheggen. The main point of discussion
was on whether the current FEM can be applied to the analysis of nonlinear be-
haviour of reinforced concrete. G. Mehlhorn pointed out that there were many
examples which had shown the applicability of FEM to these problems.

T. Kawai explained his unique idea which is described below in detail.

1. Slip is the essential source of plastic deformation

The influence of slip may be neglected if it is uniformly distributed. However,
it usually appears discontinuously. Even in this case current plastic theory
reguires the continuity of displacement. Therefore, it should be said that the
current FEM, which is based on continuum mechanic¢s, cannot follow the non-
linear behaviour of soclid materials until failure.

2. Constitutive equations should be essentially investigated

It is guite easy to point out the examples which indicate that the elasto-
plastic deformation field obtained from the mathematical theory of plasticity
does not coincide with that obtained from the experimental result.

It may be extremely difficult to draw failure criteria from the stress strain
relationship obtained from the test of materials since this represents the
average. The true stress strain relationships or failure criteria can be
obtained from simulative analysis based on a model such as Kawai's Model.

3. Existence of so-called Large Scale Yielding is questionable

As the plastic deformation increases, slips inevitably appear discreetly, and
the rigid body movement along the slip lines becomes distinguished while the
strain itself does not change substantially.

H. OKAMURA

29/19
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