Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 29 (1979)

Artikel: Punching shear failure of hollow concrete spheres
Autor: Morley, C.T.
DOl: https://doi.org/10.5169/seals-23549

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-23549
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

167

Punching Shear Failure of Hollow Concrete Spheres
Poingconnement d’une cogue sphérique en béton

Durchstanzversagen von Kugelschalen aus Beton

C.T. MORLEY

Lecturer

University of Cambridge
Cambridge, England

SUMMARY

The paper extends the plastic theory of punching shear failure to treat hollow concrete spheres.
Graphs showing the theoretical predictions are presented, and some comparisons are made with
experimental resutts for cylinders under concentrated radial loads.

RESUME

L'analyse plastique du poinconnement est appliquée a une coque sphérique. Les résultats théoriques
sont présentés graphiquement et quelques comparaisons sont faites avec des résultats expérimentaux
obtenus pour des cylindres soumis a une force concentrée radiale.

ZUSAMMENFASSUNG

Die plastische Berechnung des Durchstanzversagens wird auf den Fall von Kuge!schalen aus Beton
ausgedehnt. Die theoretischen Voraussagen werden in graphischer Form dargestellt. Einige Vergleiche
werden gemacht mit Ergebnissen von Versuchen an Zylindern, die durch in radialer Richtung wirken-
de Einzellasten belastet wurden.
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1, INTRODUCTION

The purpose of this brief note is to extend to hollow concrete spheres the
plastic theory of punching shear failure presented by Braestrup [1] for flat
slabs. In slabs with zero tensile strength the optimum failure surface
extends right out to the support, giving low failure loads, and it is necessary
to introduce a small non-zerc tensile strength in order to confine the failure
surface and produce reasonable results. In a spherical shell under a radial
point load the curvature of the shell will tend to confine the failure

surface in punching shear, and the plastic theory should predict reasonable
failure loads even if the concrete is assigned zero tensile strength, In
what follows the extended theory is presented, using Braestrup's notation as
far as possible, and some experimental results on cylinders are reported.

2. BASIC ASSUMPTIONS

A concrete spherical shell or dome of thickness h and internal radius R is
assumed to be loaded by an inward radial force P applied to a rigid disc of
diameter d_, as shown in Fig.1l. The shell is supported well away from the
region of interest. In a punching shear failure a rigid axisymmetric plug
of concrete defined by a '"failure surface' with generatrix AB is assumed to
move inwards along the axis of P relative to the rest of the shell, The
concrete is taken to be a rigid perfectly plastic material whose yield
condition is the modified Coulomb failure criterion with angle of internal
friction ¢ and zero tensile strength, Deformations are governed by the
associated flow rule of plasticity theory (the normality condition),

rigid disc
diameter do

Fig. 1 A punching shear
failure.

R failure
surface

Following Braestrup, an upper bound on the failure value of P is found by
writing the work equation for failure on an assumed surface, and the

optimum failure surface giving the least upper bound is found by the calculus
of variations. Since displacement is along the P axis hoop strains are zero
everywhere and the concrete is in plane strain in planes containing the

P axis: the appropriate yield locus is Fig.5(b) of Braestrup's paper, with

f, = 0. All deformation is assumed to occur in a narrow zome at the failure

surface, which is a surface of revolution defined by the generatrix r = r(x),
Fig.2.
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On writing the work equation, the upper bound on the failure load is given
by the equivalent of Braestrup's equation (9),

*2
P = wfc (/YT + (D)2 - ') dx (1)

o

where a dash indicates differentiation with respect to x. In contrast to

the situation in flat slabs, reinforcement running parallel to the curved shell
surfaces will be compressed in such a failure, and therefore contribute to the

energy dissipation. Here we ignore the contribution of such reinforcement, so

that equation (1) only gives the failure load for an unreinforced shell.

3. THE OPTIMUM FAILURE SURFACE

The problem now is to find the function r(x) which minimises the load P in
equation (1), subject to the condition dictated by the plane-strain yield
locus that

r' > tané (2)

The additional difficulty in the case of spheres is that the upper limit of
integration x5 is itself variable because of the curvature of the inner shell
surface.

We consider first the case when the minimising curve always has a slope greater
than tan¢. The minimising curve presumably has r continuous, but discontin-
uities in slope r' would seem to be permissible on physical grounds. However,
the Weierstrass-Erdmann corner conditions (ref. 2. p.33) show that the
minimising curve for (1) will have continuous slope. According to the calculus
of variations (see eg Pars [2] or Irving and Mullineux [3], the minimising
curve r = r(x) will then satisfy the appropriate Euler equation, which for a
functional of the form IF(x,r,r')dx can be written
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oF d

Ay = (3)

On substituting from (1) this reduces to

1+ (£MD2-r.r'' = 0 (&)
whose solution may be written

r = a cosh (% + b) (5)
where a and b are constants,

The upper limit of integration X, is variable but the failure surface must
end on the inner shell surface r = ro(x). In these circumstances the optimis-
ing function r(x) must satisfy the so—called 'transversality condition’.

F+(ry-1) o5, =0 (6)

at the upper limit x = x, (ref.2 p.96, ref. 3 p.362), From (1) and (6)
e =+ ATEY @
which reduces, using (5), to
r) = exp (% + b) (8)
at x = x,,

It turns out that in many cases the catenary curve satisfying (5) and (8) and
passing through the edge (O, d°/2) of the loaded area violates condition (2)
near x = 0. The portion of the optimising generatrix near x = 0 will then
be a straight line of slope tan¢, so that part of the failure surface is
conical. Consideration of a series of catenaries satisfying (5) and (8) and
passing through different points on this straight line then shows that the
optimising generatrix is tangent at some point X = x; to this line. This may
be confirmed by considering an analogy with a heavy string, and a numerical
investigation shows that the stationary value found for the integral (1) is
indeed a minimum.

We then obtain, independently of R/h, if a is positive,

d
X] = a cosec¢ - 7;— cot ¢))
and b = sinh-1 (tang) - x1/a (10)

The equation r = r,(x) for the inner circle may be written

rz2 =R2 ~ (B - X2)2 (lll

where £ is a known constant. This may be combined with (5) and (8) to give
a = 2(B - x,) [1 - (8- x,)%/R?] (12)
Equations (9), (10) and (12) give the important parameters xj, b and a in

terms of the upper limit x,, for which an equation can be found by combining
these and the transversality condition (8) to give
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B - xp ; 2x, + dg cotd
= (B - xg)2 - oXP { sinh™" (tand)-cosecd + ST = () Z/R?]

} (13)

This equation for x., may be solved by iteration or by a graphical method.
The possibility of obtaining numerical solutions by this approach was pointed
out to me by P. R. Hunter.

Once the optimal failure surface has been found the corresponding failure
load is obtained from equation (1) which becomes

X
LA - = B (e, -
wfc - (secd - tang) == (d  + x;tand) + 5 (xp - x1)

a? = x2
+ 5 lLexp (—2<-51- + b)) ~ exp(-2(= + b))] (14)

4. SOME TYPICAL SOLUTIONS

The optimising curves r(x) for the case R = 6h and various punch diameters are
plotted in Fig. 3, for the same angle of friction as used by Braestrup,

tany¢ = 3/4. Notice that an appreciable proportion of the failure surface

is conical even for d, = O, and that this proportion increases as the punch
diameter increases until the optimal failure surface becomes entirely conical
for dy/h greater than about 3.3.

maximum punch diameter for
P which a punching shear failure
is possible.

limit o
conical region
Rh=6 '

Fig. 3 Optimising curves for various punch diameters.

If the loaded area is large enough a punching shear failure is impossible
because the cone with slope tané = 3/4 never intersects the inner surface of
the shell. In these circumstances some other failure mode must intervene,
presumably some form of bending failure. For punch diameters of practical
interest, if the shell curvature is less marked, say R/h greater than about 10,
the proportion of the optimal failure surface which is conical reduces as

d,/h increases, as in Braestrup's Fig. 8.
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Some calculated failure loads are plotted in Fig. 4, which shows the dimension-

less measure of fajlure load P/uf h(do + 2h) used by Braestrup as a funetion
of the shell curvature R/h for difrerlnt punch diameters do/h. The increase

of punching shear strength with shell curvature is clear.
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Fig.4 Theoretical failure load against curvature for a spherical shell,
5. SOME EXPERIMENTAL RESULTS ON CYLINDERS.

Some preliminary tests on concrete cylinders under concentrated radial load
have recently been carried out in Cambridge by P, R, Hunter. The specimens
were lengths of commercial spun-concrete sewer pipe, which were provided

with diaphragms cast in situ and were supported on the laboratory flecor all
along a generator. The wall thickness was approximately 40 mm and the internal
radius approximately 150 mm, The pipes had only nominal reinforcement, and
small diameter cores drilled from them gave mean estimated cube strengths of
70.5 N/mm® for pipe 1, 57.5 N/mm® for pipe 2.

The pipes were loaded radially inwards through square steel plates cemented
on to the concrete surface. Plates of various sizes were used, and in some
cases pipes were retested with larger plates placed over the hole left by a
previous test to failure. Various bending cracks developed during the tests,
but in all cases failure occurred by punching out of a plug of concrete,
square at the outer surface to match the steel loading plate. In the longit-
udinal cylinder direction the failure pieces were elongated as shown in
Braestrup's Fig. 9, with the failure surface in some cases reaching to the
nearest diaphragm. The failure pieces were much shorter in the hoop direction,
as the present theory predicts, often with a steep failure surface close to
the loading plate, corresponding to the predicted conical part of the failure
surface,
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Since the tests were on bought-in specimens the results were inevitably rather
scattered, but some dimensionless failure loads are plotted in Fig. 5 against
equivalent punch diameter. Also shown is the curve for a flat slab (R/h =+ =)
of concrete with a tensile strength £, of f./400, from Braestrup’s Fig. 10.
The upper theoretical curves in Fig, 5 show the prediction of the theory for
spherical shells having f; = O and R/h = 4 and R/h = 6 respectively. For all
the theoretical curves the yield strength £, in compression is taken as 0.6
times the measured cube strength fcu'

'}
OI5}—

sphericat shell
theory: R/h= 4

Tests by Hunter [cylinder R/h = 4)
Failure load ® on undamaged pipe
B x retest on damaged pipe
7 1.uh {dg+2h) Tests quoted by Hess et.al [4]
010 (cylinder R/h2251) a

0-05/— X

Fiagt slab : f, = 1. /400

Fig. 5 Experimental results on cylinders in punching shear.

Also shown on the figure are some experimental results quoted by Hess [4] for
cylinders with R/h = 5.1, taking the measured cylinder strength as 807Z of the
cube strength. These shells had about 1.6% of steel in the hoop direction.

One would expect the test results for cylinders to lie between the predictions
for a sphere and a flat plate. This seems to be roughly true for small punch
diameters, but the Cambridge results for larger punch diameters seem rather to
follow the flat-plate predictions. Perhaps the large lateral compressive forces
which should accompany the theoretical localised punching failure cannot easily
be provided in a cylinder for large punch diameters, so that the failure mode

is not pure punching but involves some bending. Clearly, more extended compari-
son of the theory with test results for spheresand cylinders is desirable.
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6. CONCLUSIONS

A simple extension has been made to Braestrup's plastic theory of punching
shear in flat slabs,to enable spherical shells with zero tensile strength to
be treated., The theory predicts a substantial increase in failure load with
shell curvature, but this increase is not very apparent in the results of the
preliminary tests on cylindrical shells,
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