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Circular Slabs with Limited Plastic Flow Capacity
Dalles circulaires a capacité d'écoulement plastique limitée

Kreisplatten mit begrenzter plastischer Verformbarkeit

K. SONODA

Professor of Civil Engineering
Osaka City University

Osaka, Japan

SUMMARY :

A method of elasto-plastic analysis for reinforced concrete circular slabs with a limited plastic rotation
capacity is presented. The procedure used is numerical, but analytical elastic solutions already known
are utilized as much as possible here. Examples show the relationships between ultimate bending
strengths and plastic flow abilities for such slabs.

RESUME

Une méthode d’analyse élasto-plastique est présentée pour des dalles circulaires en béton armé et a
capacité de rotation plastique limitée. I! s'agit d’une méthode numérique, mais des solutions analytiques
connues pour des plaques élastiques sont utilisées autant que possible. Les relations entre la résistance
ultime & la flexion et la capacité de rotation plastique sont illustrées par quelques exemples.

ZUSAMMENFASSUNG

Eine Methode zur elastisch-plastischen Berechnung von Kreisplatten aus Stahlbeton mit einer begrenz-
ten plastischen Rotationsfahigkeit wird dargestellt. Das verwendete Verfahren ist numerisch, doch wird
soweit wie moglich auf bekannte analytische Ldsungen fir elastische Platten zurlckgegriffen. Mit
Beispielen werden die Beziehungen zwischen den Biegebruchlasten und der plastischen Verformbarkeit
solcher Platten erlautert.
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1. INTRODUCTION

The classical plastic design method has been developed on the assumption

that a structural material or element consists of a perfectly plastic sub-
stance which can flow plastically under a constant yield stress until a whole
or a part of structure becomes unstable by forming a collapse mechanism. The
plastic flow capacity of a concrete being a significant structural material,
however, is not unlimited. It is well known that the stress-strain curve of

a concrete undergoing a uniaxial compression rises to a strain of about 0.25%
and afterward falls gradually to a strain of about 0,35% when a crushing fail-
ure occurs, Then, the maximum plastic strain can not be anticipated to exceed
0.3% in uniaxial compression.

On the other hand, the plastic rotation capacity of a reinforced concrete
beam is predominated by the plastic extension of the reinforcing steel bars
when its reinforcement is very small but by the plastic contraction of the
concrete when the reinforcement is rather large. Hence, the plastic rotation
capacity becomes smaller as a reinforcing steel ratio becomes larger.

A similar circumstance is naturally supposed to exist in a reinforced concrete
slab. This paper is intended to investigate on the effect of the limited plas-
tic flow capacity on the ultimate load carrying capacity for a reinforced con-
crete circular slab. The rectangular yield curve in the bending moment plane
is used here as the initial plastic flow condition of the slab-section, and
the subsequent yield curves in an unstable plastic region after a considerable
plastic flow are determined according to a piecewise linear strain softening
theory. The stress-rate versus strain-rate relations in both stable and un-
stable plastic regions are derived by using the associated flow rule of the
plasticity, and consequently the fundamental differential equation concerning
load-rate and deflection-rate is obtained.

On the other hand, this paper also presents a new method for the numerical
solution of the fundamental differential equation, which is different from the
well-known finite element method and finite difference one. The method is
developed under the idea that the effect of plastic flow can be replaced with
an addition of the self-equilibrating virtual loads resulting from the devi-
atoric part from the moment distribution given by the linear elastic solution,
and the elasto-plastic solution, therefore, can be given by the superposition
of the elastic solutions for both the actual and the virtual load distribu-
tions.

2. DEFLECTION-RATE EQUATION

A circular slab subjected to axially symmetric loads is dealt with here.
Idealizing the moment-curvature relation of the slab section, the curve in-
cluding linear elastic, perfectly plastic and strain softening parts will be
obtained as Fig. 1. Assuming a rectangular yield curve which is based upon
the shear fracture of concrete by the Mohr-Coulomb's theory and the tensile
plastic flow of steel bars and, using the normality law on plastic strain-
rates postulated by A.C.Palmer et al. [1], the loading surfaces after a plas-
tic flow are supposed as Fig. 2. Namely, when yielding at the line A B, the
yield surface diminishes to A'B', A"B", *e*vse+ and when yielding at the
line A C, to E'C', E"C", *++*+e+, and when yielding at the cornmer A, to D',
D", s+<++++_ Hence, the expression of the loading function can be written as

max [ I Mr | - Mor(er) . | MG I - MOG(ee) 1=0 (1)
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where M , M, ,M (e ), and M .(e,) are radial and circumferential moments

r’ e % or r 08 g ; .
and those bending strengths in the polar coordinates ( r, 8 ), respectively
and e_ and e, are parameters representing plastic curvatures. The Hooke's law
and the assoéiated flow rule of the plasticity give the following relations of
moment-rates and curvature-rates :

M 1V Kk - du_+d3F_/3M
T =D ‘r T r r (2)
v 1 Ky = due'aFe/BMe

M

where V = Poisson's ratio, D = flexural rigidity, K s K, = curvature-rates,
. . . T 3]
and dur, due = plastic flow coefficients ; and

Fr = I Mr l - Mor(er) ? Fe = | MB I - Moe(ee) }

Mor(er) = Mor - Br B r Moe(ee) = Moe - 89 B € >

t t
®r ,fo dur » 8 IO d“e ’
ghere_B , B strain softening rates which may be related to the coefficient
B/(1-B f indicated in Fig. 1. The plastic flow coefficients are expressed as
follows :

for the corners A, D', D", seveess .

2 -
{dur}= 1 [1-59-v —vse ]{Kr}.(3)
2 ANY 2
dUG (l = Br) (1 - Be) -V _\)Br 1 - Br -V Ke

for the lines A B, A'B', A"B",esccess

Fg =0, dy, = (Ke + VKr)/(l = Be), du,. =0 (4)
for the lines A C, E'C', E"C", sscccce

F.=0, du_ = (Kr + ukg) /(1 - B), dug = 0 (5)

and the expressions for the other lines and corners will easily be obtained by
exchanging appropriately the signs of the coefficients in the above expressions.
Eqs. (3), (4), (5) and others will be represented for simplification as

du, = 99K, + 915K

. . (6)
dUg = B3k, + 9225
Using the relation between curvature-rates and deflection-rate in an axially

symmetric bending, namely

K
T

- 3% /ar”

. (7
- dw/ror

K
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and substituting Eq. (2) into the following equilibrium equation :

32Mr 12 . . .
;;E— +-?-§;'(2Mr = Me) = = p(r) (8)

where p(r) = a load-rate distribution, the fundamental differential equa-
tion about deflection-rate can be derived as follows :

(Lavik )0 i iR,
where .
% = (419, + Vb, 0, >—2i—‘§+ (9yp8, + Voyody ) i g¥ \
% - [ - Vg b, + @V - 1)¢>21¢b] —z—% + , (10)
+ [(2 - V¢, + 2V - 1)¢22¢b] ’%’%% |
in which 6, = OF_/aM_ and b, = 3F /M,

The second and the third terms in the right side of Eq. (9) mean the addi-
tion of the self-equilibrating virtual load-rate distributions resulting from
a deviatoric part from a linear elastic moment distribution, namely the moment
redistributions due to plastic flow.

3. METHOD OF SOLUTION

The differential operator of the left side in Eq. (9) is the same as an elas-
tic problem, and the unknown moment-rate redistributions (X X,) in a plas-
tic region, therefore, are determined by the solution of the fo%low1ng simul-
taneous integro-differential equation :

||-*

2
[( b1, + Vo, 0, ) ¥ (B0, + Vbt ) 2—] X

r
2
i 3" s = 193 . —
% [Pwo +'/I;p BEZXIW(I’E)dE + ‘/R.p 'g-é'gxzw(r,g)dg

X
—Dl (11)

| DR R |
[

+ (2 - V)¢12¢a + (2\) - 1)¢22¢b

or
19
?a_} X
X

B 2
X _f)wo + ‘/Rvp 2(—;2 1W(]:' E)YdE + f T atE}(zmir(].',«*",')dé] ="D—2' 12)
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where p = an actual load-rate intensity, w_ = the elastic solution for the
actual load-rate distribution with the uni? intensity, W(r,&) = the elastic
solution for a circular line load with the unit intensity at the position r
= £ within a plastic region, and RP = the plastic region.

Now consider a method of numerical solution for Eqs. (11) and (12). Dividing
the radial region of a circular slab by a net of sufficiently fine meshes and
considering the case when only the part of one mesh becomes of plasticity,
the distributions of the X. and X within the mesh may be assumed to comnsist
of the continuous three parabolic”curves as shown in Fig. 3, because equi-
librium conditions require that both the moment redistributions and their
first derivatives related to shearing forces must be continuous within a whole
plastic region and at an elastic-plastic boundary. Thus the virtual load-rate
distributions being equivalent to these moment-rate redistributions are given
from Eq. (9) as Fig. 3, which are naturally self-equilibrating. When a region
including a number of meshes is plasticized, therefore, the deflection-rate
_of the slab is obtained by the superposition of the elastic solutions for
both the actual load-rate distributions and the virtual load-rate ones men-
tioned above. Namely,

2 3w W AW
_ 0w _ . o 1i . 2i (13)
Kg: = 75 TP 3 2152 23221 2
or ar or r
. __}_ﬁz_gawo_zz 1 v, 1 BWZi
5  r or r 9r 11 r, or 21 r, Br

where W., and W,, represent the elastic deflections due to the virtual load-
rate dls%rlbutlo%s with the unit intensity, Z..=1and Z,, = 1, at the mesh
point, i, which will easily be obtained by thelintegrationlof the solution for
a circular line load given by the well-known literatures, e.g., Timoshenko's
book [2], and the summation is executed over all meshes in plastic regioms.
SubstltuEing the rate—equation (13) into Eq. (10) and using the relations, Z

4% /AT and Z.. = 4X /[Ar(Zr -Ap)], shown in Fig. 3, a simultaneous equation
abou% the unknow%s, Z . s Z R ii = 1,2,*++¢++«  are obtained,and the substi-
tution of its solutionl into Eq. (13) consequently determines the deflection-
rate and the curvature-rates resulting from the actual load-rate, p. Finally,
the total deflection, the total curvatures, and the total moments are obtain-
ed from the integration of Eqs. (13) and (2) by making use of the forward dif-
ference method of sufficiently short intervals about load increment or central
deflection-increment, which may be familiar in the elasto-plastic numerical
analysis for a solid [3].

4. RELATIONSHIP BETWEEN PLASTIC FLOW CAPACITIES AND ULTIMATE BENDING STRENGTHS

Numerical calculations for the load versus central deflection curves for cir-
cular slabs subjected to partially or entirely uniform loads are carried out
by setting the following material constants :

yield stress of steel, fS = 275 N/mmz; compressive strength of concrete,
B = 27.5 N/mmz; secant modulus of elasticity of concrete, E, = 1.4 x 10
N/mm?; reinforcing steel ratio, p=0.008; v=1/6; d/a = 0.1, d = ef-
fectlve depth a = radius; strain softening ratesg, B, = Bg = E/(I—B);

D = E. d3/12(1-v%); M_/E.d? = M _o/Ec d2 = M_/E.d? = 1.5 x 1077( isotropic
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reinforcements )3 and F% = fsd2p~(l - 3p-f5/4fc) H
and by taking the 1l dividing net points along the radius.

Fig. 4 shows the relationships between the plastic flow ability and the ulti-

mate load in which K = limit elastic curvature, Ge(=dK ) = a standardized
rotation at the builf-in edge, K = limit plastic CUrvagure, 9 = limit plas-
tic rotation at the built-in edgg, and P/P = the ratio of thePultimate load

of the slab to that of the perfectly plastgc slab. On the curves for the
clamped slabs in Fig. 4, the dotted lines indicate that the limitation of
plastic rotation at the built-in edge is more dominant than that of plastic
curvature at the center for reducing their ultimate loads. From the figure it
can be observed that the influence of plastic flow ability upon the ultimate
load carrying capacities becomes larger as the loaded area becomes smaller.
Figs. 5 and 6 indicate the relationship between the magnitude of plastic
curvature or rotation and the load versus deflection curves obtained for the
uniformly loaded slabs, and Fig. 7 shows the variations of moment distributions
along the radius for the simply supported and uniformly loaded slab with a =
0.25 and B = 0.1, in which the numerals within circles indicate the corre-
spondence to those in Fig. 5. It can be seen that the load versus deflection
curves for the clamped slab are sensitively influenced by a limit rotation
capacity in the built-in edge, and after the built-in edge plastically fails,

they follow those for the simply supported slabs.

5. CONCLUSIONS

An elasto-plastic analysis for reinforced concrete circular slabs with limit-
ed plastic curvature or rotation abilities due to the restriction of com-
pressive plastic flow of concrete has been carried out by using the associated
plastic flow rule of the plasticity which is related to the loading functions
considering a strain softening effect. Here, a fundamental differential equa-
tion concerning load-rate and deflection-rate has been derived, and a new
solution method being different from the finite difference method for this
equation has been presented, in which elastic analytical solutions previously
known can be utilized as possible. Numerical calculations have revealed the
relationships between the load carrying capacities and the plastic flow
abilities for reinforced concrete circular slabs with typical material
constants.

ﬁf
Mos E ' E AT&
A B T
M
) PN — . g- "
. A - RS RS S - —_
Mo . :Dn rg
M 1
= oy P My
—Mor ' Mor
b
] 1
| i
)
1 1
i I
i I
i 1
Y = P 1
(] Ke Ka+Kp K —Mos c” C' C

Fig. 1 Idealized Moment-curvature Curve, Fig. 2 Loading surfaces.



K. SONODA

151

my *ii———w

b3
m ms
| L.
i-1| i+l
LArJ Ar Ar_t
2 2 2 2
_..gi
m =22 (g gy ar)?
Ap?

my= 220 (g gy - o )2
ar?

7N |

%
RN
1’ - I

-1 £+1
| ar Lo { e | or |
52 !

—_, —-

T

my = Xd {20 £ gy )2 ¢ Ar2 )

Arl
i=1,2
o AT ;
= 1 n —_— = Z_.
=21 2 _ |anter, - Ar) 21
7.
r

Ar | Ar | a2 | ar | ar?
z 2 | 2 2
éi——-
ny= -2 (BB g
Ar? E
ng= e (P g
ar? £

ar? g

S (&

i+7
n3
e | o E_LAP_J
2 2 2 2

Fig. 3 Moment Redistributions and Virtual Load
Distributions Corresponding to Them.

i p=1.0 »=05 p=0.3 p=0.1
P
~ P=prc?
1
dy VEYTITITY
Plede o
p=c/o , d/a=01
L 1 1 1 1
0 2 4 6 8 10 12 Kp/Ke
nl=0.5 f=1'0 7=0.3
e L1021
= e
/ |t P=prec?
/ d
lecrle— a —
p=csa , d/a=].}
P I 1 1 1
0 2 4 6§ 8 10 12 Kp/Ke
M M or 9p/dKe
ol .
o L Mo jl
2 2
ho—— Kp j————— ep —
o
i —K g )

Fig. 4 Relationships Between Ultimate Loads and
Limit Plastic Curvature or Limit Plastic

Rotation.



152

Il — CIRCULAR SLABS WITH A LIMITED FLOW CAPACITY

6.0 .
6-00 |
/(:_T:’—
n ) S NO
- - o AN
‘o 30 @ & = .05 x 40 P 000‘ % °T
= @ e ot o X
& 20 © > = % i
< M ! E M
= Mo I8 hetan'D 20 / Mo T i-tan'(02D4)
10 - Aaril( A0
il iptan (=x)
o Kl ke LS 0 | 6. o (rad.}
0 0.05 0.10 095 Woee/d o 0.05 0.10 015 Waax Al

Fig. 5 Load-deflection Curves

Fig. 6 Load-deflection Curves

for the Simply Supported

for the Clamped Slab
Slab under a Uniform Load,

under a Uniform Load.

Where o = 0.25 is set.
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Fig. 7 Variations of Bending Moments along the Radius

for the Simply Supported and Uniformly Loaded
Slab with o = 0.25 and B = 0.1 in Fig. 5.
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