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Complete Limit Analysis Solutions and Yield Line Theory
La solution exacte de |'analyse limite et 1a théorie des lignes de rupture

Vollstdndige Ldsungen nach Traglastverfahren und Fliessgelenklinientheorie

J. SOKQL-SUPEL A. SAWCZUK

Research Associate Professor of Structural Mechanics
Polish Academy of Sciences Polish Academy of Sciences
Warsaw, Poland Warsaw, Poland

SUMMARY

Yield line theory solutions for a circular plate subjected to point loads are compared with the exact
solutions obtained by integration of the plastic plate equations for parabolic stress regimes. Differences
between the approaches are discussed,

RESUME

Des solutions obtenues selon la théorie des lignes de rupture pour une plague circulaire soumise aux
forces concentrées sont comparées avec la solution exacte provenant de l'intégration des équations

des plagues plastiques en régime parabolique. Les différences entre ces deux méthodes sont présentées.

ZUSAMMENFASSUNG

Fliessgelenklinienidsungen fur eine Kreisplatte unter Einzellasten werden mit den vollstandigen Losun-
gen verglichen, welche durch Integration der flr parabolische Spannungsfelder plastischer Platten
geltender Gleichungen erhalten werden. Unterschiede zwischen den beiden Betrachtungsweisen werden
erortert.
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1. INTRODUCTION

For plates obeying the Johansen yield criterion the complete 1limit
analysis solutions are available in several cases, [1]. This cri-
terion is usually employed in the yield line theory to obtain an
upper bound to the collapse load since the respective calculations
concern solely the mechanism of motion under the limit load, [2].

We intend to show on a simple example similarities and differences
between the yield line theory solutions and those which give for
the Johansen criterion the full information about the collapse load,
the collapse mode, and the stress field at collapse, [4], [5]-

For the maximum principal moment yield criterion the complete sol-
utions can be obtained for various cases of loading of simply sup-
ported plates. A perfectly plastic plate whenever it goes plastic,
is totally or partially in the parabolic, isotropic or hyperbolic
stress regime or its stress field remains below the yield point,
whenever the respective part of the plate remains rigid [4]. The
type of stress regime depends on the equation of the yield surface

(51, {6]-

Stress discontinuities_may occur_across the line separating differ-
ent stress regimes, £4], fS], [7]. Discontinuities of the tangent
to the deflected surface are admitted by the maximum principal

moment yield criterion. This property is used in the yield line the-
ory to generate collapse mechanisms with hinge lines, [2], [8], [9].

The complete solution of a 1limit analysis problem for a plate con-

sigsts in finding the collapse load intensity and the associated

field of moments and shear forces satisfying

~ the internal equilibrium requirements and the prescribed stress
boundary conditions

- not violating the yield condition

The complete solution also contains

- the displacement velocity field specifying a kinematically admiss-
ible collapse mechanism associated with positive energy dissipa-
tion at the plate collapse, [4].

Complete solutions may differ from the results obtained employing
the yield line theory both in the collapse load multiplier and in
the yield pattern because of the difference in the set of equations
used., A yield line solution does not specify the stress field in
the plate at collapse as it disregards the differential equations
of equilibrium, which are taken into account in any complete sol-
ution. It is known that the yield line theory gives upper bounds to
the collapse load. In the yield line theory any collapse mode con-
sists of developable surfaces which, in fact, correspond to para-
bolic stress regimes of the method giving complete solutions, [3], [4).

A circular simply supported plate subjected to two point loads fur-

nishes the case when the yield line theory results differ in com-
parison with the complete solution.

2. GENERALITIES

We consider a perfectly plastic plate, isotropic both in "positive"
and "negative" bending, with the yield moments M, and Mé respect-
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ively. We shall refer the field variables either to the cartesian
or to the polar coordinate systems.

The comparison of the exact and yield line solutions will be made
for a simply supported plate, Fig. 1a. The point loads Q, and Q
are applied at the equal distances A from the plate centgr. The2
following dimensionless quantities will be used.

r A a
g=—"' a=—" ) AY
A=—2-7 - —> N
M R e
o Z :
M. T.R 7 !!b‘
o; = L » t, = ——— 7 S
M 1 M /4 parabolic \
0 o / 81 PR \
i=x,y, Xy, T, o ’ r8(2.2) 82 \
Q, % ' L8l 8
S e B O N X

where W, M., T. denote the deflection velocity, the bending moments
and the shdar forces respectively whereas R stands for the refer-
ence length which equals to the plate radius.

Moreover,

q = (1 +0{) a4 (2.4)
denotes the dimensionless total collapse load of the plate. The Q.
Q4,0 9o, will stand for dimensionless limit loads corresponding to

yield line theory solutions. The ratio of the deflection velocities
of the points of load application, Fig. 1b, is B = w2/w1.

4

The maximum principal moment yield condition of the Johansen cri-
terion represents a square yield locus in the plane of principal

bending moments

m,=m m,+m, _ m,+m
21:12+1=O, 1:12:A=0 (2_5)

2 2 2 2
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or a pair of intersecting cones in the moment space m

x’ Ty’ mxy

3. COMPLETE SOLUTION

The complete solution of the considered plate under the criterion
(2.5) consists of the parabolic zones 5CS'0O, and S'BSO, joined by
the isotropic regime SO1S 02. In the isotropic zone thg dimension-
less stress field is

me = m, = m, =mg =1, T, = ty =t =1tg=0 (3.1)

Thus any direction is principal and the zone caries no transverse
loading. The velocity field is arbitrary and is subjected to the

condition that the Gaussian curvature of the deflected surface is
non-negative there [3], [4].

In the parabolic zones SCS'0O, and S'BSO, the bending moments and
the shear forces expressed iﬂ the polar“coordinates with origin
each time at the point of loading, Fig. 1a, are respectively

azsinzg 1 1 (3 2)
My = 1 I TS Y o B L S — .
0 ’ o 1-a%5in°8@ r [0 1-2%51n°0

The velocity of deflection in a parabolic zone is bounded by a de-
velopable surface, [4]. For the point loading considered two coni-
cal surfaces SCS'O, and S'BSO, are obtained. The vertices of the
cones are at the pAints of thé load application, Fig. 1D.

Along the lines 0,5, 0,5, and symmetrically, discontinuities in the
radial moment appear, %s it can be seen when comparing the results
(3.1) and (3.2). Between the parabolic and the isotropic regimes on
the lines SO, and S0, in Fig. 1a, there is a continuous transition
of the circu&ferentigl derivative of the deflection velocity. The
triangular part AO O2 of the isotropic range rotates with respect
to the axis K-K, Fig. 1a, which is tangent to the plate boundary

at S. Geometrical considerations lead to the conclusion that the
flat element O 802 is tangent to the sectors of cones S0.3' and
S50..8'. The poiﬂts of load application have the vertical Jelocities
reEated as follows

Wy 1 - a cosg

B = o (3.3)

W, 1 + a cosd

The collapse loads are calculated considering the shear force along
a circumferential trajectory [4}, [7].

[(-¢) (-t)gae (3.4)
q = 2 -t ds = 2 - Boe
1= 2 ¢ ox .
and the results are respectively
2 sind
qq = [3T — arctan Y1-a° -—————-] (3.5)
1-a a+cos @

=0 if ¢  arccos a [ =97 if ¢ ) arccos a
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2 sing
q, = [ — arctan 1-a% ——— (3.6)
2 1-a a+cos¢d

The obtained parabolic solutions are valid for the following posi-
tions of the load application peoints

o(a\{kl/1 i\A (3.7)

where k = sec 8., 0.< 91/2, k =1, Bi> g7/2, i = 1,2. The angle
specifying the ﬁeet}ng point S of the parabelic regimes is given by
the equation

_ = arctan(V1—a2 : —§£33L)

a-coso

o= arctan(\ﬁ-az . Eino )

a+cos¢

o (3-8)‘

i T T T

In Fig. 2 this 90
angle is specified
in terms of the
ratio of the loads
applied. This
allows to derive
the shape of the 60°
central isotropic
zone for the given <,
¢ and the load ap-
plication point a.

(0N

(NS

The deflection

rates at the 30°
points of loading g
are not equal if

the loads are not

equal, o # 1. The

shape of the de-

flected surface

is indicated in 0*
Fig. 1b. It is

seen that for the 0 02 04 06 08 10
load ratio o = 1
is for any posi-

tion of the load- )
ing Sa=1- Fig. 2

At the point S a concentrated reaction appears, namely
5 2a sin¢
V = tanf, + tanfy, = (3.9)
L @ 1 = a20082¢

and the reaction on the bcundary is t =t + an /0s where m
denotes the twisting moment appearing aloﬁg the Simply support8§
edge.

4. YIELD LINE SOLUTION

To this end a kinematically admissible deformation mode is assumed
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first. For the considered plate and the loading the deflected sur-
face consists of conical elements —

Fig. 3. The zones S50.,S and S'OZS'
are sectors of cones with the
vertices at the points of load
application. The zone SKS cor-
responds to a cone with the
vertex on the plate boundary.
There is a ridge 010 on the
deflected surface, cgnsisting

of intersection of the cone SKS
with the symmetric one.

In the yield line theory, when
a continuous field of yield
lines is considered, the dis-
sipations due to the internal
forces is expressed as follows

Fig. 3
2 2 8
.D' = MOWOAIKG dA = Mowo{ 91-‘ 2[1 +(—g—) ] 486 - [%-]E:} (4.1)
or 9 y . . 0
D = MOWO{QJ 2[1 + (——Z-—)2J de -[(1 - -2—1) -;—]Bj .(4‘2)

respectively to the situations shown in Figs 42 and 4 b. The re-
sults concern the collapse mechanism of Fig. 3. The solution (4.1
concerns the cones with vertices at O, and O,, whereas (4.2), [10%,
gives the dissipations on the collapsé mode %n the form of a coni-
cal surface with its vertex on the plate boundary as shown in Fig.3.

For a given ratio of the loads a bound to the load carrying
capacity is

2 (1+«) 1-a siny

\/1 -a“ (C+O(D) { ° (ﬂ * aretan a=cosy

)+
V1-a2 siny 4a siny
+ D(arctan —_— J’ 0o 1 (4.3)
at+cosy 1=2

q, = min

a) q
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where C = 1 + a cos D=1-acosy .
and = 0 if arccgs’a<q)\< /2, =91 if y( arccos a

Another collapse mode consisting of conical parts SO1S and S'0,8'
joined by the cylindrical surfaces can be conceived. The vertiges

of the cones SKS' are . '

£L=1 q

at the infinity, [10]. 10
The respective results '
are in [11].

In Fig. 5 the collapse 100
load intensities are
shown for the con-
sidered collapse mode
as well as the exact

result. ~ 80
q
Fig. 5
60 ' -
0 02 04 06
5. COMPARISONS d -

Comparing the complete solution with the considered kinematical
solutions one can conclude that for the load ratio O (a ( 0.5

the differences between the solutions is of order of few per cent
only. The largest admissible excentricity for the studied complete
solution involving parabolic and isotropic regimes is for o« = 1,
Fig. 6. The results are given in the table. The considered kin-
ematically admissible collapse modes of the yield line theory and
the velocity field corresponding to the exact limit analysis sol-
ution of a rigid-perfectly plastic plate are compared in Fig. 7 at
a = 1 for the load excentricity a = 0.5,

The analysis of complete and kinematically admissible solutions of
the considered plate problem suggests that experiments should be
made regarding the existence of an isotropic zone as well as to its
extent, and regarding the data concerning the limit load and the
largest differences should appear for the load excentricity a = 0.7,
close to the limiting case of applicability of the parabolic-iso-
tropic solution. For «) VA 7(1+/\§ a hyperbolic zone must appear and
the exact sclution is not known. In the considered case of "layered
isotropy", A = 1, the hyperbolic zone appears for a ) 0.707.

The exact solution allows to assess the reaction distribution along

the support. A concentrated force V appears at the point S, where
two parabolic zones meet the isotropic¢ region.

Load carrying capacity q at o= 1

a exact yield line theory
0 6.283 6.283
0.5 9.674 10,170
0.7 13.141 14.760

Ackngwle@gement. The work is related to the joint research task on
application of the mechanics of plagtic structures in engineering



144 If —- COMPLETE LIMIT ANALYSIS AND YIELD LINE SOLUTIONS

Fig., 6
140 + /. 1
: .
0 0 QZ 0}. 06 0:8 10
120 | 1 2
041
w
a=07 06 |
100 + 3 |08
q 10
12
80 i G=0.5 i 1% F 4
16 1
a-Q : -
0 1 1 ] ]
d 0 2 04 05 08 10 Fig. 1

practice and operating between the Faculte Polytechnique de Mons
and the Institute of Fundamental Technological Research, Warsaw,
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Circular Slabs with Limited Plastic Flow Capacity
Dalles circulaires a capacité d'écoulement plastique limitée

Kreisplatten mit begrenzter plastischer Verformbarkeit

K. SONODA

Professor of Civil Engineering
Osaka City University

Osaka, Japan

SUMMARY :

A method of elasto-plastic analysis for reinforced concrete circular slabs with a limited plastic rotation
capacity is presented. The procedure used is numerical, but analytical elastic solutions already known
are utilized as much as possible here. Examples show the relationships between ultimate bending
strengths and plastic flow abilities for such slabs.

RESUME

Une méthode d’analyse élasto-plastique est présentée pour des dalles circulaires en béton armé et a
capacité de rotation plastique limitée. I! s'agit d’une méthode numérique, mais des solutions analytiques
connues pour des plaques élastiques sont utilisées autant que possible. Les relations entre la résistance
ultime & la flexion et la capacité de rotation plastique sont illustrées par quelques exemples.

ZUSAMMENFASSUNG

Eine Methode zur elastisch-plastischen Berechnung von Kreisplatten aus Stahlbeton mit einer begrenz-
ten plastischen Rotationsfahigkeit wird dargestellt. Das verwendete Verfahren ist numerisch, doch wird
soweit wie moglich auf bekannte analytische Ldsungen fir elastische Platten zurlckgegriffen. Mit
Beispielen werden die Beziehungen zwischen den Biegebruchlasten und der plastischen Verformbarkeit
solcher Platten erlautert.



146 I — CIRCULAR SLABS WITH A LIMITED FLOW CAPACITY

1. INTRODUCTION

The classical plastic design method has been developed on the assumption

that a structural material or element consists of a perfectly plastic sub-
stance which can flow plastically under a constant yield stress until a whole
or a part of structure becomes unstable by forming a collapse mechanism. The
plastic flow capacity of a concrete being a significant structural material,
however, is not unlimited. It is well known that the stress-strain curve of

a concrete undergoing a uniaxial compression rises to a strain of about 0.25%
and afterward falls gradually to a strain of about 0,35% when a crushing fail-
ure occurs, Then, the maximum plastic strain can not be anticipated to exceed
0.3% in uniaxial compression.

On the other hand, the plastic rotation capacity of a reinforced concrete
beam is predominated by the plastic extension of the reinforcing steel bars
when its reinforcement is very small but by the plastic contraction of the
concrete when the reinforcement is rather large. Hence, the plastic rotation
capacity becomes smaller as a reinforcing steel ratio becomes larger.

A similar circumstance is naturally supposed to exist in a reinforced concrete
slab. This paper is intended to investigate on the effect of the limited plas-
tic flow capacity on the ultimate load carrying capacity for a reinforced con-
crete circular slab. The rectangular yield curve in the bending moment plane
is used here as the initial plastic flow condition of the slab-section, and
the subsequent yield curves in an unstable plastic region after a considerable
plastic flow are determined according to a piecewise linear strain softening
theory. The stress-rate versus strain-rate relations in both stable and un-
stable plastic regions are derived by using the associated flow rule of the
plasticity, and consequently the fundamental differential equation concerning
load-rate and deflection-rate is obtained.

On the other hand, this paper also presents a new method for the numerical
solution of the fundamental differential equation, which is different from the
well-known finite element method and finite difference one. The method is
developed under the idea that the effect of plastic flow can be replaced with
an addition of the self-equilibrating virtual loads resulting from the devi-
atoric part from the moment distribution given by the linear elastic solution,
and the elasto-plastic solution, therefore, can be given by the superposition
of the elastic solutions for both the actual and the virtual load distribu-
tions.

2. DEFLECTION-RATE EQUATION

A circular slab subjected to axially symmetric loads is dealt with here.
Idealizing the moment-curvature relation of the slab section, the curve in-
cluding linear elastic, perfectly plastic and strain softening parts will be
obtained as Fig. 1. Assuming a rectangular yield curve which is based upon
the shear fracture of concrete by the Mohr-Coulomb's theory and the tensile
plastic flow of steel bars and, using the normality law on plastic strain-
rates postulated by A.C.Palmer et al. [1], the loading surfaces after a plas-
tic flow are supposed as Fig. 2. Namely, when yielding at the line A B, the
yield surface diminishes to A'B', A"B", *e*vse+ and when yielding at the
line A C, to E'C', E"C", *++*+e+, and when yielding at the cornmer A, to D',
D", s+<++++_ Hence, the expression of the loading function can be written as

max [ I Mr | - Mor(er) . | MG I - MOG(ee) 1=0 (1)
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where M , M, ,M (e ), and M .(e,) are radial and circumferential moments

r’ e % or r 08 g ; .
and those bending strengths in the polar coordinates ( r, 8 ), respectively
and e_ and e, are parameters representing plastic curvatures. The Hooke's law
and the assoéiated flow rule of the plasticity give the following relations of
moment-rates and curvature-rates :

M 1V Kk - du_+d3F_/3M
T =D ‘r T r r (2)
v 1 Ky = due'aFe/BMe

M

where V = Poisson's ratio, D = flexural rigidity, K s K, = curvature-rates,
. . . T 3]
and dur, due = plastic flow coefficients ; and

Fr = I Mr l - Mor(er) ? Fe = | MB I - Moe(ee) }

Mor(er) = Mor - Br B r Moe(ee) = Moe - 89 B € >

t t
®r ,fo dur » 8 IO d“e ’
ghere_B , B strain softening rates which may be related to the coefficient
B/(1-B f indicated in Fig. 1. The plastic flow coefficients are expressed as
follows :

for the corners A, D', D", seveess .

2 -
{dur}= 1 [1-59-v —vse ]{Kr}.(3)
2 ANY 2
dUG (l = Br) (1 - Be) -V _\)Br 1 - Br -V Ke

for the lines A B, A'B', A"B",esccess

Fg =0, dy, = (Ke + VKr)/(l = Be), du,. =0 (4)
for the lines A C, E'C', E"C", sscccce

F.=0, du_ = (Kr + ukg) /(1 - B), dug = 0 (5)

and the expressions for the other lines and corners will easily be obtained by
exchanging appropriately the signs of the coefficients in the above expressions.
Eqs. (3), (4), (5) and others will be represented for simplification as

du, = 99K, + 915K

. . (6)
dUg = B3k, + 9225
Using the relation between curvature-rates and deflection-rate in an axially

symmetric bending, namely

K
T

- 3% /ar”

. (7
- dw/ror

K
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and substituting Eq. (2) into the following equilibrium equation :

32Mr 12 . . .
;;E— +-?-§;'(2Mr = Me) = = p(r) (8)

where p(r) = a load-rate distribution, the fundamental differential equa-
tion about deflection-rate can be derived as follows :

(Lavik )0 i iR,
where .
% = (419, + Vb, 0, >—2i—‘§+ (9yp8, + Voyody ) i g¥ \
% - [ - Vg b, + @V - 1)¢>21¢b] —z—% + , (10)
+ [(2 - V¢, + 2V - 1)¢22¢b] ’%’%% |
in which 6, = OF_/aM_ and b, = 3F /M,

The second and the third terms in the right side of Eq. (9) mean the addi-
tion of the self-equilibrating virtual load-rate distributions resulting from
a deviatoric part from a linear elastic moment distribution, namely the moment
redistributions due to plastic flow.

3. METHOD OF SOLUTION

The differential operator of the left side in Eq. (9) is the same as an elas-
tic problem, and the unknown moment-rate redistributions (X X,) in a plas-
tic region, therefore, are determined by the solution of the fo%low1ng simul-
taneous integro-differential equation :

||-*

2
[( b1, + Vo, 0, ) ¥ (B0, + Vbt ) 2—] X

r
2
i 3" s = 193 . —
% [Pwo +'/I;p BEZXIW(I’E)dE + ‘/R.p 'g-é'gxzw(r,g)dg

X
—Dl (11)

| DR R |
[

+ (2 - V)¢12¢a + (2\) - 1)¢22¢b

or
19
?a_} X
X

B 2
X _f)wo + ‘/Rvp 2(—;2 1W(]:' E)YdE + f T atE}(zmir(].',«*",')dé] ="D—2' 12)
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where p = an actual load-rate intensity, w_ = the elastic solution for the
actual load-rate distribution with the uni? intensity, W(r,&) = the elastic
solution for a circular line load with the unit intensity at the position r
= £ within a plastic region, and RP = the plastic region.

Now consider a method of numerical solution for Eqs. (11) and (12). Dividing
the radial region of a circular slab by a net of sufficiently fine meshes and
considering the case when only the part of one mesh becomes of plasticity,
the distributions of the X. and X within the mesh may be assumed to comnsist
of the continuous three parabolic”curves as shown in Fig. 3, because equi-
librium conditions require that both the moment redistributions and their
first derivatives related to shearing forces must be continuous within a whole
plastic region and at an elastic-plastic boundary. Thus the virtual load-rate
distributions being equivalent to these moment-rate redistributions are given
from Eq. (9) as Fig. 3, which are naturally self-equilibrating. When a region
including a number of meshes is plasticized, therefore, the deflection-rate
_of the slab is obtained by the superposition of the elastic solutions for
both the actual load-rate distributions and the virtual load-rate ones men-
tioned above. Namely,

2 3w W AW
_ 0w _ . o 1i . 2i (13)
Kg: = 75 TP 3 2152 23221 2
or ar or r
. __}_ﬁz_gawo_zz 1 v, 1 BWZi
5  r or r 9r 11 r, or 21 r, Br

where W., and W,, represent the elastic deflections due to the virtual load-
rate dls%rlbutlo%s with the unit intensity, Z..=1and Z,, = 1, at the mesh
point, i, which will easily be obtained by thelintegrationlof the solution for
a circular line load given by the well-known literatures, e.g., Timoshenko's
book [2], and the summation is executed over all meshes in plastic regioms.
SubstltuEing the rate—equation (13) into Eq. (10) and using the relations, Z

4% /AT and Z.. = 4X /[Ar(Zr -Ap)], shown in Fig. 3, a simultaneous equation
abou% the unknow%s, Z . s Z R ii = 1,2,*++¢++«  are obtained,and the substi-
tution of its solutionl into Eq. (13) consequently determines the deflection-
rate and the curvature-rates resulting from the actual load-rate, p. Finally,
the total deflection, the total curvatures, and the total moments are obtain-
ed from the integration of Eqs. (13) and (2) by making use of the forward dif-
ference method of sufficiently short intervals about load increment or central
deflection-increment, which may be familiar in the elasto-plastic numerical
analysis for a solid [3].

4. RELATIONSHIP BETWEEN PLASTIC FLOW CAPACITIES AND ULTIMATE BENDING STRENGTHS

Numerical calculations for the load versus central deflection curves for cir-
cular slabs subjected to partially or entirely uniform loads are carried out
by setting the following material constants :

yield stress of steel, fS = 275 N/mmz; compressive strength of concrete,
B = 27.5 N/mmz; secant modulus of elasticity of concrete, E, = 1.4 x 10
N/mm?; reinforcing steel ratio, p=0.008; v=1/6; d/a = 0.1, d = ef-
fectlve depth a = radius; strain softening ratesg, B, = Bg = E/(I—B);

D = E. d3/12(1-v%); M_/E.d? = M _o/Ec d2 = M_/E.d? = 1.5 x 1077( isotropic
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reinforcements )3 and F% = fsd2p~(l - 3p-f5/4fc) H
and by taking the 1l dividing net points along the radius.

Fig. 4 shows the relationships between the plastic flow ability and the ulti-

mate load in which K = limit elastic curvature, Ge(=dK ) = a standardized
rotation at the builf-in edge, K = limit plastic CUrvagure, 9 = limit plas-
tic rotation at the built-in edgg, and P/P = the ratio of thePultimate load

of the slab to that of the perfectly plastgc slab. On the curves for the
clamped slabs in Fig. 4, the dotted lines indicate that the limitation of
plastic rotation at the built-in edge is more dominant than that of plastic
curvature at the center for reducing their ultimate loads. From the figure it
can be observed that the influence of plastic flow ability upon the ultimate
load carrying capacities becomes larger as the loaded area becomes smaller.
Figs. 5 and 6 indicate the relationship between the magnitude of plastic
curvature or rotation and the load versus deflection curves obtained for the
uniformly loaded slabs, and Fig. 7 shows the variations of moment distributions
along the radius for the simply supported and uniformly loaded slab with a =
0.25 and B = 0.1, in which the numerals within circles indicate the corre-
spondence to those in Fig. 5. It can be seen that the load versus deflection
curves for the clamped slab are sensitively influenced by a limit rotation
capacity in the built-in edge, and after the built-in edge plastically fails,

they follow those for the simply supported slabs.

5. CONCLUSIONS

An elasto-plastic analysis for reinforced concrete circular slabs with limit-
ed plastic curvature or rotation abilities due to the restriction of com-
pressive plastic flow of concrete has been carried out by using the associated
plastic flow rule of the plasticity which is related to the loading functions
considering a strain softening effect. Here, a fundamental differential equa-
tion concerning load-rate and deflection-rate has been derived, and a new
solution method being different from the finite difference method for this
equation has been presented, in which elastic analytical solutions previously
known can be utilized as possible. Numerical calculations have revealed the
relationships between the load carrying capacities and the plastic flow
abilities for reinforced concrete circular slabs with typical material
constants.
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Fig. 6 Load-deflection Curves

for the Simply Supported

for the Clamped Slab
Slab under a Uniform Load,
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Fig. 7 Variations of Bending Moments along the Radius

for the Simply Supported and Uniformly Loaded
Slab with o = 0.25 and B = 0.1 in Fig. 5.
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The Bimoment Method for Hillerborg Slabs
La méthode du bimoment pour les dalles-Hillerborg

Die Bimomentsmethode fur Hillerborg-Platten

C.R. GURLEY

Partner

Wargon Chapman & Gurley, Consulting Engineers
Auckland, New Zealand

SUMMARY

This contribution introduces a new macroscopic principle of static equilibrium for segments of Hiller-
borg plate of large size. These elements can then be seen to be more nearly statically determinate than
had been realized. Exact plastic design of Hillerborg plates is often a practical routine design-office
activity.

RESUME

L'article présente un nouveau principe macroscopique d'équilibre statigue pour des éléments de grande
dimensions de dalles-Hillerborg. Le degré d'indétermination statique est plus petit que celui auguel on
pouvait s'attendre. L'analyse plastique exacte de dalles-Hillerborg fait souvent partie de |'activité de
routine d'un bureau d‘ingénieurs.

ZUSAMMENFASSUNG

Ein neues makroskopisches Gleichgewichtsprinzip fir Elemente von Hillerborg-Platten wird eingefthrt,
und es wird gezeigt, dass der Grad der statischen Unbestimmztheit dieser Elemente geringer ist als er-
wartet. Die plastizitatstheoretisch vollstandige Bemessung von Hillerborg-Platten ist oft ein praktisches
Handwerkszeug fur die Ubliche Bemessungstatigkeit.
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The papers by Morley and by Nielsen in the Introductory Report provide excellent
statements of the current research situation in regard to plastic behaviour of
slabs. The subject is certainly a difficult one - one has only to reflect that
we are now approaching a half-century of work since Johansen began his
pioneering efforts and to consider the number of eminent engineers who have
contributed in that time. It is satisfying then that worthwhile progress is
being made into matters of quite basic and fundamental importance.

Nevertheless it does seem that it will be some time yet before the more advanced
matters considered in this session are fully resolved and reduced to routine
design-office procedures. The present situation in design practice is not
entirely satisfactory and it seems then that designers will need to seek some
interim approach of a rather more pragmatic character until these more basic
issues are resolved. It cannot be assumed that all designers will have easy
access to computer facilities at all times. Neither is it desirable that
designers become totally reliant on such facilities. We seek then "here-and-
now" design procedures which will provide for straight-forward design with no
more equipment than a pocket calculator.

The purpose of this contribution is to suggest that there is a good deal of
unrealised potential in Hillerborg's Simple Strip Method and to show how that
Method can be improved a more satisfactory design procedure. This can be done
by re-examining the equilibrium conditions for a rectangular segment of
Hillerborg plate of finite (non-differential) size.

Consider then a small (differential) element of Hillerborg plate as sketched in
Fig. 1. The coordinate axes and the element edges are to be taken parallel

to the directions of the reinforcing mesh. We assume here that these are
perpendicular although the extension to skew reinforcement would not seem to be
difficult so long as there are just two reinforcement directicns Following
Hillerborg it is assmed that the local twisting moments 'myy' and ‘myx' are
zero everywhere. It follows that there are only local d1s¥r1buted shear forces
and local distributed bending moments on each edge. The variation of these
stesses across the width 'dx' of the element involves expressions like:

+
f,, dmX

We do not record these here because the equilibrium conditions for a differential
element are already well-known and our present interest is to formulate the
equilibrium conditions for a large element.

- a
qu \

Units: q : kN/m
N m : kNm/m

Fig. 1 Local Distributed Stress-Resuitants on a Small Element
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Consider then a typical large element shown in Fig. 2. The scale of this element
may be of the order of several metres on each edge and it may incorporate several
Hillerborg strips in each direction. The external equilibrium conditions for
this element involve the 8 independent stress-resultants shown together with a
further 8 independent coordinates specifying the position of action of each of
these stress-resultants measured along the relevant edge. Thus there are, in
total, 16 indpendent stress-resultant variables involved in the overall equili-
brium of the segment. The conventional state-of-the-art would suggest that
these are subject to 3 independent overall equilibrium conditions so that, the
large element is 13 times hyperstatic externally. The proposition of this
contribution is that there are, in fact, 4 independent overall equilibrium con-
ditions so that the element is only 12 times hyperstatic externally. And, of
course, this proposition applies to any and every sub-element resulting from
sub~division of the element. It turns out that, while the degree of reduction
in hyperstasy appears slight it is, combined with the usual yield conditions,
often sufficient to permit exact plastic design as a matter of practical routine
in many common design-office situations.

Units: Q : kN

NG

Fig.2 Stress-Resultants on a Large Element

We consider now a virtual displacement in the form of a small unit hyperbolic
paraboloid (Fig. 3):

z = xy

The position of the origin '0' is arbitrary except only that it is in the plane
of the element. Under this displacement, the generators of the hypar remain
straight so there is no curvature in the directions of the reinforcing mesh and
so no virtual work is done by the bending moments except on the perimeter.

In this sense then the above is a virtual rigid body displacement.

A11 of the quantities involved in the virtual gork equation will have dimensions
of force times two distinct leverarms e.g. kNm¢, It may be somewhat misleading
to reuse Vlasov's term "bimoment" in this context but it does have a certain
logical inevitability.

We define then the "Restoring Bimoment" of the above plate about origin 'O' as
the virtual work done by the perimeter moments under the above virtual displace-
ment. Similarly we define the "Overturning Bimoment" about origin '0O' as the
virtual work done by the loads. It is usually more convenient to include the
virtual work done by the perimeter shears in the overturning bimoment as if they
were perimeter line-loads. On this basis the virtual work equation becomes,
very simply:
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Fig. 3

Overturning Bimoment = Restoring Bimoment

This result can be expressed in mathematical terms using double integrals.
Indeed it can be proved by integrating the tocal (differential) equilibrium
equation with the aid of Green's theorem {two-dimensional integration by parts).

To do so would obscure the simplicity of the result. In a routine design
calculation the quantities concerned can, almost invariably be evaluated from
direct, simple physical considerations. It is not necessary either to become

pre-occupied with matters of sign convention. The correct sign is usually quite
obvious and can, in any case, always be resolved by sketching out the virtual
displacement.

For any particular segment it is always possible to find four independent bimoment
equilibrium equations. These include the known three equilibrium equations e.g.
moments about each of two axes and equilibrium of total load with perimeter shears.
Indeed these known conditions can be regarded as bimoment conditions in which the
origin has been pushed to infinity in one or other or both directions. In any
case it is clear that we now have available a good deal more equilibrium infor-
mation than we had expected. This is surely significant.

The author has developed the above approach and used it in many actual routine
design calculations since mid 1977. The principal advantage is that it provides
simple direct relationships between moment-fields and total loads. It is
possible then to avoid the initial arbitrary assignment of strip-widths and
strip-loads as suggested in the original Hillerborg proposals. This makes it
possible to produce “"practical optimum" designs every time and to do so within the
constraints of Code minimum reinforcement content, reasonable simplicity of
construction etc.

However the author does conclude all designs with a Hillerborg solution showing
the strip-Tloads calculated from the assigned moment-fields. Whether or not such
a solution is theoretically essential, it provides an independent check against
gross errors of calculation and this is always desirable.
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Is the Bimoment Method a Lower Bound approach? It uses a macroscopic form of
the equilibrium conditions but, theoretically at least, it can be applied to
progressively smaller elements and, in the limit, this process amounts to
differentiation and necessarily re-establishes the local (differential) equili-
brium conditions. In practice the author only uses bimoment methods to assign
sufficient of the moment-field to determine reinforcement (including, sometimes,
cut-off and curtailment positions) and then uses Hillerborg methods to complete
and check the statical solution. This combination seems to work very well.

In many cases it is possible to do exact plastic design of slabs regarded as
Hillerborg plates. It would seem that such designs are necessarily very
efficient Tower bound designs for slabs regarded as Johansen plates. In practice
the steel in quite extensive areas of slabs is determined by Code rules on

minimum reinforcement content. It is usually possible to ensure that this

steel is fully utilised at yield strength under design load.

In other cases, particularly those involving a re-entrant or near-point load or
support acting integrally with the slab, it is not possibile to find an exact
plastic solution even when the slab is regarded as a Hillerborg plate. These
situations seem synonymous with those in which the, usually, "secondary" effects

of shear and strain-hardening have substantial significant. It is not reasonable
to expect rigid plastic thin plate theory to provide "exact" solutions in such
complex 3-dimensional situations. Design in such situations is a linear program-
ming "game". Success in such situations does depend on the judgement and
intuition of the designer but, then, these are the skills possessed by experienced
designers and the bimoment approach does provide equilibrium information in a form
most easily assimilated and used. Safety is not an issue, because all designs
can be checked by Hillerborg procedures, but economy and suitability will still
depend on the individual approach. In this matter then Engineering remains an
art as well as a science.

A Tonger paper [Ref. 1] expected soon attempts to cover many of the points
omitted because of the limited length of this contribution.
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Nodat Forces as Real Forces
Les forces nodales en tant que forces réelles

Knotenkréfte als wirktiche Kréafte

D.H. CLYDE

Professor of Civil Engineering
University of Western Australia
Nediands, W. Australia

SUMMARY

The conventional approach to nodal forces in yield line theory is re-examined because it leads to break-
down cases and other anomalies, !t is shown that the true nodal forces are vertical shears at and parallel
to strength discontinuities. The existence of these forces was demonstrated for elastic plates by
Thomson and Tait but is now shown to be a general statical requirement of shear flow closure. The
resulting insight enables the fundamental errors associated with invalid and breakdown cases to be de-
monstrated,

RESUME

La méthode traditionnelle des forces nodales de la théorie des lignes de rupture est réexaminée parce
qu’on obtient dans certains cas des contradictions et d'autres anomalies. On montre que les forces
nodales vraies sont des forces de cisaillement existant le long des lignes de discontinuité de la résistance.
L'existence de ces forces a &té démontrée par Thomson et Tait pour ies plagues élastiques. Dans le
présent article, on montre que ces forces correspondent a une condition statique générale d'aprés la-
guelle les forces de cisaillement doivent étre continues. Les conclusions cbtenues permettent de montrer
les erreurs fondamentales associées aux cas contradictoires de I'application de la méthode des forces
nodales.

ZUSAMMENFASSUNG

Die herkommliche Methode der Knotenkrafte innerhalb der Fliessgelenklinientheorie wird neu be-
trachtet, da sie in gewissen Fallen zu Widersprichen und anderen Unregeimaéssigkeiten fihren kann. Es
wird gezeigt, dass die wahren Knotenkrdfte Querkrdften entsprechen, die entlang von Widerstands-
Diskontinuitatslinien auftreten. Das Vorhandensein solcher Krafte wurde fir elastische Platten durch
Thomson und Tait nachgewiesen, Hier wird gezeigt, dass sie der allgemeinen statischen Forderung nach
einem geschiossenen Schubfluss entsprechen. Die grundlegenden Fehler, welche mit Féllen wider-
sprichlicher Ergebnisse bei der Anwendung der Methode der Knotenkréafte verbunden sind, kdnnen
mit Hilfe der neu gewonnenen Erkenntnisse aufgezeigt werden.,
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1. INTRODUCTION

Nodal forces arise in the equilibrium method of yield line theory. A nodal force
is a concentrated internal transverse force which, under special circumstances,
must be inserted at an end of a straight internal section. Johannsen [1] establi-
shed the existence of such forces and formulated rules for their determination.
Later workers have attempted to improve the rigour of the rules but have, never-
theless, found that breakdown cases exist for which solutions using these rules
do not agree with solutions using the alternative work method.

Conflict in the results of different solution methods for properly posed problems
in structural mechanics indicates a lack of rigour in setting up one or both of
the methods. Fox [2,3] demonstrated that the assumptions of yield line theory can
provide the basis of a rigorous rigid-plastic analysis. He constructed coincident
upper and lower bound solutions for certain problems whose intractability had
earlier suggested an inconsistency between the failure criterion of yield line
theory and rigorous plasticity theory [4]. It should be noted that Fox's solut-
ions include zones of finite curvature within which the slabs deform into general
developable surfaces whereas in yield line theory only one such surface, the cone,
is used. Given the conflict mentioned above and the evidence that a properly
formulated solution method has demonstrated the essentially well-posed nature of
the problems one must examine the basis of the methods which produce the conflict-
ing solutions. The equilibrium method is so named because a separate equilibrium
equation is written for each rigid slab element. The following requirements are
satisfied as well as equilibrium :

(1) The forces on the internal boundaries satisfy the failure criterion which in
force space [5] is given by

M 2
Xy
(ii) Application of the flow rule to (1) defines associated curvature rates [5].
It may readily be shown that the relative rotations about the yield line of the
two rigid segments abutting the yield line correspond to concentrations of one
class of curvature rates which satisfy the flow rule.

X y 2 X =y
- (M -MX)(M —My) €0 Mxy - (MX—M )(My—M ) <0 (1)

(i1i) The layout of yield lines is such that these relative rotations taken in
conjunction with the boundary conditions form a compatible mechanism.

2. NODAL FORCES

Johannsen established that simultaneous solution of the equilibrium equations is
theoretically equivalent to the extremised solution of a global equilibrium
equation most conveniently written using virtual work.

The most readily demonstrated justification for nodal forces is that there are
cases where the two methods give different results and that these can be recon-
ciled by inserting nodal forces of such a magnitude as to cause the equilibrium
method solution to co-incide with the work method solution. This method is
inferential and has been used by some [6] as a de facto basis for establishment
for their magnitude. Johannsen's analysis which established rules for their
determination is also inferential and is based on small perturbations of the
layout from which it can be shown that nodal forces are required for stationari-
ness.

Despite the indirect determination of nodal forces Johannsen also gave a physical
explanation, i.e. "In addition (to the normal moment) a torsional moment and shear
stress act on the yield line. These can be resolved into two single forces, one
at each end of the section". A counter-example to refute Johannsen's physical
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explanation is readily found.

Criterion (1) is in the form containing only force variables. Implicit in its
derivation is the requirement that the applied normal moment M, does not exceed
the normal moment capacity M! i.e.

M cos®a + My sin?a + 2Mxy sinocosa € Mcos?a + M sin?a (2)
The 1imit of the inequality may be shown to lead to :

M . = (M-¥) sinocosa (2a)
Since for isotropic reinforcement M = My, M,¢ must be zero everywhere on an
isotropic yield line and Mnt will thus also be zero. Furghermore translation of

the yield line should notaIead to violation of (2) so that = = 0 on the yield
line. Hence neither twisting moment nor shear force may exist on an isotropic
yield line. Nevertheless a classic example of a nodal force occurs where an
isotropic yield line meets a free edge and has magnitude M cota [5]. Thus Johann-
sen's explanation breaks down. Direct application along the yield line of Thomson-
Tait [7] statical equivalence [6] must also fail where there are no forces to
which the nodal force can be statically equivalent. Somewhat surprisingly, how-
ever, the author has found that the physical basis of the nodal force can be found
in other portions of Thomson and Tait's work by examination, not of the yield line
which being internal must satisfy conditions of continuity, but of the boundary
itself.

' BOUNDARY CONDITIONS AT AN EDGE

Thomson and Tait utilised
equivalence as a mathemati-
cal device to reduce three
boundary conditions at a

free edge to two. Consider- Y X

ing a free edge x = a (Fig.1) -

the apparent consequences of Z ~

the absence of surface trac- ~ X=qa
tions My = 0 , Myy = 0, "

Qx = 0 may be reduced to two ////)///

namelgM My = 0 and .

Qg - —F;X = 0 . Although dy /

Thomson and Tait used statics

to derive this result subse-
quently they showed that there
is a local disturbance due to
twisting moment at the free

edge of an elastic plate which
dies out rapidly as one moves
away from the edge. They invok-
ed this solution to confirm

that St.Venant's principle
applies to the statically dey
equivalent forces.

Free edge

M,y dy

The analysis which demonstrates

the rapid decay provides further

insight. It is the treatment of

anticlastic curvature produced Figure 1. Apparent vanishing forces at
by alternating upward and downward free edge.
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corner loads on a square plate as a limiting case of St. Venant torsion. They
observed that only one half of the total torsional moment arises from the M,

- stresses, the other half being due to ''two tangential tractions distributed over
areas of the edge infinitely near the ends acting perpendicularly to the plate
towards opposite parts'. These transverse forces exist because the opposing
horizontal shear flows which constitute the M,, couple require closure at a stress
free edge (Fig.2). Popov [8] has added clarification to this requirement.

h4xy shears on section

\

Myy

XX
e
A

Closure

Figure 2. Equivalence of shear flow closure.

While Thomson and Tait's conclusions were based on an elastic solution, the re-
quirement is one of statics and is independent of the nature of the stress dis-
tribution which goes to make up Myy. This will now be demonstrated. A twisting
moment M,, on a section normal to the free edge is associated with a conjugate
Myy on a Section parallel to the edge. Assume that the limits of this ideal

flexural behaviour occur on a face Ax inside the free edge and parallel to it
(Figure 3).

-
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Figure 3. [Isolation of Edge Strip.
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In the strip Ax wide by h deep the transition from Mxy stresses to the stress-
free edge state must occur, i.e. over this interval :

a5 aT + !
=L dx = Txy 4) where Mxy = 2 Txy z dz (5)
0x Ax ' |Ax h }Ax
8 + %— bx o ]
hence M= XY 7 dx dz 6
Xy h ™ (6)
-5 Jo

In order to maintain equilibrium parallel to the edge, the differential equation
of ‘equilibrium :-

30 9T T,
oy T ax T ez =0 (7)
must be satisfied everywhere. If ¢ = 0 (i.e. ignoring bending which may be

superposed later) this reduces to

BTX 9T 5

el P (8)
Thus the rate of change of horizontal shear tT,, over the width Ax generates
vertical shears Tyz which integrate to yield a vertical force Zy as follows:-

Ax o+ 7 Ax + %— AX + %— Btyz
z, = Ty dz dx = [Tyzzj dx - Z n— dz dX (9)

o h _h h

"2 ° 2 °© "3

Since Ty, = 0 at z = ¢ g— the first term is zero and substituting (8) in the
second yields :-

b ¢ B Bt
Z = z =% dz dx =M : (10)
y h x Y ax

@ =7

This vertical shear force in the edge
strip is a physical reality which
transcends mere statical equivalence.
Because it is a force and not a stress
it is invariant under change of angle
of the cutting section relative to the
edge. Thus for any but the normal
section it is not related to the twist-
ing moment on the internal face and it
is quite possible to have zero twisting
moment in a skew face but to have an
edge shear force. This somewhat surpri-
sing result clarifies the vertical
equilibrium of a 45° corner triangle

of the square plate case placed in a

state of pure torsion by upward and Figure 4. Vertical equilibrium in
downward corner forces [9]. pure torsion.
4. NODAL FORCES AS REAL FORCES

The nodal force where a yield line meets a free edge is the shear force in the
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edge strip. It is determined by the twisting moment on faces parallel toc and
normal to the edge. The twisting moment is readily calculated from the conditions
that My = 0 on the edge and that the normal and twisting moments on the yield line
are defined by the failure criterion to be :

Myy = = MX cot o (11)
The problem of a yield line intersecting an internal step change in mesh strength
was posed and explored by Jones [6]. If the yield line makes an angle o with
the internal boundary on which MX steel normal to the boundary is reduced from MX
to MX, the conditions for satisfaction of the failure criterion on both sides of
the change may be obtained in the fashion of equation (11) and are :-

- = - X _ MX
(Mxy Mxy ) (Ml Mz) cot o (12)
1 2

The band of vertical shear is this time just inside the stronger zone and runs
parallel to the boundary between the zones. The magnitude of the shear force is
equal to the change in twisting moments and at a yield line becomes the nodal
force determined by (12). A practical implication of the above conclusions are
that such bands of shear should be included in the reinforcement design considera-
tions.

5. INVALID AND BREAKDOWN CASES

The author has not been able to find further rigorous examples of nodal forces and
_ has separated other pseudo nodal forces into invalid cases, which superficially
appear to obey the Johannsen rules, and breakdown cases, which are neither
rigorous nor obey the Johannsen rules for their determination.

5.1. Invalid nodal force. This is the intersection of sagging and hogging yield
lines. It is possible to devise failure mechanisms which are kinematically admiss-
ible and appear to satisfy the failure criterion on all yield lines but fail to
satisfy equilibrium at their intersection. The angle of intersection must be such
that the failure moments also satisfy the transformation of axes (equilibrium)
equation. For example, for isotropic reinforcement this requires orthogonality.
For isotropic cases where non-orthogonal intersections are used the interpretatiocn
of Johannsen's rules which is widely accepted suggests a nodal force of

k=-(M-M cot a (13)

Similarities between this and (12) are deceptive because in this case neither
yield line represents a strength discontinuity at which a step change in twisting
moment can validly be invoked. Efforts by the author to produce solutions with
artificial shear along one yield line led to the conclusion that this merely
removes the violation of the yield condition by an amount Ax from the yield line
since M, would not change significantly over a small distance. The assumed nodal
force is thus seen as a device which superficially localises the fundamental viol-
ation of statics at the intersection but also removes it an infinitesimal amount
to one side of one yield line.

The conclusion is that the lack of rigour is implicit in both the equilibrium and
the work method. In part this results from the exclusion of Fox's zones of finite
curvature from the repertoire of mechanisms available in yield line theory.

5.2. Breakdown cases. These occur where the mechanism is overconstrained [6], and
may or may not include invalid intersection angles of yield lines. The overcon-
straint leads to the necessity for twisting moments and shears on yield lines
independently of the angle of intersection problem and thus to apparent forces
which do not even superficially appear to satisfy Johannsen's rules.

Of the particular classes of problem which have been explored the following are
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the three most important

5.2.1 The re-entrant free edge. Because a free edge is involved at one end of the
yield line this is the problem about which most meaningful observations can be
made. While real nodal forces are the closure shear flows associated with twist-
ing moments immediately inside a free edge it may readily be shown that an angular
discontinuity in a free boundary no twisting moment may exist if all internal
moments are required to be continuous. Hence no nodal force may exist at the
re-entrant corner of a free boundary. Symmetrical cases show zero apparent nodal
force and are the rigorous case of a yield line passing through a re-entrant cor-
ner of a free edge.

5.2.2. The re-entrant support. This generates a kinematic requirement for an inter-
section of a hogging with a sagging yield line which, in general, does not even
superficially obey Johannsen's rules and hence goes beyond the case proved above
to be invalid. It becomes an overconstrained case for which force transfer be-
tween segments is required in order to give the appearance of reconciliation.

5.2.3. The Maltese-Cross failure pattern for a square slab. Wood [6] attributes
the posing of the problem to Nylander. This time the penalty of overconstraint is
a twisting moment along the yield line associated with extremised solution. The
comments under 5.1. above apply with respect to shifting the violation of the
failure criterion an infinitesimal distance from the yield line if nodal forces at
the centre are postulated as the mode of rectifying the unbalance. The extremised
work solution thus cannot be considered as a valid one,

6. CONCLUSIONS

In order to understand the nature of nodal forces it has been necessary to intro-
duce a more comprehensive analysis of boundary conditions than the standard
Thomson-Tait one of statical equivalence. As a result it is concluded :

6.1. An internal shear force exists in a narrow strip parallel to a free or simply
supported edge which is numerically equal to the twisting moment immediately
inside the edge on faces parallel to and normal to the edge.

6.2. A shear force exists in a strip parallel to an internal strength discontin-
uity which is numerically equal to the step change across the discontinuity of the
twisting moment on faces parallel to and normal to the discontinuity.

6.3. At the intersection of a yield line with an edge or internal strength
discontinuity the shear force is known as a nodal force.

6.4. Various other cases including the intersection of sagging and hogging yield
lines, re-entrant free edges, re-entrant supported edges and the Maltese-Cross
failure mechanism for square slabs give rise to false nodal forces due to defici-
encies in the posing of the problems.

6.5. Reinforcement requirements at free and simply supported edges and strength
discontinuities will need to be re-examined in the light of the existence of the
shear face demonstrated in this paper.

7. NOTATION
a Constant, value of x
h Slab thickness

n,t,z Local co-ordinates normal and tangential to section
x,y,2z Cartesian co-ordinates
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D R N °

0o

Basic symbol for moments per unit length with the following variants :-

M Isotropic yield moment (sagging)
M Isotropic yield moment (hogging)
MX,M ,Mx Applied moments in Cartesian co-ordinates stress resultants of
X s O, T__ respectively.
x* Ty’ “xy
M ,M ,M . . .
n’ t’ nt Applied moments in local co-ordinates.
MX,My Yield moments in Cartesian co-ordinates (sagging)
MW Yield moments in Cartesian co-ordinates (hogging)
M Yield moment referred teo normal co-ordinates

A concentrated force

The vertical stress resultant of Tyz

Yield line orientation relative to M* yield line

Slab parameter
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Punching Shear Failure of Hollow Concrete Spheres
Poingconnement d’une cogue sphérique en béton

Durchstanzversagen von Kugelschalen aus Beton

C.T. MORLEY

Lecturer

University of Cambridge
Cambridge, England

SUMMARY

The paper extends the plastic theory of punching shear failure to treat hollow concrete spheres.
Graphs showing the theoretical predictions are presented, and some comparisons are made with
experimental resutts for cylinders under concentrated radial loads.

RESUME

L'analyse plastique du poinconnement est appliquée a une coque sphérique. Les résultats théoriques
sont présentés graphiquement et quelques comparaisons sont faites avec des résultats expérimentaux
obtenus pour des cylindres soumis a une force concentrée radiale.

ZUSAMMENFASSUNG

Die plastische Berechnung des Durchstanzversagens wird auf den Fall von Kuge!schalen aus Beton
ausgedehnt. Die theoretischen Voraussagen werden in graphischer Form dargestellt. Einige Vergleiche
werden gemacht mit Ergebnissen von Versuchen an Zylindern, die durch in radialer Richtung wirken-
de Einzellasten belastet wurden.
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1, INTRODUCTION

The purpose of this brief note is to extend to hollow concrete spheres the
plastic theory of punching shear failure presented by Braestrup [1] for flat
slabs. In slabs with zero tensile strength the optimum failure surface
extends right out to the support, giving low failure loads, and it is necessary
to introduce a small non-zerc tensile strength in order to confine the failure
surface and produce reasonable results. In a spherical shell under a radial
point load the curvature of the shell will tend to confine the failure

surface in punching shear, and the plastic theory should predict reasonable
failure loads even if the concrete is assigned zero tensile strength, In
what follows the extended theory is presented, using Braestrup's notation as
far as possible, and some experimental results on cylinders are reported.

2. BASIC ASSUMPTIONS

A concrete spherical shell or dome of thickness h and internal radius R is
assumed to be loaded by an inward radial force P applied to a rigid disc of
diameter d_, as shown in Fig.1l. The shell is supported well away from the
region of interest. In a punching shear failure a rigid axisymmetric plug
of concrete defined by a '"failure surface' with generatrix AB is assumed to
move inwards along the axis of P relative to the rest of the shell, The
concrete is taken to be a rigid perfectly plastic material whose yield
condition is the modified Coulomb failure criterion with angle of internal
friction ¢ and zero tensile strength, Deformations are governed by the
associated flow rule of plasticity theory (the normality condition),

rigid disc
diameter do

Fig. 1 A punching shear
failure.

R failure
surface

Following Braestrup, an upper bound on the failure value of P is found by
writing the work equation for failure on an assumed surface, and the

optimum failure surface giving the least upper bound is found by the calculus
of variations. Since displacement is along the P axis hoop strains are zero
everywhere and the concrete is in plane strain in planes containing the

P axis: the appropriate yield locus is Fig.5(b) of Braestrup's paper, with

f, = 0. All deformation is assumed to occur in a narrow zome at the failure

surface, which is a surface of revolution defined by the generatrix r = r(x),
Fig.2.



C.T. MORLEY 169

p| dof
1
! A -
) failure surface
O
r=r(x)
xY
x ————
2 Fig. 2
The co-ordinate system.

I inner surface
r=rplx)
centre of ‘

sphere x= B_I_

On writing the work equation, the upper bound on the failure load is given
by the equivalent of Braestrup's equation (9),

*2
P = wfc (/YT + (D)2 - ') dx (1)

o

where a dash indicates differentiation with respect to x. In contrast to

the situation in flat slabs, reinforcement running parallel to the curved shell
surfaces will be compressed in such a failure, and therefore contribute to the

energy dissipation. Here we ignore the contribution of such reinforcement, so

that equation (1) only gives the failure load for an unreinforced shell.

3. THE OPTIMUM FAILURE SURFACE

The problem now is to find the function r(x) which minimises the load P in
equation (1), subject to the condition dictated by the plane-strain yield
locus that

r' > tané (2)

The additional difficulty in the case of spheres is that the upper limit of
integration x5 is itself variable because of the curvature of the inner shell
surface.

We consider first the case when the minimising curve always has a slope greater
than tan¢. The minimising curve presumably has r continuous, but discontin-
uities in slope r' would seem to be permissible on physical grounds. However,
the Weierstrass-Erdmann corner conditions (ref. 2. p.33) show that the
minimising curve for (1) will have continuous slope. According to the calculus
of variations (see eg Pars [2] or Irving and Mullineux [3], the minimising
curve r = r(x) will then satisfy the appropriate Euler equation, which for a
functional of the form IF(x,r,r')dx can be written
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oF d

Ay = (3)

On substituting from (1) this reduces to

1+ (£MD2-r.r'' = 0 (&)
whose solution may be written

r = a cosh (% + b) (5)
where a and b are constants,

The upper limit of integration X, is variable but the failure surface must
end on the inner shell surface r = ro(x). In these circumstances the optimis-
ing function r(x) must satisfy the so—called 'transversality condition’.

F+(ry-1) o5, =0 (6)

at the upper limit x = x, (ref.2 p.96, ref. 3 p.362), From (1) and (6)
e =+ ATEY @
which reduces, using (5), to
r) = exp (% + b) (8)
at x = x,,

It turns out that in many cases the catenary curve satisfying (5) and (8) and
passing through the edge (O, d°/2) of the loaded area violates condition (2)
near x = 0. The portion of the optimising generatrix near x = 0 will then
be a straight line of slope tan¢, so that part of the failure surface is
conical. Consideration of a series of catenaries satisfying (5) and (8) and
passing through different points on this straight line then shows that the
optimising generatrix is tangent at some point X = x; to this line. This may
be confirmed by considering an analogy with a heavy string, and a numerical
investigation shows that the stationary value found for the integral (1) is
indeed a minimum.

We then obtain, independently of R/h, if a is positive,

d
X] = a cosec¢ - 7;— cot ¢))
and b = sinh-1 (tang) - x1/a (10)

The equation r = r,(x) for the inner circle may be written

rz2 =R2 ~ (B - X2)2 (lll

where £ is a known constant. This may be combined with (5) and (8) to give
a = 2(B - x,) [1 - (8- x,)%/R?] (12)
Equations (9), (10) and (12) give the important parameters xj, b and a in

terms of the upper limit x,, for which an equation can be found by combining
these and the transversality condition (8) to give
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B - xp ; 2x, + dg cotd
= (B - xg)2 - oXP { sinh™" (tand)-cosecd + ST = () Z/R?]

} (13)

This equation for x., may be solved by iteration or by a graphical method.
The possibility of obtaining numerical solutions by this approach was pointed
out to me by P. R. Hunter.

Once the optimal failure surface has been found the corresponding failure
load is obtained from equation (1) which becomes

X
LA - = B (e, -
wfc - (secd - tang) == (d  + x;tand) + 5 (xp - x1)

a? = x2
+ 5 lLexp (—2<-51- + b)) ~ exp(-2(= + b))] (14)

4. SOME TYPICAL SOLUTIONS

The optimising curves r(x) for the case R = 6h and various punch diameters are
plotted in Fig. 3, for the same angle of friction as used by Braestrup,

tany¢ = 3/4. Notice that an appreciable proportion of the failure surface

is conical even for d, = O, and that this proportion increases as the punch
diameter increases until the optimal failure surface becomes entirely conical
for dy/h greater than about 3.3.

maximum punch diameter for
P which a punching shear failure
is possible.

limit o
conical region
Rh=6 '

Fig. 3 Optimising curves for various punch diameters.

If the loaded area is large enough a punching shear failure is impossible
because the cone with slope tané = 3/4 never intersects the inner surface of
the shell. In these circumstances some other failure mode must intervene,
presumably some form of bending failure. For punch diameters of practical
interest, if the shell curvature is less marked, say R/h greater than about 10,
the proportion of the optimal failure surface which is conical reduces as

d,/h increases, as in Braestrup's Fig. 8.
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Some calculated failure loads are plotted in Fig. 4, which shows the dimension-

less measure of fajlure load P/uf h(do + 2h) used by Braestrup as a funetion
of the shell curvature R/h for difrerlnt punch diameters do/h. The increase

of punching shear strength with shell curvature is clear.

4
do
o2
O-25—

S J—
ﬂfch ‘do"' 2h)

x
02— /
A‘
h .

O-I5(— x

O-O5—

I | | i I | .
o 0-05 O oI5 0-2 0-25 03 /R

| | | |

§O0 20 [e) 6 S 4 R/h

Fig.4 Theoretical failure load against curvature for a spherical shell,
5. SOME EXPERIMENTAL RESULTS ON CYLINDERS.

Some preliminary tests on concrete cylinders under concentrated radial load
have recently been carried out in Cambridge by P, R, Hunter. The specimens
were lengths of commercial spun-concrete sewer pipe, which were provided

with diaphragms cast in situ and were supported on the laboratory flecor all
along a generator. The wall thickness was approximately 40 mm and the internal
radius approximately 150 mm, The pipes had only nominal reinforcement, and
small diameter cores drilled from them gave mean estimated cube strengths of
70.5 N/mm® for pipe 1, 57.5 N/mm® for pipe 2.

The pipes were loaded radially inwards through square steel plates cemented
on to the concrete surface. Plates of various sizes were used, and in some
cases pipes were retested with larger plates placed over the hole left by a
previous test to failure. Various bending cracks developed during the tests,
but in all cases failure occurred by punching out of a plug of concrete,
square at the outer surface to match the steel loading plate. In the longit-
udinal cylinder direction the failure pieces were elongated as shown in
Braestrup's Fig. 9, with the failure surface in some cases reaching to the
nearest diaphragm. The failure pieces were much shorter in the hoop direction,
as the present theory predicts, often with a steep failure surface close to
the loading plate, corresponding to the predicted conical part of the failure
surface,
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Since the tests were on bought-in specimens the results were inevitably rather
scattered, but some dimensionless failure loads are plotted in Fig. 5 against
equivalent punch diameter. Also shown is the curve for a flat slab (R/h =+ =)
of concrete with a tensile strength £, of f./400, from Braestrup’s Fig. 10.
The upper theoretical curves in Fig, 5 show the prediction of the theory for
spherical shells having f; = O and R/h = 4 and R/h = 6 respectively. For all
the theoretical curves the yield strength £, in compression is taken as 0.6
times the measured cube strength fcu'

'}
OI5}—

sphericat shell
theory: R/h= 4

Tests by Hunter [cylinder R/h = 4)
Failure load ® on undamaged pipe
B x retest on damaged pipe
7 1.uh {dg+2h) Tests quoted by Hess et.al [4]
010 (cylinder R/h2251) a

0-05/— X

Fiagt slab : f, = 1. /400

Fig. 5 Experimental results on cylinders in punching shear.

Also shown on the figure are some experimental results quoted by Hess [4] for
cylinders with R/h = 5.1, taking the measured cylinder strength as 807Z of the
cube strength. These shells had about 1.6% of steel in the hoop direction.

One would expect the test results for cylinders to lie between the predictions
for a sphere and a flat plate. This seems to be roughly true for small punch
diameters, but the Cambridge results for larger punch diameters seem rather to
follow the flat-plate predictions. Perhaps the large lateral compressive forces
which should accompany the theoretical localised punching failure cannot easily
be provided in a cylinder for large punch diameters, so that the failure mode

is not pure punching but involves some bending. Clearly, more extended compari-
son of the theory with test results for spheresand cylinders is desirable.
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6. CONCLUSIONS

A simple extension has been made to Braestrup's plastic theory of punching
shear in flat slabs,to enable spherical shells with zero tensile strength to
be treated., The theory predicts a substantial increase in failure load with
shell curvature, but this increase is not very apparent in the results of the
preliminary tests on cylindrical shells,
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Collapse of Reinforced Concrete Voided Slabs
La ruine de dalles en béton armé avec des ouvertures

Versagen von Stahlbetonhohipiatten
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SUMMARY

The paper derives an upper bound to the collapse load of a circular voided slab bridge simply supported
along two opposite edges and loaded symmetrically. The critical mechanism involves flexural yield

lines in combination with lines of shear failure.

RESUME

Une valeur supérieure est obtenue pour la charge ultime d‘un pont-dalle avec des trous circulaires,
appuyé simplement le long de deux bords opposés et chargé symétriqguement. Le mécanisme critique
implique des lignes de rupture causées par la flexion combinées avec des lignes de rupture causées
par la flexion combinées avec des lignes de rupture causées par le cisaiilement.

ZUSAMMENFASSUNG

Ein oberer Grenzwert fur die Traglast einer symmetrisch belasteten, entlang zweier gegeniberliegender
Seiten frei drehbar gelagerten Hohlplattenbriicke mit kreiszylindrischen Aussparungen wird herge-
leitet. Der massgebende Mechanismus ist durch eine Kombination von Fliessgelenklinien und Schub-
bruchlinien gekennzeichnet,
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1. INTRODUCTION

A reinforced concrete voided slab bridge tested at the Cement and Concrete
Association [i] collapsed by the formation of a mechanism which involved lines
of shear failure in addition to conventional flexural yield lines. The slab had
a depth of void ratio of 0.786 and was loaded to collapse by means of a 16-wheel
vehicle positioned centrally. The maximum load attained was U455 kN but this
fell instantly to L1k kN. This load was held until longitudinal shear cracks
formed near to the outer wheels of the vehicle when the load fell to 373 kN.

On attempting to apply further load, longitudinal top and bottom flexural yield
lines developed together with transverse hogging yield lines near to the supports.
The central strip of slab, bounded by the longitudinal shear/flexural yield
lines, then continued to rotate about the transverse hogging yield lines with
distortion of two voids occurring. A theoretical analysis of such a collapse
mechanism is considered in this paper.

2. UPPER BOUND ANALYSIS

2.1 Assumptions

Tt is assumed that the concrete is rigid-perfectly plastic, has a modified
Coulomb yield criterion, zero tensile strength, compressive strength given by
fo = vf, where v is an effectiveness factor and f,. is the cylinder strength
which is assumed to be 80% of the cube strength, and the normality rule of
plastic flow obtains. The reinforcement is assumed to be rigid-perfectly
plastic and to carry only axial stresses.

2.2 Initial collapse

A general circular voided slab loaded symmetrically with respect to its centre
is considered. The proposed initial collapse mechanism is shown in Fig. 1.
The displacement rate (g) is taken to be normal to the plane of the slab since
the restraint of the rigid material each side of the shear failure lines is
likely to prevent any outward movement of this material relative to the central
portion of the slab.

If q is the ultimate shear per unit length measured in the span direction, m
and om are the sagging and hogging longitudinal moments of resistance
respectively, P is the total applied load and w is the self weight of the slab
per unit area, then the work equation is

-2 _ 2_a2
P = (2R-c—23) {hm (bb + ocbt) + Eq W (bt + bel (2°-a )} (1)
The minimum value of P is cbtained when
o _ered /zjhcd , (ot =) (2)
2 N °q - W (bt+bt)

2.3 Value of qg.

The value of ¢ is obtained by considering the dissipation rate per unit length,
measured in the span direction, of the concrete and of any vertical stirrups
crossed by the shear failure line. The dissipation rate in the concrete is
given by 2]

*

Dc = O.5fe£e (l—cose)cSX
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where £, is the length of concrete in the failure line and 8y is the displacement
rate at a particular section x.

The dissipation rate in the stirrups is given by

D = nA [ 6

s gs "ys X

Where n is the number of rows of stirrups crossed by the failure line, Agg
is the area per unit length measured in the span direction of the
stirrups and f o is the yield stress of the stirrup reinforcement.

Yy
Hence q = 0.5f %_ (1-cosf) + n LY s (3)
Y&
~A~~ Sagging yleld line
r~ ~~ Hogging yield lins
Shear failure line
e Wheel Total load P
5 ® : DI N
X
5 i Z- r_? b X
¢ il % = . : _;HL.‘. __|.._f
$ L_I : 3 . i _JE'
L- X Ld |4 Icl -J
L L
| o
Ly Ly .
Plan
Yo
X
&x
A
— 1
T
X e
% N

Fig. 1 1Initial collapse mechanism

Section YY
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2.4 Value of v

The effectiveness factor (v) reflects the ductility of the concrete in compres-—
sion and depends upon the concrete strength and the conditions under which the
the concrete is stressed. However very little experimental evidence is available
for voided slabs although ASTER [3] has tested a transverse strip of a slab with
a depth of wvoid ratio of 0.75 and having no shear reinforcement. An analysis
indicates that v = 0.13 which is small because of the flexibility of the cross-
section of a voided slab and of the discontinuous failure surface.

2.5 Subsequent mechanism

It is proposed that after initial failure in accordance with the above mechanism,

a subsequent mechanism involving distortion of the failed cells takes place as
shown in Fig. 2.

e
F

w 1

Section YY of Fig. |

Fig. 2 Subsequent collapse mechanism

The positions of the centres of rotation B and D in Fig. 2 are determined by the
initial shear failure and, of A and C, by minimising the load with the constraint
that

D i D s
yy + 7 sin By = ¥p *t 5 sin By =¥ (W)

Assuming that, compared with the initial mechanism, the reduction in the rate of
work of the self weight of the bottom flange is compensated by the increase of
that of the top flange then the total rate of external work is unchanged. The
dissipation rate in the mechanism is given by

. ey - y) v (2 ¢ y]
. -4

*onf [, (oD cos B} + A (h-D cos 8, )] (2+D) (s)

v



L.A, CLARK 179

where [ is a membrane enhancement factor and fyt is the yield stress of the
transverse reinforcement in the flanges.

In general an analytical solution for a minimum P is unobtainable. However, if
y (1-=) is small compared with 2 (by, + ccbt) and yy ® ¥y, = ¥ so that By = B,= B
then a minimum P is found for

o o etea . fe?+hea | ba(by +ob, ) 6)
- 2 n Cn—wfbt+bb)
where e #Xt (Ast+Asb)(h—D cos B) 1)

y+0.5 D sin B

and tan B/2 = Lol (8)

oy + /ﬂyz + h? - Dp?

3. COMPARISON WITH TEST DATA

3.1 Initial failure

Dimensions relating to the failure line were observed to be 6 = 48 L°
Le = 151 mm, y, = 122 mm, ¥, = 126 mm, 2, = 596 mm, 2b, = 1092 mm and n = O.

The concrete cube strength was 52.3 N/mm? and if v is taken to be the value
derived from the analysis of Aster's strip then f, = 5.4L N/mm?. Equation b
then gives, withn =0, q = 0.138 kN/mm

The sagging and hogging longitudinal moments of resistance are respectively
137 and 21.5 kNm/m; thus « = 0.157. The other relevant data are Rv = 2650 mm,
c =450 mm, 4 =225 mm and w = 3.46 kN/m®.

From equation 2, £ = 1608 mm whereas the observed value was 2370 mm; and, from
equation 1, P = 878 kN which is much greater than the peak load of 455 kN
attained or the load of L1L kN at which the slab 'yielded' in shear.

An explanation of this gross overestimate of the collapse load could be that when
the slab first fails in shear only the concrete in the immediate viecinity of the
load is deformed sufficiently to 'yield' in shear and that once the slab commences
to 'yield' in shear the deformations in the vicinity of the load are too large
for aggregate interlock to occur across the shear crack and the dissipation rate
in the vicinity of the load falls to zero. It might thus be more appropriate to
ignore the dissipation rate in those parts of the lines of shear failure which
extend beyond the loading vehicle when calculating the peak lecad, and to ignore
the dissipation rate in those parts of the lines of shear failure within the
length of loading vehicle when calculating the lower load at which 'yield' of the
slab in shear occurs.

3.2 Estimate of peak load

Neglecting the dissipation rate in those parts of the shear failure lines beyond
the loading vehicle, the peak load is given by

2

P Sl-c-2d {hm(bb+mbt) + 2q [2(c+d)(2-d)-c7] —w(bt+bb)(22—d2)} (9)

For a minimum P, it is found that £ = %, and thus the peak load is estimated to
be 523 kN which should be compared with the observed peak load of k55 kN.



180 1l — COLLAPSE OF REINFORCED CONCRETE VOIDED SLABS

3.3 Estimate of shear yield load.

Neglecting the dissipation rate in those parts of the shear failure lines within
the loading vehicle, the yield load is given by

2

F 28-c-24

Emdbb+abt) + 2q(-c-4)2 —W(bt+bb)(£2—d2ﬂ (10)

For a minimum P, it is found that
e+2d | d/ég+hcd 3 bm (bb+abt)—2q0d (11)

from which £ = 1563 mm and the yield load, from equation 10, is 481 kN which
should be compared with the observed yield load of 41l kN.

L =

3.4 Subsequent mechanism

L is taken to be 2. It is reasonable to_take ¥ as the mean of ¥y and ¥y end
thus § = 124 mm. Then from equation 9, B = 12.4°; from equation 8, n = 0.0499;
from equation T, £ = 2322 mm; and P = 425 kN. The observed values of B, % and
P were 14°, 2370 mm and 373 kN. The calculated load exceeds the observed value

by 14%.

k.  CONCLUSIONS

Upper bounds to the collapse load of a circular voided reinforced concrete slab
bridge loaded symmetrically have been presented. The analysis overestimates the
peak, shear and distortional yield loads by 15%, 16% and 1L4% respectively.
However, a number of simplifications and, in some cases, somewhat arbitrary
assumptions have been made in the analysis.
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5. APPENDIX

5.1 Membrane enhancement factor

The mechanism shown in Fig. 2 neglects any membrane action in the flanges
although such action must take place. In order to allow for membrane action,
the enhancement factor (g) is introduced in equation 5.

If full lateral restraint is assumed, the enhancement factor can be assessed by
considering the transverse secticn of a flange as a beam.

Since full restraint will not occur, and in the absence of a complete analysis
of the membrane effects, [ is estimated in this paper to be 50% of the full
restraint value.
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Application of the Yield-Line Theory for Reinforced Concrete Slabs allowing for Membrane Effects

Application de la théorie des lignes de rupture aux dalles en béton armé en considérant les effets de
membrane

Anwendung der Fliessgelenklinientheorie bei Stahlbetonplatten mit Berticksichtigung der Wirkung
von Membrankraften

D. KLEIN G. MEHLHORN

Institut fur Massivbau Institut fOr Massivbau

Technische Hochschule Technische Hochschule
Darmstadt, Fed. Rep. of Germany Darmstadt, Fed. Rep. of Germany
SUMMARY :

The paper presents two methods for calculating the influence of in-plane forces on the load bearing
capacity of reinforced concrete slabs. The results are examined by a finite element analysis of an
example.

RESUME

On présente deux méthodes pour calculer I'influence des effets de membrane sur la charge ultime des
dalles en béton armé. Les résultats sont comparés avec ceux d'une analyse utilisant la méthode des
éléments finis, dans un cas concret.

ZUSAMMENFASSUNG

Es werden zwei Methoden zur Untersuchung des Einflusses von Normalkraften auf die Traglast von
Stahlbetonplatten vorgestellt. Die Ergebnisse werden an einem Beispiel durch eine Vergleichsrechnung
nach der Finite Elemente Methode Gberpriift.
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1. INTRODUCTION

The Toad bearing capacity of reinforced concrete slabs with restrained edges

is higher than predicted by the conventional yield-1ine thecry. The prevention
of the outward expansion causes an in-plane compressive force within the slab
which provides a higher moment capacity than is assumed by the yield-1line theory.
In the presented paper the solution of several research workers (for example
Morley [1]), who have extended the yield-line theory by including the in-plane
forces as generalized stresses for the assumption of a rigid perfectly - plastic
material, is compared to a more realistic solution in which the condition of the
inextensibility of the slab parts is deleted. It is assumed that the slab will
behave elastically within its plane. An approach is developed to estimate the
in-plane forces due to constraints which are induced by the reduction of the
strains and cracking during slab deflection.

The results of the extended yield-line theory including in-plane forces are
examined by a finite element analysis of reinforced concrete slabs. With a
program system that was developed in Darmstadt [2], {3], the realistic behaviour
of reinforced concrete slabs can be calculated by considering material and geo-
metrical nonlinearities. The computational methods are demonstrated by a
rectangular slab under uniform load, supported along three edges. In Fig. 1 the
system and the idealization of the slab into elements is shown.
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Fig. 1 System and Finite Fig. 2 Yield-Line Pattern with Three
Element Idealization Parameters
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2. LOAD BEARING CAPACITY INCL. INPLANE FORCES ASSUMING IDEAL-PLASTIC BEHAVIQUR

For the general case of a transversely loaded thin slab the failure will start

in a flexural mode. The in-plane forces induced as a secondary effect have only
little influence on the failure mode, so that the yield 1ine pattern of the
conventional yield line theory for pure bending can be used as a failure
mechanism. In Fig. 2 the chosen three-parameter yield-line pattern .is shown.

With the dimensions indicated in Fig. 1, the yield strenéth of reinforcement,

BS = 420 N/mm2 and the characteristic strength of the concrete, BR = 725 N/mmz,
the Towest upper bound for the ultimate load is by application of the conventional
yield-1ine theory Po = 40,6 kN/m2 with the inherent parameters o= 0,556,

B = 0,094 and ' 0,188.

In extension of the conventional yield-1ine theory, not only the bending moments
but also the resulting in-plane forces normal to the yield lines are used as
generalized stresses. By applying the principale of virtual work, the energy
dissipated‘by the in-plane forces along the yield 1Tines must be added to the
dissipation density per unit length of the yield line

d:=m-@+n-4 (1)

7

The moments m and forces n are connected by a moment-force-interaction as
yield-condition. With a stress-distribution as shown in Fig. 3 the resulting
moments and forces normal to the yield line are

m, =A., B.e,cos’y +Asy o e, 5in’p +f3a(b,- 3-a) (2)

2 .2
M= Ay Bs €08° ¢ + Ay f5s Sin @3- a (3)
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Fig. 3  Stress-Distribution Normal to Yield-Line
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By elimination the depth a of the compressijon zone, the yield criterion becomes
(m (b5 A 5 o8 i
F )-—:m +(b-A -—Scosgo/l L= sin )n (4)
nn: —m [To “sx ¢
R JZ/ﬁR n ZﬁR ﬂﬂF

where MonE stands for the yield-moment of the conventional yield-1ine theory.
By application of the flow rule (normality law), a relation between the rate of
rotation and the rate of deformation within the reference plane as an internal
compatibility condition in the yield line is developed

4

T 5

3 b-a=z (5)
This condition states that the relative rotation axis between two slab parts
is identical with the neutral axis. A rotation of the rigid slab parts is only
possible, if the rotation axes are horizontal, so that the height of each of
the relative rotation axis during the actual deflection under developed failure
mechanism can be defined by one parameter, for example the depth of the
compression zone a at any point of the yield-l1ine. In Fig. 4 the failure
mechanism is shown in the elevation and the rates of displacements of the
relative rotation axes by a virtual rate of deflection Qm are indicated.
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Fig. 4 Failure Mechanism in the Elevation
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Egs. (1), (2), (3) and (5) define the internal energy that is dissipated per
unit length of a yield-line during a virtual rate of plastic rotation

d; T_'[Asxﬁs(hx—a)ms2‘? +’4$gﬂs [/ig—a)sin‘}a+ _2’_’ 02/3R]' 2 6)

By equating the total internal and external virtual work, the depth of the
compression zones of the five yield-lines, a; to ag, remain unknown. If the
clamped edges are fixed in their plane, the rate of displacements of yield-Tlines
nr. 1 and 2 and because of symmetry also of nr. 5 must be zero. By the three
conditions 01 =0, 02 =0 and 05 = 0 (v see Fig. 4) three parameters can be
eliminated. The remaining two parameters must be computed by minimizing the
ultimate load. This results in a failure load dependent on the actual deflection

kN[ 2 7
/01[-”'1—2]— 84738 w_+ (76 /. (7)

3. ESTIMATION OF THE SELF-INDUCED IN-PLANE FORCES FOR ELASTIC PLATE STRETCHING

The derivation in the preceeding section assumes that the stress-strain-relation
of the concrete as well as the reinforcement is ideally-plastic. In reality,
however, the stresses of the concrete in the compression zone remain in the
elastic range. The flexural response of the slab is well represented by plastic
behaviour as soon as the yield point of the reinforcement is exceeded. The
in-plane forces, however, are transferred across the yield 1ine mainly by the
concrete, so that even in the plastic range of the reinforcement, the plate is
deformed elastically in its plane.

To compute the in-plane forces which are induced prior to failure the cracked
slab is considered to be an elastic orthotropic panel. It is assumed that the
concrete only transfers compression stresses and that shear stresses are
possible only in the uncracked zone. Poisson's effect is neglected. If the
cross-section remains plane after deflection, the relations between the resultant
stresses and the strains within the reference plane are:

_ 2
M=K [éxx_( by=bsx) /5@;%/ // i My ™"y [ ‘c’yy: (65 boy) / %ﬂil/] (8)
M= zlaxy Eb[axga(bo-—%axg)/f(—a—z/] |

. _ ‘ - !
with kxx-[/xsx+/15x)§+axxfb § Ky —[Asy+,4$y) E5+ayy£b (9)
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and the distance of the elastic centroid from the compression side of the slab

4 2
.S‘x l( [ES( +A.sxhx) 2£bax ) Sg /( [E syby Asyh!/) ] Ul

It is assumed that the deflection surface w(x,y) is known and that the in-plane
forces do not influence the deflection. Then egs. (8) to (10), together with
the equilibrium conditions and the strain deformation relations within the
reference plane

Ou_ 1{owY . Oy, 1/ow Ou, dv, 1w dw 1
Sxx~ax ng)}‘syy dy Zay) Exy~ oy "ox 7 ax % Y

form a complete system of equations to resolve the planar problem. An exact
solution of the problem, however, is impossible as the depth of the compression
zone varies over the slab region and is a function of the induced in-plane
forces. As an approximation for the active part of the section of the concrete,
the compression zone of the cross-section under unf&ia], elastic bending and
normal forces is chosen

B E E. 2n.,
_—('4 +’4 S+V( SX sx)£+2[ sxhx) E: £ a);:/ el
6/675

To estimate the membrane forces along the yield-lines, further assumptions are
necessary. If a horizontal movement of only the clamped edges is prevented and
the slab is able to deform freely in the x-direction, the in-plane forces in
this direction may be neglected, Mg = 0, and nyy may be constant in the
y-direction.

As boundary condition, the elongation of the slab in the y-direction must be
zero, so that the integration yields

o Qszg_
Jay W0y 7(‘“/( Jlta) |z “3)
H

With a deflection surface w= (7 P ) {1 Vo R Y’ +’l(5'Z4L (14)

the in-plane forces are determined by eq. (13) The solut1on of eq (13) is
possible only by an iterative process resulting in

yy[kN/cm] 021w m(1 2% "4‘) 36w (1 273 ) (15)
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Now the load bearing capacity of the slab can be calculated by conventional
yield-Tine theory with a yield moment m_. that is related to the in-plane force
Pom = nyy sin?y by eq. (4). The action of the in-plane forces at the deformed
system is taken into account, if the variation of the position of the cross-
section to the reference plane during the deflection {see Fig. 4) is considered.

Numerical calculations result in

P, [kl | =406 + 9,57 ey =1,83 wyl+ Q112 Wi = Qo022 w ¥ (16)

4. COMPARISON OF YIELD-LINE SOLUTION WITH THE RESULTS OF FINITE ELEMENT COMP.

To demonstrate the influence of edgerestraint on the load-bearing capacity, in
Fig. 5 the strain distributions of the elements along the free edge are shown
and compared with the freely movable system at the same load stage. In Fig. 6
the variation of the in-plane forces with increasing deflection are shown. The
agreement of the approximation with the results of the FEM is sufficient. Fig. 7
shows the non-dimensionalized load-deflection curves. Although the assumption
of elastic plate stretching yields better results than by rigid ideal-plastic
behaviour, the ultimate load is overestimated. In the finite element approach
failure is reached when the compression stresses of the concrete violate a
failure criterion in the biaxial stress state. This happens for the slab with
fixed edges before a flexural failure in the plastic range is evident. In [4]
the assumptions of the extended yield-line theory are described in detail
together with further examples.
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Computer Aided Optimum Design of Concrete Slabs
Minimalisation de I'armature des dalles a I’aide de I'ordinateur

Computerunterstutzte optimale Bemessung der Armierung von Platten
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SUMMARY

A computer based optimum design procedure satisfying various practical design constraints is
presented for finding the minimum weight reinforcement distribution for concrete slabs. The proce-
dure uses finite element analysis and is derived from the shake-down theorem of the theory of
plasticity. The approach used represents a combination of automatic optimum design and interactive
computer aided design methods.

RESUME

Le rapport présente une méthode servant 3 minimaliser le volume d’armature des dalles en béton
armé tout en tenant compte de certaines conditions dictées par la pratigue. Le procédé utilise la
méthode des éléments finis et est basé sur le théoréme fondamental de la théorie de la plasticité.
Le programme de dimensionnement offre & I'utilisateur la possibilité de medifier les données
pendant !e déroulement du programme.

ZUSAMMENFASSUNG

Es wird eine den praktischen Gegebenheiten angepasste Methode zur optimalen Bemessung der
Armierung von Platten beschrigben. Das Verfahren benlitzt die Methode der Finiten Elemente und
basiert auf dem Einspieisatz der Plastizitdtstheorie,

Es ist ein computerunterstutzies interaktives Bemessungsverfahren mit automatischen Optimie-
rungsalgorithmen.
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1. INTRODUCTION

This paper reports on a research project presently in progress. While the main
ideas on which the project is based seem today to be well understood, the deve-
lopment of the complex computer program needed for practical applications has not
yet reached the stage where numerical results can be obtained. Therefore general
conclusions concerning the applicability of the suggested design method can not
be drawn yet. Experience also shows that the final system might look considerably
different as it is planed today.

Tha aim of the project is the development of a computer based design procedure
for finding the minimum weight reinforcement for concrete slabs of given geometry
subjected to any kind of dead- and life-loads takipg into account different kinds
of practical design restrictions. Only the plate-bending action of the slabs shall
be considered.

Most practically oriented ecivil engineers are rather sceptical towards auto-

matic optimum design procedures. They feel - with good reasons - that the process
of designing real-life structures involves too much personal experience, feeling
and imagination to be left to a computer program developed by some stranger.

Today much more attention is paid to interactive computer aided design methods,
where the computer only checks given designs while the task of finding an "optimum”,
whatever that means, is left to the designer. The main problem of this approach

is to make man - machine - communication so easy and to have the computer answer-
ing so quickly that some kind of a dialog between the designer sitting in front

of a terminal and the computer becomes possible.

The procedure discussed here represents a combination of both approaches: while
the designer is still expected (at least in the final stages of the design pro-
cess) to interact with the computer sitting in front of a terminal, the computer,
whenever requested, will have to perform optimality search by linear programming
methods and show his results quickly and clearly. In fact, the chances that such
an approach will prove useful for real-life problems rely on the facts that today’'s
computers (a DEC-10 is used for this project) are powerful enough for performing
complex calculations without keeping the user waiting too long, that man - machine
communication, specially due to computer graphics, has become easy and also that
the problem considered while of considerable practical significance, is one of the
best suited for optimum design procedures based on the theory of plasticity.

2. THEORETICAL BACKGROUND AND OVERVIEW OF THE DESIGN METHOD

The design method suggested here is based on the shake-down theorem of the
plasticity theory and was first used for framed structures by one of the co-
authors in 1965 (see [1,2]). When applied to plate-bending problems the shake-
down theorem says that if it is possible to find any distribution of residual
moments (i.e. any homogeneous stress state} which, combined with the ideal-
elastic moment distribution for every possible loading case, nowhere violates
the plasticity conditions, then the structure will eventually stabilize or
"shake-down” for any possible loading cycle.

With the usual assumption that reinforcement has no influence on the elastic
behavicur of concrete structures, the moment distributions due to external loads
can be obtained by linear-elastic finite element analysis. By prescribing as
additional unit loed cases different initial curvature distributions any number
of residual homogeneous moment distributions can also be obtained by finite
element analysis. The design problem can then be stated as follows:
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A linear combination of these unit load cases leading to an optimum residual
homogeneous moment distribution has to be found and added to the linear-elastic
moment envelopes due to the external loads. Optimality is achieved when the
weight of the reinforcement needed for the combined moment envelopes is minimal.
According to the shake-down theorem, this procedure will result in the design

of a structure where plastic deformations may only occur during the first load
cycles, which is certainly an appropriate design criterion for reinforced
concrete slabs.

Assuming that the plastic resistances needed to satisfy the plasticity conditions
for the combined moment envelopes throughout the slab are linear functions of the
amount of reinforcement in a number of chosen "check-points”, the optimum design
problem stated above can be formulated as a linear program for minimizing the

total steel weight. The unknown parameters to be determined are the cross-sectional
areas A4 to Ang of NG predefined groups of steel bars as well as the amplitude-
factors Xq to Xyy multiplying each of the NH homogeneous load cases considered.

The user of this computer-based design procedure will have to specify length,
position and direction of different groups of steel bars (possibly of several
alternative groups among which the linear program algorithm will look for a mini-
mum weight solution) as well as a number of homogeneous unit load cases to be used
for ‘optimization. These will be specified by introducing a constant unit initial
curvature in a given direction in one or more elements of the linear-elastic
finite element model.

All static calculations, both for the external loads and for the initial curva-
ture loads are performed by linear-elastic finite element analysis. The hybrid
model with triangular and guadrilateral linear-moment plate-bending elements
described in [3] and [4] is used for this purpose. Shear deformations are not
be taken into account. Column-supports and elastic foundations are treated by
means of "elastically” supported elements.

3. DERIVATION OF THE LINEAR PRCGRAM

The total steel weight or the total steel volume V of NG predefined groups of
steel bars is to be minimized. Each of these groups covers a rectangular or a
parallelogram-shaped portion of the slab of length L_ (g = 1 to NG} and is
positioned near the top or the bottom surface of the slab for providing negative
or positive bending resistance. If A_ denotes the total cross-sectional area of
all bars of given length Lg belonging to the g-th bar group, the design optimality
criterion can be expressed in scalar or matrix notation as follows:

{A} +  Minimum (13

The plasticity conditions will be checked in a sufficiently large number NC of
"check-points” chosen in such a way that no violation will occur elsewhere in the
slab. This is done by using the following well-known plasticity conditions valid
for relatively low degrees of reinforcement:

N §7m¢4§ P (2)
where n_, p.. and m_ represent the negative and positive bending resistances and
the bentling moment’in any direction 9. As suggested by Wolfensberger [§] the angle
¢ can be eliminated and the non-linear conditions Eq. (2) can be linearized by

introducing eight linear inequality constraints for. the bending and twisting

moments m., My s and My in two orthogonal coordinate directions x and y. In matrix
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notation these eight inequalities for a check-point ¢ {c = 1 to NC) are given by:
{mgtmax < ek (33
3
~{mchnax £ {nc}

where the moment-envelope vectors {mc}max and {mc}min

resistance vectaors {pc} and {nC} are defined by:

and the positive and negative

Ex * Exy xx * mxy My ¥ Myy

- - - - = My = M

{pgt = X XY {n;} = % TRy {mg} = Xy | (4)
Py + ny Ny + ny My * Myy
Py - Pyl at e Ny - Ngy | at c My ~ Mgy atc

A detailed derivation of the positive and negative plastic bending resistance
coefficients P, Py, ny, Ny Ny and ny for orthogonal and non-orthogonal rein-
forcement can be found in [5].

If the reinforcement is relatively low it is reasanable to assume, at least for
practical design purposes, that the plastic resistance vary linearly with the
reinforcement, implying that this has no influence on the lever-arm of the internal
forces. The resistance coefficients of the vectors {pc} and {nc} can then be ex-
pressed by linear functions of the reinforcement areas A4 to Apg as follows:

{p;} = [Pc]{A}
{ng} = [n]{A}
where the coefficients of the 4xNG matrices [PC] and [NC] represent the resistance
contributions due to a unit reinforcement area Ag = 1 provided that the c-th

check-point lies within the surface of the slab covered by the g-th steel bar
group.

{5)

The maximum and minimum moment-envelope vectors {m.} .. and {mc}pin introduced
in Eg. (3) result, as explained esarlier, from the superposition of the linear-
elastic moment-envelopes {mgXt}max and {mSXt}min due to the external loads and the
corresponding vector {mgom} due to NH homogeneous load cases of unknown ampli-

tudes Xq to XNH' This leads to:

_ ext 5 homy _ ext &
{mc}max i {mc }max {mC } {mc }max [HCI{X} (6)
ext h ext
{mc}min ) {mcx }min ' {mcom} ) {mcx }min * [HCI{X}

the coefficients of the 4xNH matrix [Hg] (as well as those of the vectors {mSX%}

e

max
and {mCXt}min] being found by linear-elastic finite element analysis.

Introducing Egs. (5) and (6) in Eg. (3) the eight plasticity conditions at a
check-point c can be written as follows:

{mEXt}max ! [HC]{X} E-[PC]{A} (7)
_{m?d:}min - [H {xp < [N ]{A}

Design constraints formulated as maximum or minimum allowable reinforcement areas
can also be introduced:

R et 2 TAY 5 €8} (8)
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From Egs. (1), (7) and (B) the following linear program for the unknowns Xq to

XNy and Aq to Ang (see alsc Fig. 1) is obtained:

Vo= {L}T {n} > Minimum
0 < -y - [H]0x} + [P_]{A} e
0 < {mi"t}min + [H ]tx + [N ]€A} (e
0<-{a b+ {al
0< {a '} - {A}

- max

il

1 to N )
c

1 to N) Y (9)
C

)

This linear program can be considerably simplified. The minimum reinfercement
inequalities can be immediately eliminated by introducing as design variables,
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Fig. 1: Tableau form of the linear program (9)

instead of the Ag's, non-nega-
tive Fg parameters defined by:

{At = {A} - {Ap3pt >0 (10D

Also, it will certainly not be
necessary to formulate all eight
linear plasticity conditions

in all check-points. The values
of the moment envelopes due

to the external loads will show
that many plasticity checks are
most probably not necessary
(e.g. positive moment checks
cver a column support) thus
allowing a great reduction in
the number of ‘inequalities to
be considered. Maximum reinfor-
cement inequalities will also,
in many cases, not be intro-
duced faor all bar groups.

The linear program (S}, simpli-
fied as explained, will be
solved in core by the simplex
algorithm. It should also be
noted, that the designer, as
explained later, will be able
during the design process to in-
troduce or to delete any A- or
X-variable and any linear in-
equality constraint he wishes.
The computer will then have

to solve each time the modified
linear program starting from
the previous solution.
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4. INTERACTIVE DESIGN PROCEDURE

In a first step the designer has to specify, as usual in finite element analysis,
all structural and load data necessary to determine the moment-envelopes in all
possible check-points, i.e. in all joints and in the center of all elements. These
values as well as the data needed for analysing the additional homogeneous load
cases to be specified later (local lcad vectors for three unit initial curvatures
within each element, triangular half-inverse of the global stiffness matrix, etc.)
are then saved on secondary storage.

In a second step the following design data have to be specified or, whenever

possible, automatically determined by the program:

a) Lengths,positions and directions of all groups of reinforcement steel bars
covering rectangular or parallelogram-shaped portions of the slab. Net rein-
forcements with steel bars in two orthogonal directions as well as bar groups
of identical cross-sectional area but covering two or more distinct portions
of the slab can alsoc be specified.

b} Minimum and maximum allowable reinforcement for any bar group.

c) Criteria for determining which of the eight possible linear plasticity condi-
tions have to be considered in any check-point. In most cases the program will
be able to determine these automatically by examining the values of the moment-
envelopes due to the external loads.

d) Homogeneous load case informations concerning the direction of unit initial
curvatures in one or more elements. If no such load is specified, the slab
will be designed assuming no plastic moment redistribution.

With these data the program will be able to determine the linear-elastic moment

distributions for the homogeneous load cases, set up the coefficient matrix of

the linear program and solve this in core by the simplex algorithm. At the end

of this step [as well as at the end of all subsequent steps)} the program will check

all linear plasticity conditions originally ignored. If any of these is found to

be violated, the corresponding inequalities are introduced into the linear program
and a modified optimum solution is found.

As these two steps will generally require a considerable amount of computing
time, the corresponding program sections will not allow direct interaction with
the designer. However, input preparation is made easy hy the use of a simple
problem-oriented input language described by few easily understandable syntax
diagrams (see also [3] and [4] ).

Full line by line interaction based on a command language also described by syn-

tax diagrams will be possible in the subsequent design steps. Within each of

these the designer will be able to reguest anyone of the following actions:

a) introduce a new reinforcement bar group or delete an existing one

b) change, add or delete a minimum or maximum reinforcement constraint

c) require a reinforcement area to assume a given value. This may be desirable
when the designer choses to use a certain number of steel bars of standard
diameter corresponding to a total cross-sectional area not identical to the
optimum value found by the linear program.

d) introduce new homogeneous load cases hoping that these will help to further
reduce the total steel weight.

Each of these steps implies the addition or the deletion of some variables or

some inequality constraints requiring the previous solution to be modified, which,

in general, can be done with a relatively little computational effort. The designer

can then be informed on the effects of the action he took (change in total steel

weight, changes in single reinforcements, plasticity conditions becoming
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active, i.e. exactly fulfilled, or inactive, etc.]) in order to be able to plane
his next design step.

In fact, if the program has to interact in real time with a designer changing

at each step his design specifications until a satisfactory and in all respects
practicable reinforcement distribution is found, the problem of man - machine
communication becomes of crucial importance. Certainly extensive graphical out-
put and possibly some graphical input capabilities have to be incorporated into
the program. The designer should be able to see at a glance which parts of the
slab are more heavily stressed and which are not. This will help him finding the
most favourable position and shape of each reinforcement bar group and also tell
him how to assume the homogeneous load cases. These will probably lead to the
most favourable moment redistribution when initial curvatures are introduced in
the directions and in the elements where moments are large.

It is too early to discuss these points in detail. It should only be mentioned
that the graphical capabilities of a storage-tube Tektronix 4014 terminal connect-
ed with a DEC-10 computer appear to be adequate for this project.

5. OUTLDOK

Optimum design and interactive computer ailded design procedures have attracted
and continue to attract much attention and much research work. It is a fact, how-
ever, that at least in civil engineering such procedures are today very seldom
tsed for practical purposes. In awareness of this it would be illusory to

expect that procedures similar to the one described here will very soan become
standard tools of practicing structural engineers. The main scope of our project,
which is nevertheless guite an ambitious one, is therefore to assess as clearly
as possible for a well defined and actually relatively simple practical optimum
design problem the feasibility of the approach.
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Finite Element Approach to Optimization of Slab Reinforcement
Optimalisation de I'armature des dalles au moyen de la méthode des éléments finis

Optimierung der Plattenbewehrung mittels finiter Elemente

A. BORKOWSKI

Dr.-Ing.

Institute of Fundamental Technclogical Research
Warsaw, Poland

SUMMARY

A numerical procedure is presented which enables an optimization of reinforcement to be carried out
in the preliminary design of concrete slabs. The method is based upon discretization of the slab by
means of triangular finite elements. A rigid-plastic behaviour of the slab is assumed. The reinforce-
ment volume is minimized by linear programming taking into account technolagical constraints where
necessary.,

RESUME

La méthode exposée permet d'optimaliser I'armature des dalles en béton dans une phase préliminaire
du projet. La méthode s'appuie sur la discrétisation des dalles en éléments finis triangulaires et suppose
que le comportement des dalles est rigide-plastigue. Le volume de I'armature est minimisé par pro-
grammation linéaire en tenant compte, si nécessaire, des contraintes d'exécution pour les variables

du projet. s

ZUSAMMENFASSUNG

Es wird ein numerisches Verfahren beschrieben, durch welches es moglich ist, die Armierung von
Betonplatten an einem vorldufigen Entwurf zu aptimieren. Die Methode stitzt sich auf die Diskreti-
sierung der Betonplatte mit Hilfe von dreieckigen finiten Elementen unter der Annahme von starr-
plastischem Verhalten. Das Volumen der Armierung wird durch lineare Programmierung minimiert,
wobel herstellungsbedingte Schranken flr die Entwurfsvariablen, soweit notig, in Betracht gezogen
werden,
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1. INTRODUCTICH

The yield~line theory [1] belongs to the most widely used tools
of the plastic design. Despite its purely kinematical nature, this
method provides, when properly used, a conservative estimate of
the reinforcement of concrete slabs. This is due to such effects
neglected in the yield-line theory as the steel hardening, arch-
ing and membrane action. Each of them is favourable to the safety
of design.

It is rather simple to find an adequate collapse mode for a conven-
tionally shaped and loaded plate of an uniform reinforcement. How-
ever the primary task of an engineer is rather to look for the
most efficient reinforcement pattern than to analyse a given slab.
This can be accomplished by means of the finite element method and
linear programming as shown in a paper [2]. The aim of the present
article is to recall the main features of such approach. As far as
discretization is concerned the present method is similar to those
proposed by Anderheggen, Kndpfel [3] and Kawai [4] .

2. OPTIMUM PLASTIC DESIGN AS LINEAR PROGRAMMING PROBLEM

It is well known that linear programming (LP) is far more numeri-
cally efficient than any other method of constrained optimization.
Therefore it is natural to try to convert an engineering optimiza-
tion problem inte the shape of the LP-problem. Considering design
of reinforced concrete slabs on the ground of the ultimate load
theory one has to introduce two main assumptions in order to achie-
ve this goal:

1) the minimized volume of reinforcement should be a linear func-
tion of the principal yield moments,

2) the yield surface should be piecewise-linear.

The first assumption means that dependence of the arm of stress
couple acting in the yielded cross-section upon the area of rein-
forcement is neglected. The second one can be regarded as numeri-
cal approximation of the true convex yleld surface. 0f course the
consequences of such an approximation for the collapse mechanism
must be taken into account.
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Let an arbitrary structure be discretized in such a way that its
mechanical behaviour is represented by the following vectors: a
stress s &« Em, strain _c_l'é Em, load gé En, displacement yc‘En
and plastic modulus ¢ = Ek. Taking into account two basic assump-
tions listed above one can formulate the optimum design problem as

follows:

a) a static approach -
minimize V = ;t C,
subject to:

c*s=p, (1)
Gt 0 - gt s 20,

e >0

b) a kinematic approach -

maximize W = p~ w,

subject to:

Cu-NA-=0 (2)
G 2«1, Pig., 1 Finite-element Mesh
2> Q.

A cost function of the primal problem (1) expresses the minimized
volume of reinforcement. Here 1 e EX is a constant vector of the
cost factors. The first constraint in the static approach is the
equilibrium equation that relates the stress g to the given ul-
timate load p. The second one describes a convex polyhedron of
admissible st;esses. The dual problem (2) reads as a search of the
maximum external power over a set of the collapse mechanisms kine-
matically compatible with the strain rate q that follows from

the associated flow rule:

] (3)

The second constraint in (2) is the optimality condition relating

»

the plastic multipliers A +to the cost factors 1l. For practical
purposes it is advisable to replace the last constraint in (1) by

=X

Qe
1>

c<e g¢ct (4)



200 i1 — OPTIMIZATION OF SLAB REINFORCEMENT
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Fig. 2 Rectangular Slab with Free Edge ~ Optimal Solution for Sin-
gle Bottom Reinforcement Grid

where 3’, g+ are fixed bounds for the design variable ¢. Since
the dual problems (1)-(2) are equivalent one can use any one of
them as an input for the simplex routine which provides the solu-
tion ¢”, §* and w~, 2\_".

3. DISCRETE MODEL OF REINFORCED SLAB

A mesh of triangular finite elements as shown in Figure 1 was cho-
sen for discretization. It was assumed that w is linear while

the moments Mx’ Ey’ MXy are constant over an element. The slope
discontinuities 6} along the edges of each triangle are collected
into the strain rate vector é. The nodal deflection rates *j en-
ter the vector w. Rational technology requires the reinforcement
to be composed from a small number of grids, each of them having

a constant mesh and constant diameter of steel rods. Therefore pri-
or to optimization the area of the slab should be divided into a
small number of regions of constant principal yield moments. Theo-
retically a region can include single element but usually there are
many elements in it. The adjacent regions are cennected via the
narrow strips that can rotate independently about their longitudi-
nal axes. The rates of such rotations ﬂb are included into W.
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Fig. 5 Rectangular Slab with ¥ree Edge - Optimal Solution for Two
Bottom Reinforcing Grids

These connectors provide a continuous slope of the slab along the
lines of discontinuity of the yield moment.

In the static description of the slab the entries of s are the
bending moments Mi acting normal to the edges of triangles. The
components of p are the nodal forces and the external moments
attached to the—connecting strips. The vector of design variables
¢ collects the principal yield moments for each region. Denoting
by x and y the orthogonal directions of reinforecing bars, com-
mon for the entire slab, one has four design parameters for a re-
gion: the yield moments o, my for positive bending (bottom re-~
inforcement) and the yield moments m;, m; for negative bending
(top reinforcement). The yield criterion for this discrete model
reads: i-th line of the mesh is at the yield when (a) the positi-
ve bending moment Mi reaches the ultimate value

2

2
m; = m sin O(i + my cos oéi, (5)

or (b) the negative moment reaches the value

(4 — ’ . 2 I 4 2
mi = m  sin® o, + my cos aﬁ. (6)

Here cxi denotes the angle between i-th line and the x-axis.
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The cost factors

ment volume as the linear function of the principal yield moments.
Usually these factors are taken proportional to the areas of regi-
ons with constant reinforcement. A detailed derivation can be fo-
und in /27 as well as the modifications of the model (1)-(2) for
the cases of prescribed orthotropy and/or asymmetry of reinforce-

ment.

a)

1y

result from the expression of the reinforce-

b}

Ix02L

Fig. 4 Simply Supported Slab with Cut-off - Isotropic Reinforce-
ment: a) Dimensions and Yield Moment, b) Discretization Mesh and

Collapse Mechanism,
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4. NUMERICAL EXAMPLES

The first example (Figure 2) concerns the rectangular slad with
three edges simply supported and the fourth edge free. The follo-
wing optimum values of the principal yileld moments were obtained
for a single bottom reinforcement grid:

2

m 0.30 pL

]

M o%

(7)

ny = 0:05 51° VAV V2RV
I s
| : A
Here p denotes the trans- {r . \éi X
i N i
i ’
| N .

<y

vergsal pressure and I is
the length of the shorter ed-
ge of the slab. The optimum
orthotropy factor is

M= m;/mx = 0.1667 (8)

The volume of reinforcement Fig. 5 Simply Supported Slab
for this design is 8 % less with Cut-off - Discretization
as compared to the isotropic Mesh and Collapse Mechanism for
plate. Optimum Orthotropy

The second example (Figure 3) shows the optimum solution for the
same slab but having two reinforcement grids. It was assumed addi-
tionally that for technological reasons the yield moment should
not be less than 0,01 pLZ. The optimum values of the principal

yield moments are:

for the central region: m; = 0.365 pL2, m§= 0.01 pL2 (9)
for the outer region: m; = 0,282 pLz, m;z 0.01 pL2 (10)

This solution reduces the reinforcement volume by 13 % in compari-
son to the isotropic case, Finally Figures 4 and 5 show the resul-
ts for a slab with cut-off. The solution for isotropic case is de-
picted in Figure 4 while the optimum values |

* o -g Lo -
m, = 0.667 x 102 ;12 m, = 3.85 x 1072 pr? (11)

correspond to the collapse mechanism shown in Figure 5.
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5. CONCLUSIONS

The computer based version of the yield-line method offers a che-
ap tool for preliminary design of slabs. Computational effective-
ness of the algorithm makes it possible to run several triazl opti-
mizations with differently chosen reinforcement patterns, After a
final choice has been made on the ground of the rigid-plastic ap-‘
proach, one has to check whether other requirements, such as a suf-
ficient stiffness and crack resistance, are met. The final design
can be recalculated by the present method in order to establish
its safety factor against plastic collapse.
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On the Load-Carrying Capacity of Concrete Pavements

Jiang Da-hua

(Tong Ji University, Shanghai)

The load-carrying capacity of concrete pavement under central
load is investigated. The pavement is treated as a rigid-plastic
slab of infinitely large size resting on an elastic subgrade.

Under the action of & concentrated load over & small circular area
the subgrade re§%ion is represented by a conical diagram and its
variation with displacement is neglected. The same problem was
solved by G. G. Meyerhof in the early 6o's when he was studying

the carrying capacity of concrete pavement under wheel loads.

His formulae for central loads are actually upper bound solutions,
The exact solution under the above mentioned assumptions is obtained
in which the position of the circular yield line is somewhere inside
the circle of zero subgrade réé%iono

The ultimate load ca&qP%,expressed as follows

"o T (D) - (3]
in which the value of $ can be determined from the equation
g 12§ +9(E) =0 and

M. is the ultimate moment of the slab section,c::EYE/being the

radius of the circle of the loaded area, of zero subgrade reggion

and of the circular yield line respectively.

Ultimate loads for dual,triple and quadriple circular loads
and a strip load are also investigated.

The moment curvature relation of a plain concrete section is
deduced by considering the existance of horizontal axial thrust in
the slab and the gradual cracking of the section. It is interesting
to note that the moment curvature relation thus obtained is
practically of elasto-plastic type.

The theoretical analysis is simple,and it explains why full
redistribution of internal forces to form a collapse mechanism is
possible in a large plain concrete pavement aﬂhas been observed
in the experiments carried out in China in recent years.
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DEFORMATION CAPACITY IN REINFORCED CONCRETE SLABS

Peter Lenkei Hungarian Institute for Building Science (ETI) Budapest

Summary

In reinforced concrete slabs at yielding not only the load bearing capaci-
ty but the deformations and the cracking process too are greatly influenced
by the level of orthotropy and by the divergence in the principal direc-
tions of the resistance of the slab and of the external moments. The theo-—
retical and experimental investigations proved that this fact should in

some cases be taken into account.

Experimental investigations

Rectangular slabs with fixed corners and with different levels of orthotropy
were tested in the Laboratory of the Hungarian Institute for Building Science

(ETI, Budapest). The details of the test specimens are given in Fig. 3.

The difference in the amounts of reinforcement and in the level of ortho-
tropy altered the load bearing capacity and the yield pattern in the
corners of the slabs. Of course in the middle part of the slabs the angle
Y was equal to zero, but in the corners Y differed considerably from

ZETYOo.

Due to these differences, the behaviour of the slabs during the transi-
tion process, the deformations and the crack pattern at the maximum load

(at yielding) were different (Fig. 4).
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Punching of Slabs subjected to In-plane Biaxial Tension

R.P. JOHNSON, University of Warwick, England

The punching shear strength of slabs subjected to in-plane biaxial
tension is of interest to designers, because this situation can occur
in continuous composite steel-concrete bridge decks in regions where
a cantilever cross girder intersects a main girder near an internal
support, and the neutral axes for bending of the two composite members

lie many slab thicknesses below the deck,

Such a region has been studied at the University of Warwick in
tests on cruciform specimens composed of two intersecting composite
girders, supported at the centre of the cross and subjected to downwards
point forces at the ends of the arms, Control of these forces enabled
known biaxial tensile strains to be maintained at the top surface of
the slab, which was 90 mm thick., There were four layers of
reinforcement (8 and 12 mm bars at 150 or 200 mm pitch)., The tensile
strains at the underside of the slab were about 80Z of those at the

top surface.

Punching shear tests were done on three quadrants of the same
cruciform slab, while the mean tensile strains in the top two layers
of reinforcement were 0, 860 and 1730 microstrain, respectively.
The corresponding punching loads were 164, 162, and 163 kN, The
punch diameter was 120 mm, and the maximum diameter of the punched-
out area was about 850 mm (limited by the flanges of the steel girders),
giving a mean slope of 14° for the surfaces on which failure occurred.
These results confirm what can be deduced from the upper bound
analysis presented by M.P. Braestrup:that membrane tensile strain in
a slab has no effect on its strength in punching shear, in the range of

strains likely to occur in practice.
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DISCUSSION ON POST-PLASTIC BEHAVIOUR OF RESTRAINED SLABS

by I. KANITAKIS, Research Fellow, N.T.U.- Athens

Prof. T.P. Tassios and myself would like tc present some very first
results of a theoretical investigation related to the problem of
post plastic behaviour of Reinforced Concrete slabs, rigidly con-

nected at their ends.

Each span is assumed to be fixed-ended and without any lateral dis-
placement. The slab has equal compression and tension reinforcement
along its length. The gradual modification of the bearing mechanisms
of the slab are considered qualitatively, through three consecutive
models.

The first model is the conventional elastoplastic model. Here, moment
redistribution is also considered-and the values of the stiffness

along the span are variable. There is nc axial force in the slab.

The second model is the post plastic one (fig.1). The slab geometrv
has significantly charnged
{compressive membrane)
contributing to a consi-
derable increase of the
ultimate load capacity of

the slab. (Negative axial

force N).

The third model is the

catenary one, where con-

crete in critical sections fig.1
is destroyed and only the steel can carry some load. (Positive axial
force N).

The load versus mid-span deflection curve for a slab 120 mm thick
and with a percentage of reinforcement of 0.318% is shown in Fig.2.
Branch OA is due to the elastoplastic w ]
model. Branch AB is due to the post
plastic model and branch BC is due to
the catenary model. The dotted line
in fig.2 shows a more smooth transi-
tion curve which should be worked out

and theoretically located.
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SUMMARY OF DISCUSSION -~ SESSION 3

Ch. Massonnet opened the discussion by questioning the validity of the square
yvield locus used by M.P. Nielsen for moments (Introductory Lecture, Fig. 3.3.2).
He cited test results pointing to the effect of reinforcement kinking, leading
to a concave yield locus with sharp corners.

M.P. Nielsen replied that he had never been convinced by the Liége tests, the
reinforcement arrangement being rather complicated. He would study some of

the other tests cited, which he had not previously come across. He pointed out
that numerous Danish tests on slabs in pure torsion (upper left hand corner of
Fig. 3.3.2) showed no increase in strength compared with biaxial bending. In
the case of isotropic bending (upper right hand corner) there might be some
strength enhancement due to biaxial compression of the concrete, but this is
believed to be an effect of secondary importance.

Ch. Massonnet further remarked to D.H. Clyde that he found it hard to believe
in the statical equivalence of twisting mcments and shear forces.

D.H. Clyde pointed out that the sandhill analogy for pure torsion also predicts
forces at the edges of the slabs.

Z. Sobotka presented a method of controlling the yield line pattern by varying
the ratio between top and bottom reinforcement in such a way that excessive
cracking in the service state is avoided.

P. Marti commented on D.H. Clyde's paper by citing a recent investigation of

pure torsion in slabs and beams, using the modified contours criterion with

zero tensile strength and an angle of friction of 37°. Lower bound solutions

corresponding to statically admissible stress fields were derived, and matching

kinematically admissible velocity fields found except for small corner regions.

The analysis shows that:

- the concrete crushes in a compressed shell around the periphery of the cross-
section

- the compressed shell separates from the stress-free contreol region

- if there are twisting moments at an edge of a slab, a vertical reinforcement
is necessary to connect the top and bottom reinforcement along the edge.

A, Sawczuk asked M.P. Nielsen about needed research in connexion with membrane
effects, and commented with regard to K. Sonoda's contribution that it was
difficult for the computer to distinguish between elastic unloading and the
falling branch of the stress-strain curve. He further requested more informat-
ion from D.H, Jiang concerning the interaction between slab and subgrade.

M.P. Nielsen replied that he had mentioned the membrane effect mainly to stress
its importance in practical applications, but that a theory is still lacking.

Da Hua Jiang explained that the response of the subgrade was measured by load
cells, and the pressure subsequently idealized to a conical distribution, as
indicated. In answer toc a question from A.Losberg, Da Hua Jiang stressed that
only unreinforced slabs were considered.
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Most of the second discussion period was devoted to problems concerning
punching shear.

R.P. Johnson mentioned that we would expect the punching strength to be consid-
erably reduced in the presence of membrane forces, especially in the case of
biaxial tension. However, tests carried out had shown no such effect, From the
audience it was remarked that similar results had been obtained at Ithaca.

A, ILosbey was surprised that the analyses presented by M.W. Braestrup did not
take account of the main reinforcement, and he wanted to know if the dowel
effect had been investigated.

M.W. Braestrup explained that the analysis only considered the strength in a
proper punching failure, which is independent of any membrane forces or main
reinforcement. Another point is that the likelihood of such a failure will be
strongly affected by these factors. He did not believe there was any signific-
ant dowel effect; the reinforcement is of itself very flexible so the only
source of dowel action is the tensile concrete strength, which is too small to
measure.

M. Reiss remarked that in practical cases of punching, the lcad is often appl-
ied by a column, monolithically connected to the slabs. The boundary conditions
at the edge of the column would then be different from those considered by

M.W. Braestrup, the shear force being transferred at the tip of a wedge

(cf. Fig. 4 of the Introductory Lecture). Therefore tests show that the failure
surface generatrix starts perpendicularly in the slab and is not inclined as
shown in Fig. 1.

H. Aschl claimed that we all know that tensile concrete stresses are necessary
to carry shear loads. On the other hand, the paper presented on plastic analy-
sis showed that good agreement with test results is only obtained assuming
zero tensile strength. How do we reconcile these facts?

M.W. Braestrup replied that in most cases the shear failure is constrained by
main reinforcement or by the surrounding structure, in such a way that failure
cannot occur by separation only. Thus the deformation must include some sliding,
in which case the compressive strength of the concrete is mobilised and a tens-
ile strength is not necessary.

M.P. Nielsen showed how shear in beams and slabs may be carried by inclined
compression without any need for tensile stresses.

M.W. BRAESTRUP
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