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III

Complete Limit Analysis Solutions and Yield Line Theory

La solution exacte de l'analyse limite et la théorie des lignes de rupture

Vollständige Lösungen nach Traglastverfahren und Fliessgelenklinientheorie

J. SOKOL-SUPEL
Research Associate
Polish Academy of Sciences
Warsaw, Poland

A. SAWCZUK
Professor of Structural Mechanics
Polish Academy of Sciences
Warsaw, Poland

SUMMARY
Yield line theory solutions for a circular plate subjected to point loads are compared with the exact
solutions obtained by integration of the plastic plate equations for parabolic stress regimes. Differences
between the approaches are discussed.

RESUME
Des solutions obtenues selon la théorie des lignes de rupture pour une plaque circulaire soumise aux
forces concentrées sont comparées avec la solution exacte provenant de l'intégration des équations
des plaques plastiques en régime parabolique. Les différences entre ces deux méthodes sont présentées.

ZUSAMMENFASSUNG
Fliessgelenklinienlösungen für eine Kreisplatte unter Einzellasten werden mit den vollständigen Lösungen

verglichen, welche durch Integration der für parabolische Spannungsfelder plastischer Platten
geltender Gleichungen erhalten werden. Unterschiede zwischen den beiden Betrachtungsweisen werden
erörtert.
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1 INTRODUCTION

For plates obeying the Johansen yield criterion the complete limit
analysis solutions are available in several cases, [1]. This
criterion is usually employed in the yield line theory to obtain an
upper bound to the collapse load since the respective calculations
concern solely the mechanism of motion under the limit load, [2].
We intend to show on a simple example similarities and differences
between the yield line theory solutions and those which give for
the Johansen criterion the full information about the collapse load,
the collapse mode, and the stress field at collapse, ^4], [5].
For the maximum principal moment yield criterion the complete
solutions can be obtained for various cases of loading of simply
supported plates. A perfectly plastic plate whenever it goes plastic,is totally or partially in the parabolic, isotropic or hyperbolic
stress regime or its stress field remains below the yield point,whenever the respective part of the plate remains rigid [41. The
type of stress regime depends on the equation of the yield surface
[5]. [6].
Stress discontinuities may occur across the line separating different

stress regimes, [4], [5], [7]. Discontinuities of the tangent
to the deflected surface are admitted by the maximum principal
moment yield criterion. This property is used in the yield line theory

to generate collapse mechanisms with hinge lines, [2], [8], [9].
The complete solution of a limit analysis problem for a plate
consists in finding the collapse load intensity and the associatedfield of moments and shear forces satisfying- the internal equilibrium requirements and the prescribed stress

boundary conditions
- not violating the yield condition
The complete solution also contains
- the displacement velocity field specifying a kinematically admissible

collapse mechanism associated with positive energy dissipation
at the plate collapse, [4j.

Complete solutions may differ from the results obtained employingthe yield line theory both in the collapse load multiplier and inthe yield pattern because of the difference in the set of equationsused. A yield line solution does not specify the stress field inthe plate at collapse as it disregards the differential equationsof equilibrium, which are taken into account in any complete
solution. It is known that the yield line theory gives upper bounds tothe collapse load. In the yield line theory any collapse mode
consists of developable surfaces which, in fact, correspond to
parabolic stress regimes of the method giving complete solutions, [3], [4].

A circular simply supported plate subjected to two point loads
furnishes the case when the yield line theory results differ in
comparison with the complete solution.

2. GENERALITIES

We consider a perfectly plastic plate, isotropic both in "positive"and "negative" bending, with the yield moments Mq and respect-
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ively. We shall refer the field variables either to the cartesian
or to the polar coordinate systems.

The comparison of the exact and yield line solutions will he made
for a simply supported plate, Fig. 1a. The point loads Q. and Q_
are applied at the equal distances A from the plate center. The
following dimensionless quantities will be used.

a)

where W, M. T, denote the deflection velocity, the bending moments
and the shear forces respectively whereas R stands for the reference

length which equals to the plate radius.

Moreover,

q (1 + Of) q1 (2.4)
denotes the dimensionless total collapse load of the plate. The q
q1+, qg+ will stand for dimensionless limit loads corresponding to
yield line theory solutions. The ratio of the deflection velocities
of the points of load application, Fig. 1b, is ß W2/W.J.

The maximum principal moment yield condition of the Johansen
criterion represents a square yield locus in the plane of principal
bending moments

n^-m-j + m^+n^ _
1 0,

m2-m1 + m1+m2 + A 0 (2.5)
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or a pair of intersecting cones in the moment space mx, m m
xy"

3. COMPLETE SOLUTION

The complete solution of the considered plate under the criterion
(2.5) consists of the parabolic zones SOS1 0. and S'BSOp joined by
the isotropic regime SO^S'Op. In the isotropic zone the dimension-
less stress field is
m m m m0x y r 0 1, t t t to 0

x y r 0 (3.1)

Thus any direction is principal and the zone caries no transverse
loading. The velocity field is arbitrary and is subjected to the
condition that the Gaussian curvature of the deflected surface is
non-negative there [3], [4].
In the parabolic zones SCS10. and S' BSOp the bending moments and
the shear forces expressed in the polar coordinates with origin
each time at the point of loading, Pig. 1a, are respectively

m 9 1, m__ -
a sin 0

1-a2sin20

1

0,
1

t -r Ç 1-a sin 0
(3.2)

The velocity of deflection in a parabolic zone is bounded by a
developable surface, [4]. Eor the point loading considered two conical

surfaces SCS'Ô. and S1BS0„ are obtained. The vertices of the
cones are at the points of the load application, Pig. 1b.

Along the lines O.S, 0„S, and symmetrically, discontinuities in the
radial moment appear, as it can be seen when comparing the results
(3.1) and (3.2). Between the parabolic and the isotropic regimes on
the lines SO. and SOp in Pig. 1a, there is a continuous transition
of the circumferential derivative of the deflection velocity. The
triangular part AO.Op of the isotropic range rotates with resoect
to the axis K-K, Pig. 1a, which is tangent to the plate boundary
at S. Geometrical considerations lead to the conclusion that the
flat element O.SOp is tangent to the sectors of cones SO.S1 and
SOpS1. The points of load application have the vertical velocities
related as follows

ß
w^

w.

1-a cos<()

1 + a coscj)
(3.3)

The collapse loads are calculated considering the shear force along
a circumferential trajectory [4], [7].
q. 2 f(-t) ds 2 \ \-t Ç d 0 (3.4)

0 n J0

and the results are respectively

<li » t " " y1h-a
7T — arctan /l-a2 sin (J)

a+cos <{)
(3.5)

j~ 0 if 4> ^ arccos a f =5T if <j> arccos a
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jp — arctan l/l-a2
sin<f> "

a+cos(j>
(3-6)

The obtained parabolic solutions are valid for the following
positions of the load application points

0 < a ^ k A (3.-7)
1 + A

where k sec 0,, 0. < îf/2, k 1, 0.) ÎT/2, i 1,2. The angle
specifying the meeting point S of the parabolic regimes is given by
the equation

0(
jp - arctan( yl-a sin \

a-cosd) /
JT arctan

In Fig. 2 this
angle is specified
in terms of the
ratio of the loads
applied. This
allows to derive
the shape of the
central isotropic
zone for the given
a and the load
application point a.

The deflection
rates at the
points of loading
are not equal if
the loads are not
equal, a / 1• The
shape of the
deflected surface
is indicated in
Fig. 1b. It is
seen that for the
load ratio ot 1

is for any position
of the loading

ß 1. Fig. 2

At the point S a concentrated reaction appears, namely
2a sin <p

V tanJ3. + tanßp * p—
1 - a cos <p

3.9)

mand the reaction on the boundary is t t + 3 m /3 s where
denotes the twisting moment appearing along the simply supported
edge.

4. YIELD LINE SOLUTION

To this end a kinematically admissible deformation mode is assumed
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first. For the considered plate and the loading the deflected
surface consists of conical elements
Fig. 3. The zones SO.S and s'O^S1
are sectors of cones with the
vertices at the points of load
application. The zone SKS
corresponds to a cone with the
vertex on the plate boundary.
There is a ridge O.Op on the
deflected surface, consisting
of intersection of the cone SKS

with the symmetric one.

In the yield line theory, when
a continuous field of yield
lines is considered, the
dissipations due to the internal
forces is expressed as follows

D- - Mo%K " - Vo{I1 +(D )i6 - ffy
or

D M w
o o (4.2)

'1

respectively to the situations shown in Figs 4a and 4 b. The
results concern the collapse mechanism of Fig. 3. The solution (4.1)
concerns the cones with vertices at 0. and 0?, whereas (4.2), [101,
gives the dissipations on the collapsé mode In the form of a conical

surface with its vertex on the plate boundary as shown in Fig.3.
For a given ratio of the loads a bound to the load carrying
capacity is

q+ mm
2(1+qQ

/l-a (c+cxd) i
'

/l-a2
+ arctan

+ D (arctan
Vl-a2 siny

Fig. 4
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where C

and i2 0
1 +

if
a cos if/
arccos

D 1 - a costf
a < if < 3T/2, J2=3T if arccos a

Another collapse mode consisting of conical parts SO. S and S OpS
joined by the cylindrical surfaces can be conceived. The vertices
of the cones SKS' are
at the infinity, [10].
The respective results
are in [ 11]

In Pig. 5 the collapse
load intensities are
shown for the
considered collapse mode
as well as the exact
result.

5. COMPARISONS

Comparing the complete solution with the considered kinematical
solutions one can conclude that for the load ratio 0 a 0.5
the differences between the solutions is of order of few per cent
only. The largest admissible excentricity for the studied complete
solution involving parabolic and isotropic regimes is for & 1,
Fig. 6. The results are given in the table. The considered kin-
ematically admissible collapse modes of the yield line theory and
the velocity field corresponding to the exact limit analysis
solution of a rigid-perfectly plastic plate are compared in Fig. 7 at
ot 1 for the load excentricity a 0.5.
The analysis of complete and kinematically admissible solutions of
the considered plate problem suggests that experiments should be
made regarding the existence of an isotropic zone as well as to its
extent, and regarding the data concerning the limit load and the
largest differences should appear for the load excentricity a 0.7,
close to the limiting case of applicability of the parabolic-iso-
tropic solution. For ex) /A /(1+A) a hyperbolic zone must appear and
the exact solution is not known. In the considered case of "layered
isotropy", A 1

> "the hyperbolic zone appears for a 0.707.

The exact solution allows to assess the reaction distribution along
the support. A concentrated force V appears at the point S, where
two parabolic zones meet the isotropic region.

Load carrying capacity q at a 1

a exact yield line theory
0 6.283 6.283
0.5 9.674- 10.170
0.7 13.141 14.760
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application of the mechanics of plastic structures in engineering
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III

Circular Slabs with Limited Plastic Flow Capacity

Dalles circulaires à capacité d'écoulement plastique limitée

Kreisplatten mit begrenzter plastischer Verformbarkeit

K. SONODA
Professor of Civil Engineering
Osaka City University
Osaka, Japan

SUMMARY
A method of elasto-plastic analysis for reinforced concrete circular slabs with a limited plastic rotation
capacity is presented. The procedure used is numerical, but analytical elastic solutions already known
are utilized as much as possible here. Examples show the relationships between ultimate bending
strengths and plastic flow abilities for such slabs.

RESUME
Une méthode d'analyse élasto-plastique est présentée pour des dalles circulaires en béton armé et à

capacité de rotation plastique limitée. Il s'agit d'une méthode numérique, mais des solutions analytiques
connues pour des plaques élastiques sont utilisées autant que possible. Les relations entre la résistance
ultime à la flexion et la capacité de rotation plastique sont illustrées par quelques exemples.

ZUSAMMENFASSUNG
Eine Methode zur elastisch-plastischen Berechnung von Kreisplatten aus Stahlbeton mit einer begrenzten

plastischen Rotationsfähigkeit wird dargestellt. Das verwendete Verfahren ist numerisch, doch wird
soweit wie möglich auf bekannte analytische Lösungen für elastische Platten zurückgegriffen. Mit
Beispielen werden die Beziehungen zwischen den Biegebruchlasten und der plastischen Verformbarkeit
solcher Platten erläutert.
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1. INTRODUCTION

The classical plastic design method has been developed on the assumption
that a structural material or element consists of a perfectly plastic
substance which can flow plastically under a constant yield stress until a whole
or a part of structure becomes unstable by forming a collapse mechanism. The

plastic flow capacity of a concrete being a significant structural material,
however, is not unlimited. It is well known that the stress-strain curve of
a concrete undergoing a uniaxial compression rises to a strain of about 0.25%
and afterward falls gradually to a strain of about 0.35% when a crushing failure

occurs. Then, the maximum plastic strain can not be anticipated to exceed
0.3% in uniaxial compression.

On the other hand, the plastic rotation capacity of a reinforced concrete
beam is predominated by the plastic extension of the reinforcing steel bars
when its reinforcement is very small but by the plastic contraction of the
concrete when the reinforcement is rather large. Hence, the plastic rotation
capacity becomes smaller as a reinforcing steel ratio becomes larger.

A similar circumstance is naturally supposed to exist in a reinforced concrete
slab. This paper is intended to investigate on the effect of the limited plastic

flow capacity on the ultimate load carrying capacity for a reinforced
concrete circular slab. The rectangular yield curve in the bending moment plane
is used here as the initial plastic flow condition of the slab-section, and
the subsequent yield curves in an unstable plastic region after a considerable
plastic flow are determined according to a piecewise linear strain softening
theory. The stress-rate versus strain-rate relations in both stable and
unstable plastic regions are derived by using the associated flow rule of the
plasticity, and consequently the fundamental differential equation concerning
load-rate and deflection-rate is obtained.

On the other hand, this paper also presents a new method for the numerical
solution of the fundamental differential equation, which is different from the
well-known finite element method and finite difference one. The method is
developed under the idea that the effect of plastic flow can be replaced with
an addition of the self-equilibrating virtual loads resulting from the devi-
atoric part from the moment distribution given by the linear elastic solution,
and the elasto-plastic solution, therefore, can be given by the superposition
of the elastic solutions for both the actual and the virtual load distributions.

2. DEFLECTION-RATE EQUATION

A circular slab subjected to axially symmetric loads is dealt with here.
Idealizing the moment-curvature relation of the slab section, the curve
including linear elastic, perfectly plastic and strain softening parts will be
obtained as Fig. 1. Assuming a rectangular yield curve which is based upon
the shear fracture of concrete by the Mohr-Coulomb's theory and the tensile
plastic flow of steel bars and, using the normality law on plastic strain-
rates postulated by A.C.Palmer et al. [1], the loading surfaces after a plastic

flow are supposed as Fig. 2. Namely, when yielding at the line A B, the
yield surface diminishes to A'B', A"B", and when yielding at the
line AC, to E'C', E"C", •••••••, and when yielding at the corner A, to D1,
D t Hence, the expression of the loading function can be written as

max [ I Mr I - Mor(er) | M0 | - Mo6(e0) ] 0 (1)
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where M^, M0 >^or^e an<^ ^ç>6^efp are radial and circumferential moments
and those bending strengths in tne polar coordinates r, 0 respectively
and e and e0 are parameters representing plastic curvatures. The Hooke's law
and tEe associated flow rule of the plasticity give the following relations of
moment-rates and curvature-rates :

M
r D

1 V K - dy *3F /3M
r r r r

% v 1 K0 - dy0.3F0/3Me

where V Poisson's ratio, D
•flexural rigidity, K

and dy^, dy 0 plastic flow coefficients ; and

F
r

1 M
1 r - M

or (er) F0
|

M0 | - Mo0

(2)

M (e M
or r or erBV Mo0(e0> SO0 - D e„

dp e fC
J0 r 6 J0

dyQ

where_3 3fl strain softening rates which may be related to the coefficient
3/(1-3 f indicated in Fig. 1. The plastic flow coefficients are expressed as
follows :

for the corners A, D', D",

n (1 - 3r)(i

- V -v3c

-v3.

for the lines A B, A'B', A"B",'

-J (3)

Ffi 0, dyfi + vk >/(l - 30), dy 0 (4)

for the lines A C, E'C', E"C",

Fr 0, dyr (Kr + VK0)/(1 dyfi 0 (5)

and the expressions for the other lines and corners will easily be obtained by
exchanging appropriately the signs of the coefficients in the above expressions.
Eqs. (3), (4), (5) and others will be represented for simplification as

dyr

dyQ

,K + -.Kp

^21Kr + *22KQ
(6)

Using the relation between curvature-rates and deflection-rate in an axially
symmetric bending, namely

Kr
32w/3r2

K. - 3w/r3r
(7)
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and substituting Eq. (2) into the following equilibrium equation :

1 3
3 M

3r
F+tI7(2"r " "e) " P(r) (8)

where p(r) a load-rate distribution, the fundamental differential equation

about deflection-rate can be derived as follows :

d(^2 +ih)* Hl) +-^2*I+tIÏ*2 (9)

where

~T *ll*a + AA } ff +
3r

N
1 3w

^12 a
+ 22 b r 3r

Ä 32W

-^ [ (2 - v)*11*a + (2v - d*2AJ -Af +[1 i 3w
(2 - v)*12*a + (2v - D*22<f>bJ —"97

in which 3F /3M and 3FQ/3Ma

(10)

The second and the third terms in the right side of Eq. (9) mean the addition

of the self-equilibrating virtual load-rate distributions resulting from
a deviatoric part from a linear elastic moment distribution, namely the moment
redistributions due to plastic flow.

3. METHOD OF SOLUTION

The differential operator of the left side in Eq. (9) is the same as an elastic
problem, and the unknown moment-rate redistributions (X^, X„) in a plastic
region, therefore, are determined by the solution of the following

simultaneous integro-differential equation :

[( hl*a + v<o21o,b > ^2 + t fuK + *22+b> ih] x

x ^w° + Xp ^2i^(r,c)dÇ + Xp ~r C11)

|[(2-V)^a+(2V-D*2A] ~2 +

+ [(2 - vH12cf>a + (2v - l)«^] X

X bW° + X ^2*l"(r,Ç)dÇ + X i"ifi2"(r,Ç)dÇ] TT (12)
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where p an actual load-rate intensity, w the elastic solution for the
actual load-rate distribution with the uni? intensity, w(r,Ç) the elastic
solution for a circular line load with the unit intensity at the position r

Ç within a plastic region, and the plastic region.

Now consider a method of numerical solution for Eqs. (11) and (12). Dividing
the radial region of a circular slab by a net of sufficiently fine meshes and
considering the case when only the part of one mesh becomes of plasticity,
the distributions of the X^ and within the mesh may be assumed to consist
of the continuous three parabolic curves as shown in Fig. 3, because
equilibrium conditions require that both the moment redistributions and their
first derivatives related to shearing forces must be continuous within a whole
plastic region and at an elastic-plastic boundary. Thus the virtual load-rate
distributions being equivalent to these moment-rate redistributions are given
from Eq. (9) as Fig. 3, which are naturally self-equilibrating. When a region
including a number of meshes is plasticized, therefore, the deflection-rate
of the slab is obtained by the superposition of the elastic solutions for
both the actual load-rate distributions and the virtual load-rate ones
mentioned above. Namely,

pwQ +£z w + £z2.w.

K -r

liwli Y 2i 21

.2. 32w„ 32w 92w
_3_w _ _

• ° ii_V7.2 P- 2 4^ lir. 2 Ar1 2i„ 2
3r 3r i 3r i 3r

1 3w p
3w° v-A 1 3wli v-r 1 3w2i

z i. —ii_y2 i^0 r 3r r 3r V 11 r- 3r 4^2i r. 3ri l i l
where W^. and W^ represent the elastic deflections due to the virtual load-
rate distributions with the unit intensity, 1 and Z^ 1, at the mesh
point, i, which will easily be obtained by the integration of the solution for
a circular line load given by the well-known literatures, e.g., Timoshenko's
book [2], and the summation is executed over all meshes in plastic regions._
Substituting the rate-equation (13) into Eq. (10) and using the relations,

4iL/Ar and Z^ 4^/[Ar(2r^-A^)l, shown in Fig. 3, a simultaneous equation
about the unknowns, Z^, %2±' i 1,2, are obtained,and the substitution

of its solution into Eq. (13) consequently determines the deflection-
rate and the curvature-rates resulting from the actual load-rate, p. Finally,
the total deflection, the total curvatures, and the total moments are obtained

from the integration of Eqs. (13) and (2) by making use of the forward
difference method of sufficiently short intervals about load increment or central
deflection-increment, which may be familiar in the elasto-plastic numerical
analysis for a solid [3].

(13)

4. RELATIONSHIP BETWEEN PLASTIC FLOW CAPACITIES AND ULTIMATE BENDING STRENGTHS

Numerical calculations for the load versus central deflection curves for
circular slabs subjected to partially or entirely uniform loads are carried out
by setting the following material constants :

2
yield stress of steel, f 275 N/mm ; compressive strength of concrete,
fc 27.5 N/mm2; secant modulus of elasticity of concrete, Ec 1.4 x 10^
N/mm2; reinforcing steel ratio, p 0.008; v 1/6; d/a 0.1i d
^effective depth, a radius; strain softening rates, 6r 69 6/(1-8);
D Ec d3/12(1-v2); M /Ecd2 M e/Ecd2 M0/Ecd2 1.5 x 10"4( isotropic
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2reinforcements ); and M f d p"(l - 3p*f /4f } ;

o s sc
and by taking the 11 dividing net points along the radius.

Fig. 4 shows the relationships between the plastic flow ability and the ultimate

load in which K limit elastic curvature, 6 (=dK a standardized
rotation at the built-in edge, K limit plastic curvature, 0 limit plastic

rotation at the built-in edgl, and P/P the ratio of the ultimate load
of the slab to that of the perfectly plastic slab. On the curves for the
clamped slabs in Fig. 4, the dotted lines indicate that the limitation of
plastic rotation at the built-in edge is more dominant than that of plastic
curvature at the center for reducing their ultimate loads. From the figure it
can be observed that the influence of plastic flow ability upon the ultimate
load carrying capacities becomes larger as the loaded area becomes smaller.
Figs. 5 and 6 indicate the relationship between the magnitude of plastic
curvature or rotation and the load versus deflection curves obtained for the
uniformly loaded slabs, and Fig. 7 shows the variations of moment distributions
along the radius for the simply supported and uniformly loaded slab with 5

0.25 and 3 0.1, in which the numerals within circles indicate the
correspondence to those in Fig. 5. It can be seen that the load versus deflection
curves for the clamped slab are sensitively influenced by a limit rotation
capacity in the built-in edge, and after the built-in edge plastically fails,
they follow those for the simply supported slabs.

5. CONCLUSIONS

An elasto-plastic analysis for reinforced concrete circular slabs with limited
plastic curvature or rotation abilities due to the restriction of

compressive plastic flow of concrete has been carried out by using the associated
plastic flow rule of the plasticity which is related to the loading functions
considering a strain softening effect. Here, a fundamental differential equation

concerning load-rate and deflection-rate has been derived, and a new
solution method being different from the finite difference method for this
equation has been presented, in which elastic analytical solutions previously
known can be utilized as possible. Numerical calculations have revealed the
relationships between the load carrying capacities and the plastic flow
abilities for reinforced concrete circular slabs with typical material
constants.
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Fi& 5 Load-deflection Curves
for the Simply Supported
Slab under a Uniform Load,
Where a 0.25 is set.

Fig- _6 Load-deflection Curves
for the Clamped Slab
under a Uniform Load.
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Fig. 7 Variations of Bending Moments along the Radius
for the Simply Supported and Uniformly Loaded
Slab with ct 0.25 and 3 0.1 in Fig. 5.

REFERENCES

1. Palmer, A.C., Maier, G. and Drucker, D.C.: " Normality Relations and Con¬

vexity of Yield Surfaces for Unstable Materials or Structural Elements ",
Journal of Applied Mechanics, Vol. 42, 1967, pp. 464-470.

2. Timoshenko, S.P. and Krieger, S.W.: " Theory of Plates and Shells ",
2nd Edition, McGraw-Hill Book Company, INC., 1959, pp. 51-67.

3. Zienkiewicz, O.C., Valliappan, S. and King, I.P.: " Elasto-Plastic Solu¬
tions of Engineering Problems 'Initial Stress', Finite Element Approach ",
Int. J. Numerical Methods in Engineering, Vol. 1, 1969, pp. 75-100.



4 153

III

The Bimoment Method for Hillerborg Slabs

La méthode du bimoment pour les dalles-Hillerborg

Die Bimomentsmethode für Hillerborg-Platten

C.R. GURLEY
Partner
Wargon Chapman & Gurley, Consulting Engineers
Auckland, New Zealand

SUMMARY
This contribution introduces a new macroscopic principle of static equilibrium for segments of H i I

lerborg plate of large size. These elements can then be seen to be more nearly statically determinate than
had been realized. Exact plastic design of Hillerborg plates is often a practical routine design-office
activity.

RESUME
L'article présente un nouveau principe macroscopique d'équilibre statique pour des éléments de grande
dimensions de dalles-HiIlerborg. Le degré d'indétermination statique est plus petit que celui auquel on
pouvait s'attendre. L'analyse plastique exacte de dal les-Hil lerborg fait souvent partie de l'activité de
routine d'un bureau d'ingénieurs.

ZUSAMMENFASSUNG
Ein neues makroskopisches Gleichgewichtsprinzip für Elemente von Hillerborg-Platten wird eingeführt,
und es wird gezeigt, dass der Grad der statischen Unbestimmtheit dieser Elemente geringer ist als
erwartet. Die plastizitätstheoretisch vollständige Bemessung von Hillerborg-Platten ist oft ein praktisches
Handwerkszeug für die übliche Bemessungstätigkeit.
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The papers by Morley and by Nielsen in the Introductory Report provide excellent
statements of the current research situation in regard to plastic behaviour of
slabs. The subject is certainly a difficult one - one has only to reflect that
we are now approaching a half-century of work since Johansen began his
pioneering efforts and to consider the number of eminent engineers who have
contributed in that time. It is satisfying then that worthwhile progress is
being made into matters of quite basic and fundamental importance.

Nevertheless it does seem that it will be some time yet before the more advanced
matters considered in this session are fully resolved and reduced to routine
design-office procedures. The present situation in design practice is not
entirely satisfactory and it seems then that designers will need to seek some
interim approach of a rather more pragmatic character until these more basic
issues are resolved. It cannot be assumed that all designers will have easy
access to computer facilities at all times. Neither is it desirable that
designers become totally reliant on such facilities. We seek then "here-and-
now" design procedures which will provide for straight-forward design with no
more equipment than a pocket calculator.

The purpose of this contribution is to suggest that there is a good deal of
unrealised potential in Hillerborg's Simple Strip Method and to show how that
Method can be improved a more satisfactory design procedure. This can be done
by re-examining the equilibrium conditions for a rectangular segment of
Hillerborg plate of finite (non-differential) size.

Consider then a small (differential) element of Hillerborg plate as sketched in
Fig. 1. The coordinate axes and the element edges are to be taken parallel
to the directions of the reinforcing mesh. We assume here that these are
perpendicular although the extension to skew reinforcement would not seem to be
difficult so long as there are just two reinforcement directions. Following
Hillerborg it is assmed that the local twisting moments 'mXy' and 'myX' are
zero everywhere. It follows that there are only local distributed shear forces
and local distributed bending moments on each edge. The variation of these
Stesses across the width 1dx' of the element involves expressions like:

We do not record these here because the equilibrium conditions for a differential
element are already well-known and our present interest is to formulate the
equilibrium conditions for a large element.

mx + dmx

Units: q : kN/m
m : kNm/m

Fig. 1 Local Distributed Stress-Resultants on a Smal1 Element
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Consider then a typical large element shown in Fig. 2. The scale of this element
may be of the order of several metres on each edge and it may incorporate several
Hillerborg strips in each direction. The external equilibrium conditions for
this element involve the 8 independent stress-resultants shown together with a
further 8 independent coordinates specifying the position of action of each of
these stress-resultants measured along the relevant edge. Thus there are, in
total, 16 indpendent stress-resultant variables involved in the overall equilibrium

of the segment. The conventional state-of-the-art would suggest that
these are subject to 3 independent overall equilibrium conditions so that, the
large element is 13 times hyperstatic externally. The proposition of this
contribution is that there are, in fact, 4 independent overal 1 equilibrium
conditions so that the element is only 12 times hyperstatic externally. And, of
course, this proposition applies to any and every sub-element resulting from
sub-division of the element. It turns out that, while the degree of reduction
in hyperstasy appears slight it is, combined with the usual yield conditions,
often sufficient to permit exact plastic design as a matter of practical routine
in many common design-office situations.

Fig.2 Stress-Resultants on a Large Element

We consider now a virtual displacement in the form of a small unit hyperbolic
paraboloid (Fig. 3):

The position of the origin '0' is arbitrary except only that it is in the plane
of the element. Under this displacement, the generators of the hypar remain
straight so there is no curvature in the directions of the reinforcing mesh and
so no virtual work is done by the bending moments except on the perimeter.
In this sense then the above is a virtual rigid body displacement.

All of the quantities involved in the virtual work equation will have dimensions
of force times two distinct leverarms e.g. kNm'. It may be somewhat misleading
to reuse Vlasov's term "bimoment" in this context but it does have a certain
logical inevitability.
We define then the "Restoring Bimoment" of the above plate about origin '0' as
the virtual work done by the perimeter moments under the above virtual displacement.

Similarly we define the "Overturning Bimoment" about origin '0' as the
virtual work done by the loads. It is usually more convenient to include the
virtual work done by the perimeter shears in the overturning bimoment as if they
were perimeter line-loads. On this basis the virtual work equation becomes,
very simply:

Units: Q : kN
M : kNm

z xy
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Overturning Bimoment Restoring Bimoment

This result can be expressed in mathematical terms using double integrals.
Indeed it can be proved by integrating the local (differential) equilibrium
equation with the aid of Green's theorem (two-dimensional integration by parts).
To do so would obscure the simplicity of the result. In a routine design
calculation the quantities concerned can, almost invariably be evaluated from
direct, simple physical considerations. It is not necessary either to become
pre-occupied with matters of sign convention. The correct sign is usually quite
obvious and can, in any case, always be resolved by sketching out the virtual
displacement.

For any particular segment it is always possible to find four independent bimoment
equilibrium equations. These include the known three equilibrium equations e.g.
moments about each of two axes and equilibrium of total load with perimeter shears.
Indeed these known conditions can be regarded as bimoment conditions in which the
origin has been pushed to infinity in one or other or both directions. In any
case it is clear that we now have available a good deal more equilibrium
information than we had expected. This is surely significant.
The author has developed the above approach and used it in many actual routine
design calculations since mid 1977. The principal advantage is that it provides
simple direct relationships between moment-fields and total loads. It is
possible then to avoid the initial arbitrary assignment of strip-widths and
strip-loads as suggested in the original Hillerborg proposals. This makes it
possible to produce "practical optimum" designs every time and to do so within the
constraints of Code minimum reinforcement content, reasonable simplicity of
construction etc.

However the author does conclude all designs with a Hillerborg solution showing
the strip-loads calculated from the assigned moment-fields. Whether or not such
a solution is theoretically essential, it provides an independent check against
gross errors of calculation and this is always desirable.
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Is the Bimoment Method a Lower Bound approach? It uses a macroscopic form of
the equilibrium conditions but, theoretically at least, it can be applied to
progressively smaller elements and, in the limit, this process amounts to
differentiation and necessarily re-establishes the local (differential) equilibrium

conditions. In practice the author only uses bimoment methods to assign
sufficient of the moment-field to determine reinforcement (including, sometimes,
cut-off and curtailment positions) and then uses Hillerborg methods to complete
and check the statical solution. This combination seems to work very well.

In many cases it is possible to do exact plastic design of slabs regarded as
Hi 11 erborg plates. It would seem that such designs are necessarily very
efficient lower bound designs for slabs regarded as Johansen plates. In practice
the steel in quite extensive areas of slabs is determined by Code rules on
minimum reinforcement content. It is usually possible to ensure that this
steel is fully utilised at yield strength under design load.

In other cases, particularly those involving a re-entrant or near-point load or
support acting integrally with the slab, it is not possible to find an exact
plastic solution even when the slab is regarded as a Hi 11 erborg plate. These
situations seem synonymous with those in which the, usually, "secondary" effects
of shear and strain-hardening have substantial significant. It is not reasonable
to expect rigid plastic thin plate theory to provide "exact" solutions in such
complex 3-dimensional situations. Design in such situations is a linear programming

"game". Success in such situations does depend on the judgement and
intuition of the designer but, then, these are the skills possessed by experienced
designers and the bimoment approach does provide equilibrium information in a form
most easily assimilated and used. Safety is not an issue, because all designs
can be checked by Hillerborg procedures, but economy and suitability will still
depend on the individual approach. In this matter then Engineering remains an
art as well as a science.

A longer paper [Ref. 1] expected soon attempts to cover many of the points
omitted because of the limited length of this contribution.
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III

Nodal Forces as Real Forces

Les forces nodales en tant que forces réelles

Knotenkrafte als wirkliche Kräfte

D.H. CLYDE
Professor of Civil Engineering
University of Western Australia
Nedlands, W. Australia

SUMMARY
The conventional approach to nodal forces in yield line theory is re examined because it leads to breakdown

cases and other anomalies. It is shown that the true nodal forces are vertical shears at and parallel
to strength discontinuities. The existence of these forces was demonstrated for elastic plates by
Thomson and Tait but is now shown to be a general statical requirement of shear flow closure The
resulting insight enables the fundamental errors associated with invalid and breakdown cases to be
demonstrated.

RESUME
La méthode traditionnelle des forces nodales de la théorie des lignes de rupture est réexaminée parce
qu'on obtient dans certains cas des contradictions et d'autres anomalies On montre que les forces
nodales vraies sont des forces de cisaillement existant le long des lignes de discontinuité de la résistance
L'existence de ces forces a été démontrée par Thomson et Tait pour les plaques élastiques. Dans le
présent article, on montre que ces forces correspondent à une condition statique générale d'après
laquelle les forces de cisaillement doivent être continues. Les conclusions obtenues permettent de montrer
les erreurs fondamentales associées aux cas contradictoires de l'application de la méthode des forces
nodales.

ZUSAMMENFASSUNG
Die herkömmliche Methode der Knotenkrafte innerhalb der Fliessgelenklinientheorie wird neu
betrachtet, da sie in gewissen Fallen zu Widersprüchen und anderen Unregelmässigkeiten fuhren kann. Es
wird gezeigt, dass die wahren Knotenkrafte Querkraften entsprechen, die entlang von Widerstands-
Diskontinuitatslinien auftreten. Das Vorhandensein solcher Kräfte wurde fur elastische Platten durch
Thomson und Tait nachgewiesen. Hier wird gezeigt, dass sie der allgemeinen statischen Forderung nach
einem geschlossenen Schubfluss entsprechen. Die grundlegenden Fehler, welche mit Fallen
widersprüchlicher Ergebnisse bei der Anwendung der Methode der Knotenkrafte verbunden sind, können
mit Hilfe der neu gewonnenen Erkenntnisse aufgezeigt werden



160 III-NODAL FORCES AS REAL FORCES 4

1. INTRODUCTION

Nodal forces, arise in the equilibrium method of yield line theory. A nodal force
is a concentrated internal transverse force which, under special circumstances,
must be inserted at an end of a straight internal section. Johannsen [1] established

the existence of such forces and formulated rules for their determination.
Later workers have attempted to improve the rigour of the rules but have,
nevertheless, found that breakdown cases exist for which solutions using these rules
do not agree with solutions using the alternative work method.

Conflict in the results of different solution methods for properly posed problems
in structural mechanics indicates a lack of rigour in setting up one or both of
the methods. Fox [2,3] demonstrated that the assumptions of yield line theory can
provide the basis of a rigorous rigid-plastic analysis. He constructed coincident
upper and lower bound solutions for certain problems whose intractability had
earlier suggested an inconsistency between the failure criterion of yield line
theory and rigorous plasticity theory [4]. It should be noted that Fox's solutions

include zones of finite curvature within which the slabs deform into general
developable surfaces whereas in yield line theory only one such surface, the cone,
is used. Given the conflict mentioned above and the evidence that a properly
formulated solution method has demonstrated the essentially well-posed nature of
the problems one must examine the basis of the methods which produce the conflicting

solutions. The equilibrium method is so named because a separate equilibrium
equation is written for each rigid slab element. The following requirements are
satisfied as well as equilibrium :

(i) The forces on the internal boundaries satisfy the failure criterion which in
force space [5] is given by

(ii) Application of the flow rule to [1) defines associated curvature rates [5].
It may readily be shown that the relative rotations about the yield line of the
two rigid segments abutting the yield line correspond to concentrations of one
class of curvature rates which satisfy the flow rule.

(iii) The layout of yield lines is such that these relative rotations taken in
conjunction with the boundary conditions form a compatible mechanism.

2. NODAL FORCES

Johannsen established that simultaneous solution of the equilibrium equations is
theoretically equivalent to the extremised solution of a global equilibrium
equation most conveniently written using virtual work.

The most readily demonstrated justification for nodal forces is that there are
cases where the two methods give different results and that these can be reconciled

by inserting nodal forces of such a magnitude as to cause the equilibrium
method solution to co-incide with the work method solution. This method is
inferential and has been used by some [6] as a de facto basis for establishment
for their magnitude. Johannsen's analysis which established rules for their
determination is also inferential and is based on small perturbations of the
layout from which it can be shown that nodal forces are required for stationari-
ness.

Despite the indirect determination of nodal forces Johannsen also gave a physical
explanation, i.e. "In addition (to the normal moment) a torsional moment and shear
stress act on the yield line. These can be resolved into two single forces, one
at each end of the section". A counter-example to refute Johannsen's physical

M
2

- (Mx-M )(My-M é 0
xy x y

(1)
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explanation is readily found.

Criterion (1) is in the form containing only force variables. Implicit in its
derivation is the requirement that the applied normal moment Mjj does not exceed
the normal moment capacity Mn i.e.

M cos2a + M sin2a + 2M sinacosa £ MXcos2a + My sin2a (2)x y xy
The limit of the inequality may be shown to lead to :

X V
M (M -M') sinacosa (2a)

X VSince for isotropic reinforcement M M', must be zero everywhere on an
isotropic yield line and ^nt will thus also be zero. Furthermore translation of
the yield line should not^lead to violation of (2) so that 0 on the yield
line. Hence neither twisting moment nor shear force may exist on an isotropic
yield line. Nevertheless a classic example of a nodal force occurs where an
isotropic yield line meets a free edge and has magnitude M cota [5]. Thus Johann-
sen's explanation breaks down. Direct application along the yield line of Thomson-
Tait [7] statical equivalence [6] must also fail where there are no forces to
which the nodal force can be statically equivalent. Somewhat surprisingly,
however, the author has found that the physical basis of the nodal force can be found
in other portions of Thomson and Tait's work by examination, not of the yield line
which being internal must satisfy conditions of continuity, but of the boundary
itself.
3. BOUNDARY CONDITIONS AT AN EDGE

Thomson and Tait utilised
equivalence as a mathematical

device to reduce three
boundary conditions at a
free edge to two. Considering

a free edge x a (Fig.l)
the apparent consequences of
the absence of surface tractions

Mv 0*x - " > ^xy ~ 0

Qx 0 may be reduced to two
namely MvXw '"X

Q - xy
0 and

0 Although
Thomson and Tait used statics
to derive this result
subsequently they showed that there
is a local disturbance due to
twisting moment at the free
edge of an elastic plate which
dies out rapidly as one moves
away from the edge. They invoked

this solution to confirm
that St.Venant's principle
applies to the statically
equivalent forces.

x a

Mxdy

The analysis which demonstrates
the rapid decay provides further
insight. It is the treatment of
anticlastic curvature produced
by alternating upward and downward

Figure 1. Apparent vanishing forces at
free edge.

29/11



162 III-NODAL FORCES AS REAL FORCES

corner loads on a square plate as a limiting case of St. Venant torsion. They
observed that only one half of the total torsional moment arises from the MXy
stresses, the other half being due to "two tangential tractions distributed over
areas of the edge infinitely near the ends acting perpendicularly to the plate
towards opposite parts". These transverse forces exist because the opposing
horizontal shear flows which constitute the MXy couple require closure at a stress
free edge (Fig.2). Popov [8] has added clarification to this requirement.

Figure 2. Equivalence of shear flow closure.

While Thomson and Tait's conclusions were based on an elastic solution, the
requirement is one of statics and is independent of the nature of the stress
distribution which goes to make up MXy. This will now be demonstrated. A twisting
moment MXy on a section normal to the free edge is associated with a conjugate
MXy on a section parallel to the edge. Assume that the limits of this ideal
flexural behaviour occur on a face Ax inside the free edge and parallel to it
(Figure 3)

x a

x a - ax

Conjugate Shears

Figure 3. Isolation of Edge Strip.

Stress free
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In the strip Ax wide by h deep the transition from MXy stresses to the stress-
free edge state must occur, i.e. over this interval :

h(Ax 3x

3x
' o

hence

dx T
xy

xy

Ax (4) where ^xy
Ax

r+ 2 'Ax

h
2

3x

2 T I jxy z dz
h ' Ax
2

xy
3x

z dx dz

(5)

(6)

In order to maintain equilibrium parallel to the edge, the differential equation
of equilibrium

3a 3T 3T

# * ST* * ^ -0 (7)

must be satisfied everywhere. If Ov 0 (i.e. ignoring bending which may be
superposed later) this reduces to

3T

w* =-
3x

3z
XL (8)

Thus the rate of change of horizontal shear xxy over the width Ax generates
vertical shears xyz which integrate to yield a vertical force Zy as follows

a h h h „rAx (+ — rAx + — (Ax (+ — 3x.
Z
y

o

Since x

h
2

x dz dx
yz [Vz] dx

h
2

z a dz dx
o Z

(9)
h
2

yj - 0 at z ± j the first term is zero and substituting (8) in the
second yields

Z
y

Ax + £ 3x
2

z -J3L
h
2

3x
dz dx

xy Ax
(10)

This vertical shear force in the edge
strip is a physical reality which
transcends mere statical equivalence.
Because it is a force and not a stress
it is invariant under change of angle
of the cutting section relative to the
edge. Thus for any but the normal
section it is not related to the twisting

moment on the internal face and it
is quite possible to have zero twisting
moment in a skew face but to have an
edge shear force. This somewhat surprising

result clarifies the vertical
equilibrium of a 45° corner triangle
of the square plate case placed in a
state of pure torsion by upward and
downward corner forces [9].

Figure 4. Vertical equilibrium in
pure torsion.

4. NODAL FORCES AS REAL FORCES

The nodal force where a yield line meets a free edge is the shear force in the
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edge strip. It is determined by the twisting moment on faces parallel to and
normal to the edge. The twisting moment is readily calculated from the conditions
that Mx 0 on the edge and that the normal and twisting moments on the yield line
are defined by the failure criterion to be :

MXy - Mx cot a (11)

The problem of a yield line intersecting an internal step change in mesh strength
was posed and explored by Jones [6]. If the yield line makes an angle a with
the internal boundary on which Mx steel normal to the boundary is reduced from Mx^
to MX2 the conditions for satisfaction of the failure criterion on both sides of
the change may be obtained in the fashion of equation (11) and are

(M v - Mw - (Mf - Mx) cot a (12)
*/ 2

The band of vertical shear is this time just inside the stronger zone and runs
parallel to the boundary between the zones. The magnitude of the shear force is
equal to the change in twisting moments and at a yield line becomes the nodal
force determined by (12). A practical implication of the above conclusions are
that such bands of shear should be included in the reinforcement design considerations

5. INVALID AND BREAKDOWN CASES

The author has not been able to find further rigorous examples of nodal forces and
has separated other pseudo nodal forces into invalid cases, which superficially
appear to obey the Johannsen rules, and breakdown cases, which are neither
rigorous nor obey the Johannsen rules for their determination.

5.1. Invalid nodal force. This is the intersection of sagging and hogging yield
lines. It is possible to devise failure mechanisms which are kinematically admissible

and appear to satisfy the failure criterion on all yield lines but fail to
satisfy equilibrium at their intersection. The angle of intersection must be such
that the failure moments also satisfy the transformation of axes (equilibrium)
equation. For example, for isotropic reinforcement this requires orthogonality.
For isotropic cases where non-orthogonal intersections are used the interpretation
of Johannsen's rules which is widely accepted suggests a nodal force of

k - (M - M) cot a (13)

Similarities between this and (12) are deceptive because in this case neither
yield line represents a strength discontinuity at which a step change in twisting
moment can validly be invoked. Efforts by the author to produce solutions with
artificial shear along one yield line led to the conclusion that this merely
removes the violation of the yield condition by an amount Ax from the yield line
since Mn would not change significantly over a small distance. The assumed nodal
force is thus seen as a device which superficially localises the fundamental
violation of statics at the intersection but also removes it an infinitesimal amount
to one side of one yield line.

The conclusion is that the lack of rigour is implicit in both the equilibrium and
the work method. In part this results from the exclusion of Fox's zones of finite
curvature from the repertoire of mechanisms available in yield line theory.

5.2. Breakdown cases These occur where the mechanism is overconstrained [6], and

may or may not include invalid intersection angles of yield lines. The overcon-
straint leads to the necessity for twisting moments and shears on yield lines
independently of the angle of intersection problem and thus to apparent forces
which do not even superficially appear to satisfy Johannsen's rules.

Of the particular classes of problem which have been explored the following are
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the three most important :

5.2.1 The re-entrant free edge. Because a free edge is involved at one end of the
yield line this is the problem about which most meaningful observations can be
made. While real nodal forces are the closure shear flows associated with twisting

moments immediately inside a free edge it may readily be shown that an angular
discontinuity in a free boundary no twisting moment may exist if all internal
moments are required to be continuous. Hence no nodal force may exist at the
re-entrant corner of a free boundary. Symmetrical cases show zero apparent nodal
force and are the rigorous case of a yield line passing through a re-entrant corner

of a free edge.

5.2.2. The re-entrant support. This generates a kinematic requirement for an
intersection of a hogging with a sagging yield line which, in general, does not even
superficially obey Johannsen's rules and hence goes beyond the case proved above
to be invalid. It becomes an overconstrained case for which force transfer
between segments is required in order to give the appearance of reconciliation.

5.2.3. The Maltese-Cross failure pattern for a square slab. Wood [6] attributes
the posing of the problem to Nylander. This time the penalty of overconstraint is
a twisting moment along the yield line associated with extremised solution. The
comments under 5.1. above apply with respect to shifting the violation of the
failure criterion an infinitesimal distance from the yield line if nodal forces at
the centre are postulated as the mode of rectifying the unbalance. The extremised
work solution thus cannot be considered as a valid one.

6. CONCLUSIONS

In order to understand the nature of nodal forces it has been necessary to introduce

a more comprehensive analysis of boundary conditions than the standard
Thomson-Tait one of statical equivalence. As a result it is concluded :

6.1. An internal shear force exists in a narrow strip parallel to a free or simply
supported edge which is numerically equal to the twisting moment immediately
inside the edge on faces parallel to and normal to the edge.

6.2. A shear force exists in a strip parallel to an internal strength discontinuity
which is numerically equal to the step change across the discontinuity of the

twisting moment on faces parallel to and normal to the discontinuity.

6.3. At the intersection of a yield line with an edge or internal strength
discontinuity the shear force is known as a nodal force.

6.4. Various other cases including the intersection of sagging and hogging yield
lines, re-entrant free edges, re-entrant supported edges and the Maltese-Cross
failure mechanism for square slabs give rise to false nodal forces due to deficiencies

in the posing of the problems.

6.5. Reinforcement requirements at free and simply supported edges and strength
discontinuities will need to be re-examined in the light of the existence of the
shear face demonstrated in this paper.

7. NOTATION

a Constant, value of x
h Slab thickness
n,t,z Local co-ordinates normal and tangential to section
x,y,z Cartesian co-ordinates
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M Basic symbol for moments per unit length with the following variants :-
M Isotropic yield moment (sagging)
M Isotropic yield moment (hogging)

MX,M ,M Applied moments in Cartesian co-ordinates stress resultants of
^

ox> Oy, t respectively.

^n'^t'Mnt Applied moments in local co-ordinates,
x yM ,M Yield moments in Cartesian co-ordinates (sagging)

—x -~yM ,M' Yield moments in Cartesian co-ordinates (hogging)
Mn Yield moment referred to normal co-ordinates

P A concentrated force
Z The vertical stress resultant of T
y yz xa Yield line orientation relative to M yield line

0 Slab parameter
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III

Punching Shear Failure of Hollow Concrete Spheres

Poinçonnement d'une coque sphérique en béton

Durchstanzversagen von Kugelschalen aus Beton

C.T. MORLEY
Lecturer
University of Cambridge
Cambridge, England

SUMMARY
The paper extends the plastic theory of punching shear failure to treat hollow concrete spheres.
Graphs showing the theoretical predictions are presented, and some comparisons are made with
experimental results for cylinders under concentrated radial loads.

RESUME
L'analyse plastique du poinçonnement est appliquée à une coque sphérique. Les résultats théoriques
sont présentés graphiquement et quelques comparaisons sont faites avec des résultats expérimentaux
obtenus pour des cylindres soumis à une force concentrée radiale.

ZUSAMMENFASSUNG
Die plastische Berechnung des Durchstanzversagens wird auf den Fall von Kugelschalen aus Beton
ausgedehnt. Die theoretischen Voraussagen werden in graphischer Form dargestellt. Einige Vergleiche
werden gemacht mit Ergebnissen von Versuchen an Zylindern, die durch in radialer Richtung wirkende

Einzellasten belastet wurden.



168 III-PUNCHING OF HOLLOW CONCRETE SPHERES

1. INTRODUCTION

The purpose of this brief note is to extend to hollow concrete spheres the
plastic theory of punching shear failure presented by Braestrup [1] for flat
slabs. In slabs with zero tensile strength the optimum failure surface
extends right out to the support, giving low failure loads, and it is necessary
to introduce a small non-zero tensile strength in order to confine the failure
surface and produce reasonable results. In a spherical shell under a radial
point load the curvature of the shell will tend to confine the failure
surface in punching shear, and the plastic theory should predict reasonable
failure loads even if the concrete is assigned zero tensile strength. In
what follows the extended theory is presented, using Braestrup's notation as
far as possible, and some experimental results on cylinders are reported.

2. BASIC ASSUMPTIONS

A concrete spherical shell or dome of thickness h and internal radius R is
assumed to be loaded by an inward radial force P applied to a rigid disc of
diameter dç, as shown in Fig.l. The shell is supported well away from the
region of interest. In a punching shear failure a rigid axisymmetric plug
of concrete defined by a 'failure surface' with generatrix AB is assumed to
move inwards along the axis of P relative to the rest of the shell. The
concrete is taken to be a rigid perfectly plastic material whose yield
condition is the modified Coulomb failure criterion with angle of internal
friction <(i and zero tensile strength. Deformations are governed by the
associated flow rule of plasticity theory (the normality condition).

Following Braestrup, an upper bound on the failure value of P is found by
writing the work equation for failure on an assumed surface, and the
optimum failure surface giving the least upper bound is found by the calculus
of variations. Since displacement is along the P axis hoop strains are zero
everywhere and the concrete is in plane strain in planes containing the
P axis: the appropriate yield locus is Fig.5(b) of Braestrup's paper, with
ft 0. All deformation is assumed to occur in a narrow zone at the failure
surface, which is a surface of revolution defined by the generatrix r r(x),

P
rigid disc
diameter dQ

Fig. 1 A punching shear
failure.

Fig.2.
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The co-ordinate system.

On writing the work equation, the upper bound on the failure load is given
by the equivalent of Braestrup's equation (9),

X2

r(/l + (r')2 - r') dx (1)

o

where a dash indicates differentiation with respect to x. In contrast to
the situation in flat slabs, reinforcement running parallel to the curved shell
surfaces will be compressed in such a failure, and therefore contribute to the
energy dissipation. Here we ignore the contribution of such reinforcement, so
that equation (1) only gives the failure load for an unreinforced shell.

3. THE OPTIMUM FAILURE SURFACE

The problem now is to find the function r(x) which minimises the load P in
equation (1), subject to the condition dictated by the plane-strain yield
locus that

r' > tan<|> (2)

The additional difficulty in the case of spheres is that the upper limit of
integration x2 is itself variable because of the curvature of the inner shell
surface.

P TTf
c

We consider first the case when the minimising curve always has a slope greater
than tan<|>. The minimising curve presumably has r continuous, but discontinuities

in slope r' would seem to be permissible on physical grounds. However,
the Weierstrass-Erdmann corner conditions (ref. 2. p.33) show that the
minimising curve for (1) will have continuous slope. According to the calculus
of variations (see eg Pars [2] or Irving and Mullineux [3], the minimising
curve r r(x) will then satisfy the appropriate Euler equation, which for a
functional of the form fF(x,r,r')dx can be written
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K _ JL (il o (3)8r dx 3r 1'
On substituting from (1) this reduces to

1 + (r')2~ r.r'' 0 (4)

whose solution may be written

r a cosh (— + b) (5)
a

where a and b are constants.

The upper limit of integration x2 is variable but the failure surface must
end on the inner shell surface r r2(x). In these circumstances the optimising

function r(x) must satisfy the so-called 'transversality condition'.

F + (r£ - r') ||, 0 (6)

at the upper limit x x2 (ref.2 p.96, ref. 3 p.362)» From (1) and (6)

r^ r' + /l + (r')2 (7)

which reduces, using (5), to

exp + b) (8)

at x x2.

It turns out that in many cases the catenary curve satisfying (5) and (8) and
passing through the edge (0, dQ/2) of the loaded area violates condition (2)
near x 0. The portion of the optimising generatrix near x 0 will then
be a straight line of slope taniji, so that part of the failure surface is
conical. Consideration of a series of catenaries satisfying (5) and (8) and
passing through different points on this straight line then shows that the
optimising generatrix is tangent at some point x xj to this line. This may
be confirmed by considering an analogy with a heavy string, and a numerical
investigation shows that the stationary value found for the integral (1) is
indeed a minimum.

We then obtain, independently of R/h, if a is positive,
d

xj a cosecij) cotif) (9)

and b sinh-1 (tan<j>) - Xj/a (10)

The equation r r2(x) for the inner circle may be written

r22 R2 - (6 - x2)2 (11)

where 8 is a known constant. This may be combined with (5) and (8) to give

a 2(6 - x2) [1 - (6 - x2)2/R2] (12)

Equations (9), (10) and (12) give the important parameters xj, b and a in
terms of the upper limit x2> for which an equation can be found by combining
these and the transversality condition (8) to give
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ß - x2 „ 2x, + d0 cot(j)

A* - (£5 - x2)*" " exp { »inh-1(tan*)-cosec* + (13)

This equation for X2 may be solved by iteration or by a graphical method.
The possibility of obtaining numerical solutions by this approach was pointed
out to me by P. R. Hunter.

Once the optimal failure surface has been found the corresponding failure
load is obtained from equation (1) which becomes

p X1 a
•^1^- (sec<(> - tamji) y (dQ + x^anifO + ^ (x2 - xj)

1 x x
+ [exp (-2(-J=- + b)) - exp(-2(— + b))] (14)

4. SOME TYPICAL SOLUTIONS

The optimising curves r(x) for the case R 6h and various punch diameters are
plotted in Fig. 3, for the same angle of friction as used by Braestrup,
tan<j> 3/4. Notice that an appreciable proportion of the failure surface
is conical even for dQ 0, and that this proportion increases as the punch
diameter increases until the optimal failure surface becomes entirely conical
for dD/h greater than about 3.3.

Fig. 3 Optimising curves for various punch diameters.

If the loaded area is large enough a punching shear failure is impossible
because the cone with slope tan<(> 3/4 never intersects the inner surface of
the shell. In these circumstances some other failure mode must intervene,
presumably some form of bending failure. For punch diameters of practical
interest, if the shell curvature is less marked, say R/h greater than about 10,
the proportion of the optimal failure surface which is conical reduces as
dQ/h increases, as in Braestrup's Fig. 8.



172 III-PUNCHING OF HOLLOW CONCRETE SPHERES

Some calculated failure loads are plotted in Fig. 4, which shows the dimension-

SO 20 IO 6 5 4 R/h

Fig.4 Theoretical failure load against curvature for a spherical shell.

5. SOME EXPERIMENTAL RESULTS ON CYLINDERS.

Some preliminary tests on concrete cylinders under concentrated radial load
have recently been carried out in Cambridge by P. R. Hunter. The specimens
were lengths of commercial spun-concrete sewer pipe, which were provided
with diaphragms cast in situ and were supported on the laboratory floor all
along a generator. The wall thickness was approximately 40 mm and the internal
radius approximately 150 mm. The pipes had only nominal reinforcement, and
small diameter cores drilled from them gave mean estimated cube strengths of
70.5 N/mm2 for pipe 1, 57.5 N/mm2 for pipe 2.

The pipes were loaded radially inwards through square steel plates cemented
on to the concrete surface. Plates of various sizes were used, and in some
cases pipes were retested with larger plates placed over the hole left by a
previous test to failure. Various bending cracks developed during the tests,
but in all cases failure occurred by punching out of a plug of concrete,
square at the outer surface to match the steel loading plate. In the longitudinal

cylinder direction the failure pieces were elongated as shown in
Braestrup's Fig. 9, with the failure surface in some cases reaching to the
nearest diaphragm. The failure pieces were much shorter in the hoop direction,
as the present theory predicts, often with a steep failure surface close to
the loading plate, corresponding to the predicted conical part of the failure
surface.
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Since the tests were on bought-in specimens the results were inevitably rather
scattered, but some dimensionless failure loads are plotted in Fig. 5 against
equivalent punch diameter. Also shown is the curve for a flat Slab (R/h °°)
of concrete with a tensile strength ft of fc/400, from Braestrup's Fig. 10.
The upper theoretical curves in Fig. 5 show the prediction of the theory for
spherical shells having f^ 0 and R/h 4 and R/h 6 respectively. For all
the theoretical curves the yield strength fc in compression is taken as 0.6
times the measured cube strength fcu.

Fig. 5 Experimental results on cylinders in punching shear.

Also shown on the figure are some experimental results quoted by Hess [4] for
cylinders with R/h ^ 5.1, taking the measured cylinder strength as 80% of the
cube strength. These shells had about 1.6% of steel in the hoop direction.

One would expect the test results for cylinders to lie between the predictions
for a sphere and a flat plate. This seems to be roughly true for small punch
diameters, but the Cambridge results for larger punch diameters seem rather to
follow the flat-plate predictions. Perhaps the large lateral compressive forces
which should accompany the theoretical localised punching failure cannot easily
be provided in a cylinder for large punch diameters, so that the failure mode
is not pure punching but involves some bending. Clearly, more extended comparison

of the theory with test results for spheres and cylinders is desirable.
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6. CONCLUSIONS

A simple extension has been made to Braestrup's plastic theory of punching
shear in flat slabs,to enable spherical shells with zero tensile strength to
be treated. The theory predicts a substantial increase in failure load with
shell curvature, but this increase is not very apparent in the results of the
preliminary tests on cylindrical shells.
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III

Collapse of Reinforced Concrete Voided Slabs

La ruine de dalles en béton armé avec des ouvertures

Versagen von Stahlbetonhohlplatten

LA. CLARK
Lecturer
University of Birmingham
Birmingham, England

SUMMARY
The paper derives an upper bound to the collapse load of a circular voided slab bridge simply supported
along two opposite edges and loaded symmetrically. The critical mechanism involves flexural yield
lines in combination with lines of shear failure.

RESUME
Une valeur supérieure est obtenue pour la charge ultime d'un pont-dalle avec des trous circulaires,
appuyé simplement le long de deux bords opposés et chargé symétriquement. Le mécanisme critique
implique des lignes de rupture causées par la flexion combinées avec des lignes de rupture causées
par la flexion combinées avec des lignes de rupture causées par le cisaillement.

ZUSAMMENFASSUNG
Ein oberer Grenzwert für die Traglast einer symmetrisch belasteten, entlang zweier gegenüberliegender
Seiten frei drehbar gelagerten Hohlplattenbrücke mit kreiszylindrischen Aussparungen wird hergeleitet.

Der massgebende Mechanismus ist durch eine Kombination von Fliessgelenklinien und
Schubbruchlinien gekennzeichnet.
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1. INTRODUCTION

A reinforced concrete voided slab bridge tested at the Cement and Concrete
Association [l] collapsed by the formation of a mechanism which involved lines
of shear failure in addition to conventional flexural yield lines. The slab had

a depth of void ratio of 0.786 and was loaded to collapse by means of a l6-wheel
vehicle positioned centrally. The maximum load attained was ^-55 kN but this
fell instantly to UlU kN. This load was held until longitudinal shear cracks
formed near to the outer wheels of the vehicle when the load fell to 373 kN.
On attempting to apply further load, longitudinal top and bottom flexural yield
lines developed together with transverse hogging yield lines near to the supports.
The central strip of slab, bounded by the longitudinal shear/flexural yield,
lines, then continued to rotate about the transverse hogging yield lines with
distortion of two voids occurring. A theoretical analysis of such a collapse
mechanism is considered in this paper.

2. UPPER BOUND ANALYSIS

2.1 Assumptions

It is assumed that the concrete is rigid-perfectly plastic, has a modified
Coulomb yield criterion, zero tensile strength, compressive strength given by

f vfc where V is an effectiveness factor and fc is the cylinder strength
which is assumed to be 80$ of the cube strength, and the normality rule of
plastic flow obtains. The reinforcement is assumed to be rigid-perfectly
plastic and to carry only axial stresses.

2.2 Initial collapse

A general circular voided slab loaded symmetrically with respect to its centre
is considered. The proposed initial collapse mechanism is shown in Fig. 1.
The displacement rate (o) is taken to be normal to the plane of the slab since
the restraint of the rigid material each side of the shear failure lines is
likely to prevent any outward movement of this material relative to the central
portion of the slab.

If q is the ultimate shear per unit length measured in the span direction, m

and "m are the sagging and hogging longitudinal moments of resistance
respectively, P is the total applied load arid w is the self weight of the slab

per unit area, then the work equation is

2.3 Value of q.

The value of q is obtained by considering the dissipation rate per unit length,
measured in the span direction, of the concrete and of any vertical stirrups
crossed by the shear failure line. The dissipation rate in the concrete is
given by [2]

D 0.5f & (l-cos9)6
c e e x

(l)

The minimum value of P is obtained when

(2)
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where le is the length of concrete in the failure line and <5X is the displacement
rate at a particular section x.

The dissipation rate in the stirrups is given by
D n A f 6

s ss ys x
Where n is the number of rows of stirrups crossed by the failure line, A

is the area per unit length measured in the span direction of the
stirrups and f is the yield stress of the stirrup reinforcement.

Hence q_ 0.5fe^e (l-cos0) + n Ags fyg (3)
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2U Value of v

The effectiveness factor (v) reflects the ductility of the concrete in compression
and depends upon the concrete strength and the conditions under which the

the concrete is stressed. However very little experimental evidence is available
for voided slabs although ASTER [3] has tested a transverse strip of a slab with
a depth of void ratio of 0.75 and having no shear reinforcement. An analysis
indicates that v 0.13 which is small because of the flexibility of the cross-
section of ä voided slab and of the discontinuous failure surface.

2.5 Subsequent mechanism

It is proposed that after initial failure in accordance with the above mechanism,
a subsequent mechanism involving distortion of the failed cells takes place as
shown in Fig. 2.

Fig, 2 Subsequent collapse mechanism

The positions of the centres of rotation B and D in Fig. 2 are determined by the
initial shear failure and, of A and C, by minimising the load with the constraint
that

yt + § sin ßt yt + | sin ^ y (U)

Assuming that, compared with the initial mechanism, the reduction in the rate of
work of the self weight of the bottom flange is compensated by the increase of
that of the top flange then the total rate of external work is unchanged. The
dissipation rate in the mechanism is given by

_

2m P2tl-b ~ y) + oc + y5Q

+ gfyt [Ast (h-D cos et) + Ash (h-D cos g^)] (Z+D)

y

(5)
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where Ç is a membrane enhancement factor and fy-^ is the yield stress of the
transverse reinforcement in the flanges.

In general an analytical solution for a minimum P is unobtainable. However, if
y (l-œ) is small compared with 2 (b^ + ab^) and yt - y-^ y so that ß

then a minimum P is found for

- c+2d /c2+Ucd Mb^t«^)
* — + / 5 +

çn-w(bt+bb)
(6)

where f (A ,+A )(h-D cos ß)
_ yt st sb (71

y+0.5 D sin ß

and tan ß/2 .b P (8)
2y + Ay2 + h2 - D2

3. COMPARISON WITH TEST DATA

3.1 Initial failure

Dimensions relating to the failure line were observed to be 0 1*8.U°
£e 151 mm, y^ 122 mm, y^ 126 mm, 2b^ 596 mm, 2b^ 1092 mm and n 0.

The concrete cube strength was 52.3 N/mm2 and if V is taken to be the value
derived from the analysis of Aster's strip then fe 5 AU N/mm2. Equation U

then gives, with n o, q 0.138 kN/mm

The sagging and hogging longitudinal moments of resistance are respectively
137 and 21.5 kNm/m; thus Œ 0.157- The other relevant data are 2650 mm,
c U50 mm, d 225 mm and w 3.U6 kN/m2.

From equation 2,1 l608 mm whereas the observed value was 2370 mm; and, from
equation 1, P 878 kN which is much greater than the peak load of U55 kN
attained or the load of UlU kN at which the slab 'yielded' in shear.

An explanation of this gross overestimate of the collapse load could be that when
the slab first fails in shear only the concrete in the immediate vicinity of the
load is deformed sufficiently to 'yield' in shear and that once the slab commences
to 'yield' in shear the deformations in the vicinity of the load are too large
for aggregate interlock to occur across the shear crack and the dissipation rate
in the vicinity of the load falls to zero. It might thus be more appropriate to
ignore the dissipation rate in those parts of the lines of shear failure which
extend beyond the loading vehicle when calculating the peak load, and to ignore
the dissipation rate in those parts of the lines of shear failure within the
length of loading vehicle when calculating the lower load at which 'yield' of the
slab in shear occurs.

3.2 Estimate of peak load

Neglecting the dissipation rate in those parts of the shear failure lines beyond
the loading vehicle, the peak load is given by

P
2SL- c-2d {1+m^bb+ocbt ^ + 2q O^^U-D-e2] -w(bt+bt) U2-d2 )j (9)

For a minimum P, it is found that Z and thus the peak load is estimated to
be 523 kN which should be compared with the observed peak load of U55 kN.
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3.3 Estimate of shear yield load.

Neglecting the dissipation rate in those parts of the shear failure lines within
the loading vehicle, the yield load is given "by

P 2£-c-2d + 2q(£-c-d)2 -w(bt+bb) (£2-d2 )J (10)

For a minimum P, it is found that

- Ç±2d +
/2+Ucd (11)

2 / 5 2q - w(b-b+bt)

from which £ 1563 mm and the yield load, from equation 10, is U8l kN which
should be compared with the observed yield load of illU kN.

3.U Subsequent mechanism

Z is taken to be 2. It is reasonable to_take y as the mean of yt and y-^ and
thus y 12U mm. Then from equation 9,3 12.U°; from equation 8, r) 0.0^99;
from equation 7, £ 2322 mm; and P U25 kN. The observed values of 3, £ and
P were lU°, 2370 mm and 373 kN. The calculated load exceeds the observed value
by lk%.

k. CONCLUSIONS

Upper bounds to the collapse load of a circular voided reinforced concrete slab
bridge loaded symmetrically have been presented. The analysis overestimates the
peak, shear and distortional yield loads by 15%, 16% and lh% respectively.
However, a number of simplifications and, in some cases, somewhat arbitrary
assumptions have been made in the analysis.
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5. APPENDIX

9.1 Membrane enhancement factor

The mechanism shown in Fig. 2 neglects any membrane action in the flanges
although such action must take place. In order to allow for membrane action,
the enhancement factor (ç) is introduced in equation 5.

if full lateral restraint is assumed, the enhancement factor can be assessed by
considering the transverse section of a flange as a beam.

Since full restraint will not occur, and in the absence of a complete analysis
of the membrane effects, Z is estimated in this paper to be 50$ of the fullrestraint value.
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III

Application of the Yield-Line Theory for Reinforced Concrete Slabs allowing for Membrane Effects

Application de la théorie des lignes de rupture aux dalles en béton armé en considérant les effets de
membrane

Anwendung der Fliessgelenklinientheorie bei Stahlbetonplatten mit Berücksichtigung der Wirkung
von Membrankräften

D. KLEIN
Institut für Massivbau
Technische Hochschule
Darmstadt, Fed. Rep. of Germany

G. MEHLHORN
Institut für Massivbau
Technische Hochschule
Darmstadt, Fed. Rep. of Germany

SUMMARY
The paper presents two methods for calculating the influence of in-plane forces on the load bearing
capacity of reinforced concrete slabs. The results are examined by a finite element analysis of an
example.

RESUME
On présente deux méthodes pour calculer l'influence des effets de membrane sur la charge ultime des
dalles en béton armé. Les résultats sont comparés avec ceux d'une analyse utilisant la méthode des
éléments finis, dans un cas concret.

ZUSAMMENFASSUNG
Es werden zwei Methoden zur Untersuchung des Einflusses von Normalkräften auf die Traglast von
Stahlbetonplatten vorgestellt. Die Ergebnisse werden an einem Beispiel durch eine Vergleichsrechnung
nach der Finite Elemente Methode überprüft.
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1. INTRODUCTION

The load bearing capacity of reinforced concrete slabs with restrained edges

is higher than predicted by the conventional yield-line theory. The prevention
of the outward expansion causes an in-plane compressive force within the slab

which provides a higher moment capacity than is assumed by the yield-line theory.
In the presented paper the solution of several research workers (for example

Morley [l]), who have extended the yield-line theory by including the in-plane
forces as generalized stresses for the assumption of a rigid perfectly - plastic
material, is compared to a more realistic solution in which the condition of the

inextensibility of the slab parts is deleted. It is assumed that the slab will
behave elastically within its plane. An approach is developed to estimate the

in-plane forces due to constraints which are induced by the reduction of the

strains and cracking during slab deflection.

The results of the extended yield-line theory including in-plane forces are

examined by a finite element analysis of reinforced concrete slabs. With a

program system that was developed in Darmstadt [2], [3], the realistic behaviour

of reinforced concrete slabs can be calculated by considering material and

geometrical nonlinearities. The computational methods are demonstrated by a

rectangular slab under uniform load, supported along three edges. In Fig. 1 the

system and the idealization of the slab into elements is shown.

Fig. 1 System and Finite
Element Idealization

Fig. 2 Yield-Line Pattern with Three
Parameters
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2. LOAD BEARING CAPACITY INCL. INPLANE FORCES ASSUMING IDEAL-PLASTIC BEHAVIOUR

For the general case of a transversely loaded thin slab the failure will start
in a flexural mode. The in-plane forces induced as a secondary effect have only
little influence on the failure mode, so that the yield line pattern of the
conventional yield line theory for pure bending can be used as a failure
mechanism. In Fig. 2 the chosen three-parameter yield-1ine pattern is shown.

With the dimensions indicated in Fig. 1, the yield strength of reinforcement,
2 2

ß<j 420 N/mm and the characteristic strength of the concrete, ßR 25 N/mm

the lowest upper bound for the ultimate load is by application of the conventional
2

yield-line theory pQ 40,6 kN/m with the inherent parameters cc= 0,556,
ß 0,094 and -y 0,188.

In extension of the conventional yield-line theory, not only the bending moments

but also the resulting in-plane forces normal to the yield lines are used as

generalized stresses. By applying the principale of virtual work, the energy
dissipated by the in-plane forces along the yield lines must be added to the

dissipation density per unit length of the yield line

d m- Q + n J (1)

The moments m and forces n are connected by a moment-force-interaction as

yield-condition. With a stress-distribution as shown in Fig. 3 the resulting
moments and forces normal to the yield line are

mn„-AsxPsex cos2<t <-Asyh V'»VA,<VV J") (2)

nnn'Asxh cos'l'+Asyßs a <3>
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By elimination the depth a of the compression zone, the yield criterion becomes

F(%n,"nn)smnn*(bc-As^a>^sU^si"fhn * lfe""r,nF (4)

where mnnp stands for the yield-moment of the conventional yield-line theory.
By application of the flow rule (normality law), a relation between the rate of
rotation and the rate of deformation within the reference plane as an internal
compatibility condition in the yield line is developed

~Z~ à ~a =2
<9 o

(5)

This condition states that the relative rotation axis between two slab parts
is identical with the neutral axis. A rotation of the rigid slab parts is only
possible, if the rotation axes are horizontal, so that the height of each of
the relative rotation axis during the actual deflection under developed failure
mechanism can be defined by one parameter, for example the depth of the

compression zone a at any point of the yield-line. In Fig. 4 the failure
mechanism is shown in the elevation and the rates of displacements of the

relative rotation axes by a virtual rate of deflection wm are indicated.

rO i-E
wy»»i iwwinw

LC

2

le
Sect. C-C

_j_®J j_

i—j—i-f-i
Sect.D-Q S«ct.E-E

rate of dlaolocawgnts of relativ« rotation axis

-Û,- -A/wefi-fyva) ; fa

s«ct. ûj="W%"d)B-B ûj" -tyafwsi)- 4/a,-aJ / fa «0

ùr-tyafvç-î) i v/0.

Fig. 4 Failure Mechanism in the Elevation

£j+a/3-/3-y
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Eqs. (1), (2), (3) and (5) define the internal energy that is dissipated per
unit length of a yield-line during a virtual rate of plastic rotation

di =[Asxlis(h<-a)co&2(P + Asglis(,<y-ay'n!9+ia%]-é <6)

By equating the total internal and external virtual work, the depth of the

compression zones of the five yield-lines, a^ to a^, remain unknown. If the

clamped edges are fixed in their plane, the rate of displacements of yield-lines
nr. 1 and 2 and because of symmetry also of nr. 5 must be zero. By the three
conditions v^ 0, ^ 0 and v^ 0 (v see Fig. 4) three parameters can be

eliminated. The remaining two parameters must be computed by minimizing the

ultimate load. This results in a failure load dependent on the actual deflection

P 84-7-3,0 Wm+0,16 WL? (7)
' 1L m J m

3. ESTIMATION OF THE SELF-INDUCED IN-PLANE FORCES FOR ELASTIC PLATE STRETCHING

The derivation in the preceeding section assumes that the stress-strain-relation
of the concrete as well as the reinforcement is ideally-plastic. In reality,
however, the stresses of the concrete in the compression zone remain in the

elastic range. The flexural response of the slab is well represented by plastic
behaviour as soon as the yield point of the reinforcement is exceeded. The

in-plane forces, however, are transferred across the yield line mainly by the

concrete, so that even in the plastic range of the reinforcement, the plate is
deformed elastically in its plane.

To compute the in-plane forces which are induced prior to failure the cracked

slab is considered to be an elastic orthotropic panel. It is assumed that the

concrete only transfers compression stresses and that shear stresses are

possible only in the uncracked zone. Poisson's effect is neglected. If the

cross-section remains plane after deflection, the relations between the resultant
stresses and the strains within the reference plane are:

nxx=Kxx [exx(bo~ bsx) /] %=Kyy feyy~(bo~ bsy) /ây1)]
8}

nxy= Taxy Eb[£xy^(bo~ Jaxy)/£y^l]

with Hxx=(Asx+Asx)Es+axxEb ; Kyy^(Asy+Asy)Es+ayyEb (9)
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and the distance of the elastic centroid from the compression side of the slab

iÇx [Es(AsxK+AsxhxY2Eb°xxJ) bsy= j^y[£sf4sy'7y~f~Asyhy)~,~IEbayyJ (10)

It is assumed that the deflection surface w(x,y) is known and that the in-plane
forces do not influence the deflection. Then eqs. (8) to (10), together with
the equilibrium conditions and the strain deformation relations within the

reference plane

* =ËE+l(d»rf F =dv + l[dw\2 * =àu.àv+lÊK.^L m)xx dx J yy Qy z^ây 1 xy dy dx 2 dx dy

form a complete system of equations to resolve the planar problem. An exact

solution of the problem, however, is impossible as the depth of the compression

zone varies over the slab region and is a function of the induced in-plane
forces. As an approximation for the active part of the section of the concrete,
the compression zone of the cross-section under unixial, elastic bending and

normal forces is chosen

b Lb 6 Cbl^l
To estimate the membrane forces along the yield-lines, further assumptions are

necessary. If a horizontal movement of only the clamped edges is prevented and

the slab is able to deform freely in the x-directi on, the in-plane forces in
this direction may be neglected, nxx 0, and n may be constant in the

y-directi on.
As boundary condition, the elongation of the slab in the y-directi on must be

zero, so that the integration yields

fwd»~0-nyy 7 rfffîH^lèh <13)

H ly ly ly
With a deflection surface W=w^ (l~ Ô -^+ 16 jr) (14)' XX'1 Iy ly '
the in-plane forces are determined by eq. (13). The solution of eq. (13) is
possible only by an iterative process resulting in

nyy [kN/cmJ-°.» wm{1~2 f? +f - ¥wm(1~Zf^ + jr) (15)XX I XX/
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Now the load bearing capacity of the slab can be calculated by conventional

yield-line theory with a yield moment m that is related to the in-plane force

nnn nyy sin 7 ecl- The action of the in-plane forces at the deformed

system is taken into account, if the variation of the position of the cross-
section to the reference plane during the deflection (see Fig. 4) is considered.
Numerical calculations result in

PjM/m2]-'10,6* 9,s7 wm-°.002Z wm* <")

4. COMPARISON OF YIELD-LINE SOLUTION WITH THE RESULTS OF FINITE ELEMENT COMP.

To demonstrate the influence of edgerestraint on the load-bearing capacity, in

Fig. 5 the strain distributions of the elements along the free edge are shown

and compared with the freely movable system at the same load stage. In Fig. 6

the variation of the in-plane forces with increasing deflection are shown. The

agreement of the approximation with the results of the FEM is sufficient. Fig. 7

shows the non-dimensionalized load-deflection curves. Although the assumption

of elastic plate stretching yields better results than by rigid ideal-plastic
behaviour, the ultimate load is overestimated. In the finite element approach

failure is reached when the compression stresses of the concrete violate a

failure criterion in the biaxial stress state. This happens for the slab with
fixed edges before a flexural failure in the plastic range is evident. In [4]
the assumptions of the extended yield-line theory are described in detail
together with further examples.
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Jnp/ane Forces

Fig. 5 Strain-Distribution and Fig. 6 Development of In-Plane Forces
Assumed Compression Zones

Fig. 7 Load-Deflection Relations
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Computer Aided Optimum Design of Concrete Slabs

Minimalisation de l'armature des dalles à l'aide de l'ordinateur

Computerunterstützte optimale Bemessung der Armierung von Platten
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Zurich, Switzerland
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SUMMARY
A computer based optimum design procedure satisfying various practical design constraints is

presented for finding the minimum weight reinforcement distribution for concrete slabs. The procedure

uses finite element analysis and is derived from the shake-down theorem of the theory of
plasticity. The approach used represents a combination of automatic optimum design and interactive
computer aided design methods.

RESUME
Le rapport présente une méthode servant à minimaliser le volume d'armature des dalles en béton
armé tout en tenant compte de certaines conditions dictées par la pratique. Le procédé utilise la
méthode des éléments finis et est basé sur le théorème fondamental de la théorie de la plasticité.
Le programme de dimensionnement offre à l'utilisateur la possibilité de modifier les données
pendant le déroulement du programme.

ZUSAMMENFASSUNG
Es wird eine den praktischen Gegebenheiten angepasste Methode zur optimalen Bemessung der
Armierung von Platten beschrieben. Das Verfahren benützt die Methode der Finiten Elemente und
basiert auf dem Einspielsatz der Plastizitätstheorie.
Es ist ein computerunterstütztes interaktives Bemessungsverfahren mit automatischen
Optimierungsalgorithmen.
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1. INTRODUCTION

This paper reports on a research project presently in progress. While the main
ideas on which the project is based seem today to be well understood, the
development of the complex computer program needed for practical applications has not
yet reached the stage where numerical results can be obtained. Therefore general
conclusions concerning the applicability of the suggested design method can not
be drawn yet. Experience also shows that the final system might look considerably
different as it is planed today.
The aim of the project is the development of a computer based design procedure
for finding the minimum weight reinforcement for concrete slabs of given geometry
subjected to any kind of dead- and life-loads taking into account different kinds
of practical design restrictions. Gnly the plate-bending action of the slabs shall
be considered.

Most practically oriented civil engineers are rather sceptical towards
automatic optimum design procedures. They feel - with good reasons - that the process
of designing real-life structures involves too much personal experience, feeling
and imagination to be left to a computer program developed by some stranger.
Today much more attention is paid to interactive computer aided design methods,
where the computer only checks given designs while the task of finding an "optimum",
whatever that means, is left to the designer. The main problem of this approach
is to make man - machine - communication so easy and to have the computer answering

so quickly that some kind of a dialog between the designer sitting in front
of a terminal and the computer becomes possible.
The procedure discussed here represents a combination of both approaches: while
the designer is still expected Cat least in the final stages of the design
process) to interact with the computer sitting in front of a terminal, the computer,
whenever requested, will have to perform optimality search by linear programming
methods and show his results quickly and clearly. In fact, the chances that such
an approach will prove useful for real-life problems rely on the facts that today's
computers [a DEC-10 is used for this project) are powerful enough for performing
complex calculations without keeping the user waiting too long, that man - machine
communication, specially due to computer graphics, has become easy and also that
the problem considered while of considerable practical significance, is one of the
best suited for optimum design procedures based on the theory of plasticity.

2. THEORETICAL BACKGROUND AND OVERVIEW OF THE- DESIGN METHOD

The design method suggested here is based on the shake-down theorem of the
plasticity theory and was first used for framed structures by one of the
coauthors in 19B5 Csee [1,2]). When applied to plate-bending problems the shakedown

theorem says that if it is possible to find any distribution of residual
moments (i.e. any homogeneous stress state) which, combined with the ideal-
elastic moment distribution for every possible loading case, nowhere violates
the plasticity conditions, then the structure will eventually stabilize or
"shake-down" for any possible loading cycle.
With the usual assumption that reinforcement has no influence on the elastic
behaviour of concrete structures, the moment distributions due to external loads
can be obtained by linear-elastic finite element analysis. By prescribing as
additional unit load cases different initial curvature distributions any number
of residual homogeneous moment distributions can also be obtained by finite
element analysis. The design problem can then be stated as follows:.
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A linear combination of these unit load cases leading to an optimum residual
homogeneous moment distribution has to be found and added to the linear-elastic
moment envelopes due to the external loads. Optimality is achieved when the
weight of the reinforcement needed for the combined moment envelopes is minimal.
According to the shake-down theorem, this procedure will result in the design
of a structure where plastic deformations may only occur during the first load
cycles, which is certainly an appropriate design criterion for reinforced
concrete slabs.

Assuming that the plastic resistances needed to satisfy the plasticity conditions
for the combined moment envelopes throughout the slab are linear functions of the
amount of reinforcement in a number of chosen "check-points", the optimum design
problem stated above can be formulated as a linear program for minimizing the
total steel weight. The unknown parameters to be determined are the cross-sectional
areas A-| to A|\jg of NG predefined groups of steel bars as well as the amplitude-
factors Xi to multiplying each of the NH homogeneous load cases considered.

The user of this computer-based design procedure will have to specify length,
position and direction of different groups of steel bars (possibly of several
alternative groups among which the linear program algorithm will look for a minimum

weight solution] as well as a number of homogeneous unit load cases to be used
for "optimization. These will be specified by introducing a constant unit initial
curvature in a given direction in one or more elements of the linear-elastic
finite element model.

All static calculations, both for the external loads and for the initial curvature

loads are performed by linear-elastic finite element analysis. The hybrid
model with triangular and quadrilateral linear-moment plate-bending elements
described in [3] and [4] is used for this purpose. Shear deformations are not
be taken into account. Column-supports and elastic foundations are treated by
means of "elastically" supported elements.

3. DERIVATION OF THE LINEAR PROGRAM

The total steel weight or the total steel volume V of NG predefined groups of
steel bars is to be minimized. Each of these groups covers a rectangular or a

parallelogram-shaped portion of the slab of length L (g 1 to NG) and is
positioned near the top or the bottom surface o-p the slab for providing negative
or positive bending resistance. If Ag denotes the total cross-sectional area of
all bars of given length Lg belonging to the g-th bar group, the design optimality
criterion can be expressed in scalar or matrix notation as follows:

NG T
V S L *A {L} {A} -t- Minimum (1)

g=1
g g

The plasticity conditions will be checked in a sufficiently large number NC of
"check-points" chosen in such a way that no violation will occur elsewhere in the
slab. This is done by using the following well-known plasticity conditions valid
for relatively low degrees of reinforcement:

"n(p 1 > i Pq> (2]

where n p and m represent the negative and positive bending resistances and
the bending moment in any direction 9. As suggested by Wolfensberger [5] the angle
9 can be eliminated and the non-linear conditions Eq. (2) can be linearized by
introducing eight linear inequality constraints for the bending and twisting
moments mv, m.., and mvw in two orthogonal coordinate directions x and y. In matrixx y xy
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notation these eight inequalities for a check-point c Co 1 to NC] are given by:

fmc^rnax i
-^c>max 1 <nc> ^
where the moment-envelope vectors {mc}max and {rr>c}min and the positive and negative
resistance vectors {pc} and {nc} are defined by:

{pc}

*P + Prx rxy
px ~ pxy

py + pxy
py " pxy

{nc}

at c

Nx Nxy X£ + mxy
Nx - Nxy tmc> mx mxy

Ny + Nxy my + mxy
Ny - Nxy_ at c my mxy

(4

at c

A detailed derivation of the positive and negative plastic bending resistance
coefficients Pv

forcement can be found in |_5J
y» PXy* Nx' ^y anc' ^xy ^or orthogonal and non-orthogonal

If the reinforcement is relatively low it is reasonable to assume, at least for
practical design purposes, that the plastic resistance vary linearly with the
reinforcement, implying that this has no influence on the lever-arm of the internal
forces. The resistance coefficients of the vectors {pc} and {nc} can then be
expressed by linear functions of the reinforcement areas A-] to A^q as follows:
{Pc> [Pc]{A> (5)
{nc} [NC]{A>

where the coefficients of the 4xNG matrices [pc] and [nc] represent the resistance
contributions due to a unit reinforcement area Ag 1 provided that the c-th
check-point lies within the surface of the slab covered by the g-th steel bar
group.

The maximum and minimum moment-envelope vectors {mc}max and {mc}min introduced
in Eq. (3) result, as explained earlier, from the superposition of the linear-
elastic moment-envelopes {m®x1:}ma>< and {rnQX^lmin due to the external loads and the
corresponding vector {m£om} due to NH homogeneous load cases of unknown amplitudes

X-] to This leads to:

r i r ext-, r hom-, r ext-,im } im } + {m } {m }
c max c max c c max

r -, r ext, r hom-, r ext-,im } im } + im } im }
c mm c mm c c mm

[HC]M

[Hj{X}
C 6

the coefficients of the 4xNH matrix [H,,] (as well as those of the vectors {rnSxt}mav
r pxf-i -,

c max
and imc Jmirr being found by linear-elastic finite element analysis.

Introducing Eqs. (5] and (6) in Eq. (3) the eight plasticity conditions at a

check-point c can be written as follows:

(m8 } + [H ]{X} < [P ]{A}c max L cJ — L cJ

-{mext} - [H ]{X} < [N ]{A}
n rrn n L nJ —- u nJ

(71

Design constraints formulated as maximum or minimum allowable reinforcement areas
can also be introduced:

{A } < {A} < {A } (8]mm — — max
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From Eqs. [1], (7) and C8) the following linear program for the unknowns X/| to
X|\||_| and A^| to Ajjg [see also Fig. 1) is obtained:

V {L} {A} + Minimum

0 < -{mext} - [H ]{X} + [P ]{A}— c max L cJ L cJ

0 < {mBXt} + [h ]{X} + [N ]{A}— c min L cJ L cJ

0 < -{A } + {A}
— mm

0 < {A } - {A}
— max

(c 1 to N ]
c

[c 1 to N ]
c

C 9

This linear program
inequalities can be

o s

0 <

0 <

0 <

0 <

can be considerably simplified. The minimum reinforcement
immediately eliminated by introducing as design variables,

instead of the Ag's, non-negative
7Vk parameters defined by:
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Also, it will certainly not be

necessary to formulate all eight
linear plasticity conditions
in all check-points. The values
of the moment envelopes due
to the external loads will show
that many plasticity checks are
most probably not necessary
(e.g. positive moment checks
over a column support] thus
allowing a great reduction in
the number of inequalities to
be considered. Maximum reinforcement

inequalities will also,
in many cases, not be introduced

for all bar groups.

The linear program [9], simplified
as explained, will be

solved in core by the simplex
algorithm. It should also be
noted, that the designer, as
explained later, will be able
during the design process to
introduce or to delete any A- or
X-variable and any linear
inequality constraint he wishes.
The computer will then have
to solve each time the modified
linear program starting from
the previous solution.

Fig. 1 : Tableau form of the linear program (9)

29/13
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4. INTERACTIVE DESIGN PROCEDURE

In a first step the designer has to specify, as usual in finite element analysis,
all structural and load data necessary to determine the moment-envelopes in all
possible check-points, i.e. in all joints and in the center of all elements. These
values as well as the data needed for analysing the additional homogeneous load
cases to be specified later Clocal load vectors for three unit initial curvatures
within each element, triangular half-inverse of the global stiffness matrix, etc.)
are then saved on secondary storage.

In a second step the following design data have to be specified or, whenever
possible, automatically determined by the program:
a) Lengths,positions and directions of all groups of reinforcement steel bars

covering rectangular or parallelogram-shaped portions of the slab. Net
reinforcements with steel bars in two orthogonal directions as well as bar groups
of identical cross-sectional area but covering two or more distinct portions
of the slab can also be specified.

b) Minimum and maximum allowable reinforcement for any bar group.
c) Criteria for determining which of the eight possible linear plasticity condi¬

tions have to be considered in any check-point. In most cases the program will
be able to determine these automatically by examining the values of the moment-

envelopes due to the external loads.
d) Homogeneous load case informations concerning the direction of unit initial

curvatures in one or more elements. If no such load is specified, the slab
will be designed assuming no plastic moment redistribution.

With these data the program will be able to determine the linear-elastic moment

distributions for the homogeneous load cases, set up the coefficient matrix of
the linear program and solve this in core by the simplex algorithm. At the end

of this step (as well as at the end of all subsequent steps) the program will check

all linear plasticity conditions originally ignored. If any of these is found to
be violated, the corresponding inequalities are introduced into the linear program
and a modified optimum solution is found.

As these two steps will generally require a considerable amount of computing
time, the corresponding program sections will not allow direct interaction with
the designer. However, input preparation is made easy by the use of a simple
problem-oriented input language described by few easily understandable syntax
diagrams (see also [3] and [4]

Full line by line interaction based on a command language also described by syntax

diagrams will be possible in the subsequent design steps. Within each of
these the designer will be able to request anyone of the following actions:
a) introduce a new reinforcement bar group or delete an existing one
b) change, add or delete a minimum or maximum reinforcement constraint
c) require a reinforcement area to assume a given value. This may be desirable

when the designer choses to use a certain number of steel bars of standard
diameter corresponding to a total cross-sectional area not identical to the
optimum value found by the linear program.

d) introduce new homogeneous load cases hoping that these will help to further
reduce the total steel weight.

Each of these steps implies the addition or the deletion of some variables or
some inequality constraints requiring the previous solution to be modified, which,
in general, can be done with a relatively little computational effort. The designer
can then be informed on the effects of the action he took (change in total steel
weight, changes in single reinforcements, plasticity conditions becoming
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active, i.e. exactly fulfilled, or inactive, etc.] in order to be able to plane
his next design step.

In fact, if the program has to interact in real time with a designer changing
at each step his design specifications until a satisfactory and in all respects
practicable reinforcement distribution is found, the problem of man - machine
communication becomes of crucial importance. Certainly extensive graphical output

and possibly some graphical input capabilities have to be incorporated into
the program. The designer should be able to see at a glance which parts of the
slab are more heavily stressed and which are not. This will help him finding the
most favourable position and shape of each reinforcement bar group and also tell
him how to assume the homogeneous load cases. These will probably lead to the
most favourable moment redistribution when initial curvatures are introduced in
the directions and in the elements where moments are large.

It is too early to discuss these points in detail. It should only be mentioned
that the graphical capabilities of a storage-tube Tektronix 4014 terminal connected

with a DEC-10 computer appear to be adequate for this project.

6. OUTLOOK

Optimum design and interactive computer aided design procedures have attracted
and continue to attract much attention and much research work. It is a fact,
however, that at least in civil engineering such procedures are today very seldom
used for practical purposes. In awareness of this it would be illusory to
expect that procedures similar to the one described here will very soon become
standard tools of practicing structural engineers. The main scope of our project,
which is nevertheless quite an ambitious one, is therefore to assess as clearly
as possible for a well defined and actually relatively simple practical optimum
design problem the feasibility of the approach.
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III

Finite Element Approach to Optimization of Slab Reinforcement

Optimalisation de l'armature des dalles au moyen de la méthode des éléments finis

Optimierung der Plattenbewehrung mittels finiter Elemente

A. BORKOWSKI
Dr -Ing.
Institute of Fundamental Technological Research
Warsaw, Poland

SUMMARY
A numerical procedure is presented which enables an optimization of reinforcement to be carried out
in the preliminary design of concrete slabs The method is based upon discretization of the slab by
means of triangular finite elements. A rigid-plastic behaviour of the slab is assumed. The reinforcement

volume is minimized by linear programming taking into account technological constraints where
necessary.

RESUME
La méthode exposée permet d'optimaliser l'armature des dalles en béton dans une phase préliminaire
du projet. La méthode s'appuie sur la discrétisation des dalles en éléments finis triangulaires et suppose
que le comportement des dalles est rigide plastique. Le volume de l'armature est minimisé par pro
grammation linéaire en tenant compte, si nécessaire, des contraintes d'exécution pour les variables
du projet.

ZUSAMMENFASSUNG
Es wird ein numerisches Verfahren beschrieben, durch welches es möglich ist, die Armierung von
Betonplatten an einem vorläufigen Entwurf zu optimieren Die Methode stützt sich auf die Diskreti-
sierung der Betonplatte mit Hilfe von dreieckigen finiten Elementen unter der Annahme von starr-
plastischem Verhalten. Das Volumen der Armierung wird durch lineare Programmierung minimiert,
wobei herstellungsbedingte Schranken für die Entwurfsvariablen, soweit notig, in Betracht gezogen
werden.



198 III -OPTIMIZATION OF SLAB REINFORCEMENT

1. INTRODUCTION

The yield-line theory [1J belongs to the most widely used tools
of the plastic design. Despite its purely kinematical nature, this
method provides, when properly used, a conservative estimate of
the reinforcement of concrete slabs. This is due to such effects
neglected in the yield-line theory as the steel hardening, arching

and membrane action. Bach of them is favourable to the safety
of design.

It is rather simple to find an adequate collapse mode for a
conventionally shaped and loaded plate of an uniform reinforcement.
However the primary task of an engineer is rather to look for the
most efficient reinforcement pattern than to analyse a given slab.
This can be accomplished by means of the finite element method and

linear programming as shown in a paper f2j. The aim of the present
article is to recall the main features of such approach. As far as
discretization is concerned the present method is similar to those
proposed by Anderheggen, Knöpfel [ 3j and Kawai [4]

2. OPTIMUM PLASTIC DESIGN AS LINEAR PROGRAMMING PROBLEM

It is well known that linear programming (LP) is far more numerically

efficient than any other method of constrained optimization.
Therefore it is natural to try to convert an engineering optimization

problem int® the shape of the LP-problem. Considering design
of reinforced concrete slabs on the ground of the ultimate load
theory one has to introduce two main assumptions in order to achieve

this goal:
1) the minimized volume of reinforcement should be a linear function

of the principal yield moments,

2) the yield surface should be piecewise-linear.
The first assumption means that dependence of the arm of stress
couple acting in the yielded cross-section upon the area of
reinforcement is neglected. The second one can be regarded as numerical

approximation of the true convex yield surface. Of course the
consequences of such an approximation for the collapse mechanism
must be taken into account.
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Let an arbitrary structure be discretized in such a way that its
mechanical behaviour is represented by the following vectors: a
stress s e Em, strain q^ Em, load p En, displacement w<sEn

and plastic modulus ç & E Taking into account two basic assumptions

listed above one can formulate the optimum design problem as
follows:
a) a static approach -

+
minimize V 1 c,

subject to:
Ç* s p, (1)

£ - Et Ë. > £
£ ^ 0;

b) a kinematic approach -
maximize ¥ p^ w,

subject to:
Ç w - N À 0, (2)

Si s< 1,

i > o.

A cost function of the primal problem (1) expresses the minimized
V

volume of reinforcement. Here 1 «= E is a constant vector of the
cost factors. The first constraint in the static approach is the
equilibrium equation that relates the stress s to the given
ultimate load p. The second one describes a convex polyhedron of
admissible stresses. The dual problem (2) reads as a search of the
maximum external power over a set of the collapse mechanisms kine-
matically compatible with the strain rate q that follows from
the associated flow rule:

4 £ À (3)
The second constraint in (2) is the optimality condition relating
the plastic multipliers to the cost factors 1. For practical
purposes it is advisable to replace the last constraint in (1) by

Fig. 1 Finite-element Mesh
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4 *0.25 L

y

L

X

Pig. 2 Rectangular Slab with Pree Edge - Optimal Solution for Single

Bottom Reinforcement Grid

where c~, c+ are fixed bounds for the design variable c. Since
the dual problems (1)—(2) are equivalent one can use any one of
them as an input for the simplex routine which provides the solution

ç*, s* and w*, A*.

3. DISCRETE MODEL OP REINFORCED SLAB

A mesh of triangular finite elements as shown in Figure 1 was chosen

for discretization. It was assumed that w is linear while
the moments M M, M are constant over an element. The slopex y xy
discontinuities &. along the edges of each triangle are collected
into the strain rate vector q. The nodal deflection rates w..

enter the vector w. Rational technology requires the reinforcement
to be composed from a small number of grids, each of them having
a constant mesh and constant diameter of steel rods. Therefore prior

to optimization the area of the slab should be divided into a
small number of regions of constant principal yield moments.
Theoretically a region can include single element but usually there are
many elements in it. The adjacent regions are connected via the
narrow strips that can rotate independently about their longitudinal

axes. The rates of such rotations tyj are included into w.
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Fig. 3 Rectangular Slab with Free Edge - Optimal Solution for Two

Bottom Reinforcing Grids

These connectors provide a continuous slope of the slab along the
lines of discontinuity of the yield moment.

In the static description of the slab the entries of s are the
bending moments acting normal to the edges of triangles. The

components of p are the nodal forces and the external moments
attached to the connecting strips. The vector of design variables
ç collects the principal yield moments for each region. Denoting
by x and y the orthogonal directions of reinforcing bars, common

for the entire slab, one has four design parameters for a
region: the yield moments m m for positive bending (bottom re-x y
inforcement) and the yield moments m', m' for negative bendingy
(top reinforcement). The yield criterion for this discrete model
reads: i-th line of the mesh is at the yield when (a) the positive

bending moment reaches the ultimate value

2 2
mi mx sin °^i + my cos °^i' (5)

or (b) the negative moment reaches the value

mi mx sin2 + my
cos2 (6)

Here OC^ denotes the angle between i-th line and the x-axis.
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The cost factors 1^ result from the expression of the reinforcement

volume as the linear function of the principal yield moments.

Usually these factors are taken proportional to the areas of regions

with constant reinforcement. A detailed derivation can be
found in [2] as well as the modifications of the model (1 )—(2) for
the cases of prescribed orthotropy and/or asymmetry of reinforcement.

s

L

J

m =0.02 60 pLs

_J

a

-j
CsJ

Ö

0.6L 0.4 L

b)

Fig. 4 Simply Supported Slab with Cut-off - Isotropic Reinforcement:

a) Dimensions and Yield Moment, b) Discretization Mesh and

Collapse Mechanism.
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4. NUMERICAL EXAMPLES

The first example (Figure 2) concerns the rectangular slab with
three edges simply supported and the fourth edge free. The following

optimum values of the principal yield moments were obtained
for a single bottom reinforcement grid:

mx °*3° pl2

m* 0.05 pL2
(7)

Here p denotes the
transversal pressure and L is
the length of the shorter edge

of the slab. The optimum
orthotropy factor is

m* /m* 0.1667 (8)

The volume of reinforcement
for this design is 8 % less
as compared to the isotropic
plate.

Fig. 5 Simply Supported Slab
with Cut-off - Discretization
Mesh and Collapse Mechanism for
Optimum Orthotropy

The second example (Figure 3) shows the optimum solution for the
same slab but having two reinforcement grids. It was assumed
additionally that for technological reasons the yield moment should

2not be less than 0.01 pL The optimum values of the principal
yield moments are:

for the central region: m* 0.365 pL2, m* 0.01 pL2 (9)

for the outer region: m* 0.282 pL2, m* 0.01 pL2 (10)x y

This solution reduces the reinforcement volume by 13 % in comparison

to the isotropic case. Finally Figures 4 and 5 show the results
for a slab with cut-off. The solution for isotropic case is

depicted in Figure 4 while the optimum values

mj 0.66? x 10"2 pl2, m* 3.85 x 10-2 pL2 (11)
<7

correspond to the collapse mechanism shown in Figure 5.
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5. CONCLUSIONS

The computer based version of the yield-line method offers a cheap

tool for preliminary design of slabs. Computational effectiveness

of the algorithm makes it possible to run several trial
optimizations with differently chosen reinforcement patterns. After a

final choice has been made on the ground of the rigid-plastic
approach, one has to check whether other requirements, such as a
sufficient stiffness and crack resistance, are met. The final design
can be recalculated by the present method in order to establish
its safety factor against plastic collapse.
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On the Load-Carrying Capacity of Concrete Pavements

Jiang Da-hua

(Tong Ji University, Shanghai)

The load-carrying capacity of concrete pavement under central
load is investigated. The pavement is treated as a rigid-plastic
slab of infinitely large size resting on an elastic subgrade.
Under the action of a concentrated load over a small circular area
the subgrade reation is represented by a conical diagram and its
variation with displacement is neglected. The same problem was
solved by G. G. Meyerhof in the early 6o's when he was studying
the carrying capacity of concrete pavement under wheel loads.
His formulae for central loads are actually upper bound solutions0
The exact solution under the above mentioned assumptions is obtained
in which the position of the circular yield line is somewhere inside
the circle of zero subgrade resf£ion.

The ultimate load can be expressed as follows
4ttM„

>o~ I 2 a i bt /cf. I / cV
1 ~ TbVcV - KB) +2 VE)

in which the value of can be determined from the equation

M0 is the ultimate moment of the slab section, a ,d)(c being the
radius of the circle of the loaded area, of zero subgrade region
and of the circular yield line respectively.

Ultimate loads for dual,triple and quadriple circular loads
and a strip load are also investigated.

The moment curvature relation of a plain concrete section is
deduced by considering the existance of horizontal axial thrust in
the slab and the gradual cracking of the section. It is interesting
to note that the moment curvature relation thus obtained is
practically of elasto-plastic type.

The theoretical analysis is simple,and it explains why full
redistribution of internal forces to form a collapse mechanism is
possible in a large plain concrete pavement asjhas been observed
in the experiments carried out in China in recent years.
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DEFORMATION CAPACITY IN REINFORCED CONCRETE SLABS

Peter Lenkei Hungarian Institute for Building Science (EÎTI) Budapest

Summary

In reinforced concrete slabs at yielding not only the load bearing capacity

but the deformations and the cracking process too are greatly influenced
by the level of orthotropy and by the divergence in the principal directions

of the resistance of the slab and of the external moments. The

theoretical and experimental investigations proved that this fact should in
some cases be taken into account.

Experimental investigations

Rectangular slabs with fixed corners and with different levels of orthotropy
were tested in the Laboratory of the Hungarian Institute for Building Science

(ÈTI, Budapest). The details of the test specimens are given in Fig. 3.

The difference in the amounts of reinforcement and in the level of orthotropy

altered the load bearing capacity and the yield pattern in the

corners of the slabs. Of course in the middle part of the slabs the angle

y was equal to zero, but in the corners Y differed considerably from

zero.

Due to these differences, the behaviour of the slabs during the transition

process, the deformations and the crack pattern at the maximum load

(at yielding) were different (Fig. 4).
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Punching of Slabs subjected to In-plane Biaxial Tension

R.P. JOHNSON, University of Warwick, England

The punching shear strength of slabs subjected to in-plane biaxial

tension is of interest to designers, because this situation can occur

in continuous composite steel-concrete bridge decks in regions where

a cantilever cross girder intersects a main girder near an internal

support, and the neutral axes for bending of the two composite members

lie many slab thicknesses below the deck.

Such a region has been studied at the University of Warwick in

tests on cruciform specimens composed of two intersecting composite

girders, supported at the centre of the cross and subjected to downwards

point forces at the ends of the arms. Control of these forces enabled

known biaxial tensile strains to be maintained at the top surface of

the slab, which was 90 mm thick. There were four layers of

reinforcement (8 and 12 mm t>ars at 150 or 200 mm pitch). The tensile

strains at the underside of the slab were about 80% of those at the

top surface.

Punching shear tests were done on three quadrants of the same

cruciform slab, while the mean tensile strains in the top two layers

of reinforcement were 0, 860 and 1730 microstrain, respectively.

The corresponding punching loads were 164, 162, and 163 kN0 The

punch diameter was 120 mm, and the maximum diameter of the punched-

out area was about 850 mm (limited by the flanges of the steel girders),

giving a mean slope of 14° for the surfaces on which failure occurred.

These results confirm what can be deduced from the upper bound

analysis presented by M.P. Braestrup:that membrane tensile strain in

a slab has no effect on its strength in punching shear, in the range of

strains likely to occur in practice.
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DISCUSSION ON POST-PLASTIC BEHAVIOUR OF RESTRAINED SLABS

by I. KANITAKIS, Research Fellow, N.T.U.- Athens

Prof. T.P. Tassios and myself would like to present some very first
results of a theoretical investigation related to the problem of
post plastic behaviour of Reinforced Concrete slabs, rigidly
connected at their ends.

Each span is assumed to be fixed-ended and without any lateral
displacement. The slab has equal compression and tension reinforcement
along its length. The gradual modification of the bearing mechanisms
of the slab are considered qualitatively, through three consecutive
models.

The first model is the conventional elastoplastic model. Here, moment

redistribution is also considered and the values of the stiffness
along the span are variable. There is no axial force in the slab.
The second model is the post plastic one (fig.1) The slab geometry
has significantly changed
(compressive membrane)

contributing to a

considerable increase of the
ultimate load capacity of
the slab. (Negative axial
force N)

The third model is the
catenary one, where
concrete in critical sections fig.1
is destroyed and only the steel can carry some load. (Positive axial
force N).

The load versus mid-span deflection curve for a slab 120 mm thick
and with a percentage of reinforcement of 0.318% is shown in Fig.2.
Branch OA is due to the elastoplastic
model. Branch AB is due to the post
plastic model and branch BC is due to
the catenary model. The dotted line
in fig.2 shows a more smooth transition

curve which should be worked out
and theoretically located.

B
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SUMMARY OF DISCUSSION - SESSION 3

Ch. Massonnet opened the discussion by questioning the validity of the square
yield locus used by M.P. Nielsen for moments (Introductory Lecture, Fig. 3.3.2).
He cited test results pointing to the effect of reinforcement kinking, leading
to a concave yield locus with sharp corners.

M.P. Nielsen replied that he had never been convinced by the Liège tests, the
reinforcement arrangement being rather complicated. He would study some of
the other tests cited, which he had not previously come across. He pointed out
that numerous Danish tests on slabs in pure torsion (upper left hand corner of
Fig. 3.3.2) showed no increase in strength compared with biaxial bending. In
the case of isotropic bending (upper right hand corner) there might be some
strength enhancement due to biaxial compression of the concrete, but this is
believed to be an effect of secondary importance.

Ch. Massonnet further remarked to D.H. Clyde that he found it hard to believe
in the statical equivalence of twisting moments and shear forces.

D.H. Clyde pointed out that the sandhill analogy for pure torsion also predicts
forces at the edges of the slabs.

Z. Sobotka presented a method of controlling the yield line pattern by varying
the ratio between top and bottom reinforcement in such a way that excessive
cracking in the service state is avoided.

P. Marti commented on D.H. Clyde's paper by citing a recent investigation of
pure torsion in slabs and beams, using the modified contours criterion with
zero tensile strength and an angle of friction of 37°. Lower bound solutions
corresponding to statically admissible stress fields were derived, and matching
kinematically admissible velocity fields found except for small corner regions.
The analysis shows that:
- the concrete crushes in a compressed shell around the periphery of the cross-

section
- the compressed shell separates from the stress-free control region
- if there are twisting moments at an edge of a slab, a vertical reinforcement

is necessary to connect the top and bottom reinforcement along the edge.

A. Sawczuk asked M.P. Nielsen about needed research in connexion with membrane
effects, and commented with regard to K. Sonoda's contribution that it was
difficult for the computer to distinguish between elastic unloading and the
falling branch of the stress-strain curve. He further requested more information

from D.H. Jiang concerning the interaction between slab and subgrade.

M.P. Nielsen replied that he had mentioned the membrane effect mainly to stress
its importance in practical applications, but that a theory is still lacking.

Da Hua Jiang explained that the response of the subgrade was measured by load
cells, and the pressure subsequently idealized to a conical distribution, as
indicated. In answer to a question from A.Losberg/ Da Hua Jiang stressed that
only unreinforced slabs were considered.
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Most of the second discussion period was devoted to problems concerning
punching shear.

R.P. Johnson mentioned that we would expect the punching strength to be considerably

reduced in the presence of membrane forces, especially in the case of
biaxial tension. However, tests carried out had shown no such effect. From the
audience it was remarked that similar results had been obtained at Ithaca.

A. Losbey was surprised that the analyses presented by M.W. Braestrup did not
take account of the main reinforcement, and he wanted to know if the dowel
effect had been investigated.

M.W. Braestrup explained that the analysis only considered the strength in a

proper punching failure, which is independent of any membrane forces or main
reinforcement. Another point is that the likelihood of such a failure will be

strongly affected by these factors. He did not believe there was any significant
dowèl effect; the reinforcement is of itself very flexible so the only

source of dowel action is the tensile concrete strength, which is too small to
measure.

M. Reiss remarked that in practical cases of punching, the load is often applied

by a column, monolithically connected to the slabs. The boundary conditions
at the edge of the column would then be different from those considered hy
M.W. Braestrup, the shear force being transferred at the tip of a wedge
(cf. Fig. 4 of the Introductory Lecture). Therefore tests show that the failure
surface generatrix starts perpendicularly in the slab and is not inclined as
shown in Fig. 1.

H. Aschl claimed that we all know that tensile concrete stresses are necessary
to carry shear loads. On the other hand, the paper presented on plastic analysis

showed that good agreement with test results is only obtained assuming
zero tensile strength. How do we reconcile these facts?

M.W. Braestrup replied that in most cases the shear failure is constrained by
main reinforcement or by the surrounding structure, in such a way that failure
cannot occur by separation only. Thus the deformation must include some sliding,
in which case the compressive strength of the concrete is mobilised and a tensile

strength is not necessary.

M.P. Nielsen showed how shear in beams and slabs may be carried by inclined
compression without any need for tensile stresses.

M.W. BRAESTRUP
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