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II

Torsion-Bending-Shear in Concrete Beams: A Kinematic Model

Poutres en béton armé soumises à la torsion, à la flexion et au cisaillement. Une solution cinématique

Torsion-Biegung-Schub in Stahlbetonbalken. Eine kinematische Lösung

L. ELFGREN
Associate Professor of Structural Engineering
University of Luleâ
Luleâ, Sweden

SUMMARY
A kinematic solution according to the theory of plasticity is presented for reinforced concrete beams
loaded in combined torsion, bending and shear.

RESUME
La méthode cinématique de la théorie de la plasticité est appliquée pour déterminer la résistance des
poutres soumises à la torsion, à la flexion et à l'effort tranchant.

ZUSAMMENFASSUNG
Für Stahlbetonbalken unter Torsion, Biegung und Querkraft wird eine Lösung nach der kinematischen
Methode der Plastizitätstheorie dargestellt.
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1. INTRODÜCTICN

A kinematic model for beams loaded in combined torsion and bending has recently
been presented by Peter Müller and Bruno Thürlimann [1] - [3]. The model clarifies
some contradictions in the theory for torsion which have earlier been discussed by

the writer [4], [5].

In this paper the kinematic model of Müller-Thürlimann is extended to include the

effect of vertical shear as well. The extension is based on the same principles
as the writer has earlier used in a kinematic model for torsion-bending shear

based on skew bending [4] - [9].

The presentation below follows the same outline as the one in Bruno Thürlimanns

paper [1]. The same general assumptions are itade i.e. the concrete and the
reinforcement are rigid perfectly plastic materials. The concrete is governed by a

square yield criterion. The reinforcement bars have a yield stress of ± f^ and

carry forces in axial directions only. Local and bond failures are excluded.

2. KINEMATIC MDDEL

A kinematic model for combined torsion, bending and shear is presented in Figs. 1

and 2. In Fig. 1 general notations are given and in Fig. 2 the kinematic model is
presented. In the model, there are two cracks, ABC and DEF, see Fig. 2a. The right
half of the beam rotates around the axis AD through the crack ends in the top of
the beam. In the bottom of the beam a parallelogram, BŒF, is cut out. The rotation

around the axis AD is rotated w. The rotation is possible if the axis AD is
parallel to the diagonal CF in the paralleogram. This implies the condition that

see Fig. 2b. Further, the angle ß of the rotation axis AD follows from

the following geometric conditions.

b cot a. + h cot a~ - + h cot a, + b cot a.CF 4 2 AD 6 4

With and cot ß we obtain

hcot ß cot a4 + 2g (rot a2 + rob oig) (2.1)

In order to express the energy dissipation, the velocity components of point B

(equal to point E) are needed, see Fig.2c.
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Fig. 1 Rectangular beam with box-section. Notations
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Fig. 2 Kinematic failure model: (a) General view; (b) Model seen from above;

(c) Deformations in bottom; (d) Bending moment diagram.
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Wall 4 : w. hm sin 3 w, w. cot a,4x 4y 4x 4
(2.2)

Wall 2 : w„ - hw sin 3 w-> w0 cot ou2x 2y 2x 2

3. WORK EXPRESSIONS

Using the reinforcements shown in Fig. 1. the internat work in the cracks can be

written as

Lin hx{P3+P5> + tsh2x cot2a2 + Ps^x00^ + kh"6x «A, (3'1)

The external work carried out when the beam rotates around the axis AD can be

written in the following way. As a vertical shear force, V, is present, the bending

notent is varying. It has the value M at the reference point H in the middle

of the bottom parallelogram, BCEF, see Fig. 2b, where the longitudinal reinforcement

bars Nos. 3 and 5 are crossed by cracks. The distance in the longitudinal
direction of the beam between the point H and the midpoint G on the rotation axis

is a^, and consequently the applied bending moment at point G will be M + Va^.

The external work equation then takes the form

L (M + Va.) û sin 3 + T w cos 3 (3*2)
ex 1

where a1 from Fig. 2b with cot 3 frcm Eq. (2.1) can be written as

a1 b cot a4 + h cot a2 - b cot 3 ^(oot a2 - cot dg) (3.3)

The failure mechanism is goverened by the three inclinations a2, and ctg. In

the general case these three angles are independent of each other. This general

case is lengthy to handle. In order to simplify the deductions, the following
assumption will be made regarding the relationship between the angles

cot a2 - cot a,p + cot a^.

cot cot dip

cot dg cot cVp - cot av

(3.4)

The angles and Oy are here two independent variables.
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The assumption is motivated by the fact that the failure mechnism will in this
way correspond with a probable stress distribution in the beam.

The expression for the internal work in Eg. (3.1) can now be rewritten as

w sin 3 [h(P3 + P-) + -2pgh2 (2 cot2^ + 2 cot2^) + pgbh cot2aT]

w sin ß[h(P3 + P,-) + psh(b+h) cot2^ + p h2cot2oi^] (3.5)

In order to simplify the expression for the external work in Eq. (3.2), we

first rewrite the expression for cot ß in Eq. (2.1) and the expression for the
distance a1 in Eq. (3.3)

cot ß cot a_ + Tjr- 2 cot a_ cot a_ (3.6)T 2b T b T

a1 h cot Oy (3.7)

The external work can now be written

ü) sin ß[M + T oot + Vh cot a^] (3.8)

The internal work in Eq. (3.5) shall be equal to the external work in Eq. (3.8)

M + T—cot cpp + Vh cot Oy h(P3+Pç.) + pgh (b+h) cot2^ + pgh2cot2av (3.9)

4. MINIMIZATION

If T and V are fixed, the minimum value of M with respect to the angles aT and

Oy follows from differentiations of Eq. (3.9) with respect to cot aT and cot oiy

SM m bfh
S cot + T ~b~ 2psh(b+h)cot aT

SM t A *\\
S cot a..

0 gives cot aT 2Eh
•

^7 (4-1)

S

V " s

—— + Vh 2p h2 cot a,,cot a_ s

SM „ V 1

S^t^ ° glVSS 001 °V 2h
* ^ (4.2)
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For the case of pure bending (T V 0), pure torsion (M V 0) and pure
shear (M T 0), Eg. (3.9) with Eqs. (4.1) and (4.2) gives

/P +P /P +p

"fût ps ; vo 2h^h^s
Using Eqs. (4.1) to (4.3), Eq. (3.9) can now be rewritten as

JO/Mq + (T/Tq)2 + (V/VQ)
2

1 (4.4)

This is the same solution as has earlier been obtained with a static approach

[4], [6], [10]. Hence ther is an identity between the kinematic model presented
here and earlier presented static methods.

If the three inclinations a2, and ctg are retained as independent variables in
the work expressions, Eq. (3.9) can be written in the following way.

M + T(^oot a2 + cot + ^cot ag) + V^(cot a2 - cot ctg)

12 2 2
h(P2+P^) + 2Psh (cot a2+cot otg) + Psbh cot (4.5)

A minimization of M with respect to the angles a2, and ctg will then give

cot a2 + Ih^ cot + cot
Ps

COt a4 Ibh *
pT COt aT
^s

cot a6 (3Fh " cot «I - cot

(4.6)

Hence, the shear flow from torsion and shear are acting in the same direction
in side 2, and in opposite directions in side 4. This is in agreement with the

assumption in Eq. (3.4).

5. DISCUSSION

The inter-action equation presented, Eq. (4.4), is deduced for point H in Fig.

2c. As can be seen from the moment diagram in Fig. 2d, the bending moment is
higher in point G and in every point to the right of point H in the figure. The

failure mechanism presented for point H is for this reason not stable [3].
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A failure mechanism will start to develop in the area with the highest loads,
that is, in the right end of the beam element in Fig.2. However, in the right
end of the beam a support or a concentrated load may be situated. This will
influence and change the failure mechanism. High concrete stresses will occur and

they may cause the failure. For this reason the failure model will be more

complicated in the vicinity of a support or a concentrated load.

lb be correct according to the theory of plasticity, the effect of warping should
be considered [3]. However, Paul Lüchinger has shown that for a rectangular beam,

as is studied here, the effect of warping may be neglected [10]. If the warping
is considered, it will at worst give a slightly higher load-carrying capacity.

Although the presented kinematic model is not stable for mispan cross-sections,
it does give a rather good prediction of the type of cracks and deformations that
has been observed in tests see Fig. 3 [7], [8]. The model also gives an identical
load-carrying capacity as earlier presented static methods [4], [6], [10]. For
these reasons, the writer considers the presented kinematic model to be a step in
the direction of a better understanding of the interaction between torsion, bending

and shear. To be able to give a complété solution to the problem, the effects
of supports and of loading conditions must be studied. Here the concrete
compression strength must be entered as an essential parameter.

D

D

Fig. 3 Crack pattern and failure mechanism for a beam loaded in combined torsion,
bending and shear. (Beam 1-1A in [4] arid [7]). The beam is loaded in mid-span
with an eccentric point-load acting downwards. The numerals along the cracks
refer to the applied load when this part of the crack became visible (in Mp

MN/100). In the left part of the beam two failure cracks ABC and FED are
indicated as well as a rotation hinge AD, compare with Fig. 2. (The beam is
rectangular with b x h x I 100 x 200 x 3300 mm. The stirrup capacity is ps
0.236 MN/m. The relation between the bending moment M, the torsional moment T
and the vertical shear force V in the failure section is M:T:Vh 1:0.5:0.2)
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