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Plastic Solutions for Reinforced Concrete Beams in Shear
Solutions plastiques pour des poutres en béton armé soumises a un effort tranchant

Plastizitatstheoretische Losungen fur sch'ubbeanspruchte Stahlbetonbalken

J.F. JENSEN

Civil Engineer, M,Sci.Eng.
Technical University of Denmark
Lyngby, Denmark

SUMMARY

The paper treats reinforced concrete beams in shear by means of the theory of plasticity. Disregarding
the tensile strength of the concrete, exact solutions are found for some common cases of beams and
loading, and comparison is made with test results. Furthermore, an upper-bound analysis is carried out
to investigate the influence of the tensile strength of the concrete in beams without shear reinforce-
ment.

RESUME

La théorie'de la plasticité est appliguée pour I'analyse des poutres en béton armé soumises & un effort
tranchant. La résistance a la traction du béton étant supposée négligeable, quelgues solutions complétes
sont établies et des comparaisons avec des résultats expérimentaux sont faites. L'influence de [a résis-
tance 3 la traction du béton sur la charge ultime de poutres sans armature de cisaillement est examinée
par la méthade cinématique,

ZUSAMMENFASSUNG

Durch Querkraft beanspruchte Stahlbetonbalken werden mit der Plastizitdtstheorie behandelt. Unter
der Annahme einer verschwindenden Betonzugfestigkeit werden vollstandige Losungen fiir einige
ibliche Falle angegeben, und Vergleiche mit Versuchsergebnissen werden durchgefihrt, Der Einfluss
der Betonzugfestigkeit auf die Traglast von Balken ohne Schubbewehrung wird mit der kinematischen
Methode untersucht.
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1. INTRODUCTION

This paper presents briefly a number of plastic sclutions for determination of the
shear strength of reinforced concrete beams. For the detailed examination, the
reader is referred to [4].

2. BASIC ASSUMPTIONS

The solutions presented are based on the following assumptions:

— The concrete is a rigid, perfectly plastic material with Coulombs modified fail-
ure hypothesis as its yield criterion. The angle of friction is ¢ , the uniaxi-
al compression strength is f* , and the tensile strength f£* = pf*. The defor-

; C ; e t C
mations are governed by the nérmality condition.

— The reinforging steel is rigid, perfectly plastic, and can only resist forces in
its longitudinal direction. The magnitude of the yield stress is the same for
tension as for compression.

- The stress field in the beam is plane.

3. SOME EXACT SOLUTIONS
In the solutions in this section it is assumed that the concrete has no tensile
strength, i.e., that f: = 0 . Regarding the consequences of this assumption, see

section 4.

3.1 Stringer beam with shear reinforcement — concentrated load.

Plastic solutions for this type of beam and load, see fig. 1, have been known for
some years,[1] and [2] . However, none of these works give coinciding upper-bound
and lower-bound solutions for beams with very little shear reinforcement, which is
a somewhat unsatisfactory state of affairs. It will be shown here how the desired
coincidence can be cobtained by quite a simple alteration of the stress distribu-
tion on which lower-bound solutions known sgo far are based.
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Fig. 1. Beam under consideration, showing failure mechanism.

In the following, the compression zone and the tensile reinforcement are idealized
as stringers, and these are at the same time assumed to be sufficiently strong to
resist the stringer forces occurring.

Furthermore, the stirrups, which are all inclined at the angle o with the beam
axis, are assumed to be placed so closely together that the stirrup forces can be
substituted by a uniformly distributed equivalent stirrup stress.

Iet us now consider the part of the beam located between the loading plate and the
support, with the distribution of the concrete stresses in the beam web shown in
fig. 2. Here, the best lower-bound is cbtained by optimizing the angle 6 , putting
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Fig. 2. Stress field in concrete with Fig. 3. Stress field in concrete with
low degree of reinforcement. high degree of reinforcement.

GII = f¥ and assuming yielding of the shear reinforcement. The solution found in
tﬁis wa§ is valid as long as ¢ together with the equivalent stirrup stress ful-
fil the boundary conditions along the stringers without exeeding the uniaxial com-
pression strength of the concrete, ﬁ: . With the stress distribution applied,

this is possible as long as

2yt
i a2 I/ a9 bcf*
2 sin‘a )/l +(h) c

Here, we have introduced the mechanical degree of shear reinforcement, VP . A, de-
notes the stirrup area crossing the concrete area b e+c¢, ¢ is the spacing be-
tween the stirrups measured at right angles to these, and finally £ is the
yield stress of the stirrup reinforcement. ¥e

ag_a A_f
='/1+(T'f) h y = —E¥S (3.1)

In case of larger degrees of shear reinforcement than given by (3.1), the stress
distribution from fig. 2 must be replaced by that shown in fig. 3. Here, we put
ob = f* , and for a given equivalent stirrup stress, the angle 6 1is determined
such that the boundary conditions slong the stringers is fulfilled in all =zones
shown. The equivalent stirrup stress is then optimized,leading to yielding of the
shear reinforcement as long as
1+cosa
< " = .

L Tl o (3-2)
while the best lower-bound is obtained without yielding of the shear reinforcement,
when ¢ 2 " .

The complete result of the lower-bound solution can be written as follows:

I v w I |/ a2 _ 2 in2 o (& < gt
f; = B-Fl—f—;- % ( 1+(h) 5 )+ ¥sin a(h +cota) , P 29 (3.3)
T
= = V v sin? a(l - ¢ sin? @)+ Y sina cos o , PSP S g (3.4)
c
T ;’ o L <
?E_’F = 5 cot 5‘ e Y =9 (3.5)
c

The solution determined by means of (3.3) - (3.5) is exact, because an upper-bound

solution derived on the basis of the failure mechanism from fig. 1 gives the same
carrying capacity when the angle B 1is optimized.

Fig. 4 shows the results of 84 shear tests on simple T-beams with vertical stir-
rups, carried out in the years 1967 to 1975 at the Structural Research Laboratory
of the Technical University of Denmark, compared with the theory. In the diagram,
an empirical expression from [1] is used for determining the apparent strength-of
the concrete in the beam web on the basis of a given cylinder compression strength,
valid for stringer beams with shear reinforcement:
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fc (0.8 200) fc (3.6)

In (3.6), both f: and fc are measured in MPa, fc denoting the cylinder strength.
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3.2 Rectangular beam without shear reinforcement - uniformly distributed load.

We now consider a simply supported beam with the free span 2a, see fig. 5. It is
assumed that the force, T, in the tensile reinforcement can be transmitted to

the concrete by the part of the beam lying behind the support, as shown, in prin-
ciple, in the figure.
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Fig. 5. Beam under consideration showing Fig. 6. Mohr's circles for the stress
adopted division of concrete into fields in the zones from fig. 5.
zones with homogeneous stress fields.

The concrete is divided into zones with homogeneous stress fields, as shown in fig.
5. The stress fields are illustrated by means of the Mohr's circles in fig. 6. As
seen, the length £ 1is determined such that hydrostatic pressure is obtained in
zone VI. No tensile stresses occur in any part of the concrete, and in the best
solution, the largest compression stress, o, is obtained simultaneously in zones

III, IV and VI. We put Ob = fz + giving the magnitude of vy, and the solution
then becomes:

a
& 2<I>(1-<I>)"1;l" . -
£* - a.n r -
(H) +20(1 -9)

By T
bht¥*
C

= 2 <y (3.7)

)
n-n-!f*1
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a,2
c 2(h) +1

where we have introduced the mechanical degree of longitudinal reinforcement, ¢ .
is the cross-sectional area of the reinforcement, and £ is the yield
s%ress of the same. In opposition to (3.7), no yielding of tXe reinforcement oc-

cur corresponding to (3.8).

The solution given by (3.7) and (3.8) is exact, since an upper-bound solution
based on the failure mechanism from fig. 7 leads to the same carrying capacity.
The points A and B act as hinges, and part I rotates an angle & about

the point A . Part II's displacement is a pure translation.

Fig. 8 shows a comparison of the results obtained in theory and those obtained
from tests for a narrow interval of degrees of reinforcement. A detailed analysis
of the test results versus theory has not yet been performed. Therefore, since the
apparent concrete strength will presumably vary in relation to the cylinder com-
pression strength, analogously to (3.6), we have chosen only to consider a num-
ber of tests with concrete strengths that do not vary too much in relation to
each other. We have then tentatively put f: = 0.65 fc.
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Fig. 7. Failure mechanism used. Fig. 8. Comparison with tests from

the literature.

With regard to the type of load and beam considered here, it is also interesting
to compare the carrying capcitites measured in tests reported in the literature

with the flexural strength determined in accordance with the CEB-~FIP Model Code.
In a comparison of this nature reported in [1] and [3] for a total of 115 tests,
the average value of the ratio between the two carrying capacities is found to be
1.00, with a coefficient of variation of 15.2%. Thus, apart from ensuring a duc-
tile failure, only little can generally be gained by reinforcing with stirrups.

3.3 Rectangular beam without shear reinforcement - combined central, normal force
and concentrated load.

For derivation of the lower-bound solution, use is made of the stress distribution
shown in fig. 9. Forces in the tensile reinforcement are assumed to be transmitted
to the concrete behind the support, as in case of the beam in section 3.2Z.

The corresponding upper-bound is derived on the basis of a failure mechanism ana-
logous to that shown in fig. 7., see fig. 10. The best solution is found by opti-
mizing x, y, and ¥y -



76 Il — REINFORCED CONCRETE BEAMS IN SHEAR

Fig. 9. Stress distribution for use in Fig. 10. Sketch showing failure
) lower-bound solution. mechanism used.

Both the lower-bound and the upper-bound sclution leads to the carrying capacities:

RS — - P T i@ o <q < i

fz bhf: %({/2 m(l-m1-2®)+43(1 ¢)+(h) (h) , 02 5 1-2¢ (3.9)
T _ 2 a.p a

E"_j' = B(1-m (50 - ) , 120 S <1 (3.10)

where we have introduced the dimensionless parameter, w, by N = tbhf¥, and the
degree of longitudinal reinforcement, ¢, £from (3.7). Only corresponding to (3.9),
yvielding of the reinforcement is obtained.

pLH -
c’ **%n
0.1
&
Iv |
T |
; |
5 I
g2 i e=0
4
v I
—b — ¥ a *
0 $=0.0
0 05 1,0 T
Fig. 11. Alternative failure mechanism Fig. 12. Variation of carrying capa-
for mw=0. city with ¢ and .

Now, compare the failure mechanism from fig. 10 with that from fig. 11. When the
beam is not subjected to a normal force, the mechanism from fig. 11 leads when

o 1s optimized to the same carrying capacity as given by {(3.9) - (3.10) for = = O.
Here o denotes the angle between the vertical and the relative displacement, §,
between zones I and II. In this case, the solution is well known, and comparisons
with tests have previously been performed, cf. [1] and [3].

For m # 0, the solution has not yet been verified by tests, so in fig. 12 only
the theoretical relationship between the carrying capacity and a couplg of the
main parametres is shown. The variation with the relative shear span, T is ana-
logous to that shown in fig. 14 for p = 0.
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4. UPPER-BOUND ANALYSIS OF THE EFFECT OF TENSILE STRENGTH

In beams provided with shear reinfrocement, the concrete in the beam web will be
completely cracked all the way through before failure occurs, so the concrete
cannot be assumed to have any tensile strength in a determination of the carrying
capacity. Therefore, in this section only beams without shear reinforcement will
be considered, since the cracking here will be less pronounced, which means that
the concrete can reasonably be assumed to have a certain, although minimum, ten-
sile strength.

4.1 Rectangular beam without shear reinforcement - concentrated load.

The failure mechanism shown in fig. 13 is chosen as the basis for the upper-bound
solution. At failure, the middle part of the beam undergoes the relative displace-
ment, § , vertically downwards in relation to the parts of the beam over the sup-
ports, since we will only consider beams with such strong longitudinal reinforce-
ment that yielding will not occur in this. The failure line adopted is straight in
all cases, which is also shown by variational analysis to be the optimum form. The
best upper-bound solution is obtained by optimizing the angle 8.

The solution arrived at is illustrated in fig. 14, where it should be noted that
the hereby calculated shear capacity becomes independent of the shear span when

this exeeds a certain limit, even though the concrete is only assumed to have a

rather low tensile strength. This indicates, as is well known, that if the shear
span is sufficiently long, then another failure mechanism, the flexural failure,
must be more dangerous than the shear failure.
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Fig. 13. Failure mechanism. Fig. 14. Variation of shear capacity
o with p and 2= . £%f = pg* .
h t c

If this had been a stringer beam with sufficiently strong stringers, the solutiomn
illustrated in fig. 14 would be exact, since in this case a corresponding lower-
bound sclution is found in [(4].

4.2 Rectangular beam without shear reinforcement - uniformly distributed load.

Generalizing the failure mechanism from fig. 7 to that shown in fig. 15 for abeam
with such strong longitudinal reinforcement that yielding of this will not occur,
we find by optimation that y = %h and x, = 0. The best value for x, and 4
for use in the following has been calculated numerically. The results a¥e shown in
fig. 16 and 17.
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Fig. 15. Failure mechanism.

p = 000:

|

Fig. 17. Example of geometry of failure pattern at

Fig. 16. Variation of carrying capa-
city with p and a.

p=0.02:

h

22T

Note from fig. 17 how the compression failures in the top of the beam move out to-
wards the supports, when the tensile strength is taken intc account.
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