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Collapse Load Analysis of Engineering Structures by Using New Discrete Element Models
Calcul a la ruine de structures, a I'aide de modéles nouveaux d’éléments discrets

Berechnung der Traglast von Baukonstruktionen mit neuen diskreten Elementen

TADAHIKO KAWAI

Professor

Institute of Industrial Science, University of Tokyo
Tokyo, Japan

SUMMARY

Combining advantages of the concept of limit analysis and standard l0oad incrementaf procedure in
existing finite element method, a method of collapse load analysis is introduced in this paper. [t
should be mentioned that this method is not a method of rigid plastic analysis, but effects of elasticity,
finite deformation or instability can be taken into account.

Motivation of development of this method and its theoretical basis will be explained first and justifi-
cation of the present method is itlustrated by several numerical examples including collapse load
analysis of concrete slabs.

RESUME

Le rapport présente une méthode de calcul a la ruine combinant les avantages de la théorie des charges
limites et du procédé de i'augmentation progressive des charges, tels qu‘ils existent dans des méthodes
actuelles par éléments finis. Cette méthode n’est pas une méthode de calcul rigide-plastique, car elle
tient compte des effets de I'élasticité, de déformations limitées et d'instabilité. Les raisons du développe-
ment de cette méthode et ses bases théorigues sont présentées. Plusieurs exemples numériques, parmi
lesquels fe calcul & la ruine de dalles en béton armé, illustrent et prouvent la valeur de la méthode
développée ici.

ZUSAMMENFASSUNG

Eine Methode zur Traglastberechnung wird vorgestellt, welche Vorteile der Traglastverfahren einerseits
und der bei der Anwendung der Methode der finiten Elemente Ublichen Verfahren der schrittweisen
Laststeigerung andererseits kombiniert. Es handelt sich nicht um eine starr-plastische Berechnungs-
methode, denn das elastische Verfahren, endliche Verformungen oder Instabilitaten konnen ebenfalls
berlcksichtigt werden. Die Entwicklung der Methode wird begriindet, und ihre theoretischen Grund-
lagen werden dargestellt. Anhand mehrerer numerischer Beispiele, unter anderem zur Berechnung der
Traglast von Stahlbetonplatten, wird die Anwendung der Methode erlautert.
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ABSTRACT

Combining advantages of the concept of 1imit analysis and standard load
incremental procedure in existing finite element method, a method of collapse
load analysis is introduced in this paper. It should be mentioned that this
method is not a method of rigid plastic analysis, but effects of elasticity,
finite deformation or instability can be takn into account.

Motivation of development of this method and its theoretical basis will be
explained first and justification of the present method is illustrated by
several numerical examples including collapse load analysis of concrete slabs.

1. INTRODUCTION

1.1 Plastic Analysis and its Limitation

Consider any structure or solid subjected to external load (statical or
dynamical). As long as the external load is small, it may deform elastically
and the induced stresses and strains are so small that their distribution can
be determined by well established theory of elasticity.

With the increase of external loads, however, strain distribution may reach the
stage where no longer it is small and finite strain distribution will set up
Tocally or partially in the deformed body under consideration, and then the
structure may be subjected to large deformation or may buckle in case of
ductile materials.

Upon further increase af the load, deformed structures may start to yield and
develop so called plastic hinges, hinge lines {(or slip lines) or slip surfaces,
and plastic zone will grow and spread out and finally cracks may initiate from
some overstressed region.

At the final stage of loading or the ultimate load, a certain Tink mechanism
which may usually consist of plastic hinges or plastic hinge lines or slip
surfaces will be formed in the structure.

Under such condition the structure may loose stability and it will start to
move freely just T1ike a linked rigid bodies and it will be collapsed.
According to the theory of plasticity, it can be proved that a collapse load
solution can be uniquely determined if the solution satisfies the following
three conditions:

(i) equiTibrium condition
(ii) plasticity condition
(i1i) mechanism condition

In general it is extremely difficult to obtain such a solution analytically
and two different procedure of obtaining approximate solutions have been
proposed by basing on the well-known upper bound and Tower bound theorems 1in
the theory of 1imit analysis which were originaliy proposed by Prager, Drucker
and many others. These approximate solution procedures have provided a very
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powerful tool for collapse 1oad analysis of plane frames, simple plate and
shell structures and resulted in development of plastic analysis and design
which are now accepted in routine structural design of those engineering
structures mentioned.

Practical application of plastic analysis, however, has been Timited to
collapse load analysis of plane frames and furthermore influences of stability,
crack initiation can not be taken into account. Especially dynamic collapse
Toad analysis is still under state of arts and because of this reason, its
application to structural dynamics has been quite 1imited.

1.2 Finite Element Method and Current Status of Development

Advent of the finite element method has changed this situation completely.
By using the standard load incremental procedure it is possible to trace step
by step the equilibrium state of structures and elasto-plastic stress
distribution corresponding to the load condition at the time prescribed and
sequence of formation of collapse mechanism.
At the present moment it is not too difficult in principle to obtain the
collapse load solution of any complex structure under a certain lToading
condition by using standard computer programs. Very serious drawback of the
finite element method, however, is computing time and cost, especially in
nonlinear analysis.
In order to solve such a difficult problems active work has been done all over
the world. Actual problems, however, are still far beyond control of any
existing method. '

1.3 Concept of the Rigid Body-Spring Element

The present author believed that development of a new discrete models
might be only a possible way to solve this problem. He tried to find a new
physical model rather than mathematical in which essential feature of deformable
bodies is retained without introducing highly complex mathematical manipulation.
In general when structures or solids reach their ultimate state of loading, they
may be yielded, collapsed and crushed into pieces. At the limiting state each
part or piece of the structures may move like rigid bodies. Based on such
experimental evidences, the following Rigid Body- Spring model has been
conceived. Consider the bending problem of a beam under lateral loads as.shown
in Fig. 1.
Within elastic range, deformation is distributed throughout the beam, but once
plastic deformation starts either at the point of load application or at the
beam ends, strain energy will be absorbed in the narrow portion of a beam
where plastic deformation takes place and at the ultimate stage of loading a
number of the so-called plastic hinges will be formed so that the beam structure
will collapse into a 1ink mechanism. This mechanism consists of rigid bars and
plastic hinges. In case of bending problems of concrete slabs as shown in Fig.
1, similar experimental evidence will be observed. That is, within the range
of elastic bending; deformation is distributed over the whole plate area,
however, at the final stage of loading the plate will collapse under a certain
mechanism which consists of rigid plate segments, and plastic hinge 1ines
connecting those plate segments.
The so-called siip line theory is also well known in also plane stress as well
as plane strain problems in the theory of plasticity (See slso Fig. 1).
According to this theory, it is assumed that two dimensional solids will move
under a certain mechanism which consists of two dimensional rigid segments and
slip lines connecting those segments, and along which relative sliding of two
neighboring segments will occur. In the following section theoretical basis of
these new models will be described.
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FRUM MATHEMATICAL MODEL TO PHYSICAL MODEL
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2. THEORETICAL BASIS OF RIGID BODY-SPRING MODELS
2.1 Physical Basis of Rigid Body-Spring Models

Consider a set of three dimensional rigid
bodies of arbitary shape as shown in Fig. 2.
They are assumed to be in equilibrium with
external loads, and reaction forces are produced
by the spring system which is distributed over
the contact surface of two adjacent bodies.
For further development of new element models,
it will be assumed that the contact area is known
and fixed*. 7

|

Fig. 2 X

* It should be mentioned here that in actual contact problem, the contact
surface are not known a priori, and therefore it can be determined only in
iterative way.
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Taking such fwo rigid bodies under contact, infinitesimal deformation of the
spring system is considered. (Fig. 3). Displacement « of an arbitrary point
in a rigid body can be given by the following vectorial equation:

UW=Us+O0x (- L) _ — (1)

where Ugis displacement vector of the centroid, @ is the infinitesimal
rotation vector and ( ¥ - T ). is a position vector of arbitrary point with
respect to the centroid before deformation.

Us = ( ug s Vg » Wy ) €= (9, ¢, %) (2)
Denoting the displacement vectors of
arbitrary point P(x,y,z) in body (I) and
(IT) by w’, u’, respectively, they are -
given by the following equations: :
W=+ 0x(r-r)
W= U+ Ox (-1 Fig. 3

More precisely,

c=r"+u

u = u; + (7- = Zl)‘bl = (y - .yl)X.1 X 0 X (+@—pd® )

v=uc+0 X (¢ -l
vl = v, # (X - Xl)Xl - (Z & 21)81 > =ug+0 X(r-re) (4'3)
w'=wr ot (y - y1)er - (X - x1)éy ) §: contact surface

9 i o' impli

u" = u, + (Z - Zz)¢2 = (.y - .yZ)XZ i‘::ze:i;:eplgeéoie s

deformation
vy o= v, + (X - XZ)XZ - (Z - Zz)ez : (4_b)
w' = wy + (y - ¥2)8, - (x - X2 )2

Therefore denoting the point P after displacement in bodies (I) and (II) by P’
and P" respectively, the relative displacement vector of the point P can be
defined as follows:

PP = - W (5)
Denoting the unit normal drawn outward to the contact surface at the point P by
N, (See Fig. 4) the normal displacement 84 to the surface S can be given as
follows:

6d - ( lpri,n)= '{(uil _ ul) + ITI(V"*V') F n(W"-WI) (G_a)

where n=(1,m,n) (6-b)

Similarly the displacement component &
in the tangential plane to the surface Bl delopmetiint)
can be given by the following equation:

tangential-plane

contact surface

Cae . _ H __
p -
< e - — N
Flg- 4 ('_‘— =~} (before deformation)
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= fnx PIPHIZ
. {m(w" -w') - n(v" - VI)}Z +'{n(un -u') - 1(w" - w!)]z (7)
+{-|(Vu_v|)_m(uu_ul)}2 ’
Basing on the above preliminaries, strain energy due to the relative displace-

ments (84,8s) of the spring system distributed over the contact surface S can be
given by the following equation:

5 JJ( #a &+ #:87) as (8)

Substituting eqs.(6) and (7) into eq.(8) the following equation can be easily
obtained:

V==—%‘1L[ és(5f+ %Q-&f ) + kd' £ )( 225:+ m? 5: + nzg;
+2 Am 5;.5; +2mn5}& +2n13}3} )] ds
- —;—ﬂ 0D & ds (9-a)
where
87 = L8x, 8y, 8z
Sy = u" - u', @" vt - v, 5;= w' - w' (9-b)
£k A Ry ) dn  ha- )
(D)= | G- to)tm_ ' ehociom) | (bt ~fma (10)
(#y —%s) An l(ﬁd—fes) mn %,,'n’#e (1-n2)

D1sp1acement vector 6 can be also expressed by the following matrix equation:

¢ = B d (11)
where . i
110 0: 0 ERGE 1 1000 '(1 Z) (N’)
| 516 i o o 1o o sl 09
0 0 -1 “”""”")T 0 1:o | 0 T_I ;(1 7:);—_(;-7&): ;

T
d = Lulsvlswlaelscbls)(l; u29V29w25925¢2,X2J (]3)

Substituting eq.(11) into eq.(9-a), the following expression will be finally
obtained:

— d"kd (14-a)
where
k-] 8"DBds (18-b)
s

where S is area of the contact boundary surface on two adjacent elements.
The complete form of the stiffness matrix [K] is already obtained in the
author's previous papers.
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Applying Castigliano's theorem to eq.(14-a), the following stiffness equation
can be derived:
rR=2f-kd (15-a)

where |< is a (12 x 12) symmetric matrix given by the following equation:
k =g f?;d- ] (15-b)
and R is nodal reaction vector defined by the following equation:
R™ = | X1,Y1,Z1501,M15N15 X2,Y2,Z5,05,M5,N5 (15-c)

Spring constants %4 and £ can be determined systematically by using the
finite difference expression for strain components as follows:

On the contact surface S shown in Fig. 3, normal and tangential stresses o, = Tps
satisfy the following equations:

o, = E'ex , Tus = G Ypg .16)

Strain components e, and v, are approximated by the following finite defference
expressions

€a= Su/h 5 Y= Su/h ' (17)

where h=nh; + h is the projection of the vector G,G, on n .
On the other hand, the following relations are obtained from the definition of
spring constants

On =ﬁ36\f 3 Tpe = ﬁsYn, (18)
Therefore comparing eqs. (16) and (18), the following formulae can be derived
#4= E'/h , Rs= G/h (19)

The stiffness equation defined by eq.{15) must be obtained for each contact
surface if a given rigid body (I) has a number contact surfaces with other
rigid bodies including the body (II}, and for equilibrium of a given total
system of rigid bodies, they should be summed up and the final form of the
stiffness equation can be given by the following standard form of the finite
element method.

KU =F . (20)

where —
K=xk, u=zd, F=:% (21)

F is a given external load vector.

However, care must be exercised in constructon of eq.(20), because in this
method the centroid of each rigid body is selected as the node and therefore
superposition of stiffness matrices are somewhat different from that of the
standard finite element method.

In case where the body (I) is supported by other bodies through its whole
boundary surface S, i.e. .

this model is idealization of three dimensional elastic continuum as shown in
Fig. 5 in which the shape of each element can be chosen arbitrary.

* Y= (1-v)E
(1+v) (1-2v)
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The method out11ned so far w111 be called
hereafter as the Rigid Bodies-Spring Method
(RBSM} or Stiffness Lumping Method (SLM).
Using this method stress analysis of '
deformable bodies under contact will be
possible in iterative way, typical '
application of which is analysis of the
rockfill dam. _

‘Fig. b

. . . (a) general- form .(b) standard form
2.2 Variational Basis of RBSM

RBSM model is originally proposed by basing on physical consideration and
therefore it is desperately needed to establish the mathematical basis for
those elements although a series of simple bending and vibration analyses were
conducted. In the following section the mathematical basis of the present
elements will be briefely described. For the sake of simplicity, consider a
set of triangular elements in the plane stress problem as shown in Fig. 6.

Each triangular element is assumed that
they dre conected by a set of boundary
elements AB, BC, CA.

Infinitesimal displacement field for each

element is also given by the following
equation:
P ' :
U 1 ;O l‘(.y‘.VGr) _95
e T i e R .
[ G
v (0 11 (x-xa) N B
( X ¢ > -
x-xo | 0 1 o {y-y I .
+ _____T____'_:-zv____ E; (22) FIg.6
[0 Tyeye D (xexg) Yy E
Fig. 6 A Set of Triangular Plate elements for the pla
Or in compact form: stress groblem .
u (X) =AX)d+B (X)€ (23)
where T
w (X} = LU(x,y), V(x,y)d
A (X) =[~-‘-- L0 tlye) ]
o ' 1 (x-x }
1
B (X) = [-X_"Ee R a7
0 ' yye o (x-xg)
and

dT*_' LUsg » Va » X | £'= LEx , E,:Yz].’ (24)

Egs. (22) or (23) implies that the Tinear displacement field consists of two
independent parameters, i.e. the rigid body movement of the centroid d and
uniform strain distribution £ in the said element.
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Since nodal parameters of each element can be assumed independently and
continuity condition of displacements along the interface boundary should be
imposed by means of Lagrangian multiplier in the variational formulation of
total potential energy.

There are several methods of formulation which are called hybrid dispiacement
method and they are discussed clearly in the texts of Professor Washizu,
Zienkiewicz, Gallagher and many other's [2],[4],[5].

Here an approach originally proposed by Ping Tong [4] is adopted.

Consider the functional T™,4 given by the following equation:

. ! T -7 e
Ten =§(‘[{Sn?£ DE ds _I[Snb B dS—jCa. TUds (25)
- fc,.( ne)T(U-uUy)ds
z implies summation of the total n elements.

The first term of the right hand side of eq.(25)is the strain energy to be
stored in the element, the second and the third represent potential energy of
external body force b and boundary load T . The last term is the additional
potential to be imposed on the displacement field to secure their continuity
along the interface boundary lines in which 6 is the stress matrix and it can
be expressed by

6 = D (26)

where D is the stress-strain matrix, and u, represents the displacement
vector of the boundary elements.

Therefore the functional Ten is a function of d , £ of all elements as well
as d, , g,of all boundary elements. As already mentioned before nodal
parameters d and g of each element is assumed independently, variations are

taken first with respect to d and g of a typical element and the following
matrix equations can be derived:

(i) with respect to variation &4
Es £ + Q4 =0 (27)
where
E, - Jc“A (X)) nD ds
- T = j r = (28)
Q4 'H,A ()7 Bds + J A (07 T as
(ii) with respect to variation §¢
E,d -SDE +Q,- 6g=0 (29)
where
S, =JIs,.dS s 8 =u[;,,B (X)Tn ds , S =15, -25, )
o _ T - T =
¢, =[[ B b as+[A( T as | (30)
- T T = T
6 = [OnTA(X) ds, [ Dn'B(X) dSJ=LE, SDJ
¢ = Lde s £

/

Combining together eqs. (27) and (29), the following matrix equations can be
derived:

0 | E. d 'QJ
RLESLIN . W (31)

T

E; | -SD 3 G 30,
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Let's define the inverse matrix of the left hand side of eq.(31) by the
following equation:
\ f

0 E, ?Irdél §d£

st R S-mdE (32)
! . =S D iéd ’ §g£
Then nodal parameters { d ,£ ) can be expressed as follows: ,
d=-24Qy ~ Fsc 0 + 2,67 ¢ g
E= ’§s¢éd - Pee Q, "fee GT?

Using eq. (33), element nodal parmenters { d, £ ) can be eliminated from the
functional Ty given by eq.(25).
After some calculations, T, can be given in the following form:

Ty ( s €)= -2 (5 q kq- T g+C, )

Needless to say, minimization of TBH(Q) with respect to qwill yield the
standard equilibrium equation of a given structure in the finite element method.
Summarizing the method proposed, unknown stresses or strains in the elements can
be obtained by using the principle of the minimum potential energy under a given
boundary displacement d, on the element interfaces.

More precisely the element stiffness matrix can be expressed in terms of
boundary displacements d, and strain components g, as shown in Fig. 7.

It may be the most reasonable approach to
derive a new discrete model in which the
boundary interface can be regarded as a
slip line when the corresponding boundary
element is plastically yielded.

There are several variations of this
element model, some of which are given by
Fig. 8.

As a matter of fact, the following
conclusions can be drawn from careful
comparative study of the RBSM and Model II:

(E"’ EBC,'Yg,
i SN il

Fig. 7 A New Discrete Element with Boundary
Displacements d, and Strain Components e,

Fig. 8 Two Possible Variations of a New Discrete Element

Model I Model 11

By two types of spring system whose intensities k, and k. , material
properties of isotropic solids can be completely represented.

(i1) Convergency of elastic solutions is often considerably influenced by the
mesh division. This is a serious disadvantage of the original rigid
body-spring element.

Poor convergency of this element may_be attributed to lacking of some
cross coupiing terms among elements(?), and(:)in the stiffness matrix
(See Fig. 8).

(iii) It can be expected that the Model II of Fig. 8 might give appropriate

base for convergency study of the RBSM.
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2.3 Stiffness Matrices of Beam and Plate Elements

A series of element matrices are now under development for practical
application of the present method. In any element total number of degrees
of freedom never exceeds 6 because it is assumed to be rigid.

In case of a beam element, deformation consists of axial, bending (about two
principal axes) and torsional deformation, and in bending probiem effect of
shear deformation can be easily taken inte account.

In case of plate and shell problems, membrane stiffness as well as bending
stiffness can be defined by this (6 x 6) stiffness matrix.

Consideration of the shear deformation can be also made.

In what follows stiffness matrices of a straight beam element of constant cross
section and a flat triangular plate element will be given.

%)
GENERAL STIFFNESS MATRIX 1a[ k;; 1 OF THREE DIMENSIONMAL RIGID BODIES~SPRING ELEMENT

w Vi w; & $ xX. uz v2 wz & @ X,
X K o] 0 G $K, | =K, -K: 0 (¢] [¢] K, K.
Y. Ki 4] —+K (0] K» 0 K 0 -$X., 0] -Ks x
Z‘ Ka K —Ka o] 0 0 —K: —K- Ke 0 n= {0.0.1) : unit normal drawn sutwaid
_( to the right and plane of
L Ketfls | —Kis | —FKa 0 K. | —Kr jretbx]| Ku | $K, " the elemem @
—  S.Y.M -
M, kb, | K| —FK) 0 Ke Kis |-katix.| #K. Element O Element @
il TS
Bt Wte | Ko | —~Ka] O K, —FK.|-Kka i YN 'I*'}é——‘.‘._»——‘—-}———“' — :
X Ki=hes.Ka=fds K | o | o] o |-k, K IS x W S
v, TN . ™~
i Ke=foudsKo=feards Ky o £K., 0 Ks £ > 4 N
Z: Ke= fkads, Kr =/kads Ka K: | —Ks 0
"L_’l Ks=Jfk, x*ds.Kie= fkay'ds Ketf | —Ku | B N 2
Ms Kis=fkax’ds, Ko = fkay'ds, Ko =fkaxyds KatHK, FK. M
N KvtKn
Stiffness matrix of a new plate bending element (XA:D‘;N )
W, Wi W, Wi
Ap
0 10 " (yieye + xizxe) i
»A*"(ﬁﬁ'x}:)w‘ét'(yiﬁ‘fn) A‘(y-amn‘*mxm) An(y syt il A*fynymﬁxuxu)
B B 2 A B
2z , += ! i) R
— 2 (wazyas t xizan) — (ynym + xnx e gl s
2 %ﬁ‘(ﬁo‘*x{o) ﬁ(ynyu + 230 x01) Sl
~ (yoys+ x023)
—1 p:
B 4 Bu ©
P a%(yn g 2" ( yooges +s0xes)
(yho + x3e =2 yaryne + 201230} —~ { yorgor + xoi zez)
SYM.
z LY
% o (yhe +2de)
Y
" N L2 I ¥z _[ vz ] N
24y “Tulzat ru) + palpa + yu)
o | koya + bt 24~ Tulhn *yu) - yulzat 2 A(3)
240 = zalyntpn) t yulzat zu)
V|- = h)zege  (keze'+hips U=~ Talzat Ta)  gulpnt yu) D(6)
- o n't & de ]
M| ba b=k, 0 B (""::‘,'h L e 1‘&,1.' SYM.
—_ il . .
_ B(4)
X |- (hayu+ beza) [ (s~ ba) zmaym ("‘vf:‘.' zadn) | ¥ Vs + bzl
Yol (ke ) zuyn — (kgza’+ky yu') {he zadut b yudn Chy —k)zian  |heze'+ Age’
C(5)
—( 4 Ridudnt b dnds | - (b o't ky 4!
Mol bape du=hizuta |~ Remngm L (dndat b | hern iy |hemadnt hgndy | R o O
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3. THEORETICAL BASIS OF NONLINEAR ANALYSIS [7],[8],[9]1,[13]

In general nonlinear structural problems are coupled problems of Targe
deformation, inelasticity and crack, and they may be solved by using the _
incremental procedure. In what follows, essentials of solution procedure of
nonlinear structural problems will be given.

3.1 Geometrical nonlinear problem

In case of finite displacement, assumption of the infinitesimal anguiar
displacement is no Tonger valid and eq.(1) should be replaced by the following
equation:

WUt (T-I)r-r) (35)

T 1is a coordinate transformation matrix of local coordinates attached to the
centroid between hefore and after deformation as follows:

x' 1, ma Ny X
y' = ?g . Tz Qg y (36)
z' Ts  m3 nj z
or
v' =Tvr

and I 1is an unit matrix.
An unit normal n drawn outward at P of the element (I) before deformation
may be subjected to the similar transformation as follows:

n =Thn (37)

where n - ( 1,m,n), n' = ( ]n’ ml’nl )

Consequently components ( 8;, 8s ) of the relative displacement P'P" will be
given by the following equation:

§a = (PP, m') =1(ug -us ) +m'(vg - vz ) +n'(wg - ws )
§2 = (PP" x m)% ={m'(wg - wg ) - n'(vg - vy )}? (38)

+{n'"(ug - ug ) - 1 (wgy -w, ”2 +[1'(vI- vy ) -m'(ug- ul)}

Knowing the strain energy V, and applying the principle of virtual work statical
equilibrium equation can be derived where effect of finite rotation of elements
is considered. From this equation the following standard incremental form of
stiffness equation can be derived after some calculation.

(K+K0+Ke)d*=i:*"l:r (39)

where K, is the initial strain matrix, Ke * the geometrical stiffness matrix,
& * , F* are increments of the displacement and exteral loads respectively, and
Fr is an unbalance force due to manipulation error in previous stage of loading.
Detail of the derivation is given in the previous papers of the author.

3.2 Material Nonlinearity Problems

For simplicity, displacement of a given body is assumed to be infinitesimal,
and therefore the problem will be reduced to integration of the following
stiffness equation based on the well-established incremental procedure.
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Kd*: F*_? (40)

For integration of eq.(40), yield or failure criterion of a given material
should be introduced.

For this purpose the elastic strain energy density of the spring system V, is
considered, and it is given by the following formula.

2 2
Vo= 3 (Ra 814k 82 ) = 5 (v (41)

It can be concluded from eq.(41) that if the maximum strain energy criterion is
adopted, the material may fail if Vo = 042/2E. According to this theory it
will be seen that yielding will occur if

The present method of analysis on the
material nonlinear problem can be

Tps = 0y /v2(1+V), while brittle i e} (e} G i,

failure will initiate if i of dashpots in FBSH

on =/(1+0)(1-2v)5, /(1-v) . feog ‘1;

As alternative failure criteria R —a G

the maximum shearing stress theory v —T_

may be adopted for ductile materials, &5 — e

while the maximum stress theory can be - ok

considered for brittle materials. by i {1}

To avoid unnecessary confusion in " 'f: —

further development, it is assumed & & — (&

that material is ductile and ideal '1“

p1ast‘ic. S'c 5: {E‘ G, (s

Sotution of eq.(40) based on this S _lﬂ o 7

assumption will give generalized ! '

solution of 1imit analysis which is !

well established in framed structures. o : c

A series of such solutions have been SOW ~— (&) {:::]% G (71'Cl7“)

given 1in previous papers of the authors. - i 94 7% (Tu=Cu%)
|

generaiized by replacing the spring T

system connecting rigid elements

by the spring-dashpot system as s} {e}

Shown 'in the Fig. 9 ia‘}: elastic strain {e] plastic strain if"’}: initial strain
Using such rigid bodies-spring- (shsmal, F2i)
dashpot system, static and dynam‘ic {g‘]: stationary creep strain {6:} transient creep strain
analysis of viscoelastic-plastic problem

under thermal 10ad1'ng may be possib]e. Fig. 9 Mechanical Model of Viscoelastic-Plastic Materials

3.3 Consideration of Crack Initiation and Growth in the Present Anaysis

In analysis of the material nonlinear problems described in the last
paragraph yield criterion is applied pointwisely on the contact boundary surface.
Therefore in component calculation of the stiffness matrix for each contact
surface, appropriate scheme of numerical integration should be adopted.

More precisely, for example, k,; of the general 3D stiffness matrix is given by

kin = f[ (ko2 + ks(1-22)} ds

And therefore if the boundary surface is curved or k., , ks depend on stresses
and strain, calculation of ki should be made, for example, by using Gauss'
integration scheme, Using such integration scheme it is possible to pursue
gradual development of plastic hinge lines, slip lines or slip surfaces on the
contact boundary, and the ultimate load can be calculated. In real structures,
however, it is usual to consider that initiation and propagation of crack may
reduce substantially the ultimate load. At the present moment, the criterion
for crack initiation and propagation is not well established and therefore the
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following simple criterion is adopted for the time being.

Crack intiation and propagation may take place when the shearing strain vy
exceeds vy, which may be equivalent to the concept of cop. It is not difficult
to incorporate this criterion with the yield criterion in analysis of material
nonlinear problems. As a matter of fact, crack analysis of two dimensional ‘
notched plates were conducted by the present authors and reasonable results were
obtained. Effect of large scale yielding, however, was not considered in this
analysis and therefore more refined analysis will be planned in near future by
taking into account of such an effect.

4. SOME EXAMPLES OF COLLAPSE LOAD ANALYSIS [6],[10],[11],[13]

To show validity of the present new elements, a series of numerical
anaysis has been conducted and most of the results obtained were reported in the
conference proceedings or engineering journals.
Therefore only some new results will be shown here without explanation.

(a) collapse analysis of square concrete slabs.
(1) (b) two dimensional punch problem
(c) three dimensional elasto-plastic anaysis of a through crack
problem.

(I1) (d) shake down analysis of a simply supported square plate subjected
to variable transverse loads.

(ITI1) (e) collapse analysis of cylindrical shell roofs simply-supported
on four edges and subjected to external radial pressure.

(1Vv) (f) dynamic collapse of automobile front structures.

5. CONCLUSION

Qutline is briefly explained on a new discrete method of analysis which has
been proposed by the present author. This method may be suitable for analysis of
highly nonlinear problems where plasticity, large deformation and crack growth
are coupled. Therefore broad application may be expected in future to analysis
and design of the reinforced concrete structures where punching shear crack
growth, creep etc. are important design prarameters. The followings are
conclusion so far obtained from a series of numerical analysis.

(i) Stiffness of a given body is lumped on the contact sufaces of neighbouring
rigid elements and yielding or failure is assumed to occur only on these
contact surfaces. Consequently the analysis of material nonlinear
probiems becomes much simpler than that of conventional finite element
method.

(i1) Concept of node superposition in the conventional finite element analysis
is completely discarded in the present analysis and siip due to plastic
deformation or frictional force on the contact surface can be easily
represented in this method.

(i1i1) Since the Tower order shape function is employed for element stiffness
formulation, computing time for stiffness calculation will be considera-
bty reduced to compare with the conventional finite element method.

(iv) Variational formularion of the present method is now under way.

[t is expected in near future to give raticnal basis for this discrete
analysis.

(v) Although it can be concluded by a series of test analyses that the present
method may be very powerful for the collapse load analysis, accumlation
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of results of numerical analysis of more realistic structures should be
necessary for verification of the method.
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