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On the Finite Element Method in the Field of Plasticity
Sur la méthode des éléments finis en plasticité

Zur Methode der finiten Elemente auf dem Gebiet der Plastizitét

EDOARDO ANDERHEGGEN
Professor of Applied Computer Science
Swiss Federal Institute of Technology
Zurich, Switzerland

SUMMARY

The fundamental aspects of some broadly applicable finite element procedures for the analysis of
structures assuming ideal elasto-plastic or rigid-plastic material behaviour are presented and shortly
discussed.

RESUME

Les aspects fondamentaux de certains procédes trés généraux basés sur la méthode des éléments finis
pour I'analyse des structures avec un comportement élasto-plastique ou rigide-plastique du matériau
sont présentés et brievemeni discutés.

ZUSAMMENFASSUNG

Die Grundprinzipien einiger allgemein anwendbarer, auf die Methode der finiten Elemente sich
stitzender numerischer Verfahren zur Berechnung elasto-plastischer und starr-plastischer Tragwerke
werden geschildert und kurz diskutiert.
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1. INTRODDUCTION

The main reason for the extraordinary success of the finite element method in
structural engineering lies certainly in its very broad applicebility to all
kind of structure types, loading conditions and material properties. OFf course,
this 1is alsc true in the field of plasticity, where computer based finite ele-
ment procedures represent powerfull tools for the numerical analysis of complex
real life structures.

The aim of the present paper is to present a short state-of-the-art theoretical
review of some general finite element procedures assuming ideal elasto-plastic
or rigid-plastic material behaviour. In order to confine the discussion to few
fundamental questicons, no speciic structure type and no specific material will
be considered here. It should be clear, however, that much research work in
recent years has led to very many different approaches for taking into account
plastic deformations, some of them being certainly more straightforward, if pos-
sibly less generally applicable, then those discussed here.

It is assumed that the reader is familiar with matrix notation and with the main
principles of conventional finite element analysis.

2. FINITE ELEMENT MODELS

Finite element models are used to build parametric fields satisfying prescribed
continuity conditions. Parametric fields for the components of the displacement
vector {u} defining the displacement state and for the stress vector {o} defin-
ing the stress state within a structure are given in matrix notation by

{u} = [@]1{U} . (1)
{c} (vl{z} , (2)

where U- and Z-components of the global vectors {U} and {L} are nodal displace-
ments and stress parameters respectively. The coefficients of the matrices [¢]
and [¥] are shape functions defined piecewise within each element by generally
simple analytical functions and satisfying prescribed continuity conditions along
the element interfaces.

It is typical of the finite element method to use for the virtual displacements
the same assumptions as for the real ones, thus restricting the infinite class
of virtual functions considered by conventional virtual work methods to those
given by the assumed shape functions of the matrix (®]. Denoting virtual quanti-
ties with an asterisk the virtual displacement field {u*} is given by

{u*} = [&]{u*}, (3)

where the U*'s are virtual displacement parameters.

The strain state within the structure is defined by a strain vector {e} whose
components are obtained from the displacement vector {u} applying an operator A,
i.e. using kinematical strain-displacement relations:

{e} = {Au} = [A®]{U}. (4)

As small displacements shall be assumed, A is & linear operator, thus identical
relations can be written for the virtual strains {e*}:

{e*} = {Au*} = [A®]{U*}. (5)
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The main problem of finite element structural analysis is that of finding a
feasible internal stress distribution {c} satisfying equilibrium with the pre-
scribed external loads {p}. This is often achieved by applying the principle of
virtual displacements which says that the internal stresses {g} are in equilib-
rium with the external loads {p} when the internal and the external virtual
works are equal for all possible values of the virtual displacements {u*}:

[{e*} {otoav = J{u*} {p}eav, | (5)
\ v

where {e*} and {u*} are kinematically compatible, i.e. {e*} is derived from {u*}
according to Eg. (5). V is the total volume of the structure consisting of sever-
al finite elements. Using the parametric virtual displacement field

{e*} = [A®]1{u*}, Eg. (B) leads to

{r} = {P}, (7)

where the vector {R} of the internal nodal reaction forces due to the stress
state {0} and the global vector {P} of the external nodal loads are defined as
follows:

{R}

I[A@]T{c}-dv, (8)

v .
{PY = f[@lT{p}-dv ‘ - (9)

v

Eg. (7] represents a set of generalized equilibrium equations between the in-

ternal nodal forces {R} and the external nodal loads {P} leading, in general, to
an only approximate satisfaction of the microscopic equilibrium conditions. To

solve the problem of finding {0}, however, the material behaviour has to be taken
into account.

3. IDEAL ELASTO-PLASTIC STRESS~STRAIN RELATIONS

If the stresses are sufficiently small the material is assumed to behave perfect-
ly elastically. The stress-strain relations are then given by Hooke's law

{o} = [(D1({e} - {EO}], (10)

where [D] is the material dependent, symmetric and positive-definite "elasticity"”
matrix. The €5's are initial strains (e.g. due to temperature change) which are
not directly associated with stresses. For simplicity initial strains shall not
be considered here.

Eq. (10) is assumed te be valid only if the following yield conditions are satis-
fied:

£ {oh) <o (k = 1 to KJ, (11}
where the f, 's are generally non-linear functions of the stress components. The
ck's are positive material constants. In the stress space the equations

f lo}) = ¢ (kK =1 to K) (12)
piecewise define the yield surface of the materiel (see Fig. 1)}. This can, of
course, in some cases be defined by a single non-linear function (K = 1). In
order to take into account strain hardening or softening effects the cyk's are
sometimes assumed to be functions of stress-strain histery. For simplicity this

shall not be considered here, i.e. ideal elasto-plastic material behaviour with
constant ci's shall be assumed.
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If the stresses increase so much as to reach one of the surfaces (Eqg. 12) delimit-
ing the yield surface the relaticns between {o} and {e} change, and in fact it is
only possible to give tangential relations between stress increments d{o} and
strain increments d{e}, the total stresses {0} being path dependent functions of
the total strains {e} {non-conservative material behaviour).

It is then convenient to think of the strain increment d{e} as a sum of an
"elastic” increment d{eg1} and a "plastic" increment d{epil:

d{el = d{eel} + d{epl} ; (13}

where d{eg1} produces a stress increment d{c} according to Hooke's law, while
d{epl} acts exactly as the initial strains {gg} of Eg. (10), i.e. is not associat-
ed with any stress changes:

d{o} =[D]d{€el} = [pB] (d{e} - d{epl}]. (14)

According to the theory of plasticity the plastic strain increment vector d{epl}
has to be perpendicular to the yield surface, i.e. parallel to the gradient
{grad i} of the function . ({c}) for
Gm *Eplm {o} given by fi({o}) = ck, and pointed
: . towards the outside of the allowable
. 5o d{epL} stress domain (see Fig. 1):

d{epl} = {grad Fk}'da . (15)

llowable | f({G}) = C
s k({ }) K where do is an arbitrary non-negative

stress {G} constant which can be determined by re-
domain guiring the stress increment d{c} to

G, satisfy the k'th yield condition exactly,
C—— i.e. to be parallel to the yield surface:

b : {grad fk}Td{O} = 0. (16)

Fig. 1: Yield Surface defined by a
set of non-linear yield
conditions

From Egs. (14), (15) and (18} simple algebra leads to a tangential relation be-
tween d{co} and d{e} similar to Hpoke’s law:

d{o} = [D;ld{e}, (17)
where [DT] is a symmetric, positive-semidefinite "tangential” matrix satisfying
[DT]d{Epl} = [DT]{grad £l = 0. (18)
Eg. (17), however, is not really valid for any d{e}. If unloading takes place,

i.e. if d{e} is such that a purely elastic stress increment d{c} = [Dld{e} would
point towards the inside of the allowable stress domain:

{grad FK}T[D]d{E} < 0, (18)

then the material is assumed to behave elastically again (fDT] = [B]).
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1f, after the stress vector {o} has reached the yield surface satisfying the
single k'th yield condition exactly, the strains are increased any further,

other yield conditions might become satisfied exactly, the stress vector {o}
reaching "edges” or "corners” of the yield surface. The procedure explained above
has then to be generalized for taking inte account simultaneously more than ong
of the conditions (15), (16) and (19).

Of course, all this guite complicates elasto-plastic analysis and it is certain-
ly an advantage if the material behaviour can be described by just a few non-
linear yield conditions, possibly by a single one.

4. ELASTO-PLASTIC INCREMENTAL ANALYSIS

In finite element elasto-plastic analysis the primary unknown of the problem is
generally chosen to be the displacement state of the structure described by the
parametric field of Eg. (1].

As long as the material behaves elastically {{o} = [Dl{e}) the internal nodal
reaction forces {R} of the structure can be expressed as linear function of the
unknown nodal displacement parameters {U}:

{rR} = I[Acb]T{o}-dv = [Ki{u} , (20)
v
the global linear elastic stiffness matrix [K] being defined by

(K] = f(a0] [(D]1A®]-aV. (213
Vv

The U's are then found by selving the system of linear equilibrium equations
(K1{u} = {P}. (22}

However, when, due to high stress levels in some parts of the structure plastic
strains occur, the relations between {R} and {U} become non-linear. It is then
necessary to increase the external loads {P} in steps A{P} and to find a new
stress distribution after each load increase satisfying equilibrium (7) while
taking into account the elasto-plastic stress-strain relations discussed above.
The most widely accepted iterative algorithm to do so can be described as follows:

a. Initialize {U} := {P} := 0

b. Increase {P} := {P} +A{P} and {U} := {U} + A{U}, where A{U} is obtained from
the solution of the following system of linear equations:

KIA{U} = A{P}, (23)

(K] being a approximation of the stiffness matrix valid for the current load
step as explained below.

c. Determine the internal nodal reactions {R} according to Eg. (8) from the ac-
tual stress state, {o} obtained from the incremented strain state
{e} = [A®)}{U} corresponding to the new {U}.

d. If, within a prescribed tolerance {R} = {P} repeat from b.

e. Otherwise apply the nodal loads {P}-{R} representing unbalanced residual nodal
forces obtained from the difference between the external loads {P} and the
internal reactions {R}.
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A corresponding displacement increase A{U} is found by solving the system of
linear equations:

[K1a{U} = {P}-{R} (24)
f. Increase {U} := {U}+A{U} and repeat from c.

As in most cases a limit load is to be found rather than the response of the
structure to a prescribed load, the external loads {P} have to be increased un-
til an equilibrium stress state can not be found anymore or until the displace-
ments in some parts of the structure grow beyond prescribed "collapse” limits.

Two main guestions arise. The first one concerns the stiffness matrix [K] of

Egs. (23) and (24}, which, ideally, should describe the relation between {R}-

and {U}-increments within a load step for the partially plastified structure.
Often [K] is approximated by the linear elastic stiffness matrix (K], the method
described here being then often called (somehow improperly) the "initial stress
method”. Fig. 2 shows its basic principle when applied to a single degree of free-
dom system for a single load step (AP = P). Sametimes a better approximation for
[K] is used taking into account the changes in stiffness caused by the plasti-
fied zones of the structure.

Fig. 2: Initial stress method for Fig. 3: Newton-Raphsaon method for
a single degree of freedom a single degree of freedom
system system

A frequent choice for [K] is the tangent stiffness matrix [Ky] relating infinitesi-
mal d{R}- and d{U}-increments at the beginning of a load step or during the itera-
tions within & load step:

d{Rr} = [KT]d{U}. (25)

The [Kyl-matrix can be obtained, like [K] in Eg. (21), from a sum of the contri-
butions of each single element using instead of [D) the elasto-plastic tangen-
tial [Drl-matrix defined in Eq. (17):

(K1 = j[A@]T[D 1048] -dv. (25)
v T

If [K.] is used, the solution procedure described above corresponds to the so-

called "NewtonrzRaphson-Method” for the solution of non-linear systems of coupled

equaticns,. Fig. 3 shows its basic principle. Obviously a much faster convergence
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is obtained when using [K7] instead of [K], however, the computational effort need-
ed at each step will increase very much. In fact not only the numerical evaluation
of [K7} is time consuming, but also a totally new solution of the Egs. (23) or (24)
is needed each time [KT] is changed. which is not the case when using allways the
same elastic stiffness matrix [K]. An obvious possibility would be to evaluate [KT]
(or some more or less cruce approximation of it) only from time to time, thus us-
ing the same [KT]-matrix for several steps. It should be noted, however, that con-
vergence (quite contrary to geometrically non-linear problems) can in many cases

be obtained using allways the same linear elastic stiffress [K].

A second question concerns the way the internal reactions {R} or their increases
A{R}, which, of course, can also be obtained from a sum of element contributions,
are evaluated from the stress increments A{c} caused by the strain increments

Ae} associated with A{U}. Obviously, A{e} not being infinitesimal, the use of the
incremental relations between d{o} and d{e} derived obove (Eq. (17)), will, in
general, involve some approximations. Details should not be discussed here, it
should be noted, however, that as long as a stress distribution can be found which
satisfies equilibrium, i.e. leading to {R} = {P} violations of the elasto-plastic
incremental stress-strain relations are not too disturbing. In fact from the lower-
bound theorem of the plasticity theory one knows that the stress distribution ob-
tained can only underestimate the limit load, thus leading to a safe design.

5. RIGID-PLASTIC ANALYSIS

If rigid-plastic materiael behaviour is assumed the statical f{or lower-bound) and
the kinematical (or upper-bound) theorems of the theory of plasticity represent
powerful tools for the evaluation of a 1limit load factor A multiplying given ex-
ternal loads {p} and possibly of the shape of the collapse mechanism.

According to the statical theorem a stress state {0} has to be found which satis-
fies equilibrium with the external loads A{p} as well as the yield conditions
everywhere within the structure. The limit load is then found by maximizing A.

By introducing a finite element parametric stress field (Eq. (2)) the internal
reactions {R}, which have to equal A{P} in order to satisfy equilibrium (7), can
be evaluated as linear functions of the unknown nodal stress parameters {I}:

{R} = j[Acb]T{o}-d\/ = [Ei{z} = A{P}, (26)
Vv

where [E] is a global "equilibrium”-matrix obtained, as usual, by a sum of element
contributions and definded by

(E] = f[ACI)]T[‘if]°d\/. (273

V
The stress parameters {I} will also have to satisfy yield conditions. These will
have to be checked in Q discrete "checkpoints” throughout the structure, where
the stress components assume the values {OQ} = [¥,1{Z} (g = 1 to Q). Allthough
the use of the non-linear yield conditions (Eg. (11)) 1s possible, it is certain-
ly convenient in rigid-plastic analysis to use lipear ones, thus introducing poly-
edrical yield surfaces (see Fig. 4}, even if a larger number of inequalities may
become necessary. Linear yield conditions are given by:

T
{r} {oq}_g % q (k =1 toK; g=1 toQ) (28)

or, for all conditions together at a checkpoint g

[fJT{oq} < o) (a=1toq, (29)
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where Ck represents the resistance
of the structure at a checkpoint g
for a stress direction {fk}.

From the optimality condition A —+
maximum, from the equilibrium ecqua-
tions (26]) and from the linearized
yield conditions (29} the following
lipear program for the unknowns A and
{Z} is found (see also Fig. 5):

A = maximum

{c} = -{PIx + [E]{Z} (30)
0<e - [f]T[wq]{z} (@ =1 to Q).
Fig. 4: Yield surface defined by a set of
linear yield conditions
20
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Fig. 5: Tableau of the linear Fig. 6: Tableau of the linesr program (31}):
program (30): A 2> minimum
X+ maximum

-
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[

From the kinematical (or upper-bound] theorem the folleowing linear program, whose
derivation shall not be given here is found (see also Fig. 6):

A= E{CQ}T{éq{ > minimum,

o =1 - {P}T{U},

{0} = (e1T(0} - g[waT[fl{éq}
{éq} > {a} (g =1 toQ),

(31)



‘ E. ANDERHEGGEN 147

where the U's are nodal displacement velocity parameters and the Bk 's are gen-
eralized strain velocity parameters somehow related to the da's introduced in
Eq. (15) (see Ref. [4]).

The linear programs (30) and (31) are "dual” to each other. The same load factor
A will therefore be obtained. As expected the value of A only depends on the
mathematical model, not on the method of solution used (statical or kinematical
approachl]. A lower bound of the true value of A will be obtained if the assumed
Y-functions and the linear inequalities (28) guarantee that microscopic equili-
brium conditions and yield conditions are nowhere violated. An upper-bound (at
least for the linearized yield condition used) will be cbtained if kinematical
compatibility conditions are satisfied exactly. In many cases, however, a bound
for A will not be found, but just an approximation of it.

By solving one of the linear programs (30) or (31) the solution of the other one is
also known. Numerical values net only for A but also for the Z-, U- and B-para-
meters are therefore obtained. The displacement velocity parameters {U} describe
the collapse mechanism. The stress parameters {I} define a corresponding state of
admissible stresses. However, because this is defined in an unigue way, only in

the regions and in the directions in which plastic flow occurs, the values of the
Z-parameters will generally not be very meaningful as large portions of the struc-
ture may remain rigid during collapse. The B-parameters provide informations on

the distribution of plastic flow during collapse.

The procedure described here, while being at least in principle generally appli-
cable, has the disadvantage of being a two-field procedure as independent para-
metric assumptions both for the stresses and for the displacements have to be
introduced. In fact the crifteria for chosing these parametric fields are not al-
ways clear. Moreover, it would certainly be an advantage not to have any equi-
librium eqguations in the linear program (30), which would be the case if stress
assumptions satisfying a priori equilibrium conditions could be found.

This is in some cases possible if parametric finite element fields for stress
functions (like Airy's for plate stretching problems) are introduced. The stress
components building the vector {c} are then derived, generally by differentation,
from the stress functions leading to:

{o} = [¥}{Z} + r{o}, (32)

where the columns of the [¥]-matrix corresponding to the nedal stress function
parameters {I} represent homogeneous stress states while A{G} represents an in-
homogeneous stress state satisfying equilibrium with the external loads. From the
statical theorem the following linear program is then obtained:

A =+ maximum,
(o} < {oy} - [ﬂT{Eq}x : [fJqum}, tq =4 g G (33)

Of course from the kinematical thecorem a corresponding dual linear program could
also be derived which would show that the g's, i.e. the collapse mechanism, will
not be obtained by this approach (but the B's will).

An important advantage of the stress functien approach is that equilibrium condi-
tions can, in many cases, be satisfied exactly, thus being possible to obtain a
true lower-bound of the load factor A. There are, however, also some drawbacks:
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not for all kinds of structure stress functions exist (e.g. not for framed struc-
tures); the stress distribution {6} is easily found if only surface loads along
the structure boundaries are present, which is often the case for plate-stretch-
ing and rotationally symmetric problems but almest never for plate-bending and
shell problems; the assumed parametric fields for the stress functions have of-
ten (e.g. in the case of Airy's function) to satisfy stringent continuity condi-
tions at the element interfaces; finally some complications arise for multiply
connected domains.

An other, generally applicable approach to obtain stress assumptions satisfying

a priori, at least approximately, equilibrium conditions would be to use linear
elastic analysis to find both the inhomgeneous stress state {T} and the homogen-
eous ones building the columns of the matrix [¥]. These can be obtained by speci-
fying as load cases any number of different initial strain distributions result-
ing in an egual number of homogeneous [but not necessarily linearly independent)
stress states.

6. ON PLASTIC OPTIMUM DESIGN

If some kinds of relation between the ckq—coefFiCients representing the resistance
of the structure at a checkpoint g for a stress direction {Fk} (see Fig. 4) and

a "merit”-function M (....,ckgs....) can be mathematically established, an opti-
mum design problem leading to an optimal distribution of the resistance coeffi-
cients Ckg for a prescribed design load {p} can be formulated. Using, for simpli-
city, stress assumptions satisfying a priori equilibrium (i.e. Eq. (32) with

A = 1), the following mathematical program for the unknown Ckg- and Y-coefficients
1s found:

LY > i »
M[""’qu' ) optimum

= Tys = T + =
{a} < -[f] {oq} [f] [‘Pq]{Z} {cq} (g = 1 to Q).

(34)

An obvious difficulty of this approach lies in the choice of the merit function M.
An other difficulty arises when several different loading cases govern the design
of the structure as different sets of I-coefficients defining an "optimal” homo-
geneous stress state for each of the loading cases considered would have to be
determined.

This last difficulty can be avoided when the inhomogeneous stress distributions
{Gn} for each of the N loading cases considered (n = 1 to N) can be found by line-
ar elastic analysis. This 1s only possible if the ckq's , 1.e. the plastic resist-
ance distribution within the structure, can be assumed not to have any influence
on the elastic stress distribution (e.g. this is possible when looking for an opti-
mal reinforcement distribution in a given concrete structurel. From Eg. (28) the
yield conditions for k = 1 to K and g = 1 to Q can then be formulated as follows:

0 < -max({f }{o_1}1 - {£ }{¥ }z} + o_, (35)
- i k ng K d kg

where at each checkpoint g and for easch stress.direction {fg} only the most un-
favourable load case n is expliciltely checked [fﬁh 1 represents the elastic
stresses due to the n'th load case at a checkpoint gql), while for all lcading cases
together a single "optimal” homogeneecus stress distribution defined by the stress
parameter vector {I} is introduced. According to the so-called shake-down theorem
of the plasticity theory, this procedure will result in the design of a structure
capable of stabilising for any conceivable load cyecle, i.e. a structure which will
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behave perfectly elastically after plastic flow has occurred in the first load
cycles. But the real advantage of this procedure, when applicable, is that the
optimum design problem will be mueh simplified when several loading cases have
to be considered which is, of course, almost always the case.

7. DOVERVIEW AND CONCLUSIONS

In the field of plasticity most procedures suggested to date are based on an
elasto-plastic approach, the initial stress method, with or without stiffness
modification, being certainly the most generally applicable one. In different
well-known general purpose finite element computer programs this kind of ana-
lysis is implemented. The main advantage of the elasto-plastic approach is that
it can provide all needed informations on structural behaviour from working condi-
tions until collapse. Other non-linear effects due to large deformations, crack
propagation, creep, contact problems, friction, in fact, at least in principle,
to any kinds of material behaviour that can be mathematically described can be
taken into account by step-by-step iterative methods. An other important field
of application is non-linear dynamic analysis by time-step integretion of the
dynamic equations.

However, the difficulties involved in an elasto-plastic analysis when applied to
real life problems should not be underestimated. The computational effort needed
will generally be high as reiterate salutions of iarge systems of linear equa-
tions will be necessary as well as reiterate evaluations of internal forces and
stiffness matrices for each element by numerical integration procedures. Model-
ing problems might also arise as it is often necessary, in order to reduce com-
puting time, to approximate reality by simple models, i.e. by coarse finite ele-
ment meshes. This reqguires from the user of the computer program a very clear
understanding of the way the program internally works and of the approximations
involved. Finally, the interpretation of results and their relation to the actual
design of the structure may alsc present some difficulties.

Rigid-plastic limit load analysis has received, so far, less attention than elasto-
plastic analysis. This is probably due to the limited scopes that can be pursued
by such an approach, as no information cn working stresses or on displacements
before collapse can be obtained. For real life problems an additional linear
elastic analysis will therefore in most cases be necessary. An other difficulty
arising from the rigid-plastic approach is caused by the great computational
effort generally needed for solving the large linear programs involved. It is felt
that more research work is needed for finding faster solution methods taking ad-
vantage of the peculiar nature of the problem. If this succeeds, however, rigid-
plastic limit analysis, possibly combined in the same computer program with linear
elastic analysis, could well become a widely used tool for everyday's structural
engineering., being certainly easier to apply to real life problems than elasto-
plastic analysis.

Rigid-plastic optimum design, and actually any kinds of direct optimum design
procedures has found very few applications in civil engineering. In fact the pre-
vailing attidude today is that the design of a structure cannot be done in a com-
pletely automatic way, but always reguires a close interaction between the designer
and the computer, which is more a problem of man - machine communication than of
the theoretical approach used for the design. In some cases, however, the most
important being probably the problem of finding a minimum weight reinforcement dis-
tribution for a given concrete structure, plastic optimum design methods can be
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useful to find the best sclution among a narrow choice specified by the designer
working in an interactive computer aided design environment.

REFERENCES

[1]  0.C. Zienkiewicz: "The Finite Element Method in Enginesering Science”,
McGraw-Hill, 1871.

[2] J.T. Oden: "Finite Elements of Non-linear Continua”, McGraw-Hill, 1972.

[3] J. Robinscon: "Integrated Theory of Finite Element Methods”,
John Wiley and Sons, 1873.

(4] E. Anderheggen: "Starr-plastische Traglastberechnungen mittels der
Methode der Finiten Elemente”, Swiss Federal Institute of Technology Zirich,
Institute of Structural Engineering, Report No 32, 1971, Birkh&user Ver-
lag Basel and Stuttgart.



1561

Collapse Load Analysis of Engineering Structures by Using New Discrete Element Models
Calcul a la ruine de structures, a I'aide de modéles nouveaux d’éléments discrets
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SUMMARY

Combining advantages of the concept of limit analysis and standard l0oad incrementaf procedure in
existing finite element method, a method of collapse load analysis is introduced in this paper. [t
should be mentioned that this method is not a method of rigid plastic analysis, but effects of elasticity,
finite deformation or instability can be taken into account.

Motivation of development of this method and its theoretical basis will be explained first and justifi-
cation of the present method is itlustrated by several numerical examples including collapse load
analysis of concrete slabs.

RESUME

Le rapport présente une méthode de calcul a la ruine combinant les avantages de la théorie des charges
limites et du procédé de i'augmentation progressive des charges, tels qu‘ils existent dans des méthodes
actuelles par éléments finis. Cette méthode n’est pas une méthode de calcul rigide-plastique, car elle
tient compte des effets de I'élasticité, de déformations limitées et d'instabilité. Les raisons du développe-
ment de cette méthode et ses bases théorigues sont présentées. Plusieurs exemples numériques, parmi
lesquels fe calcul & la ruine de dalles en béton armé, illustrent et prouvent la valeur de la méthode
développée ici.

ZUSAMMENFASSUNG

Eine Methode zur Traglastberechnung wird vorgestellt, welche Vorteile der Traglastverfahren einerseits
und der bei der Anwendung der Methode der finiten Elemente Ublichen Verfahren der schrittweisen
Laststeigerung andererseits kombiniert. Es handelt sich nicht um eine starr-plastische Berechnungs-
methode, denn das elastische Verfahren, endliche Verformungen oder Instabilitaten konnen ebenfalls
berlcksichtigt werden. Die Entwicklung der Methode wird begriindet, und ihre theoretischen Grund-
lagen werden dargestellt. Anhand mehrerer numerischer Beispiele, unter anderem zur Berechnung der
Traglast von Stahlbetonplatten, wird die Anwendung der Methode erlautert.
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ABSTRACT

Combining advantages of the concept of 1imit analysis and standard load
incremental procedure in existing finite element method, a method of collapse
load analysis is introduced in this paper. It should be mentioned that this
method is not a method of rigid plastic analysis, but effects of elasticity,
finite deformation or instability can be takn into account.

Motivation of development of this method and its theoretical basis will be
explained first and justification of the present method is illustrated by
several numerical examples including collapse load analysis of concrete slabs.

1. INTRODUCTION

1.1 Plastic Analysis and its Limitation

Consider any structure or solid subjected to external load (statical or
dynamical). As long as the external load is small, it may deform elastically
and the induced stresses and strains are so small that their distribution can
be determined by well established theory of elasticity.

With the increase of external loads, however, strain distribution may reach the
stage where no longer it is small and finite strain distribution will set up
Tocally or partially in the deformed body under consideration, and then the
structure may be subjected to large deformation or may buckle in case of
ductile materials.

Upon further increase af the load, deformed structures may start to yield and
develop so called plastic hinges, hinge lines {(or slip lines) or slip surfaces,
and plastic zone will grow and spread out and finally cracks may initiate from
some overstressed region.

At the final stage of loading or the ultimate load, a certain Tink mechanism
which may usually consist of plastic hinges or plastic hinge lines or slip
surfaces will be formed in the structure.

Under such condition the structure may loose stability and it will start to
move freely just T1ike a linked rigid bodies and it will be collapsed.
According to the theory of plasticity, it can be proved that a collapse load
solution can be uniquely determined if the solution satisfies the following
three conditions:

(i) equiTibrium condition
(ii) plasticity condition
(i1i) mechanism condition

In general it is extremely difficult to obtain such a solution analytically
and two different procedure of obtaining approximate solutions have been
proposed by basing on the well-known upper bound and Tower bound theorems 1in
the theory of 1imit analysis which were originaliy proposed by Prager, Drucker
and many others. These approximate solution procedures have provided a very
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powerful tool for collapse 1oad analysis of plane frames, simple plate and
shell structures and resulted in development of plastic analysis and design
which are now accepted in routine structural design of those engineering
structures mentioned.

Practical application of plastic analysis, however, has been Timited to
collapse load analysis of plane frames and furthermore influences of stability,
crack initiation can not be taken into account. Especially dynamic collapse
Toad analysis is still under state of arts and because of this reason, its
application to structural dynamics has been quite 1imited.

1.2 Finite Element Method and Current Status of Development

Advent of the finite element method has changed this situation completely.
By using the standard load incremental procedure it is possible to trace step
by step the equilibrium state of structures and elasto-plastic stress
distribution corresponding to the load condition at the time prescribed and
sequence of formation of collapse mechanism.
At the present moment it is not too difficult in principle to obtain the
collapse load solution of any complex structure under a certain lToading
condition by using standard computer programs. Very serious drawback of the
finite element method, however, is computing time and cost, especially in
nonlinear analysis.
In order to solve such a difficult problems active work has been done all over
the world. Actual problems, however, are still far beyond control of any
existing method. '

1.3 Concept of the Rigid Body-Spring Element

The present author believed that development of a new discrete models
might be only a possible way to solve this problem. He tried to find a new
physical model rather than mathematical in which essential feature of deformable
bodies is retained without introducing highly complex mathematical manipulation.
In general when structures or solids reach their ultimate state of loading, they
may be yielded, collapsed and crushed into pieces. At the limiting state each
part or piece of the structures may move like rigid bodies. Based on such
experimental evidences, the following Rigid Body- Spring model has been
conceived. Consider the bending problem of a beam under lateral loads as.shown
in Fig. 1.
Within elastic range, deformation is distributed throughout the beam, but once
plastic deformation starts either at the point of load application or at the
beam ends, strain energy will be absorbed in the narrow portion of a beam
where plastic deformation takes place and at the ultimate stage of loading a
number of the so-called plastic hinges will be formed so that the beam structure
will collapse into a 1ink mechanism. This mechanism consists of rigid bars and
plastic hinges. In case of bending problems of concrete slabs as shown in Fig.
1, similar experimental evidence will be observed. That is, within the range
of elastic bending; deformation is distributed over the whole plate area,
however, at the final stage of loading the plate will collapse under a certain
mechanism which consists of rigid plate segments, and plastic hinge 1ines
connecting those plate segments.
The so-called siip line theory is also well known in also plane stress as well
as plane strain problems in the theory of plasticity (See slso Fig. 1).
According to this theory, it is assumed that two dimensional solids will move
under a certain mechanism which consists of two dimensional rigid segments and
slip lines connecting those segments, and along which relative sliding of two
neighboring segments will occur. In the following section theoretical basis of
these new models will be described.
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FRUM MATHEMATICAL MODEL TO PHYSICAL MODEL
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Flg 2 ‘| Concept of the Rigid Body-Spring Model

2. THEORETICAL BASIS OF RIGID BODY-SPRING MODELS
2.1 Physical Basis of Rigid Body-Spring Models

Consider a set of three dimensional rigid
bodies of arbitary shape as shown in Fig. 2.
They are assumed to be in equilibrium with
external loads, and reaction forces are produced
by the spring system which is distributed over
the contact surface of two adjacent bodies.
For further development of new element models,
it will be assumed that the contact area is known
and fixed*. 7

|

Fig. 2 X

* It should be mentioned here that in actual contact problem, the contact
surface are not known a priori, and therefore it can be determined only in
iterative way.
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Taking such fwo rigid bodies under contact, infinitesimal deformation of the
spring system is considered. (Fig. 3). Displacement « of an arbitrary point
in a rigid body can be given by the following vectorial equation:

UW=Us+O0x (- L) _ — (1)

where Ugis displacement vector of the centroid, @ is the infinitesimal
rotation vector and ( ¥ - T ). is a position vector of arbitrary point with
respect to the centroid before deformation.

Us = ( ug s Vg » Wy ) €= (9, ¢, %) (2)
Denoting the displacement vectors of
arbitrary point P(x,y,z) in body (I) and
(IT) by w’, u’, respectively, they are -
given by the following equations: :
W=+ 0x(r-r)
W= U+ Ox (-1 Fig. 3

More precisely,

c=r"+u

u = u; + (7- = Zl)‘bl = (y - .yl)X.1 X 0 X (+@—pd® )

v=uc+0 X (¢ -l
vl = v, # (X - Xl)Xl - (Z & 21)81 > =ug+0 X(r-re) (4'3)
w'=wr ot (y - y1)er - (X - x1)éy ) §: contact surface

9 i o' impli

u" = u, + (Z - Zz)¢2 = (.y - .yZ)XZ i‘::ze:i;:eplgeéoie s

deformation
vy o= v, + (X - XZ)XZ - (Z - Zz)ez : (4_b)
w' = wy + (y - ¥2)8, - (x - X2 )2

Therefore denoting the point P after displacement in bodies (I) and (II) by P’
and P" respectively, the relative displacement vector of the point P can be
defined as follows:

PP = - W (5)
Denoting the unit normal drawn outward to the contact surface at the point P by
N, (See Fig. 4) the normal displacement 84 to the surface S can be given as
follows:

6d - ( lpri,n)= '{(uil _ ul) + ITI(V"*V') F n(W"-WI) (G_a)

where n=(1,m,n) (6-b)

Similarly the displacement component &
in the tangential plane to the surface Bl delopmetiint)
can be given by the following equation:

tangential-plane

contact surface

Cae . _ H __
p -
< e - — N
Flg- 4 ('_‘— =~} (before deformation)
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= fnx PIPHIZ
. {m(w" -w') - n(v" - VI)}Z +'{n(un -u') - 1(w" - w!)]z (7)
+{-|(Vu_v|)_m(uu_ul)}2 ’
Basing on the above preliminaries, strain energy due to the relative displace-

ments (84,8s) of the spring system distributed over the contact surface S can be
given by the following equation:

5 JJ( #a &+ #:87) as (8)

Substituting eqs.(6) and (7) into eq.(8) the following equation can be easily
obtained:

V==—%‘1L[ és(5f+ %Q-&f ) + kd' £ )( 225:+ m? 5: + nzg;
+2 Am 5;.5; +2mn5}& +2n13}3} )] ds
- —;—ﬂ 0D & ds (9-a)
where
87 = L8x, 8y, 8z
Sy = u" - u', @" vt - v, 5;= w' - w' (9-b)
£k A Ry ) dn  ha- )
(D)= | G- to)tm_ ' ehociom) | (bt ~fma (10)
(#y —%s) An l(ﬁd—fes) mn %,,'n’#e (1-n2)

D1sp1acement vector 6 can be also expressed by the following matrix equation:

¢ = B d (11)
where . i
110 0: 0 ERGE 1 1000 '(1 Z) (N’)
| 516 i o o 1o o sl 09
0 0 -1 “”""”")T 0 1:o | 0 T_I ;(1 7:);—_(;-7&): ;

T
d = Lulsvlswlaelscbls)(l; u29V29w25925¢2,X2J (]3)

Substituting eq.(11) into eq.(9-a), the following expression will be finally
obtained:

— d"kd (14-a)
where
k-] 8"DBds (18-b)
s

where S is area of the contact boundary surface on two adjacent elements.
The complete form of the stiffness matrix [K] is already obtained in the
author's previous papers.
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Applying Castigliano's theorem to eq.(14-a), the following stiffness equation
can be derived:
rR=2f-kd (15-a)

where |< is a (12 x 12) symmetric matrix given by the following equation:
k =g f?;d- ] (15-b)
and R is nodal reaction vector defined by the following equation:
R™ = | X1,Y1,Z1501,M15N15 X2,Y2,Z5,05,M5,N5 (15-c)

Spring constants %4 and £ can be determined systematically by using the
finite difference expression for strain components as follows:

On the contact surface S shown in Fig. 3, normal and tangential stresses o, = Tps
satisfy the following equations:

o, = E'ex , Tus = G Ypg .16)

Strain components e, and v, are approximated by the following finite defference
expressions

€a= Su/h 5 Y= Su/h ' (17)

where h=nh; + h is the projection of the vector G,G, on n .
On the other hand, the following relations are obtained from the definition of
spring constants

On =ﬁ36\f 3 Tpe = ﬁsYn, (18)
Therefore comparing eqs. (16) and (18), the following formulae can be derived
#4= E'/h , Rs= G/h (19)

The stiffness equation defined by eq.{15) must be obtained for each contact
surface if a given rigid body (I) has a number contact surfaces with other
rigid bodies including the body (II}, and for equilibrium of a given total
system of rigid bodies, they should be summed up and the final form of the
stiffness equation can be given by the following standard form of the finite
element method.

KU =F . (20)

where —
K=xk, u=zd, F=:% (21)

F is a given external load vector.

However, care must be exercised in constructon of eq.(20), because in this
method the centroid of each rigid body is selected as the node and therefore
superposition of stiffness matrices are somewhat different from that of the
standard finite element method.

In case where the body (I) is supported by other bodies through its whole
boundary surface S, i.e. .

this model is idealization of three dimensional elastic continuum as shown in
Fig. 5 in which the shape of each element can be chosen arbitrary.

* Y= (1-v)E
(1+v) (1-2v)
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The method out11ned so far w111 be called
hereafter as the Rigid Bodies-Spring Method
(RBSM} or Stiffness Lumping Method (SLM).
Using this method stress analysis of '
deformable bodies under contact will be
possible in iterative way, typical '
application of which is analysis of the
rockfill dam. _

‘Fig. b

. . . (a) general- form .(b) standard form
2.2 Variational Basis of RBSM

RBSM model is originally proposed by basing on physical consideration and
therefore it is desperately needed to establish the mathematical basis for
those elements although a series of simple bending and vibration analyses were
conducted. In the following section the mathematical basis of the present
elements will be briefely described. For the sake of simplicity, consider a
set of triangular elements in the plane stress problem as shown in Fig. 6.

Each triangular element is assumed that
they dre conected by a set of boundary
elements AB, BC, CA.

Infinitesimal displacement field for each

element is also given by the following
equation:
P ' :
U 1 ;O l‘(.y‘.VGr) _95
e T i e R .
[ G
v (0 11 (x-xa) N B
( X ¢ > -
x-xo | 0 1 o {y-y I .
+ _____T____'_:-zv____ E; (22) FIg.6
[0 Tyeye D (xexg) Yy E
Fig. 6 A Set of Triangular Plate elements for the pla
Or in compact form: stress groblem .
u (X) =AX)d+B (X)€ (23)
where T
w (X} = LU(x,y), V(x,y)d
A (X) =[~-‘-- L0 tlye) ]
o ' 1 (x-x }
1
B (X) = [-X_"Ee R a7
0 ' yye o (x-xg)
and

dT*_' LUsg » Va » X | £'= LEx , E,:Yz].’ (24)

Egs. (22) or (23) implies that the Tinear displacement field consists of two
independent parameters, i.e. the rigid body movement of the centroid d and
uniform strain distribution £ in the said element.
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Since nodal parameters of each element can be assumed independently and
continuity condition of displacements along the interface boundary should be
imposed by means of Lagrangian multiplier in the variational formulation of
total potential energy.

There are several methods of formulation which are called hybrid dispiacement
method and they are discussed clearly in the texts of Professor Washizu,
Zienkiewicz, Gallagher and many other's [2],[4],[5].

Here an approach originally proposed by Ping Tong [4] is adopted.

Consider the functional T™,4 given by the following equation:

. ! T -7 e
Ten =§(‘[{Sn?£ DE ds _I[Snb B dS—jCa. TUds (25)
- fc,.( ne)T(U-uUy)ds
z implies summation of the total n elements.

The first term of the right hand side of eq.(25)is the strain energy to be
stored in the element, the second and the third represent potential energy of
external body force b and boundary load T . The last term is the additional
potential to be imposed on the displacement field to secure their continuity
along the interface boundary lines in which 6 is the stress matrix and it can
be expressed by

6 = D (26)

where D is the stress-strain matrix, and u, represents the displacement
vector of the boundary elements.

Therefore the functional Ten is a function of d , £ of all elements as well
as d, , g,of all boundary elements. As already mentioned before nodal
parameters d and g of each element is assumed independently, variations are

taken first with respect to d and g of a typical element and the following
matrix equations can be derived:

(i) with respect to variation &4
Es £ + Q4 =0 (27)
where
E, - Jc“A (X)) nD ds
- T = j r = (28)
Q4 'H,A ()7 Bds + J A (07 T as
(ii) with respect to variation §¢
E,d -SDE +Q,- 6g=0 (29)
where
S, =JIs,.dS s 8 =u[;,,B (X)Tn ds , S =15, -25, )
o _ T - T =
¢, =[[ B b as+[A( T as | (30)
- T T = T
6 = [OnTA(X) ds, [ Dn'B(X) dSJ=LE, SDJ
¢ = Lde s £

/

Combining together eqs. (27) and (29), the following matrix equations can be
derived:

0 | E. d 'QJ
RLESLIN . W (31)

T

E; | -SD 3 G 30,
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Let's define the inverse matrix of the left hand side of eq.(31) by the
following equation:
\ f

0 E, ?Irdél §d£

st R S-mdE (32)
! . =S D iéd ’ §g£
Then nodal parameters { d ,£ ) can be expressed as follows: ,
d=-24Qy ~ Fsc 0 + 2,67 ¢ g
E= ’§s¢éd - Pee Q, "fee GT?

Using eq. (33), element nodal parmenters { d, £ ) can be eliminated from the
functional Ty given by eq.(25).
After some calculations, T, can be given in the following form:

Ty ( s €)= -2 (5 q kq- T g+C, )

Needless to say, minimization of TBH(Q) with respect to qwill yield the
standard equilibrium equation of a given structure in the finite element method.
Summarizing the method proposed, unknown stresses or strains in the elements can
be obtained by using the principle of the minimum potential energy under a given
boundary displacement d, on the element interfaces.

More precisely the element stiffness matrix can be expressed in terms of
boundary displacements d, and strain components g, as shown in Fig. 7.

It may be the most reasonable approach to
derive a new discrete model in which the
boundary interface can be regarded as a
slip line when the corresponding boundary
element is plastically yielded.

There are several variations of this
element model, some of which are given by
Fig. 8.

As a matter of fact, the following
conclusions can be drawn from careful
comparative study of the RBSM and Model II:

(E"’ EBC,'Yg,
i SN il

Fig. 7 A New Discrete Element with Boundary
Displacements d, and Strain Components e,

Fig. 8 Two Possible Variations of a New Discrete Element

Model I Model 11

By two types of spring system whose intensities k, and k. , material
properties of isotropic solids can be completely represented.

(i1) Convergency of elastic solutions is often considerably influenced by the
mesh division. This is a serious disadvantage of the original rigid
body-spring element.

Poor convergency of this element may_be attributed to lacking of some
cross coupiing terms among elements(?), and(:)in the stiffness matrix
(See Fig. 8).

(iii) It can be expected that the Model II of Fig. 8 might give appropriate

base for convergency study of the RBSM.
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2.3 Stiffness Matrices of Beam and Plate Elements

A series of element matrices are now under development for practical
application of the present method. In any element total number of degrees
of freedom never exceeds 6 because it is assumed to be rigid.

In case of a beam element, deformation consists of axial, bending (about two
principal axes) and torsional deformation, and in bending probiem effect of
shear deformation can be easily taken inte account.

In case of plate and shell problems, membrane stiffness as well as bending
stiffness can be defined by this (6 x 6) stiffness matrix.

Consideration of the shear deformation can be also made.

In what follows stiffness matrices of a straight beam element of constant cross
section and a flat triangular plate element will be given.

%)
GENERAL STIFFNESS MATRIX 1a[ k;; 1 OF THREE DIMENSIONMAL RIGID BODIES~SPRING ELEMENT

w Vi w; & $ xX. uz v2 wz & @ X,
X K o] 0 G $K, | =K, -K: 0 (¢] [¢] K, K.
Y. Ki 4] —+K (0] K» 0 K 0 -$X., 0] -Ks x
Z‘ Ka K —Ka o] 0 0 —K: —K- Ke 0 n= {0.0.1) : unit normal drawn sutwaid
_( to the right and plane of
L Ketfls | —Kis | —FKa 0 K. | —Kr jretbx]| Ku | $K, " the elemem @
—  S.Y.M -
M, kb, | K| —FK) 0 Ke Kis |-katix.| #K. Element O Element @
il TS
Bt Wte | Ko | —~Ka] O K, —FK.|-Kka i YN 'I*'}é——‘.‘._»——‘—-}———“' — :
X Ki=hes.Ka=fds K | o | o] o |-k, K IS x W S
v, TN . ™~
i Ke=foudsKo=feards Ky o £K., 0 Ks £ > 4 N
Z: Ke= fkads, Kr =/kads Ka K: | —Ks 0
"L_’l Ks=Jfk, x*ds.Kie= fkay'ds Ketf | —Ku | B N 2
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N KvtKn
Stiffness matrix of a new plate bending element (XA:D‘;N )
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3. THEORETICAL BASIS OF NONLINEAR ANALYSIS [7],[8],[9]1,[13]

In general nonlinear structural problems are coupled problems of Targe
deformation, inelasticity and crack, and they may be solved by using the _
incremental procedure. In what follows, essentials of solution procedure of
nonlinear structural problems will be given.

3.1 Geometrical nonlinear problem

In case of finite displacement, assumption of the infinitesimal anguiar
displacement is no Tonger valid and eq.(1) should be replaced by the following
equation:

WUt (T-I)r-r) (35)

T 1is a coordinate transformation matrix of local coordinates attached to the
centroid between hefore and after deformation as follows:

x' 1, ma Ny X
y' = ?g . Tz Qg y (36)
z' Ts  m3 nj z
or
v' =Tvr

and I 1is an unit matrix.
An unit normal n drawn outward at P of the element (I) before deformation
may be subjected to the similar transformation as follows:

n =Thn (37)

where n - ( 1,m,n), n' = ( ]n’ ml’nl )

Consequently components ( 8;, 8s ) of the relative displacement P'P" will be
given by the following equation:

§a = (PP, m') =1(ug -us ) +m'(vg - vz ) +n'(wg - ws )
§2 = (PP" x m)% ={m'(wg - wg ) - n'(vg - vy )}? (38)

+{n'"(ug - ug ) - 1 (wgy -w, ”2 +[1'(vI- vy ) -m'(ug- ul)}

Knowing the strain energy V, and applying the principle of virtual work statical
equilibrium equation can be derived where effect of finite rotation of elements
is considered. From this equation the following standard incremental form of
stiffness equation can be derived after some calculation.

(K+K0+Ke)d*=i:*"l:r (39)

where K, is the initial strain matrix, Ke * the geometrical stiffness matrix,
& * , F* are increments of the displacement and exteral loads respectively, and
Fr is an unbalance force due to manipulation error in previous stage of loading.
Detail of the derivation is given in the previous papers of the author.

3.2 Material Nonlinearity Problems

For simplicity, displacement of a given body is assumed to be infinitesimal,
and therefore the problem will be reduced to integration of the following
stiffness equation based on the well-established incremental procedure.
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Kd*: F*_? (40)

For integration of eq.(40), yield or failure criterion of a given material
should be introduced.

For this purpose the elastic strain energy density of the spring system V, is
considered, and it is given by the following formula.

2 2
Vo= 3 (Ra 814k 82 ) = 5 (v (41)

It can be concluded from eq.(41) that if the maximum strain energy criterion is
adopted, the material may fail if Vo = 042/2E. According to this theory it
will be seen that yielding will occur if

The present method of analysis on the
material nonlinear problem can be

Tps = 0y /v2(1+V), while brittle i e} (e} G i,

failure will initiate if i of dashpots in FBSH

on =/(1+0)(1-2v)5, /(1-v) . feog ‘1;

As alternative failure criteria R —a G

the maximum shearing stress theory v —T_

may be adopted for ductile materials, &5 — e

while the maximum stress theory can be - ok

considered for brittle materials. by i {1}

To avoid unnecessary confusion in " 'f: —

further development, it is assumed & & — (&

that material is ductile and ideal '1“

p1ast‘ic. S'c 5: {E‘ G, (s

Sotution of eq.(40) based on this S _lﬂ o 7

assumption will give generalized ! '

solution of 1imit analysis which is !

well established in framed structures. o : c

A series of such solutions have been SOW ~— (&) {:::]% G (71'Cl7“)

given 1in previous papers of the authors. - i 94 7% (Tu=Cu%)
|

generaiized by replacing the spring T

system connecting rigid elements

by the spring-dashpot system as s} {e}

Shown 'in the Fig. 9 ia‘}: elastic strain {e] plastic strain if"’}: initial strain
Using such rigid bodies-spring- (shsmal, F2i)
dashpot system, static and dynam‘ic {g‘]: stationary creep strain {6:} transient creep strain
analysis of viscoelastic-plastic problem

under thermal 10ad1'ng may be possib]e. Fig. 9 Mechanical Model of Viscoelastic-Plastic Materials

3.3 Consideration of Crack Initiation and Growth in the Present Anaysis

In analysis of the material nonlinear problems described in the last
paragraph yield criterion is applied pointwisely on the contact boundary surface.
Therefore in component calculation of the stiffness matrix for each contact
surface, appropriate scheme of numerical integration should be adopted.

More precisely, for example, k,; of the general 3D stiffness matrix is given by

kin = f[ (ko2 + ks(1-22)} ds

And therefore if the boundary surface is curved or k., , ks depend on stresses
and strain, calculation of ki should be made, for example, by using Gauss'
integration scheme, Using such integration scheme it is possible to pursue
gradual development of plastic hinge lines, slip lines or slip surfaces on the
contact boundary, and the ultimate load can be calculated. In real structures,
however, it is usual to consider that initiation and propagation of crack may
reduce substantially the ultimate load. At the present moment, the criterion
for crack initiation and propagation is not well established and therefore the
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following simple criterion is adopted for the time being.

Crack intiation and propagation may take place when the shearing strain vy
exceeds vy, which may be equivalent to the concept of cop. It is not difficult
to incorporate this criterion with the yield criterion in analysis of material
nonlinear problems. As a matter of fact, crack analysis of two dimensional ‘
notched plates were conducted by the present authors and reasonable results were
obtained. Effect of large scale yielding, however, was not considered in this
analysis and therefore more refined analysis will be planned in near future by
taking into account of such an effect.

4. SOME EXAMPLES OF COLLAPSE LOAD ANALYSIS [6],[10],[11],[13]

To show validity of the present new elements, a series of numerical
anaysis has been conducted and most of the results obtained were reported in the
conference proceedings or engineering journals.
Therefore only some new results will be shown here without explanation.

(a) collapse analysis of square concrete slabs.
(1) (b) two dimensional punch problem
(c) three dimensional elasto-plastic anaysis of a through crack
problem.

(I1) (d) shake down analysis of a simply supported square plate subjected
to variable transverse loads.

(ITI1) (e) collapse analysis of cylindrical shell roofs simply-supported
on four edges and subjected to external radial pressure.

(1Vv) (f) dynamic collapse of automobile front structures.

5. CONCLUSION

Qutline is briefly explained on a new discrete method of analysis which has
been proposed by the present author. This method may be suitable for analysis of
highly nonlinear problems where plasticity, large deformation and crack growth
are coupled. Therefore broad application may be expected in future to analysis
and design of the reinforced concrete structures where punching shear crack
growth, creep etc. are important design prarameters. The followings are
conclusion so far obtained from a series of numerical analysis.

(i) Stiffness of a given body is lumped on the contact sufaces of neighbouring
rigid elements and yielding or failure is assumed to occur only on these
contact surfaces. Consequently the analysis of material nonlinear
probiems becomes much simpler than that of conventional finite element
method.

(i1) Concept of node superposition in the conventional finite element analysis
is completely discarded in the present analysis and siip due to plastic
deformation or frictional force on the contact surface can be easily
represented in this method.

(i1i1) Since the Tower order shape function is employed for element stiffness
formulation, computing time for stiffness calculation will be considera-
bty reduced to compare with the conventional finite element method.

(iv) Variational formularion of the present method is now under way.

[t is expected in near future to give raticnal basis for this discrete
analysis.

(v) Although it can be concluded by a series of test analyses that the present
method may be very powerful for the collapse load analysis, accumlation
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of results of numerical analysis of more realistic structures should be
necessary for verification of the method.
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