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The Theory of Plasticity for Reinforced Concrete Slabs

La théorie de la plasticité pour des dalles en béton armé

Die Plastizitatstheorie von Stahlbetonplatten

M.P. NIELSEN
Professor, Dr techn
Structural Research Laboratory, TU
Lyngby, Denmark

SUMMARY
The paper presents a short survey of the plastic theory of reinforced concrete slabs Only the most
fundamental aspects of the theory together with a short introduction to new areas of development
have been dealt with

RESUME
Le rapport présente une revue sommaire de la théorie de la plasticité appliquée aux dalles en béton
armé Seuls les aspects les plus fondamentaux de la théorie ainsi qu'une brève introduction des nouvelles
possibilités de développement ont été présentés

ZUSAMMENFASSUNG
Die Abhandlung bietet eine kurze Ubersicht über die heutigen Kenntnisse der Plastizitatstheorie von
Stahlbetonplatten Nur die wesentlichsten Aspekte der Theorie werden behandelt und eine kurzgefasste
Einfuhrung zu neueren Entwicklungen wird gegeben



94 THEORY OF PLASTICITY FOR REINFORCED CONCRETE SLABS

1. INTRODUCTION

The aim of this paper is to present a survey of what is known in the theory of
plasticity for reinforced concrete slabs.

Since the number of papers and books on the slab theory is very great, the references

given are some selected papers, which in the authors opinion can be
recommended as a starting point for further study of one particular specialized subject.

A number of important aspects of the theory have been left out of discussion because
of space limitations. Such problems are rotation capacity problems, the application
of the linear elastic solution as a lower bound solution, rules concerning the
practical use of yield line theory and several others.

2. HISTORICAL REVIEW

The first contribution to the plastic theory of reinforced concrete slabs was made by
the Danish engineer, Aage Ingerslev, [21.1] [23.1]. In 1921, he proposed a method
of calculation based upon the assumption of constant bending moments along certain
so-called yield lines. Several of Ingerslev's solutions have later proved to be
exact, and his very early work has been of fundamental importance to the development

of the theory.

Further pioneer work in this field was done by K.W.Johansen, [31.1][32 .1] [32 .2]
[43.1][49.1][62.1][72. l]. In his doctoral thesis from 1943 the theory took a

very long step towards its final form.

In Johansen's work the yield lines had a geometrical meaning too, i.e. as lines
along which a relative rotation of the slab parts meeting at the yield line takes
place. Utilizing this he was able to define geometrically admissible yield line
patterns and further his introduction of the work equation put him in a position
to calculate upper bounds for the load carrying capacity. These contributions were
of significance not only.in the development of the slab theory but also, in general,
in the development of the theory of rigid plastic materials. Mention should also be
made of the introduction of the nodal force concept in the so-called equilibrium
method, which sometimes considerably facilitates the calculation of upper bound
solutions. His nodal force theory has, however, been the subject of some critisism,
and several alternative theories have been formulated, see section 4.

Concurrently with Johansens work in Denmark, corresponding work was carried out
in Russia, inter alia, by Gvozdev, see [59.1], in which Gvozdev's work is described.

One of the most important theoretical problems left unsolved by Johansen was the
establishment of yield conditions. This basic information was not needed by Johansen,
since he was able in a more or less intuitive way to find formulas for the work done
in a yield line.

Yield conditions in the general case of orthotropic slabs were developed by the
author, [63.1][64.1][69.l][71.l], and by Massonnet and Save [63.2], Wolfensberger
[64.2], Kemp [65.1] and Morley [66.1].

It turned out that Johansen's formulas for the work in a yield line were in
complete agreement with the yield conditions established. Hereby was his upper bound
method put into the framework of the general theory of rigid plastic materials.

An early attempt to find a safe method for the calculation of the load carrying
capacity was made by Hillerborg, [56.1][59.2]. He proposed to design several types
of slabs by assuming the load to be carried only by bending moments in two
perpendicular directions. To be economical, this so-called strip method generally requires
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the reinforcement to be varied through the slab. The strip method has been further
developed by Hillerborg himself [74.2] and by others [68.4][68.5].

At the middle of the sixties the slab theory had almost obtained a final form and
at that time it appeared as a special and useful case of the general theory of rigid
plastic materials.

The developments since then have been concerned with three main subjects.

Firstly the theory as it was developed at the middle of the sixties had only taken
account of bending and twisting moments,i.e. the in-plane forces were neglected.
This is a more severe restriction in the theory of reinforced concrete slabs than
in the classical theory of plates, since strains in the middle plane in a reinforced
concrete slab develop, not only because of second order strain effects, but also
because of the fact, that as soon as the concrete cracks the neutral axis seldom
lies in the middle plane. Therefore the cracking leads to in-plane forces,
especially if the slab edges are restrained. The membrane effect was first studied by
Ockleston, [55.2].

The membrane effect often leads to a considerably higher load carrying capacity
than calculated by taking account of the bending effects only.

Several papers have been published on the subject since, see section 9, but a
general, practical design method has not yet been formulated.

Secondly the general development in optimization theory has also touched the
reinforced concrete slab theory. The first results were reported by Wood [62.3]and Morley
[66.2],who gave an exact solution for the simply supported square slab. Since then considerable

progress has taken place and a great number of exact solutions exist, see section 7.

Thirdly the rapid development in automatic data processing has lead to a formulation
of automatic design methods also in the reinforced concrete slab theory. One

of the first contributions in this field was that of Wolfensberger [64.2]. The subject

is now in a rapid development, see section 8, and in the near future one might
expect that commercial programs for reinforced concrete slabs based on the theory
of plasticity will be available.

3. BASIC EQUATIONS

3.1 Statical conditions

The statical conditions are the same as in the classical thin plate theory, i.e.
the generalized stresses are in rectangular coordinates, x, y, the bending
moments per unit length m and m and the twisting moment m m Besides
we have the shear forces per unît length q and q The statical boundary conditions

are the so-called Kirchhoff boundary conditions requiring only the statical
equivalence of the twisting moment and the shear force on the boundary to correspond

to the internal forces.

It is often overlooked that the Kirchhoff boundary conditions in many cases express
a physical reality, since the shear stresses arising from the twisting moments
really are concentrated along the edges in such a way that it is natural to treat
them as concentrated forces.

A stress field satisfying the equilibrium equations and the statical boundary
conditions is as usual termed a statically, admissible stress field.
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3.2 Geometrical conditions

The generalized strain rates corresponding to the generalized stresses mx, my and

m are the curvature rates k and K and the rate of twist 2k
xy x y

3.3 Yield conditions for orthotropic and isotropic slabs

Yield conditions for slabs can be derived in several ways. The most satisfactory
way, in the authors opinion, is to derive the yield conditions on the basis of
reasonable assumptions concerning the behaviour of the basic materials, concrete
and steel. This was the way used by the author in [63.1] and [64.1], considering
the action of bending and twisting moments in a slab. The basic ideas were already

partly formulated by J0rgen Nielsen [57.1]. The yield condition can also be derived
on the basis of the corresponding yield conditions for plates loaded in their own plans

[63.7]. This method was used by the author in [69.1] and [71.1], giving the same

result as the first mentioned method.

The yield conditions were derived by Massonet and Save too [63.2], on the basis of
Johansen's formulas for the moments in a yield line. Essentially the same method

was used by Wolfensberger [64.2] and Kemp [65.1]. The yield conditions have also
been studied by Morley, [66.1], along similar lines as the author's.

The concrete is assumed to have a tensile strength equal to zero and a square yield
locus.

The reinforcement bars are assumed to be able to carry only tensile or compressive
stresses in their own direction.

Considering an orthotropic slab, i.e. a slab reinforced at the top and at the
bottom in the same two perpendicular directions x and y the yield conditions are
found to be

- (m„ -m (m„ -m + m
2 < 0

Fx x Fy y xy (3.3.1)
- (m' +m (m' +m + m < 0

Fx x Fy y xy
In the equations n^, is the numerical value of the positive yield moment in pure ben

ing in a section perpendicular to the x-axis and is the numerical value of the
negative yield moment in pure bending in a section perpendicular to the x-axis. The

symbols mp and m^ have similar meanings. The first equation in (3.3.1) only
applies wheX m < X and m < m Similarly the second equation only applies
when m > - m ' and m > - m

x Fx y Fy

In a m m m - coordinate system, (3.3.1) corresponds to a surface consisting
of two intersecting cones as shown in Figure 3.3.1.

The expressions are only valid for relatively small degrees of reinforcement, where
the relative extension of the compressive zones in the concrete is small, see [63.1]
and [64.1].

As will be seen the above yield conditions only contains bending and twisting
moments, i.e. in-plane forces are neglected. This is sometimes a more severe limitation

in the theory of reinforced concrete slabs than for metal plates, see section 9.
Further the influence of shear forces in the direction of the slab normal is also
neglected.

A moment field corresponding to points within or on the yield surface is as usual
termed a safe moment field.
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Fig. 3. 3.1

The yield condition has been experimentally confirmed by tests on slabs in pure
torsion, which gave a very good agreement between theory and tests, [69.1][71 .1 ]

Other tests were also carried out, [63.8][67.2][67.3], but the confidence to the
yield conditions derived lies mainly in the agreement between numerous tests on
slabs and the load carrying capacity determined on the basis of the yield conditions.

The corresponding yield conditions for plates loaded in their own plane, [63.7],
have been tested in several cases, [69.1][71.1].

For a rigid plastic structure with the generalized stresses Q. the generalized
strain rates and the yield condition f(£h) 0 the flow rule is

q± A \ > 0 (3.3.2)
i

It is assumed that f < 0 for stresses, which can be carried by the structure.
Geometrically (3.3.2) expresses, that the strain rate vector is an outward normal
to the yield surface.

If the yield surface has an edge or a vertex, the strain rate vector is allowed to
lie within the angle determined by the limits of the normals of the surface, when
the stress vector approaches the edge or the vertex by all ways possible.

For an orthotropic reinforced concrete slab we get for instance in the case where the
first expression in (3.3.1) is valid

k A (m„ - mx Fy y

Ky *(mFx ~ mx) (3.3.3)

k À m
xy xy

Notice that in this region

K K K 2 (3.3.4)x y xy
i.e. one principal curvature rate is zero.

A similar conclusion holds if the second expresssion in (3.3.1) is valid.

The expressions along the edge and the vertices of the yield surface shall not be
dealt with here.The reader is referred to [64.1] or [63.2].

In the special case mpx mF ~ mp ' mFX mF "f the slat) is isotropic, i-e-
the yield condition canXbe wrïtten in terms ofyprincipal moments m^ and m^ only.
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The yield locus is shown in Figure 3.3.2. The principal curvature rates and k^
according to the flow rule (3.3.2) are illustrated in the figure too.

i1 ^
'm2,x2

r" L j
mF

r n,
'

HO*

x" b

mp S -

m x i

Fig. 3.3.2

This yield locus is often referred to as Johansen's yield locus.

If the problem is to design a slab to carry given bending and twisting moments, one
can of course use the expressions for the yield condition to obtain safe values of
the yield moments. Alternatively the reinforcement can be determined by means of the
formulas :

Fx

m'
Fx

m + yx

m +
x

im
xy

Y' Im. I

xy

Fy

m'
Fy

m +
y

Im i
xy

Y'

(3.3.5)
Im I

xy
where y and y' are positive numbers, which can, theoretically, be arbitrarily
chosen. The formulas follow immediately from the corresponding reinforcement formulas

for plates loaded in their own plane, [63 .7][69.1][71.1] A set of formulas
giving optimal reinforcement at the point considered, were developed by the author,
[64.l][69.1][71.1].

It should be noted that if there are twisting moments along an edge, not only the
top and bottom should be reinforced according to the formulas, but the edge itself
should be reinforced, too, for instance by closed stirrups connecting the top and

bottom reinforcement.

3.4 Yield conditions for arbitrarily reinforced slabs

For a plate loaded in its own plane and reinforced in several directions forming
any angle to each other, it may be shown, [69.1], that the yield condition
corresponds to an equivalent orthotropically reinforced plate. For a slab with the same

lines of symmetry at the top and at the bottom the yield condition therefore
corresponds to an equivalent orthotripic slab.

If the lines of symmetry are not the same at the top and at the bottom, yield
conditions can be derived by means of the yield conditions for plates loaded in their
own plane transformed to the coordinate system by means of which the yield condition
is to be described. Braestrup [70.1] showed that the yield condition may also be

formulated in moments referred to axes x,y arbitrarily oriented with respect to
any number of reinforcement directions. The yield surface is bi-conical as the one
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shown on Figure 3.3.1, but the vertices A and C no longer lie in the plane
m 0 We shall however not pursue this matter further here,
xy

4. UPPER BOUND SOLUTIONS

4.1 Upper bound solutions by the work equation method

The upper bound technique is now well-known and described in several books and papers,
see for instance [43.1][53.1][60.3][62.1][62.2][62.3][63.2] and [63.6], therefore we
shall here only be concerned with the most fundamental aspects of the theory.

To establish an upper bound solution for the load carrying capacity of a rigid
plastic slab, one has to find a geometrically possible deflexion rate field, write
down the work equation, which equals the external work and the dissipation, i.e.
the internal work carried out by the generalized stresses corresponding to the
deflexion rate field. The solution of the work equation gives an upper bound for
the load carrying capacity.

Of course the best answer one can get from a geometrically possible deflexion rate
field containing more than one geometrical parameter is the one corresponding to the
lowest load carrying capacity, therefore the solution found by means of the work e-
quation has to be minimized with respect to the geometrical parameters.

The simplest type of geometrically possible deflexion rate fields is obtained by
dealing with deflexion rates corresponding to discontinuities in the angular
deflexion along straight lines, i.e. yield lines. These so-called yield line patterns,
which were first considered by Johansen [43.1] and Gvozdev, see [59.1], can be easily

found for any slab type utilizing the fact that a straight yield line separating
two slab parts has to pass through the point of intersection between the axes of
rotation for the two slab parts in question.

The dissipation along a yield line can be found by considering a yield line to be a
narrow zone with constant curvature rate in one direction only. Let the curvature
rate be k > 0 in the n-direction forming an angle ip to the x-axis, see Figure 4.1.1.

Fig. 4.1.1

Then we have

Kx KCOs2ip
Ky <sin2ip k -Ksintpcoscp (4.1.1)

Inserting these expressions into (3.3.3), and solving the equations with regard to
the moments, we get



(4.1.2)
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Ksin2(p
m m„ r

x Fx A

<cos2cp
m m„ -

y Fy A

Ksinipcos(p
m -xy A

The bending moment is thus

m m cos2tp + m sin2tp - 2m sinlpcosip
n x y xy

m^^cos2^ + mp^sin2tp (4.1.3)

which is the bending moment in a positive yield line.

In a similar way it is possible to calculate the twisting moment in a yield line.
One finds

mnt l(mFx - "V sin2tP (4-X-4)

The formulas express the significant result that the bending and twisting moments
in a yield line can be calculated as if the principal moments were found in sections
coinciding with the directions of the reinforcement, which is naturally not the case
at other points of the yield surface, than those corresponding to m^ 0.

These are the formulas intuitively proposed by Johansen, [43.1], which are thus
consistent with the yield conditions developed later.

In the special case of an isotropic slab where m m m we getFx Fy F

nip (4.1.5)

m 0 (4.1.6)nt
i.e. the bending moment is independent of the angle ip and the twisting moment is
zero.

Similar expressions are of course valid for a negative yield line.

The dissipation D along the yield lines having the discontinuities 6^ in the
angular deflection rates and the arc length d s is

D Jim I 10 Id s (4.1.7)J n n

For practical purposes, however, it is simpler to calculate the work done by the
external and internal forces on each slab part and thereafter summing over all slab
parts. As the work done by an arbitrary system of forces, when it is rotated, is e-
qual to the moment about the axis of rotation times the angle of rotation, the work
equation may be written

ï M ,io. ï M..u. (4.1.8)
j eu 3 i] ]

where- M is the moment about the axis of rotation of the external load acting on
the j'tn slab part, M. is the corresponding moment with opposite sign of the
bending and twisting moments along the yield lines, and u) is the rotation rate
of the j'th slab part. ^

Even though only the bending moment perform work in a yield line, it is naturally
possible to include the work done by the twisting moments, since their contribution
vanishes by summation over all the slab parts, see [64.1],
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It must be strongly emphasized that although the dissipation in a yield line is
always positive, the terms on the left hand side of (4.1.8) may not all be positive.

For a continuous curvature rate field, the dissipation can be found by means of theflow rule and the expression for the internal work.

In the special case of an isotropic slab, the result is

A simple example is a circular "fan", where a circular area or a part of a circular
area is deformed to a cone with vertex in the center. There is a yield line along
the limiting circle.
The dissipation in the more general case of a "fan" where the negative yield line
is an arbitrary curve was derived by Mansfield, [57.2] [60.1] and in a more direct
way by the author [64.1], For the case of nonpolar fans, see [67.4],

4.2 Upper bound solutions by equilibrium methods

Instead of using the work equation on yield line patterns Ingerslev [21.1] and
Johansen [43.1] formulated an alternative approach based on equilibrium equations
for the individual slab parts formed by the yield lines.

The main advantage of the equilibrium method is that the minimizing process in the
work equation method is avoided. Using the equilibrium method the necessary algebra
is often reduced a great deal compared to the work equation method. Furthermore by
the equilibrium method, information is often gained for instance about column reactions

and support reactions, information which cannot be delivered by the work e-
quation method. Finally equilibrium equations may also show, how an estimated yield
line pattern has to be changed in order to furnish a better result.

Ingerslev simply proposed to establish the necessary number of equilibrium equations
by assuming, for an isotrop slab, that the shear forces and the twisting moments
in the yield lines were zero, and that the bending moment for a homogeneously
reinforced slab was constant. He demonstrated the technique in several examples, for
instance the rectangular slab with uniform load. Johansen found that Ingerslev's
solutions were in agreement with the minimized value obtained by the work equation.
However cases were also found, where the two methods were not in agreement. Such a
case is shown in Figure 4.2.1, where a yield line pattern consisting of one positive
yield line, originating from a corner, is considered in a rectangular slab with two
adjacent edges simply supported and the other two edges free.

(4.1.9)

mF cota
A

2 /mF

1/
>7///////////////////

Fig. 4.2.1
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The discrepancy was according to Johansen due to the fact that the shear forces and
twisting moments are not allways zero in a yield line, and he proceeded to determine
the statical equivalence of the shear forces and twisting moments in the form of
concentrated forces at the ends of the yield lines, the so-called nodal forces. One

important assumption in his calculations was that the bending moment has a stationary
value in the yield line.

In the isotropic case considered in Figure 4.2.1, the nodal forces were found to be
two numerically equal but opposite directed forces mFcota at the point, where the
yield line intersects the free boundary.

The nodal force theory of Johansen was not too convincing, and several attempts were
made to improve the theory.

The author, [64.1][65.4], suggested to distinguish between nodal forces, which are
simply the usual Kirchhoff boundary forces, and nodal forces, which are the statical
equivalence of shear forces in internal yield lines. For isotropic slabs Johansen's
theory and the author's gave identical results, while this was not the case for
Ortho tropic slabs.

A sufficient condition for finding identical results by the work equation method
and the equilibrium method is, according to the author's theory that the equilibrium
equations for each slab part that has been formed by the yield lines, are satisfied
in such a way that a so-called stationary moment field may be found in each slab
part. A stationary moment field is a statically admissible, but not necessarily safe,
moment field for which, in the isotropic case, the shear forces and twisting moments
are zero along all internal yield lines.

There are many cases, for which it is impossible to find a stationary moment field,
and in all these cases, it has been found that the nodal forces cannot be determined
by means of general formulas.

Some important examples are slabs, for which the number of geometrical parameters are
not sufficient to make it possible to satisfy all necessary equilibrium equations,
slabs where yield lines end at corners, slabs where yield lines intersect in a
statically impossible way (e.g. three positive and one negative yield line) and slabs
where a yield line passes point loads

Alternative theories explaining the limitations of the Johansen nodal force theory
have been given by Nylander,[60.2][63.5], Kemp, [65.2], Morley, [65.3], Wood, [65.5],
Jones, [65.6] and M011mann, [65.7],

Nodal forces can also be derived for curved yield lines, [43.1][64.1].

A number of solutions with curved yield lines were obtained numerically by the
author, [62.4][63.3].

4.3 Yield line formulas

A collection of solutions for isotropic slabs covering most of the problems met in
practice has been worked out by Johansen, [49.1][72.1] By means of the affinity
theorem, see section 6, the solutions can be used for a class of orthotropic slabs
too.

To deal in an approximate manner by several loading cases Johansen, [43.1], found
some superposition principles, see also [63.2],



M.P. NIELSEN 103

5. LOWER BOUND SOLUTIONS

5.1 Introduction

One disadvantage of the upper bound methods for designing a slab is that it is very
difficult, if not impossible, to vary the reinforcement in accordance with the stresses.

Particularly this disadvantage is felt strongly, when one is concerned with the
problem of determining the extent of top reinforcement, which is generally not carried

through the whole slab. Also the reinforcement near columns and in supporting
beams may constitute a problem when dealing with upper bound methods. Sometimes it
is also argued that the upper bound methods are unsafe, since they lead to an over-
estimation of the load carrying capacity. This is of course, theoretically, correct,
but this point is more or less academic, since the membrane effect generally gives
a reserve capable of compensating more than necessary for this overestimation.

Nevertheless it is quite natural to study the possibilities of approaching the load
carrying capacity from below.

A lower bound solution requires the determination of a statically admissible, safe
stress field.
A number of lower bound solutions exists for isotropic and homogeneously reinforced
slabs, but it is much more difficult by simple means to obtain a lower bound solution

than to obtain an upper bound solution for a slab with given reinforcement.

The problem to find the reinforcement in a given slab is simpler, since then only
a statically admissible stress field is required. Knowing this the necessary
reinforcement can be determined by means of the formulas (3.3.5), which automatically
renders the solution safe.

An extremely simple, statically admissible stress field can sometimes be found using
Hillerborg's strip method [56.1]t59.2][68.4][68.5][74.2], where only bending in two
perpendicular directions is considered.

5.2 The strip method

The idea behind the strip method is that the slab is imagined to carry the load as
two sets of beams at right angles to each other. Namely, if m is made equal to
zero in the equilibrium equation,we get xy

3x 3y

_y _

which is satisfied.

- P

if
(5.2.1)

3x

p + p px y

(5.2.2)

The first and second equation in (5.2.2) are simple beam equations. The sub-division
of the load per unit area p into px and p is arbitrary, and need not be the
same throughout the slab. ^

It is rather evident that this simple method will be rather uneconomical, if the
slab is homogeneously reinforced. If, however, the reinforcement is varied in
accordance with the moment field, the reinforcement volume can easily compete with
upper bound solutions, and, as shown by Hillerborg, [74.2], even exact solutions can
be obtained.
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The strip method can be used for many types of slabs supported on columns, if the
moment field library is supplemented by a statically admissible moment field for a
rectangular slab, uniformly loaded and supported in the middle on a column. Such a
moment field has been developed by Hillerborg. With this moment field for instance,
the slab shown in Figure 5.2.1 can be calculated by first assuming the load to be

Fig. 5,2.1

transferred to the strips passing over the column. Then these strips are calculated
as supported by a uniformly distributed reaction acting on the rectangular part
ABCD. Finally these moment fields are superimposed on the moment field for a loading

opposite to the reaction, acting on the rectangular part ABCD, which is now
imagined as being supported on the column.

The strip method is not as general in its application as the yield line theory, in
fact, it has to be altered and adjusted according to the various types of slabs.

5.3 Simple moment fields for rectangular slabs

The equilibrium equation for a slab can in the special case of uniform loading on rect
angular slabs be satisfied if the bending moments vary as a parabolic cylindrical
surface and if the twisting moments vary as a hyperbolic paraboloid. A moment fieldthis type was first suggested by Prager, [52.1], in his exact solution for the
simply supported square slab, see also [55.1].

It has turned out that many rectangular slabs with different kinds of support conditions
can be treated by the use of the above mentioned moment fields.

A number of solutions have been given by Bach and Nielsen, [78.2],

6. EXACT SOLUTIONS

6,1 Exact solutions for isotropic, homogeneously reinforced slabs

To find an exact solution one has to determine a statically admissible,safe moment
field. The curvature rate field corresponding to this moment field, according to the
flow rule, has to satisfy the compatibility equations and the corresponding deflexion
rate has to satisfy the geometrical boundary conditions.

If the yield condition is satisfied in a zone, we might distinguish between 3 types
o£ yield zones.

In type 1 both principal moments are equal to mp or m^ It is easily shown that
the equilibrium equations can only be satisfied with p 0 The shear forces are
similarly zero. Each section is thus a principal section.
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In type 2 the principal moments are m^ ny and - m^, It may be shown that
in the case p 0 the principal sections form a Hencky net (slip line net). This
static analogy was first pointed out by Johansen, [43.1] and developed further by
the author, [52.5][64.l], A corresponding geometrical analogy was described by
Johnson [69.2] and the complete analogy by Collins [71.2],

In a yield zone of type 3 there is only yielding in one principal direction. For
instance we might have m^ mp - m^ < < m^, where the equals sign is only valid

at certain points. Therefore

K1K2 K K •

x y
2 _

Ki+K2 > 0

xy
or

0

K1 + K2 <
(6.1.2)

everywhere

The general solution to (6.1.2) is developable surfaces. The curves along which the
principal curvature is zero are straight lines (generatrices) The possible surfaces
are conical, cylindrical and tangential surfaces.

There exists a number of exact solutions for isotropic slabs, some of which are
given in Figure 6.1.3.

The solutions a, b and c was given by Johansen, [43.1]
the well-known solution P

The solution contains
2iT(mF+mp), which is valid for a concentrated force acting

on a circular slab with fixed or simply supported edges as special cases. As
showed by Haythornthwaite and Shield [58.1], the solution is valid for an arbitrary
fixed slab g.

Exact solutions for circular slabs are relatively easy to obtain when the loading
is rotationally symmetrical. Mention should be made of an interesting solution
obtained by Nylander [59.3], for the case of a slap supported on both an exterior and
an interior circular support, where two radial fields, separated by a circular yield
line, do not solve the problem as could be expected.

Solution d was given by Prager, [52.1], and solutions e and f by Wood, [62.3].
Johansen gave solution f as an upper bound solution, [43.1], Solutions h - p are
the author's, [62.5][63.4][64.1].

The solution
theory.

p and some other known solutions have equivalents in the slip line

Ingerslev's yield line solution for the rectangular slab was shown by the author to
be exact only if the negative yield moment has a certain value ranging from m'
m for a square slab toF 3m„F F for a very long slab [64.1].

The clamped square slab for a long time denied its solution. In fact it was being
claimed that the problem had no solution according to the present plastic theory,
[68.3], However in 1974 it was shown by Fox, [74.1], that the exact load carrying
capacity in the case 11^ 111^, is p a2/!^ 42.851.

Fig. 6.1.2

p a / m 42.851
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The solution turned out to be rather complicated containing one region CAE with a
yield zone of type 3 and one region A ED with a yield zone of type 2. Finally there
is a rigid portion EBD.

Fox, [72.21, also solved the rectangular simply supported slab with a concentrated
force.

Finally a class of solutions was developed by Massonnet [67.1].

a)

d) a

0

6(mf+mr)

a
s-

b(1~T
2nbp- P-«-2ii(rryfrr{.)
for b-«-o

p

b -0

f—~
p-^yMm?rr^) p=^f (rr^fnry,bîa) P =4 (Vrry rrÇWnyrry Arctgab ' f

Fig. 6.1.3(continued)
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6.2 The affinity theorem

For a special class of orthotropic slabs exists an interesting affinity theorem. It
was developed by Johansen [43.1] for upper bound solutions and extended to lower
bound solutions and exact solutions by the author [64.1].

The special class of orthotropic slabs for which the theorem is valid is characterized
by mFx mF, m^ m^, yi^ and m^ ym^,

The affinity theorem enables one to transform solutions for isotropic slabs to a
special but rather general class of orthotropic slabs. This implies that for most
practical purposes only calculations for isotropic slabs need to be performed.

7. ANALYTICAL OPTIMUM REINFORCEMENT SOLUTIONS

It is a natural task for a designer to look for one or another kind of optimal
solution.

A fundamental question in the plastic theory for reinforced concrete slabs is to find
the absolute minimum of the reinforcement volume for a given slab, with a prescribed
load.

Considerable progress in answering this question has been gained by the work of
Morley, Lowe and Melshers, Rozvany and others. A review paper containing most of the
available information has been written by Rozvany and Hill [76.1], to which the
reader is referred.

If the slab thickness has been given and if the variation of the compressive zones
in the concrete is neglected, the Drucker-Shield criterion for minimum volume of a
plastic structure, [56.2], immediately shows that one has to look for a constant
principal curvature rate field throughout the slab, to which it is possible to
assign a principal moment field corresponding in direction and sign to the curvature

field. For many important cases the curvature rate field is the same for a
wide class of load configurations on the same slab.
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Morley, [66.2], gave a solution for the simply supported square slab, which is
illustrated in Figure 7.1.

Fig. 7.1

In the region BD F H the two principal curvature rates are positive and equal. In
the triangular regions the principal curvature rates are equal and have opposite
signs. A load acting in the region BD F H is transferred to the infinitely narrow
beams BD DF F H and HB by strip action. The strips can be arbitrarily selected.
A load acting in the triangular regions can for instance be carried by strips lying
under 45 to the edges and spanning from support to support.

A great number of solutions of this kind have been given by Rozvany anf Hill, [76.1].

It will be seen that the reinforcement has to be rather artificially arranged. A

special problem is furnished if concentrated reinforcement bands in, theoretically,
infinitely narrow beams is required since this might give rise to problems concerning

the concrete stresses.

Anyway the optimal solutions are extremely useful as a basis for comparisons with
the kind of solutions which for one reason or another are preferred by the designer.

Optimization of reinforcement with such constraints as to render the solutions more
practical has also been considered. References may be found in the review paper by
Rozvany and Hill, see also section 8.

8. NUMERICAL METHODS

The development of electronical computers has opened up new possibilities for finding

approximate solutions to structural problems.

To find lower bound solutions in the plastic theory, one needs to create a
sufficiently wide class of statically admissible stress fields and to find the one
corresponding to the greatest load factor. Statically admissible stress fields can
be created for instance by means of the finite element method, where the stress
field within each element is expressed by a number of parameters. Equilibrium
requirements within the element, continuity requirements along the element boundaries
and the statical boundary conditions lead to a set of linear equations.

If the yield conditions are linearized, one gets a set of linear constraints, which
together with the equilibrium equations constitutes a linear programming problem for
the determination of the largest load which can be carried by the slab.
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A similar method can be used in order to determine optimal reinforcement arrangements
both in cases where the reinforcement is allowed to vary from point to point and in
cases where the reinforcement arrangement is subject to certain geometrical constraints.

In Figure 8.1 a solution obtained by Pedersen [74.3] for the clamped square slab
uniformly loaded (mp m^) is illustrated.
The finite element used was a rectangular element with bending moments varying as
a parabolic cylindrical surface and twisting moments varying as a hyperbolic
paraboloid, i.e. the load within each element was assumed to be constant.

The linearized yield conditions used were

m
X

+ m
xy

< "Vx

-m
X

+ m
xy

< mFx

m
y

+ m
xy

<
Fy

1s + m
xy

< m'
Fy

(8.1)

These equations were checked at the corners and in the middle of the element. However

for the solutions obtained, the correct yield condition (3.3.1) were checked
in a finer mesh, and the solution was proportioned if needed to fulfill the correct
yield condition in all check points.

The figure shows the load carrying capacity obtained as a function of the mesh size.
Also the total computer time is shown for some of the calculations.

As mentioned in section 6.1 the exact solution is p a2 / m„ 42.851, which means
F

that the best numerical solution deviates only a few percent from the exact one.
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The first calculations of this kind reported in the littérature were these of
Wolfensberger, [64.2], whose procedure was very similar to that described above.
Also Anderheggen, [72.4], Ceradini, [65.11], Gavarini, [66.4] and Sacchi, [66.5]
have adopted such an approach.

Instead of using linear programming for the determination of the load carrying
capacity of reinforced concrete slabs, Chan, [72.3], has used quadratic programming,
which however led to considerably higher computer times.

Another approach has been used by Bäcklund, [73.1], who determined upper and lower
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bounds by following the complete behavior of the slab when the load grows from zero
to the ultimate value.

Linear programming methods require a large computer and computer times far exceeding

those required for linear elastic calculations. Nevertheless it is to be expected
that in the near future commercial programs based on the plastic theory of reinforced
concrete slabs will be in operation.

9. MEMBRANE ACTION

The theory presented neglects the fact that the strain field, corresponding to bending

and twisting moments only, always results in strains in the slab middle surface,
and these strains do not generally satisfy the compatibility equations and the
geometrical boundary conditions. This leads to in-plane forces in the slab.

Further the rigid plastic theory in its standard formulation (1st order theory)
neglects effects of changes in geometry. Since plates and reinforced concrete slabs
often are rather flexible structures, the changes in geometry sometimes has
a considerable effect on the load carrying capacity. These effects are often
called membrane effects, and one speaks about a compressive membrane effect, which
often predominates at small deflections and of a tensile membrane effect, which
is dominating at larger deflections.

In plane forces arise already in the early stages of cracking.

A uniformly loaded, simply supported square slab often has a load-deflection
relationship of a type shown in Figure 9.1. Instead of yielding under constant load, one

rigid plastic
1 st order theory

Deflection

igid
plastic
1st order
theory

Deflection

Fig. 9.1 Fig, 9.2

hardly observes anything peculiar at the load corresponding to the rigid plastic 1st
order theory. The real collapse load generally is somewhat higher than the rigid
plastic 1st order load. Small degrees of reinforcement lead to relatively higher
collapse loads compared to the rigid plastic 1st order load than higher degrees of
reinforcement.

Quite different behavior is observed for a clamped slab if horizontal displacements
are prevented along the edges. A typical load deflection curve is shown in Figure
9.2.

Failure is here by a snap-through action after which the load approximately reaches
the rigid plastic 1st order load. Finally the load is again increased through a
tensile membrane action. The maximum load may far exceed the rigid plastic 1st order
load.
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A theoretically correct determination of the full load deflection curve taking account
of the elastic deformations, cracking of the concrete, realistic constitutive equations

of the concrete until failure and the effect of changes in geometry is extremely
complicated and has not yet been obtained.

Estimates of the effect of changes in geometry can however be obtained relatively
simple by means of a series of upper bound calculations assuming the form of the
deflected slab to be known. For instance a circular slab loaded at the center by a
point load can be assumed to deflect as a cone similar to the deflection rate cone
found by 1st order rigid plastic theory. Similarly a square slab can be assumed to
deflect into a pyramidal form corresponding to the deflection rate form found by
1st order rigid plastic theory, too.

Having fixed the deflected form it is a relatively simple task by means of the usual
upper bound technique to calculate the load corresponding to the deflected form
assumed. The load carrying capacity of course turns out to be a function of the
deflection.

For a simply supported slab, respectively a clamped slab, the load deflection curve
obtained in this way will be of the type shown in Figure 9.3 and Figure 9.4.

Load

rigid plastic
1st order theory

Deflection
Fig. 9.3

1 Load

rigid plastic
1st order
theory

Fig, 9.4

Deflection

The maximum load found for the clamped slab will not be reached in practice because
of the elastic deformations neglected.

As shown by Calladine, [68.2], the calculations in several cases turn out to be very
much simpler using the 3-dimensional theory instead of the 2-dimensional theory usually

adopted in slab theory.

Because of the great effect of the elastic deformations on the load carrying capacity
of clamped slabs, the rigid plastic theory cannot be used with confidence in practice.
Since large reserves in load carrying capacity are inherent in the effect of changes
in geometry, one of the most urgent needs of slab research is to create a reliable
design method capable of utilizing these reserves.

Although already Johansen, [43.1], was aware of the tensile membrane action, the
first to demonstrate the great effect of restrained edges was Ockleston, [55.2], who
in a test series on a condemned building became aware of a break-down of the rigid
plastic 1st order theory for internal slab parts. Several research workers have
since that time studied the problem theoretically and experimentally, among them
Wood, [62.3] and Park, [64.3]. An upper bound analysis of a type described above
were among others performed by Sawczuk, [64.6][65.9], Janas and Sawczuk, [66.3],
Morley, [67.6], Janas, [68.1] and, as mentioned already, by Calladine, [68.2]. A

littérature survey has been performed by Bäcklund [72.5]. Concerning membrane action,
see also [58.2][63.9][64.4][64.5][65.8][65.10][67.5][73.2][75.1][78.1].
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NOTATIONS

©

+

vN-*XXX*

Concentrated force
Downward-directed concentrated force

Upward-directed concentrated force

Yield line
Simply supported edge

Fixed edge

Free edge

Line load
Column without restraint
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