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The Theory of Plasticity for Reinforced Concrete Stabs
La théorie de la plasticité pour des dalles en béton armé

Die Plastizitatstheorie von Stahlbetonplatten

M.P. NIELSEN

Professor, Dr. techn.

Structural Research Laboratory, TU
Lyngby, Denmark

SUMMARY

The paper presents a short survey of the plastic theory of reinforced concrete slabs. Only the most
fundamental aspects of the theory together with a short introduction to new areas of development
have been dealt with.

RESUME

Le rapport présente une revue sommaire de la théorie de |a plasticité appliguée aux dalles en béton
armé. Seuls les aspects les plus fondamentaux de la théorie ainsi gu'une bréve introduction des nouvelles
possibilités de développement ont été préseniés.

ZUSAMMENFASSUNG

Die Abhandlung bietet eine kurze Ubersicht (ber die heutigen Kenntnisse der Plastizitatstheorie von
Stahlbetonplatten. Nur die wesentlichsten Aspekte der Theaorie werden behandelt und eine kurzgefasste
Einflhrung zu neueren Entwicklungen wird gegeben.
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1. INTRODUCTION

The aim of this paper is to present a survey of what is known in the theory of plas-
ticity for reinforced concrete slabs.

Since the number of papers and books on the slab theory is very great, the refer-
ences given are some selected papers, which in the authors opinion can be recom-
mended as a starting point for further study of one particular specialized subject.

A number of important aspects of the theory have been left out of discussion because
of space limitations. Such problems are rotation capacity problems, the application
of the linear elastic solution as a lower bound solution, rules concerning the
practical use of yield line theory and several others.

2. HISTORICAL REVIEW

The first contribution to the plastic theory of reinforced concrete slabs was made by
the Danish engineer, Aage Ingerslev, [21.1] [23.1]. In 1921, he proposed a method

of calculation based upon the assumption of constant bending moments along certain
so-called yield lines. Several of Ingerslev's solutions have later proved to be
exact, and his very early work has been of fundamental importance to the develop-
ment of the theory.

Further pioneer work in this field was done by K.W.Johansen, [31.1]1{32.1]1[32.2]
[43.1]1049.11[62.11[72.1]. In his doctoral thesis from 1943 the theory took a
very long step towards its final form.

In Johansen's work the yield lines had a geometrical meaning too, i.e. as lines
along which a relative rotation of the slab parts meeting at the yield line takes
place. Utilizing this he was able to define geometrically admissible yield line
patterns and further his introduction of the work equation put him in a position
to calculate upper bounds for the load carryving capacity. These contributions were
of significance not only_ in the development of the slab theory but also, in general,
in the development of the theory of rigid plastic materials. Mention should also be
made of the introduction of the nodal force concept in the so-called egquilibrium
method, which sometimes considerably facilitates the calculation of upper bound
solutions. His nodal force theory has, however, been the subject of some critisism,
and several alternative theories have been formulated, see section 4.

Concurrentiy with Johansens work in Demmark, corresponding work was carried out
in Russia, inter alia, by Gvozdev, see [59.1], in which Gvozdev's work is described.

One of the most important theoretical problems left unsolved by Johansen was the-
establishment of yield conditions. This basic information was not needed by Johansen,
since he was able in a more or less intuitive way to £ind formulas for the work done
in a yield line.

Yield conditions in the general case of orthotropic slabs were developed by the
author, [63.11[64.11(69.1]1(71.1], and by Massonnet and Save [63.2], Wolfensberger
[64.2], Kemp [65.1] and Morley [66.1].

It turned out that Johansen's formulas for the work in a yield line were in com-
plete agreement with the yield conditions established. Hereby was his upper bound
method put into the framework of the general theory of rigid plastic materials.

An early attempt to find a safe method for the calculation of the load carrying
capacity was made by Hillerborg, [56.1]1[59.2]. He proposed to design seéveral types
of slabs by assuming the load to be carried only by bending mcments in two perpen-
dicular directions. To be economical, this so-called strip method generally requires
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the reinforcement to be varied through the slab. The strip method has been further
developed by Hillerborg himself [74.2] and by others [68.4]1[68.5].

At the middle of the sixties the slab theory had almost obtained a final form and
at that time it appeared as a special and useful case of the general theory of rigid
plastic materials.

The developments since then have been concerned with three main subjects.

Firstly the theory as it was developed at the middle of the sixties had only taken
account of bending and twisting moments,i.e. the in-plane forces were neglected.
This is a more severe restriction in the theory of reinforced concrete slabs than

in the classical theory of plates, since strains in the middle plane in a reinforced
concrete slab develop, not only because of second order strain effects, but also
because of the fact, that as soon as the concrete cracks the neutral axis seldom
lies in the middle plane. Therefore the cracking leads to in-plane forces, espe-
cially if the slab edges are restrained. The membrane effect was first studied by
Ockleston, {[55.2]. :

The membrane effect often leads to a considerably higher load carrying capacity
than calculated by taking account of the bending effects only.

Several papers have been published on the subject since, see section 9, but a
general, practical design method has not yet been formulated.

Secondly the general development in optimization theory has also touched the rein-
forced concrete slab theory. The first results were reported by Wood [62.3]and Morley
[66.2] ,who gave an exact solution for the simply supported square slab. Since then consid-
erable progress has taken place and a great number of exact solutions exist, see section 7.

Thirdly the rapid development in automatic data processing has lead to a formula-
tion of automatic design methods also in the reinforced concrete slab theory. One
of the first contributicns in this field was that of Wolfensberger [64.2]. The sub-
ject is now in a rapid development, see section 8, and in the near future one might
expect that commercial programs for reinforced concrete slabs based on the theory
of plasticity will be available.

3. BASIC EQUATIONS

3.1 Statical conditions

The statical conditions are the same as in the classical thin plate theory, i.e.
the generalized stresses are in rectangular coordinates, x, y, the bending mo-
ments per unit length m_ and m and the twisting moment m = m - Besides
we have the shear forces per unYt length g and g . The stﬁzical bgﬁndary condi-
tions are the so-called Kirchhoff boundary Conditidns requiring only the statical
equivalence of the twisting moment and the shear force on the boundary to corre-
spond to the internal forces.

It is often overlooked that the Kirchhoff boundary conditions in many cases express
a physical reality, since the shear stresses arising from the twisting moments
really are concentrated along the edges in such a way that it is natural to treat
them as concentrated forces.

A stress field satisfying the equilibrium equations and the statical boundary con-
ditions is as usual termed a statically, admissible stress field.
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3.2 Geometrical conditions

The generalized strain rates corresponding to the generalized stresses m_. my and

m are the curvature rates k_ and K and the rate of twist 2x .
Xy X Y Xy

3.3 vield conditions for orthotropic and isotropic slabs

vield conditions for slabs can be derived in several ways. The most satisfactory

way, in the author’s opinion, is to derive the yield conditions on the basis of
reasonable assumptions concerning the behaviour of the basic materials, concrete

and steel. This was the way used by the author in [63.1] and .[64.1], considering

the action of bending and twisting moments in a slab. The basic ideas were already
‘partly formulated by Jgrgen Nielsen [57.1]. The yield condition can also be derived

on the basis of the corresponding yield conditions for plates loaded in their own plan¢
[63.7]. This method was used by the author in [69.1) and [71.1), giving the same re-
sult as the first mentioned method.

The yield conditions were derived by Massonet and Save too [63.2], on the basis of
Johansen's formulas for the moments in a yield line. Essentially the same method
was used by Wolfensberger [64.2] and Kemp [65.1]. The yield conditions have also
been studied by Morley, (66.1], along similar lines as the author's.

The concrete is assumed to have a tensile strength egual to zero and a square yield
locus, :

The reinforcement bars are assumed to be able to carry only tensile or compressive
stresses in their own direction. '

Considering an orthotropic slab, i.e. a slab reinforced at the top and at the
bottom in the same two perpendicular directions x and y , the yield conditions are
found to be ‘ :

- (m_ -m )(m_ ~m ) +m %<0
Fx x F X =
y v ’ - - (3.3.1)
- L= ]
(mFx mx)(mFy+my) + mXy <0
In the equations " is the numerical value of the positive yield moment in pure ben
ing in a section perpendicular to the x-axis and m' is the numerical value of the

negative yield moment in pure bending in a section pérpendicular to the x-axis. The

symbols m, and m' have similar meanings. The first equation in (3.3.1) only
applies wheh m_ < and m_<m Similarly the second equation only applies

X = Fx v = Fy’
h > - m! > -m!s .
when m > - and my 2 mFy
Inam,m, m - coordinate system, (3.3.1) corresponds to a surface consisting

@ XVY.
of two 1ntgrsec¥1nq cones as shown in Figure 3.3.1.

The expressions are only valid for relatively small degrees of reinforcement, where

the felat%ve extension of the compressive zones in the concrete is small, see [63.1]
and [64.1]. '

As will be seen the above yield conditions only contains bending and twisting mo-
ments, i.e. in-plane forces are neglected. This is sometimes a more severe limita-
tion in the theory of reinforced concrete slabs than for metal plates, see section 9.
Further the influence of shear forces in the direction of the slab normal is also
neglected. '

A moment fie€ld corresponding to points within or on the yield surface is as usual
termed a safe moment field.
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Fig. 3.3.1

The yield condition has been experimentally confirmed by tests on slabs in pure
torsion, which gave a very good agreement between theory and tests, [69.1][71.1].

Other tests were also carried out, [63.8]1167.2][67.3], but the confidence to the
yield conditions derived lies mainly in the agreement between numerous tests on
slabs and the load carrying capacity determined on the basis of the yield condi-
tions.

The corresponding yield conditions for plates loaded in their own plane, [63.7],
have been tested in several cases, [69.1][71.1].

For a rigid plastic structure with the generalized stresses ¢, , the generalized

strain rates q9; and the yield condition f(Qi) = 0 , the flow rule is
af
qi—A—a—Q—i A >0 (3.3.2)

It is assumed that £ < 0 for stresses, which can be carried by the structure.
Geometrically (3.3.2) expresses, that the strain rate vector is an outward normal
to the yield surface.

If the yield surface has an edge or a vertex, the strain rate vector is allowed to
lie within the angle determined by the limits of the normals of the surface, when
the stress vector approaches the edge or the vertex by all ways possible.

For an orthotropic reinforced concrete slabwe get for instance in the case where the
first expressionin (3.3.1) is valid

Ky = %(mFy - my)
Ky = ?\(mFX -m ) (3.3.3)
K = A m
Xy Xy
Notice that in this region
=k 2 (3.3.4)

K K
Xy Xy
i.e. one principal curvature rate is zero.

A similar conclusion holds if the second expresssion in {(3.3.1}) is wvalid.

The expressions along the edge and the vertices of the yield surface shall not be
dealt with here.The reader is referred to [64.1] or [63.2].

In the special case m =m,, =m, , m'x =m! =m' the slab is isotropic, i.e.
the yield condition can be wr¥tten in terms ogyprincipal moments m, and m, only.
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The yield locus is shown in Figure 3.3.2. The principal curvature rates «, and K
according to the flow rule (3.3.2) are illustrated in the figure too.

Amyx,
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me Me

Fig. 3.3.2
This yield locus is often referred to as Johansen's yield locus.

If the problem is to design a slab to carry given bending and twisting moments, one
can of course use the expressions for the yield condition to obtain safe values of
the yield moments. Alternatively the reinforcement can be determined by means of the
formulas:

1
m, =m_+ vy im_| m_ =m + = im |
F 5
X X XY Fy Nz Y 1xy (3.3.5)
[ ] = + ] 1 E - v
ml m o+ lmxyl | mFy my + > lmxyf

where vy and y' are positive numbers, which can, theoretically, be arbitrarily
chosen. The formulas follow immediately from the corresponding reinforcement formu-
las for plates loaded in their own plane, [63.71[69.1][71.1]. A set of formulas
giving optimal reinforcement at the point considered, were developed by the author,
(64.11[69.1]1[71.1].

It should be noted that if there are twisting moments along an edge, not only the
top and bottom should be reinforced according to the formulas, but the edge itself
should be reinforced, too, for instance by closed stirrups connecting the top and
bottom reinforcement.

3.4 Yield conditions for arbitrarily reinforced slabs

For a plate loaded in its own plane and reinforced in several directions forming
any angle to each other, it may be shown, [69.1], that the yield condition corre-
sponds to an equivalent orthotropically reinforced plate. For a slab with the same
lines of symmetry at the top and at the bottom the yield condition therefore corre-
sponds to an equivalent orthotripic slab.

If the lines of symmetry are not the same at the top and at the bottom, yield con-
ditions can be derived by means of the yield conditions for plates loaded in their
own plane transformed to the coordinate system by means of which the yield condition
is to be described. Braestrup [70.1] showed that the yield condition may also be
formulated in moments referred to axes x,y arbitrarily oriented with respect to
any number of reinforcement directions. The yield surface is bi-conical as the one
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shown on Figure 3. 3.1, but the vertices A and € no longer lie in the plane

mxy = 0 . We shall however not pursue this matter further here.

4. UPPER BOUND SCLUTIONS

4.1 Upper bound solutions by the work equation method

The upper bound technique is now well-known and described in several books and papers,
see for instance [43.11[53.1][60.31[62.11[62.2]{62.3]1[63.2] and [63.6], therefore we
shall here only be concerned with the most fundamental aspects of the theory.

To establish an upper bound solution for the load carrying capacity of a rigid
plastic slab, one has to find a geometrically possible deflexion rate field, write
down the work equation, which equals the external work and the dissipation, i.e.
the internal work carried out by the generalized stresses corresponding to the
deflexion rate field. The solution of the work equation gives an upper bound for
the load carrying capacity.

Of course the best answer one can get from a geometrically possible deflexion rate
field containing more than cne gecmetrical parameter is the one corresponding to the
lowest load carrying capacity, therefore the solution found by means of the work e-
quation has to be minimized with respect to the geometrical parameters.

The simplest type of geometrically possible deflexion rate fields is obtained by
dealing with deflexion rates corresponding to discontinuities in the angular de-
flexion along straight lines, i.e. yield lines. These so-called yield line patterns,
which were first considered by Johansen {43.1] and Gvozdev, see [59.1], can be easi-
ly found for any slab type utilizing the fact that a straight yield line separating
two slab parts has to pass through the point of intersection between the axes of
rotation for the two slab parts in question.

The dissipation along a yield line can be found by considering a yield line to be a
narrow zone with constant curvature rate in one direction only. Let the curvature
rate be ¥k > 0 in the n-direction forming an angle ¢ to the x-axis, see Figure 4.1.1,

- X
P
i
t Ty n
Fig. 4.1.1
Then we have
— 2 — D .
K = kcos“Q K = KSln = -
” v o ny KksinPcosy (4.1.1)

Inserting these expressions into (3.3.3), and solving the equations with regard to
the moments, we get
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. 2
_ _ kKsin“Q
My 7 Mpx A
2
Kcos- P
= - = 4.1,
my mFy 3 ( 2)
KSsinpcosyP
m = — e
b’ A

The bending moment m is thus
2 f ; =
m_=m cos‘P+m sin“@- 2m__sinPcosP =
5 . o v © Xy (PpcosP

mFxcoszw-kmFysinzm (4.1.3)

which is the bending moment in a positive yield line.

In a similar way it is possible to calculate the twisting moment in a yield line.
One finds
1

m = E(m

nt

g mFy)51n2w (4.1.4)

The formulas express the significant result that the bending and twisting moments

in a yield line can be calculated as if the principal moments were found in sections
coinciding with the directions of the reinforcement, which is naturally not the case
at other points of the yield surface, than those corresponding to mxy = 0.

These are the formulas intuitively proposed by Johansen, [43.1], which are thus con-
sistent with the yield conditions developed later.

In the special case of an isotropic slab where Moy = mFY =m, , we get

mn
n

my, (4.1.5)

i

: 4.1.

m_ . 0 ( 6)
i.e. the bending moment is independent of the angle ¢ , and the twisting moment is
zero.

Similar expressions are of course valid for a negative yield line.

The dissipation D along the yield lines having the discontinuities en in the
angular deflection rates and the arc length ds, is

D= flm Il _lds (4.1.7)

For practical purposes, however, it is simpler to calculate the work done by the
external and internal forces on each slab part and thereafter summing over all slab
parts. As the work done by an arbitrary system of forces, when it is rotated, is e-
qual to the moment about the axis of rotation times the angle of rotation, the work
equation may be written

I M .w, = LM, . 0, (4.1.8)
€3 3] . 13 ]
3 J
where M 5 is the moment about the axis of rotation of the external load acting on
the j'tﬁ slab part, M., is the corresponding moment with opposite sign of the

; o i : ; . .
bending and twisting momants along the yield lines, and w. is the rotation rate
of the j'th slab part. 4

Even though only the bending moment perform work in a yield line, it is naturally
possible to include the work done by the twisting moments, since their contribution
vanishes by summation over all the slab parts, see {64.1].
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It must be strongly emphasized that although the dissipation in a yield line is
always positive, the terms on the left hand side of (4.1.8) may not all be posi-
tive.

For a continuous curvature rate field, the dissipation can be found by means of the
flow rule and the expression for the internal work.

In the special case of an isotropic slab, the result is
=1 1 ‘ 1

D =5 [flzta tml) (e 1416, 1) + F(mmnl) (<, +¢,) Jax dy (4.1.9)
A simple example is a circular "fan", where a circular area or a part of a circular
area is deformed to a cone with vertex in the center. There is a yield line along
the limiting circle.
The dissipation in the more general case of a "fan" , where the negative yield line
is an arbitrary curve , was derived by Mansfield, [57.2])[60.1] and in a more direct

way by the author [64.1]. For the case of nonpolar fans, see [67.4].

4.2 Upper bound solutions by equilibrium methods

Instead of using the work equation on yield line patterns Ingerslev [21.1) and
Johansen [43.1] formulated an alternative approach based on equilibrium eguations
for the individual slab parts formed by the yield lines.

The main advantage of the equilibrium method is that the minimizing process in the
work eguation method is avoided. Using the equilibrium method the necessary algebra
is often reduced a great deal compared to the work equation method. Furthermore by
the equilibrium method, information is often gained for instance about column reac-
tions and support reactions, information which cannot be delivered by the work e-
quation method. Finally equilibrium equations may also show, how an estimated yield
line pattern has to be changed in order to furnish a better result,

Ingerslev simply proposed to establish the necessary number of equilibrium equations
by assuming, for an isotrop slab, that the shear forces and the twisting moments

in the yield lines were zero, and that the bending moment for a homogeneously re-
inforced slab was constant. He demonstrated the technique in several examples, for
instance the rectangular slab with uniform load. Johansen found that Ingerslev's
solutions were in agreement with the minimized wvalue obtained by the work equation.
However cases were also found, where the two methods were not in agreement. Such a
case is shown in Figure 4.2.,1, where a yield line pattern consisting of one positive
yield line, originating from a corner, is considered in a rectangular slab with two
adjacent edges simply supported and the other two edges free.
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The discrepancy was according to Johansen due to the fact that the shear forces and
twisting moments are not allways zero in a yield line, and he proceeded to determine
the statical equivalence of the shear forces and twisting moments in the form of con-
centrated forces at the ends of the yield lines, the so-called nodal forces. One im-
portant assumption in his calculations was that the bending moment has a stationary
value in the yield line.

In the isotropic case considered in Figure 4.2.1, the nodal forces were found to be
two numerically equal but opposite directed forces chota at the point, where the
vield line intersects the free boundary.

The nodal force theory of Johansen was not too convincing, and several attempts were
made to improve the theory,

The author, [64.1]1[65.4], suggested to distinguish between nodal forces, which are
simply the usual Kirchhoff boundary forces, and nodal forces, which are the statical
equivalence of shear forces in internal yield lines. For isotropic slabs Johansen's
theory and the author's gave identical results, while this was not the case for or-
thotropic slabs.

A sufficient condition for finding identical results by the work equation method

and the equilibrium method is, according to the author's theory , that the equilibrium
equations for each slab part that has been formed by the yield lines, are satisfied
in such a way that a so-called stationary moment field may be found in each slab
part. A stationary moment field is a statically admissible, but not necessarily safe,
moment field for which, in the isotropic case, the shear forces and twisting moments
are zero along all internal yield lines.

There are many cases, for which it is impossible to find a stationary moment field,
and in all these cases, it has been found that the nodal forces cannot be determined

by means of general formulas.

Some important examples are slabs, for which the number of geometrical parameters are
not sufficient to make it possible to satisfy all necessary equilibrium equations,
slabs where yield lines end at corners, slabs where yield lines intersect in a sta-
tically impossible way (e.g. three positive and one negative yield line} and slabs
where a yield line passes pcint loads .

Alternative theories explaining the limitations of the Johansen nodal force theory
have been given by Nylander,[60.21[63.5], Kemp, [65.21, Morley, [65.3], Wood, [65.5],
‘Jones, [65.6] and Mgllmann, [65.7]. :

Nodal forces can also be derived for curved yield lines, [43.1][64.1].

A number of solutions with curved yield lines were obtained numerically by the
author, [62.4][63.3].

4.3 Yield line formulas

A collection of sclutions for isotropic slabs covering most of the problems met in
practice has been worked out by Johansen, [49.1][72.1]. By means of the affinity
theorem, see section 6, the solutions can be used for a class of orthotropic slabs
too.,

To deal in an approximate manner by several loading cases Johansen, [43.1], found
some superposition principles, see also [63.2].
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5. LOWER BOUND SOLUTIONS

5.1 Introduction

One disadvantage of the upper bound methods for designing a slab is that it is very
difficult, if not impossible, to vary the reinforcement in accordance with the stress-
es. Particularly this disadvantage is felt strongly, when one is concerned with the
problem of determining the extent of top reinforcement, which is generally not car-
ried through the whole slab. Also the reinforcement near columns and in supporting
beams may constitute a problem when dealing with upper bound methods. Sometimes it

is also argued that the upper bound methods are unsafe, since they lead to an over-
estimation of the locad carrying capacity. This is of course, thecretically, correct,
but this point is more or less academic, since the membrane effect generally gives

a reserve capable of compensating more than necessary for this overestimation.

Nevertheless it is quite natural to study the possibilities of approaching the load
carrying capacity from below.

A lower bound solution requires the determination of a statically admissible, safe
stress field.

A number of lower bound solutions exists for isotropic and homogeneously reinforced
slabs, but it is much more difficult by simple means to obtain a lower bound solu-
tion than to obtain an upper bound solution for a slab with given reinforcement.

The problem to find the reinforcement in a given slab is simpler, since then only
a statically admissible stress field is required. Knowing this the necessary rein-
forcement. can be determined by means of the formulas (3.3.5), which automatically
renders the solution safe.

An extremely simple, statically admissible stress field can sometimes be found using
Hillerborg's strip method [56.11[059.21[68.4]1[68.5}[74.2], where only bending in two

perpendicular directions is considered.

5.2 The strip method

The idea behind the strip method is that the slab is imagined to carry the load as
two sets of beams at right angles to each other, Namely, if m is made equal to
zero in the equilibrium equation,we get =¥

32m 32y

X Y

-+ = - p (5-2.1)
ax? dy?
which is satisfied, if

3%m

X _ -
ax? ® A
3%m

L=-p (5.2.2)
ay2 Y

-+ =
PX Py b “J

The first and second equation in (5.2.2) are simple beam equations. The sub-division
of the load per unit area p into Py and p is arbitrary, and need not be the
same throughout the slab. ¥

It is rather evident that this simple method will be rather uneconomical, if the
slab is homogeneocusly reinforced. If, however, the reinforcement is varied in ac-
cordance with the moment field, the reinforcement volume can easily compete with

upper bound solutions, and, as shown by Hillerborg, [74.2], even exact solutions can
be obtained.
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The strip method can be used for many types of slabs supported on columns, if the
moment field library is supplemented by a statically admissible moment field for a
rectangular slak, uniformly loaded and supported in the middle on a column. Such a
moment field has been developed by Hillerborg. With this moment field for instance,
the slab shown in Figure 5.2.1 can be calculated by first assuming the load.to be
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transferred to the strips passing over the column. Then these strips are calculated
as supported by a uniformly distributed reaction acting on the rectangular part
ABCD. Finally these moment fields are superimposed on the moment field for a load-
ing opposite to the reaction, acting on the rectangular part ABCD, which is now
imagined as being supported on the ¢olumn.

The strip method is not as general in its application as the yield line theory, in
fact, it has to be altered and adjusted according to the various types of slabs.

5.3 Simple moment fields for rectangular slabs

The equilibrium equation for a slab can in the special case of uniform loading on rect-
angular slabs be satisfied if the bending moments vary as a parabolic cylindrical
surface and if the twisting moments vary as a hyperbolic paraboloid. A moment field

of this type was first suggested by Prager, [52.1], in his exact solution for the
simply supported square slab, see also [55.1].

It has turned out that many rectangular slabs with different kinds of support condl—
tions can be treated by the use of the above mentioned moment fields.

A number c¢f solutions have been given by Bach and Nielsen, [78.2].

6. EXACT SOLUTIONS

6.1 Exact solutions for isotropic, homogenecusly reinforced slabs

To find an exact solution one has to determine a statically admissible,safe moment
field. The curvature rate field corresponding to this moment field, according to the
flow rule, has to satisfy the compatibility equations and the corresponding deflexion
rate has to satisfy the geometrical boundary conditions.

If the yield condition is satisfied in a zone, we might distinguish between 3 types
of yield zones.

In type ! both principal moments are equal to m. or m' . It is easily shown that
the equilibrium equations can only be satisfied with p = 0 . The shear forces are
similarly zero. Each section is thus a principal section.
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In type 2 the principal moments are m, = mg and m, = - . It may be shown that
in the case p = 0 , the principal sections form a Hencky net (slip line net). This
static analogy was first pointed out by Johansen, [43.1]) and developed further by
the author, [62.5][64.1]. A corresponding geometrical analogy was described by
Johnson [69.2] and the complete analogy by Collins [71.2].

In a yield zone of type 3 there is only yielding in one principal direction. For
instance we might have m, = m_, -mé < m., < L where the equals sign is only wval-
id at certain points. Therefore

KKy = K K=K 2 =09
£ = (6.1.2)

- <

K1-+K2 > 0 or K1-+K2 0 everywheré
The general solution to (6.1.2) is developable surfaces. The curves along which the
principal curvature is zero are straight lines ({(generatrices). The possible surfaces
are conical, cylindrical and tangential surfaces.

There exists a number of exact solutions for isotropic slabs, some of which are
given in Figure 6.1.3.

The solutions a, b and ¢ was given by Johansen, [43.1]. The solution b contains
the well-known solution P = 27 (m_+m'), which is valid for a concentrated force act-
ing on a circular slab with fixed or simply supported edges as special cases. As
showed by Haythornthwaite and Shield [58.1], the solution is valid for an arbitrary
fixed slab, g.

Exact solutions for circular slabs are relatively easy to obtain when the loading

is rotationally symmetrical. Mention should be made of an interesting solution ob-
tained by Nylander [59.3], for the case of a slap supported on both an exterior and
an interior circular support, where two radial fields, separated by a circular yield
line, do not solve the problem as could be expected.

Solution d was given by Prager, [52.1], and solutions e and £ by Wood, [62.3].
Johansen gave solution £ as an upper bound solution, [43.1]. Solutions h - p are
the author's, [62.5][63.4]1[64.1].

The scolution p and some other known sclutions have equivalents in the slip line
theory. 2

Ingerslev's yield line soclution for the rectangular slab was shown by the author to
be exact only if the negative yield moment has a certain value ranging from m% =
m. for a square slab to mp = 3m_ for a very long slab [64.1].

The clamped square slab for a long time denied its solution. In fact it was being
claimed that the problem had no solution according to the present plastic theory,
[68.3]. However in 1974 it was shown by Fox, [74.1], that the exact load carrying
capacity in the case m, = m% is p a2/mF = 42.851.

pa? /m, = 42.851

Fig. 6.1.2
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The solution turned out to be rather complicated containing one region CAE with a
yield zone of type 3 and one region AED with a yield zone of type 2. Finally there
is a rigid portion E BD.

Fox, [72.2), also solved the rectangular simply supported slab with a concentrated
force.

Finally a class of solutions was developed by Massonnet [67.1].
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€.2 The affinity theorem

For a special class of orthotropic slabs exists an interesting affinity theorem. It
was developed by Johansen [43.1] for upper bound solutions and extended to lower
bound solutions and exact sclutions by the author [64.1].

The special class of orthotropic slabs for which the theorem is valid is character-
: — 1 — r - 1 = '
ized by mFx mF, mFx mF, mFy me and mFy umF %

The affinity theorem enables one to transform solutions for isotropic slabs to a
special but rather general class of orthotropic slabs. This implies that for most
practical purposes only calculations for isotropic slabs need to be performed.

7. ANALYTICAL OPTIMUM REINFCORCEMENT SOLUTIONS

It is a natural task for a designer to look for one or another kind of optimal so-
lution.

A fundamental question in the plastic theory for reinforced concrete slabs is to find
the absolute minimum of the reinforcement velume for a given slab, with a prescribed
load.

Considerable progress in answering this question has been gained by the work of
Morley, Lowe and Melshers, Rozvany and others. A review paper containing most of the
available information has been written by Rozvany and Hill [76.1], to which the
reader is referred.

If the slab thickness has been given and if the variation of the compressive zones
in the concrete is neglected, the Drucker-ghield criterion for minimum volume of a
plastic structure, [56.2], immediately shows that one has to lock for a constant
principal curvature rate field throughout the slab, to which it is possible to
assign a principal moment field corresponding in direction and sign to the curva-
ture field., For many important cases the curvature rate field is the same for a
wide class of locad configurations on the same slab.
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Morley, [66.2], gave a solution for the simply supported square slab, which is illus-
trated in Figure 7.1.
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In the region BDFH the two principal curvature rates are positive and equal. In
the triangular regions the principal curvature rates are equal and have opposite
signs. A load acting in the region BDFH is transferred to the infinitely narrow
beams BD, DF , FH and HB by strip action. The strips can be arbitrarily selected.
A load acting in the triangular regions can for instance be carried by strips lying
under 45 to the edges and spanning from support to support.

A great number of solutions of this kind have been given by Rozvany anf Hill, [76.11.

It will be seen that the reinforcement has to be rather artificially arranged. A
special problem is furnished if concentrated reinforcement bands in, theoretically,
infinitely narrow beams is required since this might give rise to problems concern-
ing the concrete stresses. '

Anyway the optimal solutions are extremely useful as a basis for comparisons with
the kind of solutions which for one reason or another are preferred by the designer.

Optimization of reinforcement with such constraints as to render the solutions more
practical has also been considered. References may be found in the review paper by
Rozvany and Hill, see also section 8.

8. NUMERICAL METHODS

The development of electronical computers has opened up new possibilities for find-
ing approximate sclutions to structural problems. ‘

To find lower bound solutions in the plastic theory, one needs to create a suffi-
ciently wide class of statically admissible stress fields and to find the one
corresponding to the greatest load factor. Statically admissible stress fields can
be created for instance by means of the finite element method, where the stress
field within each element is expressed by a number of parameters. Equilibrium re-
quirements within the element, continuity requirements along the element boundaries
and the statical boundary conditions lead to a set of linear equations.

If the yield conditions are linearized, one gets a set of linear constraints, which
together with the equilibrium equations constitutes a linear programming problem for
the determination of the largest locad which can be carried by the slab.
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A similar method can be used in order to determine optimal reinforcement arrangements
both in cases where the reinforcement is allowed to vary from point to point and in
cases where the reinforcement arrangement is subject to certain geometrical constraints.

In Figure 8.1 a solution obtained by Pedersen [74.3] for the clamped square slab
uniformly loaded (mF = mé) is illustrated.

The finite element used was a rectangular element with bending moments varying as
a parabolic cylindrical surface and twisting moments varying as a hyperbolic para-
boloid, i.e. the load within each element was assumed to be constant.

The linearized yield conditions used were

+ <
e XMy S Mex A
-m_+m < méx
x Xy = (8.1)
m +m_ <m
Yy — Xy = Fy
=~ < 1! )
my i_mxy < mFY )

These equations were checked at the corners and in the middle of the element. How-
ever for the solutions obtained, the correct yield condition (3.3.1) were checked
in a finer mesh, and the solution was proportioned if needed to fulfill the correct
yield condition in all check points.

The figure shows the load carrying capacity obtained as a function of the mesh size.
Also the total computer time is shown for some of the calculations.

As mentioned in section 6.1 the exact solution is ;>a2 /m_= 42.851, which means
that the best numerical solution deviates only a few percent from the exact one.
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The first calculations of this kind reported in the litterature were these of
Wolfensberger, [64.2], whose procedure was very similar to that described above.
Also Anderheggen, [72.4), Ceradini, [65.11], Gavarini, [66.4] and sacchi, [66.5]
have adopted such an approach.

Instead of using linear programming for the determination of the load carrying ca-
pacity of reinforced concrete slabs, Chan, [72.3], has used quadratic programming,

which however led to considerably higher computer times.

Another approach has been used by Bicklund, [73.1], who determined upper and lower
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bounds by following the complete behavior of the slab when the load grows from zero
to the ultimate value.

Linear programming methods require a large computer and computer times far exceed-
ing those required for linear elastic calculations. Nevertheless it is to be expected
that in the near future commercial programs based on the plastic theory of reinforced
concrete slabs will be in operation.

9. MEMBRANE ACTION

The theory presented neglects the fact that the strain field, corresponding to bend-
ing and twisting moments only, always results in strains in the slab middle surface,
and these strains do not generally satisfy the compatibility equations and the geo-

metrical boundary conditions. This leads to in-plane forces in the slab.

Further the rigid plastic theory in its standard formulation {lst order theory) ne-
glects effects of changes in geometry. Since plates and reinforced concrete slabs
often are rather flexible structures, the changes in geometry sometimes has

a considerable effect on the load carrying capacity. These effects are often
called membrane effects, and one speaks about a compressive membrane effect, which
often predominates at small deflections and of a tensile membrane effect, which

is dominating at larger deflections.

In plane forces arise already in the early stages of cracking.

A uniformly loaded, simply supported square slab often has a load-deflection rela-
tionship of a type shown in Figure 9.1. Instead of yielding under constant load, one

f Load pLoad

rigid
____________ plastic
1st order
theory

- ——>== ———rigid plastic
1st order theory

o

Deflectio; Deflectio?w

Fig. 9.1 Fig. 9.2

hardly cbserves anything peculiar at the leoad corresponding to the rigid plastic 1st
order theory. The real collapse load generally is somewhat higher than the rigid
plastic 1st order load. Small degrees of reinforcement lead to relatively higher
collapse lcads compared to the rigid plastic 1st order load than higher degrees of
reinforcement.

Quite different behavior is observed for a clamped slab if horizontal displacements
are prevented along the edges. A typical load deflection curve is shown in Figure
92

Failure is here by a snap-through action after which the load approximately reaches
the rigid plastic lst order load. Finally the load is again increased through a ten-
sile membrane action. The maximum load may far exceed the rigid plastic 1lst order
load.
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A theoretically correct determination of the full load deflection curve taking account
of the elastic deformations, cracking of the concrete, realistic constitutive equa-
tions of the concrete until failure and the effect of changes in geometry is extreme-
ly complicated and has not yet been obtained.

Estimates of the effect of changes in geometry can however be obtained relatively
simple by means of a series of upper bound calculations assuming the form of the de-
flected slab to be known. For instance a circular slab lcocaded at the center by a
point load can be assumed to deflect as a cone similar to the deflection rate cone
found by lst order rigid plastic theory. Similarly a sguare slab can be assumed to
deflect into a pyramidal form corresponding to the deflection rate form found by

1st order rigid plastic theory, too.

Having fixed the deflected form it is a relatively simple task by means of the usual
upper bound technique to calculate the load corresponding to the deflected form as-
sumed. The load carrying capacity of course turns out to be a function of the de-
flection.

For a simply supported slab, respectively a clamped slab, the load deflection curve
obtained in this way will be of the type shown in Figure 9.3 and Figure 9.4.

L Lood ' LOQd

rigid plastic | . s 1 o .
1st order theory rigid plastic
1st order
theory
Deflection Deﬂecﬁoﬁv
Fig. 9.3 Fig. 9.4

The maximum load found for the clamped slab will not be reached in practice because
of the elastic deformations neglected.

As shown by Calladine, [68_2], the calculations in several cases turn out to be very
much simpler using the 3-dimensional theory instead of the 2-dimensional theory usu-
ally adopted in slab theory.

Because of the great effect of the elastic deformations on the load carrying capacity
of clamped slabs, the rigid plastic theory cannot be used with confidence in practice.
Since large reserves in load carrying capacity are inherent in the effect of changes
in geometry, one of the most urgent needs of slab research is to create a reliable
design method capable of utilizing these reserves.

Although already Johansen, [43.1], was aware of the tensile membrane action, the
first to demonstrate the great effect of restrained edges was Ockleston, [55.2], who
in a test series on a condemned building became aware of a break-down of the rigid
plastic 1st order theory for internal slab parts. Several research workers have

since that time studied the problem theoretically and experimentally, among them
Wood, [62.3) and Park, [64.3]. An upper bound analysis of a type described above

were among others performed by Sawczuk, [64.6][65.9], Janas and Sawczuk, [66.3],
Morley, [67.6], Janas, [68.1] and, as mentioned already, by Calladine, [68.2]. A
litterature survey has been performed by Backlund [72.5]. Concerning membrane action,
see also [58.2]1[63.91[64.41[64.5][65.81{65.101[67.51[73.21[75.11{78.1].
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NOTATIONS
® Concentrated force
+ Downward-directed concentrated force
® Upward—directed concentrated force
AP rntin Yield line
LLLLLLY Simply supported edge
b'E8.4.3.8 Fixed edge

Free edge

Line load
o Column without restraint
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Punching Shear in Concrete Slabs
Poinconnement des dalles en béton

Durchstanzen von Betonplatten
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SUMMARY

The failure mechanism is examined, and various theories and design rules for centrical punching shear
are reviewed. Based upon the classical theory of plasticity, an analytical solution is presented,
describing the punching phenomenon in agreement with experimental evidence. Test results are
compared with strength predictions of building.ccdes and of plastic analysis. It is concluded that, in
spite of completely different basic concepts, the two methods are not incompatible. Excentrical
punching is briefly treated.

RESUME

e mécanisme de rupture est étudié et diverses théories et régles de calcul pour le poingconnement
centrique sont évaluées. Fondée sur la théorie classique de plasticité, une solution analytique est
présentée, décrivant avec fidélité le phénomene de poinconnement. Des résultats d’essais sont com-
parés avec les prévisions de normes et de I’analyse plastique. il y a lieu de constater que les deux
méthodes ne sont pas incompatibles, bien que basées sur des notions completement différentes. Le
poingonnement excentrique est enfin traité brievement.

ZUSAMMENFASSUNG

Der Bruchmechanismus fUr zentrisches Durchstanzen wird untersucht, und verschiedene daflr ent-
wickelte Theorien und Berechnungsverfahren werden besprochen. Eine auf die klassische Plastizitats-
theorie sich stiitzende analytische Losung wird angegeben, die das Durchstanzphanomen der Ver-
suchserfahrung entsprechend beschreibt, Versuchsergebnisse werden mit rechnerischen Voraussagen
von Bemessungsvorschriften und von plastischer Berechnung verglichen. Es wird gefolgert, dass die
zwei Methoden nicht unvereinbar sind, obwohl die Grundlagen sehr verschieden sind. Exzentrisches
Durchstanzen wird kurz behandelt.
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1. INTRODUCTION

Punching shear failure may occur in concrete slabs - prestressed or conventionally
reinforced - subjected to highly concentrated loads, e.g. impact loads or wheel
lcads on bridges, or at slender columns supporting flat slabs. The failure is lo-
cated in a surface running through the slab from the loaded area to the opposite
face (cf. Figure 1). The concrete body limited by the failure surface is simply
punched out. This type of failure is not much impeded by the main reinforcement,
and will therefore tend to reduce the ultimate load to a value below the flexural

capacity of the slab.
f control surface

T
|

—— e —

|
|
T t B

¢

|
|
]
t
)
1

Fig.l Punching shear failure

A decade of research has shown that the classical theory of plasticity may be used
as an efficient tool in the analysis of shear problems in concrete structures, cf.

NIELSEN & al. [78.3] and BRAESTRUP & al. [78.1].

In the present paper, we shall briefly review some design rules and theories for
punching shear, and we shall present a theoretical approach based upon the theory

of plasticity. The design rules and the predictions of plastic analysis are compared
with some test results reported in the literature.
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Fig.2 Punch lcad@ vs. main reinforcement. Fig.3 Failure of lightly reinforced
Simple and restrained slabs tested simple slab with 6" punch.
by TAYLOR & HAYES [65.2] (From TAYLOR & HAYES [65.2])
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2. THE MECHANISM OF FAILURE

The failure of slabs subjected to concentrated loading is very dependent upon the
support conditions, especially the degree of restraint against in-plane edge move-
ments. Thus the question of punching shear can hardly be separated from that of
compressive membrane action (dome effect). This point is borne out nicely by a
test series carried out by TAYLOR & HAYES [65.2].

They tested three series of square slabs, centrally loaded by square punches of
varying size. The flexural reinforcement of the series corresponded to 0%, 1.57%,
and 3.14%, respectively. The slabs were either simply supported or lateraily re-
strained by a heavy welded steel frame. The unreinforced specimens, however, were
tested in the restrained condition only.

The results corresponding to punches of sizes 2", 4", and 6" are shown on Figure 2.
We have plotted the applied ultimate pressure o , rendered nondimensional through
division by the cube strength f , against the percentage of reinforcement. It
appears from the figure that not only are the strengths of the restrained specimens
generally higher, they are also virtually independent of the amount of flexural
reinforcement, which is not the case for the simply supported slabs.

In a real slab subjected to punching at an interior point, lateral movements will
be restrained by the surrounding structure. Unfortunately, at most punching tests,
care has not been taken to ensure similar conditions. Consequently, the ultimate
locad Pt . may be expected to be approximately equal to the flexural capacity
Pfl - %n&eed, TAYLOR & HAYES [65.2] report that their unrestrained slabs with
weak reinforcement were close to flexural failure. '

The strength in flexure may be estimated by yield line theory, as done by GESUND

& KAUSHIK [70.1]. They calculated the ratio P /P for 106 alleged punching
tests and found an average of 1.015 with a sta£é§¥d ggg%ation of 0.248. Later,
GESUND & DIKSHIT [71.3] developed punching shear formulas based upon yield line
theory. The applicability of yield line theory was questioned by CLYDE & CARMICHAEL
[74.5]), who introduced considerations of the moment field (lower bound approach).
The latter authors criticized the conventional test procedures, as did also
CHRISWELL & HAWKINS [74.4].

The fact that so many flexural failures have been regarded as punching shear is
probably due to the deceiving aspect of the collapse mode. However, one lesson
to be learned from plastic analysis is that the actual appearance of the failure
is not important for the strength. In fact, the ultimate load can often be pre-
dicted quite as well or even better by a completely different failure mechanism.

For weakly reinforced unrestrained slabs, the failure is accompanied by radial
cracks and yielding of the main reinforcement, cf. Figure 3. The crushing of the
concrete around the load and the spalling at the opposite face may be explained
as secondary phenomena related to the rotational capacity in connection with the
flexural failure mechanism. Consequently, failures involving yielding of the main
reinforcement shall not be regarded as pun<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>