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Plastic Analysis of Reinforced Concrete Beams

Analyse plastique des poutres en béton armé

Plastische Berechnung von Stahlbeton-Tragern

BRUNO THÜRLIMANN
Professor of Structural Engineering
Swiss Federal Institute of Technology
Zurich, Switzerland

SUMMARY
Plastic solutions for the strength of reinforced concrete beams under bending, shear, torsion and
combined actions are presented Associated problems of structural details are mentioned Observations
on a relevant comparison of theoretical values with experimental results are made The practical use
in specifications is indicated

RESUME
Des solutions plastiques sont présentées pour déterminer la resistance ultime des poutres en béton
armé soumises à la flexion, à l'effort tranchant, à la torsion et à des efforts combines Les détails con
structifs correspondants sont également traités La comparaison des valeurs théoriques avec les
résultats expérimentaux donne lieu à quelques remarques Une application pratique pour des normes
est mentionnée

ZUSAMMENFASSUNG
Plastische Losungen fur den Widerstand von Stahlbetonbalken unter Biegung, Schub, Torsion und
kombinierter Beanspruchung werden dargestellt Auf die entsprechenden konstruktiven Detailprobleme

wird hingewiesen Bemerkungen zu einem sinnvollen Vergleich von theoretischen Werten mit
experimentellen Resultaten werden gemacht Die praktische Anwendung in Normen wird erwähnt
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1. INTRODUCTION

The bending strength of reinforced concrete beams and slabs is determined by
assuming a fully plastified stress distribution over the depth of the section.
If the steel starts yielding considerably before crushing of the concrete (under
reinforced sections], large plastic rotations will occur. Hence, the notions of
"plastic hinge" (beams) and "yield line" (slabs) were introduced. The theory of
plasticity can then be applied to calculate the collapse load of beams (one-
dimensional) or slabs (two-dimensional).

However, the practical calculation of the strength of members subjected to
torsion, shear and combined action is still based on rather crude semi-empirical
formulas derived from test data.

This report gives a summary of results obtained during the past 10 to 15 years
on the application of the theory of plasticity to such cases. In general, the
three-dimensional extent of a beam must be taken into account making the analysis
accordingly more complicated. Pertinent references are indicated and listed at
the end.

2. SHEAR WEB

Beams with rectangular, box-, T-, H- orC-sections can be decomposed into their
functional elements, namely flanges or corner stringers subjected to tension or
compression and connecting web elements under pure shear. The strength of such a

web element will hence be analyzed first ([1], [2], [3], [4]).

A web element subjected to a shear flow, S Td, with an orthogonal reinforcement

Ax, Ay is shown in Fig. 1. According to the plastic theory the following
assumptions are made (Fig. 2):

1. Rigid-plastic material behaviour

2. Forces in the reinforcements only in axial direction, i.e. no shear resistance
of the reinforcing net, no doweling action; yield values per unit with px, Py.

3. Zero tensile strength for the concrete; square yield criterion with orthogo¬
nality of the plastic strain rates ê/|, £2 with the yield surface.

X

ix)

S rd

°x=

VT
Px ax ^sx

Py" ay fsx

Fig. 1 Shear Web Element
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Fig 2 Yield Criteria

Obviously all deformations up to the onset of unrestricted plastic flow are
neglected. Especially previously formed cracks must have a sufficient aggregate
interlock to transmit any forces necessary for a redistribution of the concrete
stresses. The implication of these assumptions need to be discussed subsequently.

First, an admissible stress field is shown in Fig. 3. The concrete forms a
diagonal compression field, o-| 0, a2 ac under an angle a. The equality between

the action S Td and the reactions requires

cosa

Fig. 3 Admissible Stress Field

D -0 *d*cosa
c

Z D*cosa
x

Z S'tana

S*cota

(1)

C2)

C3]

Excluding first crushing of the concrete,
hence 0C >-fc, the maximum value of the shear
flow Sp is reached if both reinforcements
yield
Z p S »cota

x x p
Z p S *tana

y y P

Solving for the two unknowns a and Sp gives

tan2a — X

S /p *p P -JT
p x y y V X

s P

a e _^C1 +
c d*sina*cosa d X

X » -V (ratio of the yield forces)

(4)

(5)

(6)

(7)

For a fixed yield value p^ the yield force p^ can be increased till the strength
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of the concrete is reached

py 1
- a f —rC1 + -A

c c d X

or
p /f *d

X y l (8]
c 1-p /f *d

y c

Substituting into Eq. (5] gives the shear flow S producing concrete failure
pc

S [~p p
1

-E5- M^(1- —*-) (9)f «d Alf «d f *d iaj
c vc c

The corresponding required yield force p isxc

Ac
_

Py 1 A
f -d " f *d* A f *d (10:i

c c c c

Eqs. (9) and [10] are plotted in Fig. 4[a]. Obviously. px py 1/2*fc*d gives
the maximum possible shear resistance with the inclination tana 1 of the
concrete compression field. Keeping the total amount of reinforcement constant,
Px + Py fc'd, a distribution ratio X Py/px not equal to unity will diminish
the shear resistance. For py -» 0 and px -» 0, the inclination reaches a 0 and

it/2, respectively.

\\ .1 k

1/2- A'—

aC 7T\ PXC lr. ,n. \/ I

X'cd /' I

<vX V px/fcd > 1/2

^ X fçd 2 Py/fcd-l/2

Py/fcd

py/fcd

Regimes :

I :OAB
II : BCDQACE

(b)

Fig. 4 Collapse Loads and Corresponding Regimes

An actual shear web will first crack at ïï/4. A redistribution of the concrete
stresses such that extreme values a at collapse occur seems very unlikely. Hence,
limiting values, 1/2 < tana < 2, have been proposed to exclude these extremes
([5], [6], [7]). The corresponding restriction is also shown in Fig. 4(a]. A

considerable reduction of the maximum concrete stresses for low values of
py/fc * d < 0.2 Cor px/fc*d < 0.2] are the desired consequence.

The corresponding kinematic solution is considered next. However, a discussion of
kinematically admissible velocity fields is needed. In a band of thickness b.



B. THÜRLIMANN 75

Fig. 5, a linearly varying velocity field is assumed. With Wg the displacement
rate from B to B' the values are

(11

w 'n'cosô
n b C12)

w, —-n*sinût b [13]

and the strain rates
3w w„• n B

e t— ——*cosu
n 3n b [14)

\WBn WBcos ù
'"'aû. tv-'M v

WBt WBsin Sr

e2 et o

iy/2
fni

'rnt

®/y 2

\ / t Itn /

tf=0: wn w=^
wt= 0

C, cn=
wc

v 7T

"2 wn o

wt= w
WQ

wB
e.-e2 iTT

c 2= é| 0

Fig. 5 Kinematics of Slip Bands
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3w

K -ir-° [15]
• • •

#
3w 9w w

Y -rr^ + a— ~r- sinû C1B]nt 9t 9n b

Such a field is kinematically admissible as continuity over the band width b is
provided. In particular, the strain £ 0.

The principal strain directions are indicated in a Mohr's circle. Fig. 5CbJ :

e !(£+£) ± ^ /[£-£)2 + Y2 (17)1,2 2nt 2 nt nt
w

e. *=-r-^+ cos^) C1Ö]
1 2-b

- h
"2 2*b'e0 + cosû) (19)

£ * £4- Y
4. «v n t nttanû — -— (20)

Y +.
ê

nt n

The principal direction 1 forms an angle f>/2 with the n-axis, hence, it always
bisects the angle f> between the displacement rate Wg and the n-axis as shown in
the figure.

The flow rule for concrete [Fig. 2) will now determine the angle û at which Wg
becomes possible.

Case A~B:

A stress point Co^ 0; 0 < 02 < "fp^ on A-B requires a strain rate > 0 and
&2 0. From Eq. (19) the condition is

cosû 1 + û 0

w w
n

ii =0

Consequently, the crack band opens perpendicularly to the direction of the
compression field. No energy is dissipated in the concrete along the crack

Case B:

A singularity exists at stress point B (di 0; o2 "fp^ The situation is
indeterminate as combinations E2/£i < 0 become possible. The corresponding situation

is described in Fig. 5 with the two extreme cases -0 0 and d tt/2. Any
situation in between is possible. This behaviour will be of interest when
discussing cases, where the concrete stress reaches its strength value fc.
The basis is now prepared to discuss the kinematic solution for the web element
of Fig. 6. The two parts separate normally at the rate Wg. Equating the internal
and external work rates leads to
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e2 ct

wx w sin cx

wy w cos a

Gx é, sin2 a
Cy ê, cos2a

"2 Xxy= é, sina cosa

Fig. 6 Admissible Velocity Field

in p *w + p *cota*w L S*cota*w + S*w
x x exy y

Introducing the w-values from Fig. 6

w w*sinax
w w*cosa

y
S —(p *tana + p -cota)2 x y

with the minimum value

3S 1 1
- 0 p • — p •— —.
3a x cos2a y sin2a

tan a2 y

/p *p p •-\ h-
x y y V a

(21

(22]

The solution coincides with the lower bound solutions Eq. (5]. It should be noted
that this Kinematic solution does not give any information on the concrete stress
0_.

The strain rates £x, Ey and Yxy are related to £n e1 as shown in Fig. 6

e e *sin2a
x n

'xy
• • 2
e £ -cos a

y n
Y /2 e -sina*cosa

xy n

In an actual shear web collapse will occur after considerable elastic and inelastic
deformations have taken place. The above strain rate relations at collapse may,

however, serve to estimate the total strains. Assuming

£ £
y tot o, y ^2—' ~ -JL cot a

£ •
X tot £

X

(233

e
4-

e
n tot _

£ •
x tot e

1

sin2a
(24)
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it follows that for small angles a, i.e. py -* 0. the ex and ep increase
very rapidly. Even a small strain ex tQ^. below the yield strain of the longitudinal

x-reinforcement will cause very large strains in the stirrup y-reinforcement
and large cracks, en ^-0^- representing a "mean crack strain". Again, a limitation
on the tolerable value of tana seems indicated in order to maintain the aggregate
interlock across the cracks.

As previously discussed a mechanism in the form of a slip band will occur if
strain rates £2 < 0 become possible, hence, the concrete stress has reached its
strength value ac -fc. According to Eqs. (11) and (12)

• «
wn w„B • B

w —»cosü w^ —*sinun n t n

with the corresponding strain rates
w w y

£„ -r^r-(1 + cosû) e T^r(-1+ cosû) tanû ——
1 2*b 2 2*b •

e
n

Referred to the compression field ac -fQ with an angle a in the x-, y-system,
Fig. 7, the situation is illustrated for three cases. In the range 0 < a < tt/4
the x-steel will cease to yield such that wB wy. A slip band (S.B.) will then
form under the angle 2a. Energy will now be dissipated by crushing of the
concrete. The value of Sp will not change if the yield force px is increased over
the critical value pxo (Fig. 4(a)) just producing a concrete stress Oc ~fc.

0<*<f "-T

Fig 7 Orientations of Slip Bands
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If a tt/4 the slip band will reach a vertical Cor horizontal] position. Values
ir/4 < a < tt/2 occur if px < py. The slip band turns from the horizontal into the
vertical position.

The finding are summirized in Fig. 4Cb). Below line AB collapse is governed by
yielding of both reinforcements. This yield regime will be termed Regime I.
Beyond ECD failure occurs by crushing of the concrete without yielding of the
steel (Regime III). In the two triangles AEC and CDB concrete and yielding of one
reinforcement are controlling (Regime II). Hence, any increase of px in the
triangle BDC or any increase of pv in the triangle AEC will not change the value of
Sp. For px/fc*d py/fc*d =1/2 the maximum possible resistance is reached. The

limitations imposed by 1/2 < tana < 2 are cutting off the border regions DBF and
AG, respectively.
In the subsequent sections reference will be made to the three different yield
regimes I, II and III defined above.

From a strength point of view the formation of slip bands does not give new
information as indicated above. However, the slip mechanisms allow new Kinematic
configurations if external geometrical restraints are present. Furthermore, they
may allow better physical explanations of test observations.

3. TORSION AND BENDING

In a box beam with rectangular cross section b'h, Fig.
constant shear flow around the perimeter

torsion produces a

S Td
2A (25)

S+i i Zt

f y

r J
«2 Z2.RS2XP3

Ao= b • h

Fig. 8 Box-Section, Space Truss Model
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A statical solution is given first. A space truss model is assumed with the
stringers as chords, the stirrups as posts and the concrete forming diagonal
compression fields under angles a [5], [6]). The walls are under pure shear such
that Eqs. (2], (3], (4) and (5] are directly applicable. For wall 2 the following

force system develops:

Stirrup force: S't^'tana^ PS2*t2

Yielding of the stirrups, Z^ Ps2*t2' ^ixes ^"he anSle a2:

cota_
^ (26]

2 Ps2

Horizontal component of compression field :

S'h'cota (27]
h2 £

Failure may occur by yielding of the stirrups and the two lower stringers
(Regime I], Equilibrium of the internal forces with respect to the axis 1-7 gives

* °M-h * "Vt - Vh - Vh 0 1261

Replacing Z3 and Zg by the yield forces P3 and of the stringers and making use
of Eqs. (26] and (27] gives

P + P
3 5

h 1
+ _1_ + b.

1

2 Ps2
+

PsB
+

'Ps4

and the collapse moment Tp0

(29]

T 2A m ; — (30]
po

For a constant stirrup reinforcement around the perimeter and equal stringers in
all corners

pg pg2 pg4 pgB : u 2(h+b] (perimeter]

P P^ P^ P,. P^ ; Aq b*h (enclosed area]

the resulting expression is

'4P*Ps
T 2A -\/ (31]

po o

The analysis has been extended to beams with polygonal cross sections and
arbitrary reinforcements. Physically the compression fields in all walls take
inclinations depending on the yield values ps and the shear flow, Eq. (26]. The

stringers connecting the two rigid parts across the failure zone have to resist
the horizontal components of the compression field in the walls. Failure occurs
if all but two stringers in one wall will yield.

If in addition to torsion a bending moment is acting its influence on the stringer
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forces have to be taken into account. Assuming for simplicity a section with
constant reinforcements:

Upper stringers: P P^ Pu < P

Lower stringers: P3 P5 Pl

Stirrups : p^

A part of the yield forces in the lower stringers will be used up by the bending
moment

M 2-h-ri'P. : R < 1

P 1

Accordingly, the torsional moment will be reduced to

/4(1-r) -P. *p
T 2A '

P °

Introducing the reference values

M 2* h* P,
po 1

T 2A
po o

/4P • p
/ u s

where Tp0 is governed by the smaller yield value Pu < P^ [failure about axis 3-5
through lower stringers] the following interaction equations can be derived

P T
2

M

Yielding Zj P2 : + ~PT~
1 C32]

1 po po

T 2 P! M

Yielding Zu Pu : [^ - -•/- 1 [33]
po u po

Recently, the corresponding kinematic solution has been developed [[8], [9]]. In
Fig. 9 a kinematically admissible mechanism is presented. Starting from the fact
that a crack ABC over two sides is only possible if the shape of the cross-section

is distored, a second crack DEF on the two opposite sides is added in order
to restore the original shape. In this way a parallelogram CBFE on side 4 is cut
out. A rotation around the axis AD through the crack ends becomes possible if
the axis AD is parallel to the line CF, hence, I^q lçp. For the displacement of
point F will be perpendicular to the axis AD. Qn the other hand, F being located
on the parallelogram will rotate perpendicularly to line FC, hence, FC parallel
to AD. The angles of the two cracks CB and EF being identical, a^, the angle ß

of the axis AD follows to

1„,_ b'cota. + h*cota„ - 1„„ + h*cota0 + b*cota„LF A 2 AU b 4
XA0

with: 1 1 and cotß ——
CF AD b

cotß cota. + -i'-^[cota_ + cota,,] [34]4 2 b 2 d

28/6
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It should be remarked that the "skew bending theory" ([10]) uses a mechanism
which introduced sliding in a crack. However, the corresponding energy dissipation

is erroneously neglected. Hence, the discrepancies with correct plastic
solutions can be fully explained.

In order to express the energy dissipation the velocity components of point B

(equal to point E) are needed (Fig. 9)

• • • •
Wall 4: w. wh'sinß w„ w„ «cota,,4x v • 4 y 4x 4

• • • •
Wall 2: w_ wh'sinß w„ w„ *cota_2x 2y 2x 2

Using the reinforcements shown in Fig. 8 the work equation takes the form

Lin W4xCP3+fV + "J,pS2"h,W2x*00t2a2 + Ps4'b^4x'C°t2a4 + I*h^6x'CDt2oi6*Ps6
• •

L M-ü)*sinß + T*a)*cosß
ex

M + T-cotß h (P3+P + -|*pg2'h2'cot2a2 + pg4*b'lrcot2a4 + j*pg6'h2*cot2a6
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Introducing cotß from Eq. [34) gives

M h(P3+P5 —(h2,ps2*cot2a2 - ^-T-cota
b 2

ICh2*Ps6*COt2a6 - ^'T'cota
b b

ïïCh2-Ps4-cot2a4 - ^•T'cota.
b 4 (35)

If T is fixed the minimum value of M with respect to the angles a follows from

^ 2*h2,p «cota - 0
8(cota2) s2 2 b

cot„ _E 3 L s —L_ J-2 2-b-h ps2 ps2 2-b-h 2Ao

S S
and similarly: cota ; cota4 P „ 6 p „s4 s6

Hence, the minimum M will result if T produces a constant shear flow S. This
corresponds to the assumption of a constant flow in the statical solution,
Eq. (25). In the case of M 0, Eq. (35) gives the torsional moment Tp0 by
introducing the values of cota:

T 2A
po

P3 + P5

-(— + —) +
2 PS2

+

Ps6
+

Ps4

(36)

With a moment M acting, Eq. (35) leads to interaction equations identical to
Eqs. (32) and (33). Hence, the identity between the static and kinematic approach
has been shown.

The total'length of the mechanism is:

l.p h-cota0 + b-cota if cota_ > cota„nL 2 4 2 6

lnc b-cota,, + h-cota^, if cota„ > cota„Ur 4 b 6 2

If geometrical restraints do not allow such a length warping will become necessary
and a higher resistance will result. Statical solutions with a constant shear flow
hence become lower bounds.

The case may also arise, where the statical solution would imply a concrete
stress exceeding the strength Oc < -fc in a particular wall (Regimes II or III).
A redistribution of the stress field will take place leading to a non-uniform
shear flow around the perimeter. A safe value is obtained if the solution with
constant shear flow but crc < -fc is reduced by the factor "fc/oc.

The above mentioned problems have been treated in Refs. [9] and [11]. The case
of beams with open cross sections including warping has also been studied [12].

So far, only box-sections have been considered. However, in Ref. [9] it is shown
that the previously discussed mechanisms are kinematically admissible also for
solid cross-sections. The beam parts are separating internally in perpendicular
directions. The parts are .touching only along the perimeter. In reality the
concrete stresses have to be transmitted over a finite wall thickness in order to
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stay above the value ~fc- The determination of the effective wall thickness can
only be made on the basis of experimental studies. In Refs. [5] and [6] such
values have been proposed.

The secondary effect due to distortion of the side walls of a box section, i.e.
plate bending, influences only the concrete stresses as the membrane stresses
of the compression field are superimposed by secondary bending stresses ([5],
[6]]. Again this influence must be taken into account in a pragmatic manner by

adopting a cautious value for the effective concrete strength.

4. SHEAR AND BENDING

As a statical model a truss model. Fig. 10, is used with the upper and lower
stringers as chords, the stirrups as posts and the concrete as diagonal
compression field under an angle a ([5], [7]):

h cot cx

(1/-S
M

\ I)

Zl-PL Z P -p t "I
^•s rs Ks'

sina
M 1

T* + —*V#cota P.
h 2 1

M 1

- — + —<»v*cota
h 2

4-——''tana p *th s

M+V h cot a. - D V 1

d•h*cosa d'h sina»cosa

(37)

(38)

(39)

(40)

(41)

Fig. 10 Truss Model Bending - Shear

The stirrup reinforcement is constant along the axis. The lower stringer
reinforcement varies such that the yield value P-^(x) is just reached at a critical
section, hence, Zu P-^(x). Excluding concrete failure the stirrup force Zs will
also reach the yield value Ps*t (Regime I). Replacing in Eq. (38) cota by its
value from Eq. (40) gives the interaction equation

,2V
P

2PC
P »h

With the reference values

M P «h
po 1

V /2P •p *h
po 1 s

V

V
-) 1

M
P

M

po po

However, a limiting value is reached when 0
c

a - v 1

_f
c d*h sina*cosa c

(42)

-f (Regime II):c

V p "h'cota
pc se

Pc

Hence,
sc

f -d
c
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and

V
Pc

f *d*h
c

with the maximum value

3V
pc 0

9
f *d

c

_ 1 (_eE_\
2 ' \f *d*h/n

f *d
c

Introducing as reference value the maximum value V^c governed by the concrete
strength alone (Regime III]:
V A- f • d • h
fc 2 c (43]

the ratio becomes (Fig. 11(b]5 :

V
' '

V
PC

'fc
2 sc Fi¬ sc

f «d f *d
c c

(44]

Vp/Vpo

pc
vT" Eq.(45)

P° (Regime!)

X/Eq(42)
Regimel)

il Mp/Mpo

Vfc Ifcdh
Psc^^

1/2- Eq.(44)
(Regime II)

Vpc/Vfc

Fig. 11 Interaction Bending - Shear

The interaction Eq. (42] will be cut off if Vp reaches the value VpC, hence.

V V„ p
pc I fcr. SC

po y l c
SA1-p-

po f *d
c

(45)

These relations are shown in Fig. 11(a) and (b). Also indicated is the influence
of a limitation tana 1/2 for reasons discussed previously.

Turning to the kinematic solution the mechanism is sketched in Fig. 12 ([5], [7],
[13], [14]). The work equation gives:

M *oj + V 'oj'h'cota P,*ti)*h + —'aj'h'cota-p -h'cota
p p 12 s

M -V *h*cota + —• h2•p •cot2a
p P 2 s
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with the minimum

an V
P 9 P——-—- -V *h + h *cota > cota -——dCcotaj p s h*p

Using the previously introduced reference values MpQ and Vp0 the interaction
Eq. (42) is again obtained. Hence, the two solutions are identical.

Fig. 12 Mechanism Bending - Shear

The mechanism of Fig. 12(b) corresponds to the case, where the lower stringer is
not yielding but instead the concrete is failing, i.e. < 0 (Regime II). As
discussed in chapter 2 a slip band (S.B.) will form at an angle 2a with a being
the angle of the compression field. The collapse load will be identical to the
solution, Fig. 12(a) for such a value of that -fQ will just be reached
(transition Regime I to Regime II).
Concerning the strain ratios the same remarks hold as made under chapter 2,
Eqs. (23) and (24). A small longitudinal strain ex will produce very large
stirrup strains and crack strains en -t-Q+. and a progressive break-down of
the aggregate interlock for small angles a. Hence, again the necessity for a

limitation of tana_> 1/2 is evident.

For a general case, where bending M, shear V and torsion T are acting on a box
beam such as shown in Fig. 8, statical solutions have been presented assuming a
constant shear flow for torsion superimposed by shear forces V/2 in the two side
walls [5]. Interaction equations can readily be developed. Corresonding kinematic
solutions have not been found. It has, however, been shown for special cases
that warping effects will take place [9], [11]. Hence, the statical solution
described above constitutes only a lower bound.

So far, all solutions presented have taken into account the spacial dimensions
of the beams also in the transverse directions. However, beam theories for closed
and open cross-sections have already been developed paralleling in concept
the one-dimensional elastic beam theory ([9], [12]). Introducing as generalized
stresses the resultants N, M, V and T the corresponding kinematic terms (generalized

strains) in the form of extension-, curvature-, shearing- and warping-rates
along the beam axis have to be properly selected. The yield criterion and the
flow rules are then expressed as functions of these generalized stresses and

strains. For cases when collapse is governd solely by yielding of the reinforcements

(Regime I) complete beam theories have been worked out. Difficulties arise
when strain rates £2 < 0 for the case ac -fc (point B, Fig. 2(b), (Regime II))
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arise. At present, it seems improbably that for such cases a general beam theory
can be developed.

5. DETAILS

Problems of structural details and some special problems are shortly indicated
and appropriate references are given.

The case of concentrated loads or reactions is sketched in Fig. 13. The length
h'cota of the regular compression field
is concentrated by a compression fan into
the width e resulting into a uniform
distribution of P over e. It can be easily

shown by geometric relations that the
concrete stress ac of the regular field
increases at point A to oc^

h
a „ a •—-cota

cA ce
Hence, a relatively high stress concentration

may occur. With a multi-centered fan
resulting into a shift of the load P to
the right and hence a non-uniform bearing
stress more favourable conditions are

obtained. Nevertheless, the problem of stress concentrations in such cases has
to be taken into account. Further cases of end and intermediate reactions, indirect

load applications through cross beams, etc. are studied in Refs [5], [9].

The proportioning of the longitudinal steel in the tension flange of a beam is
essentially governed by Eq. (38). The problem of the anchorage length of bars
beyond the theoretical cut off point is presented in Ref. [5].

Joints connecting beams and columns have been plastically analyzed (references
mentioned in [14]). They offer special problems as transverse splitting of the
elements is a distinct failure possibility.

In Ref. [9] the influences of a variable beam depth, of distributed loads and

single concentrated loads are studied and the consequences for the detailing of
the stirrup and longitudinal reinforcement are stated.

The membrane stress state produced by shear in a shear web can be disturbed by
transverse bending moments. A box girder bridge presents such a case, where the
side walls are subjected to shear in longitudinal direction and transverse bending

moments resulting from transverse bending of the road slab. A static solution

[15] and a complete solution [16] have been developed for this case.

Pi i

V P

Fig. 13 Compression Fan under
Concentrated Load

6. THEORY, EXPERIMENTAL VERIFICATION, APPLICATION

Plastic solutions for the strength of beams with general cross sectional shapes
subjected to bending, shear, torsion and combined actions have been developed.
For many cases the correct solutions are known (i.e. static equal to kinematic
solution). For other cases lower (static) and/or upper (kinematic) bounds are
available.



88 PLASTIC ANALYSIS OF REINFORCED CONCRETE BEAMS

The necessary structural details (stirrup spacing, stringer arrangement, concentrated

loads, bar cut-off, etc.) have or can be developed especially from the
statical solutions, where the admissible stress fields furnish the required
information.

All these solutions are correct within the assumptions of the theory of plasticity,

essentially

1. Rigid-ideally plastic material behaviour
2. Yield criteria and associated flow rules.

Hence, experimental verifications should essentially concentrate on checks of
these assumptions and possible adjustments.

Concerning the reinforcing steels they exhibit generally plastic deformations
under the yield stress which are a multiple of the elastic deformations such
that the latter can be neglected. On the contrary the strength of concrete is
definitely affected by deformations and/or cracks preceding failure. A considerable

redistribution of the concrete stresses from initial cracking up to collapse
(i.e. variation of a ïï/4 to a + 0 or a + tt/2 of the compression field)
accompanied by considerable cracking will markedly diminish the strength. The redistribution

may further be limited by the progressive deterioration of the aggregate
interlock in previously formed cracks such that the orthogonality required by
the flow rules may no longer hold.

The assessment of the effective concrete dimensions offers another problem. Under
conditions, where the concrete strength is governing and large redistributions
occur the concrete cover may spall off prior to failure. In other instances when

failure due to yielding of the reinforcement occurs at low concrete stresses the
cover will stay intact.
Only results from experiments on properly detailed specimens (see chapter 5)

tested under clearly definited conditions (e.g. necessary extent of mechanism,

chapter 3) should be compared with the corresponding theoretical values. It is
evident that tests with premature failures of details and/or unclear testing
conditions must be excluded.

Considerable experimental evidence has already been collected supporting the
applicability of plastic analysis to determine the ultimate strength of reinforced
concrete beams. A proper and cautious selection of the effective concrete strength
fc must be made reflecting the above mentioned influences. The fixing of the effective

concrete dimensions becomes important if failure is governed by the concrete
strength and large redistributions.

It is felt that plastic analysis offers a rational, unified, simple, economical,
safe and reasonably accurate method to calculate the static strength of reinforced
concrete beams (and slabs and walls as well). It will become more generally
applied as the concept of limit state design is gaining general acceptance. For in
this concept one of the limit states to consider is the ultimate limit state.

So far design rules for beams under bending, shear, torsion and combined actions
based on plastic analysis have already been introduced in the Swiss specifications
[19] and the new CEB Model-Code (Shear, Torsion, refined method) ([17], [18],
[20]).
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