Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 28 (1979)

Artikel: Plastic analysis of reinforced concrete beams
Autor: Tharlimann, Bruno
DOl: https://doi.org/10.5169/seals-22901

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-22901
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

71

Plastic Analysis of Reinforced Concrete Beams
Analyse plastique des poutres en béton armé

Plastische Berechnung von Stahlbeton-Tragern

BRUNO THURLIMANN

Professor of Structural Engineering
Swiss Federal Institute of Technology
Zurich, Switzerland

SUMMARY

Plastic solutions for the strength of reinforced concrete beams under bending, shear, torsion and
combined actions are presented. Associated probtems of structural details are mentioned. Observations
on a relevant comparison of theoretical values with experimental results are made. The practical use

in specifications is indicated.

RESUME

Des solutions plastiques sont présentées pour déterminer la résistance ultime des poutres en béton
armé soumises a la flexion, a I'effort tranchant, a la torsion et a des efforts combinés. Les détails con-
structifs correspondants sont également traités. L.a comparaison des valeurs théoriques avec les
résuttats expérimentaux donne lieu a quelques remargues. Une application pratique pour des normes
est mentionnée.

ZUSAMMENFASSUNG

Plastische Losungen fur den Widerstand von Stahlbetonbalken unter Biegung, Schub, Torsion und
kombinierter Beanspruchung werden dargestellt. Auf die entsprechenden konstruktiven Detailpro-
bleme wird hingewiesen. Bemerkungen zu einem sinnvollen Vergleich von theoretischen Werten mit
experimentellen Resultaten werden gemacht. Die praktische Anwendung in Normen wird erwahnt.
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1. INTRODUCTION

The bending strength of reinforced concrete beams and slabs is determined by
assuming a fully plastified stress distribution over the depth of the section.
If the steel starts yielding considerably before crushing of the concrete (under
reinforced sections), large plastic rotations will occur. Hence, the notions of
"plastic hinge"” (beams) and "yield line” (slabs) were introduced. The theory of
plasticity can then bs applied to calculate the collapse load of beams (one-
dimensicnal) or slabs (two-dimensionall.

However, the practicel calculation of the strength of members subjected to tor-
sion, shear and combined action is 'still based on rather crude semi-empirical
formulas derived from test data.

This report gives a summary of results obtained during the past 10 to 15 years

on the application of the theory of plasticity to such cases. In general, the
three-dimensional extent of a beam must be taken into account making the analysis
accordingly more complicated. Pertinent references are indicated and listed at
the end.

2. SHEAR WEB

Beams with rectangular, box-, T-, H- or [ -sections can be decomposed into their
functional elements, namely flanges or corner stringers subjected to tension or
compression and connecting web elements under pure shear. The strength of such a
web element will hence be analyzed first ({1], [2], (3], [4]).

A web element subjected to a shear flow, S = Td, with an orthogonal reinforce-
ment Ax, Ay is shown in Fig. 1. According to the plastic theory the following
assumptions are made (Fig. 2):

1. Rigid-plastic material behaviour

2. Forces in the reinforcements only in axial direction, i.e. noc shear resistance
of the reinforcing net, no doweling action; yield values per unit with p,, Py~

3. Zero tensile strength for the concrete; sguare yield criterion with orthogo-
nality of the plastic strain rates é1, 52 with the yield surface.

- X
B
A~
A
—[t, [ ‘J;/Ax sz_tl.'
y { 1
- S=td A
Y i Qz—y.
T o
{ A

—————

AY
{o e e o o}id py:Oyfsx

Fig. 1 Shear Web Element
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O'S/fS

£

S fs=yie|d stress
steel

(a)
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Obviously all defermations up to the onset of unrestricted plastic flow are neg-
lected. Especially previously formed cracks must have a sufficient aggregate in-
terlock to transmit any forces necessary for a redistribution of the concrete

stresses. The implication of these assumptions nsed to be discussed subsequently.

First, an admissible stress field is shown in Fig. 3. The concrete forms a dia-

gonal compressiocn field, 04 = 0, 03

= Op under an angle o. The equality between
the action S = Td and the reactions requires

X
SCO'!O( cosa D = ‘OC’d°COSCl (1]
~air——
y Zy cotx ’I/D Zx = [Decosa = Secoto (2}
~
< 8¢ i Z = Setano (3]
o a y
/69 '/ils i
z*f::;? ay Excluding first crushing of the concrete,
S D ,/// hence o, >~f;, the maximum value of the shear
_— flow S, is reached if both reinforcements
yield
cot ot —~
Z =p =5 ecota
X X P
Fig. 3 Admissible Stress Field Zy = py = Sp'tana .
Solving for the two unknowns a and Sp gives
P
tan2a = =L = ) (4)
X
S =vpp =p 1‘3- (5)
p Xy yVA
S P
I - S O T X
Uc desinaecosa d(1+ A) (6)
py
A = (ratio of the yield forces) (7)
X

For a fixed yield value py the yield force px can be increased till the strength
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of the concrete is reached
p

o FC 3 (1+ 7\)
or
p /f +d
¥ B ‘
*a © Top 75 (8)
y' e |

Substituting into Egq. (5) gives the shear flow SpC producing concrete failure

L}

S p 8]
E=_ - L1- L)

f +d Fed | F ed (9)
C c c

The corresponding required yield force pxc is

p P P

xe . Y.l .4 L (10)
fed  Fed F_+d

c c c C

Egs. (8) and (10) are plotted in Fig. 4(e). Obviously, Py = Py = 1/2+f.*d gives
the maximum possible shear resistance with the inclination tano = 1 of the con-
crete compression field. Keeping the total amount of reinforcement constant,

Py * P, = fy°d, a distribution ratio A = py/px not equal to unity will diminish
the shear resistance. For Py + 0 and p, + 0, the inclination reaches o = 0 and
/2, respectively.

A

N 2 )
Tr .
\ l Regimes :
11 | I :0AB
T BCD&ACE
/24 II:ECD
.-
ton x=1/2
s B
0 ™ py/fed

Fig. 4 Collapse Loads and Corresponding Regimes

An actual shear web will first crack at m/4. A redistribution of the concrete
stresses such that extreme values o at collapse occur seems very unlikely. Hence,
limiting values, 1/2 < tano < 2, have been proposed to exclude these extremes
({s], [8], [7]). The corresponding restriction is also shown in Fig. 4(a). A con-
siderable reduction of the maximum concrete stresses for low values of

py/feed < 0.2 (or py/fe*d < 0.2) are the desired consequence.

The corresponding kinematic solution is considered next. However, a discussicon of
kinematically admissible velocity fields is needed. In a band of thickness.b,
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Fig. 5, a linearly varying velocity field is assumed. With &B the displacement

rate from B to B’

w

and

= b‘n‘cosﬁ

w
= t?m-sinﬁ

the strain rates

3\:vn w
= B = b‘cosﬁ

the values are

Fig. 5

Kinematics of Slip Bands

(11)

(12)

(13)

(14)
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a.

. B

Et =T ° 0 (15)
awn Bwt WB

Yot =3¢ Y 3n - T sind (18)

Such a field is kinematicelly admissible as continuity over the band width b is
provided. In particular, the strain et = 0.

The principal strain directions are indicated in a Mobhr's circle, Fig. 5(b):

éq,z =-%(én+ét] :-% /[én-ét)z + ?ét (17)
S - (1+ cosd) (18)
1 2°b
£ = KE—(‘1 + cosl) (19)
2 2¢b
tand = E”. b At (20)
Ynt E:n

The principal direction 1 forms an angle 9/2 with the n-axis, hence, it always
bisects the angle U between the displacement rate &B and the n-axis as shawn in
the figure.

The flow rule for concrete (Fig. 2} will now determine the angle § at which &B
becomes possible.

Case A-B:

A stress point [01 = 0; 0 €0y < -fz) on A-B requires a strain rate é1 > 0 and
&5 = 0. From Eg. (19) the condition is

cos¥ =1 =+ 9 =0
W = Wy

n
wt =0

Consequently, the crack band opens perpendicularly to the direction of the com-
pression field. No energy is dissipatec in the concrete along the crack

Case B:

A singularity exists at stress point B (oq = 0; o, = -fg). The situation is in-
determinate as combinations éz/éq < 0 become possible. The corresponding situa-
tion is described in Fig. 5 with the two extreme cases ¢ = 0 and ¥ = ©/2. Any
situation in between is possible. This behaviour will be of interest when dis-
cussing cases, where the concrete stress reaches its strength value f.

The basis is now prepared to discuss the kinematic sclution for the web element
of Fig. 6., The two parts separate normally at the rate WB. Equating the internal
and external work rates leads to
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Fig. 6 Admissible Velocity Field

L. = p°*w +p -cota-& = L = S‘cota'& + S-Q
in X X Y y ex X

Introducing the w-values from Fig. 6
w = wesino , w = Q*cosa 5 S ='l[p *tana + p <cota) ,
X v 27X y

with the minimum value

R g .
30~ Px Cosza y sin2g
p
tanZa = L = (21)
P
& = Juap = g sie 22)
o PP, = PtX (

The solution coincides with the lower bound solutions Eq. (5). It should be noted
that this kinematic solution does not give any information on the concrete stress
(o

c

L L
The strain rates €4, €

y and ny are related to €, = €1 as shown in Fig. 6

L] - P 2 . L 2 - L]
£ = € *sin‘“a , € = € *cos‘Qo , Y. /2 = € *sing*cosy .
P n y n Xy n

In an actual shear web collapse will occur after considerable elastic and inelas-
tic deformations have taken place. The above strain rate relations at collapse may,
however, serve to estimate the total strains. Assuming

€ tot €
-E'!—-——— . -_-y- = cot2a (23]
x tot £
X
€ £
ntot __y = 1 (24)

€ e sin2q,
x tot £
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it follows that for small angles o, i.e. p, = 0, the € tot and €, {44 increase
very rapidly. Even a small strain €« tot below the yield strain of the longitudi-
nal x-reinforcement will cause very large strains in the stirrup y-reinforcement
and large cracks, €n gt representing a "mean crack strain”. Again, a limitation
aon the tolerable value of tano seems indicated in order to maintain the aggregate
interiock across the cracks. ‘

As previously discussed a mechanism in the form of & slip band will occur if
strain rates é2 < 0 become possible, hence, the concrete stress has reached its
strength value o; = -f,. According to Egs. {11} and (12)

W W
W= B-cosﬁ 5 w, = ~§'sinﬁ i
n n t n
with the corresponding strain rates .

w W Y
£ = ._B - nt
€, 2_b[’l+ cosv) » 82 = 2-b[ 1+ cos¥) , tand -

En

Referred to the compression field O, = -fo with an angle o in the x-, y-system,

Fig. 7, the situation is illustrated for three cases. In the range 0 < a < w/4

the x-steel will cease to yield such that &g = Wy. A slip band (S.B.) will then
form under the angle 20. Energy will now be dissipated by crushing of the con-

crete. The value of S_ will not change if the yield force Py 1s increased over

the critical value pyc (Fig. 4(al) just producing a concrete stress O, = ~fg.

Fig. 7 Orientations of Slip Bands
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If oo = /4 the slip band will reach a vertical (or horizontal) position. Values
/4 < o < m/2 oceur if pyx < Py The slip band turns from the horizontal into the
vertical position.

The finding are summirized in Fig. 4(b). Below line AB collapse is governed by
yielding of both reinforcements. This yield regime will be termed Regime I.
Beyond ECD failure occurs by crushing of the concrete without yielding of the
steel (Regime III). In the two triangles AEC and CDB concrete and yielding of one
reinforcement are controlling (Regime II). Hence, any increase of py, in the tri-
angle BDC or any increase of p,, in the triangle AEC will not change the value of
Sp. For py/fg=d = py/fc'd = 1/2 the maximum possible resistance is reached. The
limitations imposed by 1/2 < tana < 2 are cutting off the border regions 0BF and
0OAG, respectively.

In the subsequent sections reference will be made to the three different yield
regimes I, II and III defined above.

From a strength point of view the formetion of slip bands does not give new in-
formation as indicated above. However, the slip mechanisms allow new kinematic
configurations if external geometrical restraints are present. Furthermore, they
may allow better physical explanations of test observations.

3. TORSION AND BENDING

In a box beam with rectangular craoss section beh, Fig. 8, torsion produces a
constant shear flow around the perimeter

T
S = Td = ZAD {25)

L b 1L
] ® :

PSS LA LS LSS,

T T
4 F—— e |n
//‘ T M 7 A

7 4 ke

VIS LIS IS D,
@ S

A3 As4

<5 _Aggq 0t Pgq
Ps=A3or  Psa® .~ T,

Aozb'h

Fig. 8 Box-Secticon, Space Truss Model
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A statical solution is given first. A space truss model is assumed with the
stringers as chords, the stirrups as posts and the concrete forming diagonal com-
pression fields under angles o [5], [6]). The walls are under pure shear such
that Eqs. (2}, (3), (4) and (5) are directly applicable. For wall 2 the follow-
ing force system develops:

Stirrup force: Z_, = S'tz'tana

2 2 = Pg2'ty

Yielding of the stirrups, Z2 = p52't2' fixes the angle az:

cota2 - (26)
pSZ

Horizontal component Dh of compression field:

D._ = Sehecota (27)

h2 2

Failure may occur by yielding of the stirrups and the two lower stringers (Re-
gime I). Equilibrium of the internal forces with respect to the axis 1-7 gives

h h '
Dh2-§ + Dh4 h o+ DhB > Z3 h 25 h =20 (28)

Replacing Zg and Zg by the yleld forces Pz and Pg of the stringers and making use
of Egs. (26) and (27) gives

P+ P

3 5

s2 = (29)
he 1, 1, ., gt

p52 p55 ps4

and the collapse moment TDD

P, + P
T =2 s 31 2 1 (30)
2 S(—— 4 —) + b ——

2 psZ psE p54

For a constant stirrup reinforcement around the perimeter and egqual stringers in
all corners :

2(h+b} (perimeter)

£
1]

Pg = Pg2 ® Pggq = Pgp #

p =P, =P_=P. =P, ; A beh {(enclosed area)
the resulting expression is

4P’pS

0 = 2R (31)

po a] u

The analysis has been extended to beams with polygonal cross sections and arbi-
trary reinforcements. Physically the compression fields in all walls take in-
clinations depending on the yield values pg and the shear flow, Eg. (26). The
stringers connecting the two rigid parts across the failure zone have to resist
the horizontal components of the compression field in the walls. Failure occurs
if all but two stringers in one wall will yield.

If in addition to torsion a bending moment is acting its influence on the stringer
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forces have to be taken into account. Assuming for simplicity a section with
constant reinforcements:

i H = = P
Upper stringers P1 P7 Pu £ Py
Lower stringers: P3 = PS = Pl
Stirrups : P

A part of the yield forces in the lower stringers will be used up by the bending
moment

M, = 2ehenePy n g1

Accordingly, the torsional moment will be reduced to

4(1-n)*P,*p -
T=2A\/ Lo
p o) u

Introducing the reference values

M 2¢hepP

po 1

T 2A

po 0 u

where TDO is governed by the smaller yield value P, < Pl (failure about axis 3-5
through lower stringers) the following interaction equations can be derived

Pu Tp 5 Mp

Yielding Zl = Pl : FT{?__] W = 1 (32)
1l po po
Tp 2 Pl Mp

Yielding ZLI = Pu (?——J a-aaaads 1 (33)
po U po

Recently, the corresponding kinematic solution has been developed ({8], [8]}. In
Fig. 8 a kinematically admissible mechanism is presented. Starting from the fact
that a crack ABC over two sides is only possible 1f the shape of the cross-sec-
tion is distored, a second crack DEF on the two opposite sides is added in order
to restore the original shape. In this way a parallelogram CBFE on side 4 is cut
out. A rotation @ around the axis AD through the crack ends becomes possible if
the axis AD is parallel to the line CF, hence, lpp = lCF' For the displacement of
point F will be perpendicular to the axis AD. On the other hand, F being located
on the parallelogram will rotate perpendicularly to line FC, hence, FC parallel
to AD. The angles of the two cracks CB and EF being identical, 04, the angle B
of the axis A0 follows to

1CF = b-cotoa4 + h-cota2 - 1AD + h;cota8 + b-cota4
- - . _AD
with: lCF = lAD and cotR = T
1 h
cotR = cotu4 t 3 b(cotaz + cotaB] (34)
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Fig. 8 Torsional Mechanism

It should be remarked that the "skew bending theory” ([10]) uses a mechanism
which introduced sliding in & crack. However, the corresponding energy dissipa-
tion is erroneously neglected. Hence, the discrepancies with correct plastic
solutions can be fully explained.

In order to express the energy dissipation the velocity components of point B
(egual to point E) are needed (Fig. 9)

we hesi ) ;
sinB W4y w4x cotu4

-

Wall 4: W4x

weh*sinp , w2y = w2x'cota2

Wall 2: wzx

Using the reinforcements shown in Fig. 8 the work equation takes the form

L] 1 . . » '] .
. = P —_ oshe . 2 ehse . 2 —_— e . 2 .
in T Y4y (P3*Pg) ¥ 3tBg thew, rootTa, + p g ebew, ccot®a, + Sehew ecotagep

-
|

-~
n

- Mewesinf + Tewe*cosp

1 2 2 1
M+ TecotB = h(P_+P t+ — *h<e shehs 2& —e ehZe =
B ( 3 S] > Pan h“+cot az + p54 behecot 4 + > pSB hecot aB
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Introducing cotB from Eg. (34) gives

o l 2. 'Y 2 -— _rl. -
M h[P3+P5] + 2[h Peo cot o, ™ T cotaz)
l 2. L ] 2 — D—. »
+ 2[h Peg cot aB 5 T cotaBJ
E— 2. . 2 - El -
+ h[h p54 cot a4 ™ T cota4) (35}

If T is fixed the minimum value of M with respect to the angles a follows from

aM

D e = l2l L] —D. =
aicotuz) 2rh Pa2 CDtOL2 b ! :
T 1 S T T
coto| = ——*—— = — ; g = -
2 2*b*h p 5 p52 Zebeh 2AD
_ S S
and similarly: cota4 5 o—— i cota8 o
ps4 psB

Hence, the minimum M will result if T produces a constant shear flow S. This
corresponds to the assumption of a constant flow in the statical solution,

Eqg. (25). In the case of M = 0, Eg. (35) gives the torsional moment TpD by intro-
ducing the values of cota:

P+ P )
_ 3 5

Tpo = Ay h. 1 1 b \ (36)
-5[ + ) +

Ps2  Pgg Pog

With a moment M acting, Eg. (35) leads to interaction eguations identical to
Egs. (32) and (33]). Hence, the identity between the static and kinematic approach
has been shown.

The total - length of the mechanism is:

1 = h*cota,., + becoto, ., - if cota. > coto

AC 2 4 2 B
or

= - f L] ¥ i >
lDF b cota4 + h coto:.8 if cota8 cota2

If geometrical restraints do not allow such a length warping will become necessary
and @& higher resistance will result. Statical sclutions with a constant shear flow
hence become lower bounds.

The case may also arise, where the statical solution would imply a concrete
stress exceeding the strength 0. < -f. in a particular wall (Regimes II or IIIJ.
A redistribution of the stress field will take place leading to a non-uniform
shear flow arcund the perimeter. A safe value is obtained if the solution with
constant shear flow but o, < ~f_ is reduced by the factor /05

The above mentioned problems have been treated in Refs. [9] and [11]. The case
of beams with open cross sections including warping has also been studied [12].

So far, only box-sections have been considered. However, in Ref. [9] it is shown
that the previously discussed mechanisms are kinematically admissible also for
solid cross-sections. The beam parts are sepsarating internpally in perpendicular
directions. The parts are touching only along the perimeter. In reality the con-
crete stresses have to be transmitted over a finite wall thickness in order to
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stay above the value -f_. The determination of the effective wall thickness can
only be made on the basis of experimental studies. In Refs. [5] and [6] such
values have been proposed.

The secondary effect due to distortion of the side walls of a box section, i.e.
plate bending, influences only the concrete stresses as the membrane stresses
of the compression field are superimposed by secondary bending stresses ([5],
{6]1). Again this influence must be taken into account in a pragmatic manner by
adopting a cautious value for the effective concrete strength.

4. SHEAR AND BENDING
As a statical model a truss model, Fig. 10, is used with the upper and lower

stringers as chords, the stirrups as posts and the concrete as diagonal com-
pression field under an angle o ([5], [7]):

* [ = (37)
,}«_hcotaﬂu
Z
y . z. =2, Lyecota = P (38)
)/:{/ —T 1 h 2 1
N - L]
AL L /l h z = -0 Lyecota (39)
A M 4 ‘ u h 2
M D \.?50(,/y’/ |1V d i Vet
——— : ok 7 = stana = p_°t (40)
Z, =P \p s h ]
"Lz =Pg=pt '} "M+Vhcotx . ’ 3
Oc B deh*coso -7 d'h-sina°cosa (41)

Fig. 10 Truss Model Bending - Shear

The stirrup reinforcement is constant along the axis. The lower stringer rein-
forcement varies such that the yield vdlue Pl[x] is just reached at a critical
section, hence, Z, = Pl(x]. Excluding concrete failure the stirrup force Zg will
also reach the yield value pg*t (Regime I). Replacirng in Eg. (38]) cota by its
value irom Eqg. (40} gives the interaction equation
v
+ p = L4
o 25, Pl h

With the reference values

M = P.*h Vv = i @
po 1 po /2P1 Py h
Mp \/p 5
—_— =
m (V ) 1 (42)
po po
However, a limiting value is reached when GC = —fc {(Regime II):
\V 1
= - - = —-F
OC d*h sinoe*cosc c
v = p_+*h*coto
pc sC
- Pec
Hence, = sino
f _d

c
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and
1)
Vpc: - [pSC (1- pSC )
f _+deh \[f «d" F _+d
C C c

with the maximum value

v
aVpc = [ ) Pse 1. (_JEL_) _a
P ) : £ od 2 " \f_sd*h/max 2
3 () ? ©
F +d
c

Introducing as reference value the maximum value Vge governed by the concrete
strength alione (Regime IIIJ}:

1
\;’_FC =3 FC deh {(43)

the ratio becomes (Fig. 11(B)}:

v p
L sc ., Peo | (44)
\ f od f «d
fec c c
Vo/ Voo
1 v Vi, =1 f dh
VYoc Eq(45) fe " o'c
PO (RegimeIL) psc/ fcd
£q(42) Max —
N 1/2
el Eq.(44)
‘\(Reglme ) /! (Regime II)

1

(a) (b)

Fig. 11 Interaction Bending ~ Shear

The interaction Eq. (42) will be cut off if Vp reaches the value Vpc' hence,
v i V. )
V_p(.:.. = __'F__C_[1_ pic..) = fc hrz]- psc ) [45)
v P £ +d M f +d
po 1 o po o]

These relations are shown in Fig. 11(a) end (b). Also indicated is the influence
of a limitation tana = 1/2 for reasons discussed previocusly.

Turning to the kinematic solution the mechanism is sketched in Fig. 12 ([5]), [7],
(131, [14]). The work equation gives:

M -& + V -&-h-cota =P -&-h + i--c;:)-h-cotoup *hecoto
p p 1 2 5

Mp = —Vp'h'cota +-%°h2'ps°cot2a
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with the minimum

oM Y

P 2
—t = _V . h . L] -5 -
a[ | ] h + Ds cota cota

Using the previously introduced reference values M - and V. the interaction
Eg. (42) is again obtained. Hence, the two solutions are identical.

7
wheotax ¢

wh (a) (b)

Fig. 12 Mechanism Bending - Shear

The mechanism of Fig. 12(b) corresponds to the case, where the lower stringer is
not yielding but instead the concrete is failing, i.e. é2 < 0 (Regime II). As
discussed in chapter 2 a slip band (S.B.) will ferm at an angle 2a with o being
the angle of the compression field. The collapse load will be identical to the
solution, Fig. 12(a) for such a value of P} that o, = —f; will just be reached
(transition Regime I to Regime II).

Concerning the strain ratios the same remarks hold as made under chapter 2,
Egs. (23) and (24). A small longitudinal strain €, .4 will produce very large
stirrup strains € tDt_and crack strains €, o+ 8Nd a progressive break-down of
the aggregate interlock for small angles a. Hence, again the necessity for a
limitation of tana > 1/2 is evident.

For a general case, where bending M, shear V and torsion T are acting on a box
beam such as shown in Fig. 8, statical solutions have been presented assuming a
constant shear flow for torsion superimposed by shear forces V/Z in the two side
walls [5]. Interaction eguations can readily be developed. Corresonding kinematic
solutions have not been found. It has, however, been shown for special cases

that warping effects will take place [9], [11]. Hence, the statical solution des-
cribed above constitutes only a lower bound.

So far, all solutions presented have taken into account the spacial dimensions

of the beams also in the transverse directions. However, beam theories for closed
and open cross-sections have already been developed paralleling in concept

the one-dimensional elastic beam theory ([9], [412}). Introducing as generalized
stresses the resultants N, M, V and T the corresponding kinematic terms (general-
ized strains) in the form of extension-, curvature-, shearing- and warping-rates
along the beam axis have to be properly selected. The yield criterion and the
flow rules are then expressed as functions of these generalized stresses and
strains. For cases when collapse is governd sclely by yielding of the reinforce-
ments (Regime I) complete beam theories have been worked out. Difficulties arise
when strain rates € < 0 for the case o, = ~fg (point B, Fig. 2(b), (Regime I1))
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arise. At present, it seems improbably that for such cases a general beam theo-
vy can be developed.
5. DETAILS

Problems of structural details and some special problems are shortly indicated
and appropriate references are given.

The case of concentrated loads or reactiocns is sketched in Fig. 13. The length
hecota of the regular compression fTield

Pl : F is concentrated by a compression fan into
* _F the width e resulting into a uniform
7 .
Oecp A—*—e~+// distribution of P over e. It can be easi-
ly shown by geometric relations that the
concrete stress o, of the regular field
(1 l) increases at point A to O
2 - h i cA
v=p V=0 o . = 0 s—-cota
chA c e
'*' “‘hCOWO(_—ﬁL Hence, a relatively high stress concentra-
tion may occur. With a multi-centered fan
Fig. 13 Compression Fan under resulting into a shift of the load P to
Concentrated Load the right and hence a non-uniform bearing

stress more favourable conditions are
obtained. Nevertheless, the problem of stress concentrations in such cases has
to be taken into account. Further cases of end and intermediate reactions, indi-
rect load applications through cross beams, etc. are studied in Refs [5], [9].

The proportioning of the longitudinal steel in the tension flange of a beam is
essentially governed by Eqg. (38). The problem of the anchorage length of bars be-
yond the theoretical cut off peoint is presented in Ref. [5].

Joints connecting beams and columns have been plastically analyzed (references
mentioned in [14]}. They offer special problems as transverse splitting of the
elements is a distinct failure possibility.

In Ref. [3] the influences of a variable beam depth, of distributed loads and
single concentrated loads are studied and the consequences for the detailing of
the stirrup and longitudinal reinforcement are stated.

The membrane stress state produced by shear in a shear web can be disturbed by
transverse bending moments. A box girder bridge presents such a case, where the
side walls are subjected to shear in longitudinal direction and transverse bend-
ing moments resulting from transverse bending of the road slab. A static solu-
tion [15]) and a complete solution [16] have been developed for this case.

6. THEORY, EXPERIMENTAL VERIFICATION, APPLICATION

Plastic solutions for the strength of beams with general cross sectional shapes
subjected to bending, shear, torsion and combined actions have been developed.
For many cases the correct solutions are known (i.e. static equal to kinematic
solution). For other cases lower (static) and/or upper (kinematic) bounds are
available.
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The necessary structural details (stirrup spacing, stringer arrangement, concen-
trated loads, bar cut-off, etc.) have or can be developed especially from the
statical solutions, where the admissible stress fields furnish the required in-
formation.

All these solutions are correct within the assumptions of the theory of plasti-
city, essentially

1. Rigid-ideally plastic material behaviour
2. Yield criteria and associated flow rules.

Hence, experimental verifications should essentially concentrate on checks of
these assumptions and possible adjustments.

Concerning the reinforcing steels they exhibit generally plastic deformations
under the yield stress which are a multiple of the elastic deformations such

that the latter can be neglected. On the contrary the strength of concrete is
definitely affected by deformations and/or cracks preceding failure. A consider-
able redistribution of the concrete stresses from initial cracking up to collapse
(i.e. variation of @ = T/4 to o+ 0 or o > /2 of the compression field) accom-
panied by considerable cracking will markedly diminish the strength. The redistri-
bution may further be limited by the progressive deterioration of the aggregate
interlock in previously formed cracks such that the orthogonality required by

the flow rules may nc longer hold.

The assessment of the effective concrete dimensions offers ancther problem. Under
conditions, where the concrete strength is governing and large redistributions
occur the concrete cover may spall off prior to failure. In other instances when
failure due to yielding of the reinforcement occurs at low concrete stresses the
cover will stay intact.

Only results from experiments on properly detailed specimens (see chapter 5)
tested under clearly definited conditions (e.g. necessary extent of mechanism,
chapter 3) should be compared with the corresponding theoretical values. It is
evident that tests with premature failures of details and/er unclear testing con-
ditions must be excluded.

Considerable experimental evidence has already been collected supporting the
applicability of plastic anelysis to determine the ultimate strength of reinforced
concrete beams. A proper and cautious selection of the effective concrete strength
f, must be made reflecting the above mentioned influences. The fixing of the effec-
tive concrete dimensions becomes important if failure is governed by the concrete

strength and large redistributions.

It is felt that plastic analysis offers a rational, unified. simple, economical,
safe and reasonably accurate method to calculate the static strength of reinforced
concrete beams (and slabs and walls as well). It will become more generally ap-
plied as the concept of limit state design is gaining general acceptance. fFor in
this concept one of the limit states to consider is the ultimate limit state.

50 far design rules for beams under bending, shear, torsion and combined actions
based on plastic analysis have already been introduced in the Swiss specifications
[19] and the new CEB Model-Code (Shear, Torsion, refined method) ([17], [18],
[201).
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