Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 31 (1978)

Artikel: Readability of design programs
Autor: Alcock, Donald
DOl: https://doi.org/10.5169/seals-24921

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-24921
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

1L, 1

1ABSE COLLOQUIUM on:
AIPC “INTERFACE BETWEEN COMPUTING AND DESIGN IN STRUCTURAL ENGINEERING”’
IVBH August 30, 31 - September 1, 1978 - ISMES - BERGAMO (ITALY)

Readability of Design Programs
Lisibilite des programmes de calcul
Ablesung von Planungs Programmen

DONALD ALCOCK

MA, MS, MICE, FiStructE, FBCS
Alcock Shearing & Partners
Redhill, Surrey, England

Summary
Computer programs are being used to determine dimensions of structural mem-

bers and details of reinforcement in engineering structures, Yet it is seldom
possible for a design engineer to discover from a user's manual how such a pro
gram reaches these decisions for which he, the engineer, is ultimately respon-
sible. This paper proposes a notation called 3 R for describing computer pro-
grams in a way that could make their logic intelligible not only to programmers
but also to design engineers less familiar with software.

Résumé
L.es programmes d'ordinateur sont utilisés pour déterminer les dimensions des

éléments de structure et leurs liaisons. Néanmois, un ingénieur d' études peut
rarement découvrir dans un manuel d' utilisateur comment un tel programme
aboutit aux décisions pour lesquelles il est lui-méme responsable en fin de com
pte., Ce rapport propose donc la notation 3 R pour décrire des programmes d'or
dinateur de facon a en rendre la logique intelligible non seulement aux progranr_l-
meurs mais aussi aux ingénieurs d'études moins familiarisés avec les program-
mes.

Zusammenfassung
Computer -Programme werden flir die Ermittlung von Dimensionen von Bauteilen

und Angaben von Verstirkungen im Maschinenbau gebraucht. Es ist jedoch selten
flir einen Bauingenieur mobglich aus einem Anwendungs-Handbuch herauszufinden
wie ein solches Programm Entscheidungen trifft, flilr welche er als Ingenieur let
zten Endes verantwortlich ist, Dieser Bericht schligt ein System vorgenannt
3 R - welches Computer Programme auf solche Weise beschreibt, dass darin
enthaltene Logik nich nur dem Programmierer verstindlich ist, sondern auch
dem Bauingenieur, der weniger mit Software vertraut ist,

1. 2

t. INTRODUCTION

If a bridge collapses becauyse it was badly designed the consulting engineer is held
responsible - whether the faulty calculations were made by incompetent employees or
by comnputer., The legal problem is to prove the design, not the construction, was to
blame - but if proof is possible the consulting engineer’s insurance comspany bhas to

pay up.

That is not necessarily the end of the story. Suppose the consulting engineer had
based his bad design on the output of some proprietory program offered by a computer
bureau? And if the bureau had offered use of the program on behalf of some sther
conpany then the bureau, in turn, would seek recompense froam that company. It would
be difficult because the author would wmaintain his program had been misapplied (a
factor over which he could have no control) and point to the pile of rubble as
evidence. Whatever the financial outcome and legal tonsequences of such a case, the
problen posed here is that of a structural engineer injudiciously using results
generated by a "black box".

The blackness of such boxes is examrined in this paper, and a notation presented by
neans of which the logic of design programs could be clearly described - thereby
reducing the opacity of potentially dangerous black boxes.

2. DESIGN BY COMPUTER

Uhen computers were first used by structural engineers the anly ready-made prograns
were linited in scope to simple analysis. The structural designer would check his
results to ensure, for exsmple, that reactions balanced applied loads; then he would
work out areas of reinforcement and devise details of structural cosnections in the
traditional way. The structural designer did not need to know much about the inner
vorkings of the prograns he used, but things have happened to change the picture.
First the advance in analytical techniques {such as finite-elenent analysis) has made
a computer indispensable and manual checking practically impossible; secondly, the
conputer is now used to decide the dimensions of structural nmeabers, details of
connections, and precise sizes and arrangements of reinforcement.

2.1 Using Existing Programs

Despite the dangers of allowing a tomputer program to take this kind of decision it
is inevitable that more and more consuliing engineers will be conpelled to do so.
Design by conputer is cheaper than traditional methods; failing to take advantage aay
nean 9going out of business. But few structural designers have the time or expertise
to write their own design programs so most will have no choice but rely on those
written by specialists. There will be ever more specialization because junior
designers, being directed by their seniors to use existing design programs, will aiss
experience that would otherwise give them skill and judgement in the design process,
hence the abilty to specify their own design prograas. :

There would be nothing wrong with a specialist writing a design progran for other
designers to use if only those designers knew precisely how the program reached its
decisions, but the evidence is that they do not.

Uhat information can a structural engineer get about =2 design program? Usually just
its wuser’s manual. This should tell him how to specify a problem by preparing data
for punched cards or typing at a terminal of a computer. It should alse explain how
to interpret results produced by the program, and it should explain clearly what
engineering assunptions the program sakes ard by what logic the prograam selects sizes
and dimensions, but this kind of information is often lacking.

II1. 8

2.2 Experiences with some Design Prograns

The Design Office Consortius C11, with the author as consultant, recently evaluated
sone publicly available programs for the design of reinforced concrete beans
according to British Standard Code of Practice CP119. All programs had users’
manvals which explained clearly enough houw to prepare data, but given an identical
design problemn they produced amazingly differeat solutions. In @ typical cross
section the area of steel considered necessary by one program was several times that
specified by another.

Except for ome prograas (in which nistakes were found and subsequently corrected by
the program’s originators) no program seriously defied Code of Practice CP1i8; the
enornous variamce was pernissible under the code. Yet from reading the users”
nanuals there vere few clues to suggest the solutions would be differeat; a desigwer
night reasonably have assumed all seven prograns would design much the sane bean. In
other words the users’ manuals lacked fundamental inforaation.

2.3 Isadequacy of Information

It is not uskwnown for design prograns to have no users’ manuals at all; the designer
gets a few rough notes, or perhaps a demomstration at a terminal to show hou the
progran “asks™ for everything it wants. MNore commonly a user’s manual exists, but -
1ike those describing the bean design programs mentioned above - it fails to explain
fully how the program reaches decisions., Those secrets are concealed in the
progranner’s documnentation which the user is not allowed to see - or which would be
unintelligible if seen. Often there is no programmer’s documentation either, the
secrets lying buried in the programmer’s head. But still such prograns are used by
designers - and structures built according to their results.

How, then, is & structural engineer to discover what a design progran doess? One
ansver nay be that he can’t. If a programmer does not vant anyose else to kmow how
his program works then potential users have little hope of finding out - and had best
not use his programns because of the dangers described earlier. But it a programmer
does want to communicate ideas to his fellow nan he will do so; in words, by flow
charts, or other neans. On the other hand it is not easy for him to do so because of
the gulf of expertise betueen an engineer who specializes in writing design progranms
and the practical designer who does not.

The next section of this paper introduces the idea of a motation for describing
conputer prograns and designed to help span the gulf referred to above.

3. BIRTH OF A NOTATION

The author”“s firm was commissioned by the Design Office Consortium to write a
conputer program for caiculating adjustments to fees payable to building contractors
as influenced by certain Indices published monthly by the Departiment of the
Environment. This program is called FORPA [2]1. The commission was unusual in that
the progran was to run with minimal alteration on different makes of computer so that
FORPA could be locally maintained vherever installed.

The traditional approach to such a problem would be to publish flow charts,
specifications and listings. In this case, however, it was decided to devise a
notation by which to describe programs generally - then publish a description of
FORPA written in this notation together with a vealization of FORPA transcribed from
the notation into Fortran. This was done, and an identical Fortran realization runs
today on several different makes of computer. Currently an APL realization is being
transcribed.

II1. 4

The notation was designed to help in reading programs, writing them, and describing
their arithmetic processes. DBecause reading, writing and arithmetic are talled (in
rolloquial English) "the three R“s” the notation has been gives the name 3R.

3.1 Development of the Notation

Although IR was devised with & lisited ain - to describe the logic of FORPA to
progranmners and users alike - the notation was felt to have greater potential.
Accordingly the Froperty Services Agency of the Departnent of the Environment
tonnissioned the author’s firm to assist in preparing a proposal [3] for the further
development of 3R in cooperation with members of the C.I.B. working party, W32. The
ain would be to refine and develop 3R and use it to describe substantial programs in
the field of building design, thereby making the logic of decision processes in those
prograns intelligible to designers as well as prograsmers.

Concurrently (and froa the poist of view of software experts rather than building
designers) JR was presented by its designer, Brian Shearing, at a Seminar at Oxford
University under the chairmanship of Prof., €. 4. R. Hoare. Although some aspects
of 3R vere found wanting its reception was enthusiastic.

3.2 Relationship with Prograaming Languages

It is emphasized that 3R is a notation; not another programming language. It is
possible to wuse 3R to descridbe a program in encugh detail for a prograamer Lo
transcribe that program into a programming language, and for » potentail user of that
progran to comaprehend its logic. Nevertheless 3R does have things in commoa with
progranning languages and say even be thought of as a “common factor® of coamen
languages. For example, 3R has an assigneent statement because wmost languages have
assignmnent statements; 3R is not recursive because not all common langauges are
recursive; and so on. Accordingly there is nothing in 3K to deal with
nachine-dependent details; where these crop up the IR description has to break inte
human language.

4. A BRIEF EXPLANATION OF 3R

The 3R notation is sisple. Although space forbids full definition, little detail is
onitted in the following explanation of the notation as used to describe FORPA [21.

4.1 Overall Structure

A program described in 3R notation is a sequence of lines of text interspersed with
blank lines for clarity. A line starting at the left margin is commentary. An
inaented line is called a “"statement” and foras part of the 3R description, but aay
still include commentary enclosed in curly brackets.

"Words" of the notation are writtem in capital letters. "Names" - invented by the
person describing a program - are written in small Jetters, several words being
allowed in each naue.

Logical flow is generally from one statement to the next until the final ome, FINISH.
But it is possible to parcel groups of statements into named "blocks” and put these
anywhere in the text of a program without altering its logical flov - which simply
“passes by" the definition of any block encountered. Definition has the form:

LET example black BE
{sequence of statements}
END OF example block

IIl. 5

Uriting the nane of such a block in the wmain program - as theugh the same vere a
statement - is called "invoking” a block. It implies logical replacement of the nane
by the sequence of statements in the block so named. A block may be invoked aot only
from the wain program but also from within another block, and that from within
another, and so on indefinitely - provided that no block is iaveked recursively s a
resuit.

Although legical flow may be "nested” to any depth as just described there may be ne
textual nesting of blocks (with consequest privacy of an enclosed block to its
enclosing block); in 3R notation all blocks are at the sane level. Likewise there
is no nesting of loops or conditional statements - the effect of nesting is achieved
by writing one or more “"blocklets” within a block as explained later. The structure
of prograns described in 3R notation is comstrained to be sisple and linear so that a
reader has only one level of thought to contend with at a tinme,

Cosmunication betwesn a block and the invoking piece of program is by argusents or
shared variables or both. This is explained later.

4.2 Variables and Assignaants

Variables must be declared bafere being referred to (net necessarily at the beginning
of a pragram or block) and nay have their range specified. In the examples belew
“colour” aay take omnly three scalar values "red”, "white” or *blue"; "auaber of file"
nay take any integral value from t to 99; “total nusber ef files" ownly the value 99.
Character variables have their linit of lewgth specified as illustrated by "name of
tile" which may not contain more than six characters.

VARIABLE colour IS red OR white OR blue .
VARIABDLE number of file 15 1..9?
INVARIABLE total number of files IS 99
VARIABLE name of fTile IS CHARACTERe4

Coaventional real and isteger variables aay alse be declared. Awnd variables may be
subscripted, in which case the ranges of subscripts must be specified.

VARIABLE stiffaess natrix [1..384,1..50] IS REAL
VARIABLE list of six titles [1..4] IS CHARACTER*72

Variables declared in the main preogram are accessible to ihe main progran and every
block. Variables declared inside a block are private to that block.

Assigament to a variable is indicated by an squals sign. The expression on the right
a2y involve synbols +,-,%,/.¢ (exponentiate by an istegral pouer) in the convestional
way. There nay be several assignments separated by semicolons on the same line.

stiffness matrix [i,j] = -factorsmodulussinertia/(lengthpover)
colour = red; name of file = colour + "man”

The operator, +, in character operations denotes concatenation; the name of file
above would becone “redaan”.

There are two special operators, DIV and HOD, for use in non-negative integer
expressions. These yeild an integral result, and integral resainder, of a division:

integral result = numerator DIV denominator
integral remainder = numerator N0GD denominator

wvhereas the operator, /, always yields a real vesult. Otherwise "sixed mode® is not

catered for, but special blocks nay be assused vhich are capable of converting from
one mnode to another. An example is:

1I1. 6

X = real from integer (i)
Uhen transcoded from 3R irto a» prograsming larguage such a statement would often
becone the unadorned statement "X = I". But the description of the prograa ins the IR
rotation is explicit and assumes no implicit operations.

4.3 Control Statemsents and Blocklets

A» endless loop is denoted by a sequence of statements sandwiched between the wvords
REPEAT and AGAIN. To leave a loop (tramsfer to the statement immediately following
the vord ABAIN) one of the statements in the loop may be the word UHILE or UNTIL
foliowed by a Boolean condition.

REPEAT
{ optional sequence of statements}
UNTIL i > j { or WHILE i <= j ¥
{optional sequence of statemenist
AGAIN

There is only one way to describe a choice of legical pathways in 3R notation - and
when specifiying any choice all other possibilities aust be explicitly catered for.
The statement OTHERUISE FAIL is obligatory. An illustration of a choice betveen tue
pathuays is:

IF x <y
{ statements to apply if x (y }
IF x>y
{ statements to apply if x > y ¥
OTHERUISE FAIL { in this example x = y implies failure 2

Separate pathways join again iamediately after OTHERUISE FAIL. The null statement,
PASS, is used is cases where no statements are needed om a pathway.

The design of this siatement is based on Dijkstra“’s "guarded commands” [4] and chosen
in preference to the unsymmetrical and ubiquitous IF..THEN..ELSE. Although it nsay
seen unnecessarily arduous to enumerate every possible result of every conditioa,
doing so has been found salutory - preventing mistakes that would otheruwise have
crept into programs. And certainly the person who transcribes fros a 3R description
enjoys the certainty of 21l cases having been considered.

Execution of the statement, FAIL, inplies the "status” of the prograa becomes
invalid. 1In every program described in 3R notation lies the concept of its current
status being valid or invalid. Status starts as wvalid, but becomes invalid if the
logical flow neets the word FAIL or an inconsistency such as a subscript oeut of
range. The idea behind the concept of status is to provide a tidy mechamisa for
terninating programns in error. By preceding certain statements with the word TEST,
and consulting two special Boolean variables VALID and INVALID, status may be tested
and the result acted upon.

TEST alement = vector [i2
IF VALID

PASS
IF INVALID { etc.}

Testing an invalid status revalidates it. It is possible to induce the status ta be
invalid again by a FAIL statement. Unfortunately there is not enough space to
discuss the aechanism of status more fully.

L. 7

#Ag stated earlier, loops way not be nested - nor may choice. Within a block,
however, the effect of nesting may be achieved by naming - heace invoking - an ianer
structure as @ "blocklet”, then defining that blocklet. The first such definition is
introduced by the word UHERE; subsequent ones by AND UHERE.

REPEAT
i=si+1
UNTIL i > 18
inser nest
AGAIN

UHERE imner nest IS
J=19
REPEAT
i=j+1
UNTIL § > 18
innernost loop
AGAIN

AND UHERE inaermost loop IS { etc. }
411 blocklets are written before the fimal END OF statement of their enclosing block.
Any blocklet may access the variables declared within its enclosing block (as well
as those declared in the aain progran) so there is mno concept of ‘argusenis" to
blocklets as thare is to blocks, as now sxplained.

4.4 Argunents, Input & Output

Additional communication is possible by invoking a block with "arguments®. These
argunents are intarspersed anong the vords of the block’s name {0 help the reader.
.Thn following block:

LET stress at face of member BE
VARIABLE ARBUMNENT a 1S REAL
INVARIABLE ARGUMENT s IS top OR bottiom
INVARIABLE ARBUMENT n IS INTEGER

{ sequence of statemenis }
END OF stress at fTace of nenber

could be invoked from the aain program, or from another block, as:
f = strees at (top) face of menber (§)

where the actual argunents f, top, & replace dumay arguments a, s, n respectively.
A1l dunny arguments nust be declared either VARIABLE or INVARIABLE as shawn.

Argunenis may be declared not only in blocks but also in the aain program. This is
the neans of connunication betveen the program being described and its eavironment.
The program’s input is declared as a set of invariable arguments; its output as a2 set
of variable argunents.

INVARIABLE ARGUMENT keyboard(!..188881 IS5 CHARACTERs!
VARIABLE ARGUMENT disk filell..1488, 1..1888] 1S REAL
INVARIABLE ARGUMENT punched card(i..18886]1 IS5 CHARACTER*8S

II1. 8

5. AN EXAMPLE 3R PROGRAM

The first program to be described in 3R notation was = siaple word-processing
progran. This was subsequently transcribed into BASIC (one day’s effort by Brian
Shearing) and is the program by which the photographic masters of this paper were
produced. Space daoes not pernit reproduction of the word-processing program itself
but the following exanple taken from an earlier paper [3] illustrates its style of
docunentation.

Follosing this example there is a reproduction of the statemests of the prograa with
connentary removed { automatically by the word-processing system) then a realization
of the program in Foriran and ancther in BASIC.

3.1 A progran for searching, described in 3R

The block of program below is designed to search for a given value in a pre-sorted
table of values. If a match is found, the position of the value withian the table is
to be delivered. If no match is found, the block is to fail.

The following example would set the status of execution INVALID if the value were nat
fould in table[1]..tablelnl, but would set j if "value" were found in tableljl.

TEST j = find {(value) im first (n) words of (table)
The program to achieve the above example is as follows.

LET find in first words of

VARIABLE ARGUMENT j IS 1..1968

INVARIABLE ARGUMENT value IS INTEGER
INVARIABLE ARGUMENT n IS 1..1084

INVARIABLE ARGUMENT tablel(ti..1888]1 IS INTEGER

Because the values in the table are sorted the method of "binary searching” can be
used whereby the range of values considered is repeatedly halved uatil a match is
found. During the search the range of wvalues +to be inspected is
tablelfirstl..tablellast]. The initial range is the full table.

VARIABDLE first IS 1..1000
first = 1

VARIABLE last IS 1..1000
last = n

The nain part of the block keeps searchiag until a match is found.

REPEAT
choose a value for j
UNTIL tableLjl = value
ad just the range
AGAIN

UHERE chaose a value for j I§

Assuming a fairly regular distribution of values in the table, the position to be
inspected from the table is chosen to be that in the aiddle of the current range.

J = (¢ first + last) DIV 2

111. 9

AND UHERE adjust the range IS

If the value just inspected exceeds the given value then the new range is the lower
half of the current range.

IF tablelj} > value
{ first resains uachanged. }
last = j - 1

If the inspected value is less than the given value then the nev range is the upper
halft of the current range.

IF tableljl < value
tirst = j + 1
{ last remains unchanged. }
The blocklet "adjust the range" canmot be entered if tablel jl is equal to the value.
OTHERVISE FAIL { computer failure }

Before resuning the main lonp, "first® is checked not to have overlapped “"last*
indicating that the value is not in the table (or that the table is not properly
sorted!).

IF tirst <= last
PASS

OTHERUISE FAIL

END of find in first words of

3.2 The 3R Code vithout coaments interspersed

LET find in first words of BE

VARIABLE ARGUMENT i IS 1..100¢

INVARIABLE ARGUMENT value IS5 INTEGER
INVARIABLE ARGUMENT n IS 1..1008

INVARIABLE ARGUMENT tablelt..1888] IS INTEGEK

VARIABLE first IS 1..100¢
tirst = |

VARIABLE last 1S 1..1909
last = n

REPEAT
choose a value for |
UNTIL tablel ji = value
adjust the range
AGAIN
UHERE choose a value for j IS
J = { tirst + last) DIV 2

AND WHERE adjust the range IS

II1. 10

IF tableljl > value
{ first remains unchanged. }

last = j - 1
IF tableLjl < value
ftirst = j + 1

{ last remains unchanged. }

OTHERVUISE FAIL { computer failure }

IF first <= last
PASS
GTHERVISE FAIL

END OF find in first words of

5.3 Transcription from 3R inte Fortran.........and BASIC

LOGICAL FUNCTION FINB(J,VALUE,N,TABLE)

c

C RETURNS .TRUE. VITH J SET IF AT TABLEC(J)

C RETURNS .FALSE. IF NOT FOUND IN TABLE(1..N).
INTEGER J, VALUE, N, TABLE(18#9)
INTEGER FIRST, LAST

FIRST = 1
LAST = N

18 4 = (FIRST + LAST)/2
IF (TABLE(J) .NE. VALUE) &OTO 24
FIND = .TRUE.
GOT0 38

29 IF (TABLE(J) .GT. VALUE) LAST=J-1
IF (TABLE(J) .LT. VALUE) FIRST=J+1
IF (FIRST .LE. LAST) BOTO 18
FIND = FALSE.

38 RETURN
END
REFERENCES

1988
1618
1920
1839
1848
1858
1868
1879
1989
1999
1168
1118
1129
1138
1149
1158
1166
1174

DIN T(t1d88)

REM

REN SET N AND V, THEN GOSUB 1859
REN IF V AT T(J) THEN R = 1,

REM IF V NOT IN T(1..N) THEN R=#
LET F =1
LET L = N
LET J = INTU(F+L)/2)
IF TCJ) <> V THEN 1118
LET R = 1

6070 1178

IF T(J) <= V THEN 1144
LET L =J -1

GOTO 1158

LETF = J + 1

IF F <= L THEN 1878
LET R = #

RETURN

1. Conputer Programs for Contimuous Beams - CP118, Design Office Consortium,

Cambridge, 1978

2. FORPA Computer Prograa, Foraula Price Adjusteent for Building Contracts,

Design Office Consortium, Canbridge, 1978

3. 3R - A Notation for Bescribing Computer Programs, Property Services Agency,

Departnent of the Environnent, London, 1978

4. Dijkstira, E.¥., A Discipline of Programsming, Prentice-Hall, 1976

	Readability of design programs

