Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 31 (1978)

Artikel: Development and maintenance of design-supporting software
Autor: Werner, H.
DOl: https://doi.org/10.5169/seals-24896

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-24896
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

1. 11

1ABSE COLLOQUIUM on:
ATPC “INTERFACE BETWEEN COMPUTING AND DESIGN IN STRUCTURAL ENGINEERING™
IVBH August 30, 31 - September 1, 1978 - ISMES - BERGAMO (JITALY)

Development and Maintenance of Design-Supporting Software
Developpement et maintenance de programmes de calcul de structures
Entwicklung und Wartung entwurfsunterstiitzender Programme

H. WERNER

Professor, Dr. Ing,
Techn. Univ. Munich
Munich, German Federal Republic

Summary

Mature design-supporting software has to pass through four important phases of
development:

1. design 2, Coding and test 3. Pilot installation(s) 4. Marketing, mainte-
nance and enhancement. To neglet one phase endangers the success of the next
one, From practical experience, the author states the aims of these develop-
ment phases and offers advice on how to reach them.

Résumé

L.es programmes de calcul de structures doivent passer par quatre phases pour
eétre véritablement opérationnels:

1. Concéption 2, Realisation et essais 3. Installation pilote 4, Marketing,
maintenance et développement. La négligence dans une phase compromet la
suivante., Des remarques et reccomandations, résultant d'expériences pratiques,
sont faites pour chacune de ces phases,

Zusammenfassung

Marktreife entwurfsunterstliitzende Software durchliuft vier wichtige Entwick-
lungsphasen: :

1. Entwurf 2. Erstellung und Tests 3. Pilotinstallationen 4, Vermarktung,
Wartung und Weiterentwicklung. Vernachlidssigungen in einer Stufe stellen die
erfolgreiche Durchfilhrung der ndchsten in Frage. Ausgehend von praktischen
Erfahrungen werden Anmerkungen und Empfehlungen zu den einzelnen Entwick-
lungsstufen gegeben,

I.12

1. INTRODUCTION

1.1 Definition of Design-Supporting Software

In the process of structural design, the following steps can be de-
fined [113

-~ collection of input information (e.g. preliminary dimensions, loads,
construction stages);

— development of a model for analysis (e.g. an FE model);

- analysis

- interpretation and modification of the results according to standards
and practical experience;

- caloulation of the members;

- construction, i.e. preparation of drawings, details eto.

In each step, information gained by the preceeding steps is used in
addition to new data.

Fig. 1 shows a scheme of this process.

—o) DATA | .
COLLECTION

PERMANENT

FILE
—JmopeL (_.
GENERATING _"°DEL

e

[,___—_-“ ANALYfii””;:::(éESULTS LISTING. P OT
. %

—=»{ STANDARDS —

PRELIMINARY

DATA
F_—- — T_".’I
{PROCESSORS
—d

DIMENSIONING

——=1 CONSTRUCTION |""

LISTING. PLOT ’
RESULTS DISPLAY

Fig. 1 Scheme of the Design Process

Softvare meant to automate parts of this chain of processes which are
connected with each other to a certain degree could be called
"process oriented software".

For every type of construction there is a different process because
there are different aspects to the design e.g. of bridges or of soil
structures.

Solutions for problems in different processes are often similar (i.e.
use of the FEM in structural analyeis). Software has been developed to
solve special problems (i.e. mechanical or graphical). This type of
software may be called "problem oriented software".

Take a matrix which contains horizontally the steps of the respective
design processes and vertically the different constructions. CAD-
Programe (CAD = Computed Aided Design) are an example of the former
group (rows) and FE-Programs { 2 are an example of the latter group
(columns). The expression "design-oriented software" may be used to
comprise both groups.

1.2 Hardware - Software - User Interface

Design-oriented software provides amn interface between computers and
engineers (fig. 2).

OPERATING DESIGN
DESIGN- i
.
— SUPPORTING .
SOFTWARE
SYSTEM PROCESS

Fig. 2 Interfaces between Gomputer, Software and Engineer
Software has to be adaptable both

- to the computer and its operating syetem and
- to the engineering design practice.

These "interfaces" become important in the transition from software
"made to measure", for one computer system and one firm, to "standard
softvare", intended for many applications on different makes of com-
puters.

The expression "software", used in this paper, means a complete set of
information describing a program, comprising

- short description of the program,
- user manual,

-~ data processing manual,

- source code.

Hardwvare exists in many forms; it can be classified approximately
into [3]s

- mainframe computers,

minicomputers,

desk-top-calculators or microcomputers,
terminals (without any computing capabilities)

I.13

I.14

Computers of different sizes are increasingly linked together, i.e.

- terminals are used as peripherals for micro- or minicomputers or
connected to commercial timesharing-systems via telephone lines,
~ microcomputers serve as intelligent terminals to prepare data for

larger computers,
- minicomputers and mainframers work together in computer networks
(i.e. minis as front-end-processors).

The smaller {and cheaper) a computer, the greater the number of in-
stallations; design-supporting software consequently has to meet the
needs of mini- and microcomputers in order to find an adequate market.

Similar to the hardware hierarchy, engineers can be classified accord-
ing to their knowledge of data processing. The majority of structural
engineers are strangers regarding the requirements of hardware and

the methods and models of software. They need the help of "interpreters"
once their involvement is beyond that of theoretical background.

Much rarer is the engineer who combines knowledge on software applicat-
ions and structural design, the "finite element engineer". Therefore,
software must be aimed at for the "normal" engineer in order to attain
wide distribution.

1.3 Software Examples

In the following ochapters two software examples will be used for illus-
tration:

1. SET - a chain of programs for geotechnical problems [1]. SET contains
components to

- generate structural and system data (GENSET);

- analyse FE-structures with non-linear material behaviour (NONSET);

- caloulate reinforced concrete members, i.e. tumnel linings, tied-
back walls (CONSET);

- analyse seepage and groundwater movement (SISET);

- print and plot the results (PRINSET, PLOTSET);

All components are linked via a common data base (fig. 3).

[
GENSET
PRINSET) DATA PLO
BASE TEET
CONSET NONSET SISET

Fig. 3 Components of Program SET

I.15

2. HOPP - a program package for the structural engineer.

A8 a consequence of the wide distribution of desk-top calculators and
of their growing performance, engineers require software for their
run-of-the-mill problems; HOPP, a package in BASIC, fits this need.
Standardization of input (interactive), output and interfaces for all
components has led to its wide distribution.

Components exist for the analysis of RC beams, slabs, columns,
foundations, plane frames etc. and perform structural analysis, super-
position of member loads and dimensioning according to the standards.

2, STEPS OF SOFTWARE DEVELOPMENT

Software development comprises four stages from the problem definition
(a description of the desired capabilities, the methods and the
"boundary conditions" of a program) to the mature product:

- program design,

- coding and tests,

- pilot installation(s)

- marketing, maintenance and enhancement.

Each stage must be completed before the next one is started; omissions
and carelessness in one stage lead to expensive ceorrections in the next
or endanger the whole project.

In{ 4] a great number of topics to be considered has been summarized.
3. PROGRAM DESIGN

According to the German CAD standards| 5], concepts must exist for

- irpput,
- output,
- solution methods and algorithms,
- program structures and data flow,

before coding can begin. The results of this first stage of software
development should be fixed in provisional "User’'s Manuals" and "Data
Processing Manuals".

3.1 Input

Input and output are the interface between design-supporting software and
user. A user must not be asked to adapt to new input forms for every new
program; a strange form of input can build a barrier against the intro-
duction of new software. An interface between the input component and the
rest of a program allows the adaption of the input component to a form

the user is familiar with. Some firms do well with traditional imput (with
fixed columns) - especially, where large amounts of data have to be
transcribed by data typists from form sheets to storage media. On the
other hand, free format input using a problem oriented language[6] leads
to ease of use on terminals. "Guided" input is useful for a dialog with

I1.16

the computer if it ie coupled with immediate validity and plausibility
checks. This gives guidance to the engineer who does not constantly use
the computer but may be superfluous for the experienced and constant user.

3.2 Output

The results of a calculation should be preserved in a storage file; this
is advantageous for the following reasons:

- a subsequent program can use these values as input (fig. 1);

- on a permanent file, the results can be kept as long as they are needed;

- subsequent processes, i.e. superposition of load cases, can be started
immediately;

-~ similar to many input forms, several forms of cutput can be selected
(fixed or free formats, degree of condemsation, printed or graphical
output).

In Munich work is currently being done on a program which lets the user
choose the contents and form of the printed output.

On the subject of print output, some obvious facts are mentioned here
because they are often overlooked:

= To ensure easy transition between batch mode and dialogue, line
numbers should be counted and the number of lines per page should be
limited by a variable (which can be set according to the printer);

- every page should automatically be marked by a heading (project identi-
fication, date, page number etc.);

- print output should adhere to standard paper sizes (in Germany: DIN A4);

- empty lines waste paper without leading to greater oclarity;

- every print output must be self-explanatory without the help of manuals
ete.,

3.3 Solution Processes and Algorithms

With the application of data processing in design practice, many new
solution processes and algorithms have been developed. The practical
engineer as program user is often not familiar with these methods; he
must, however, check the results and take responsibility for them. Here
we have a difficulty which we could meet by the following means:

- Full documentation of the theoretical background of a program, in such
a way that the manual becomes a textbook complete from references to
the actual implentationj;

- introduction of an adviser between software and user. This could be an
engineer familiar with the dp methods in a firm, a computer center or
an institution concerned with marketing software.

If a new technical model or s solution algorithm is to be introduced, it
must be checked for numerical stability, limits of applicability and
practical reliability. Such research ought to occur before a design-
supporting program is planned. Only tried and proved algorithms should be
used for broad (and often uncritical) applications. On the other hand,
new techniques are necessary. Their development must be supported if
software development support is to be of long-~term effect. The result of
such research cannot be mature programs but algorithms, which are turned
into programs for practical use in the next step (i.e. SAP IV). If the
result of such research is a source program, then this source program
should be published together with all necessary explanations.

I.17

Design-supporting programs refer to standards, recommendations etc. once
they leave the area of classical mechanics. Standards, however, usually
do not give an unequivocal answer for every detailed problem; inter-

pretations are necessary. Engineers are confronted daily with interpre-
tations; often they decide open questions by experience and engineering

Jjudgement.

Design-supporting software has to decide some of the questions in advance,
which puts the responsibility on the program author; he has to fill the
holes in the standards. In a way he sets a standard himself because
possibly hundreds of users may trust his decision implicitly. This is
another problem which must be solved.

Some recommendations are:

- design-supporting software development needs the intensive assistance
of engineers versed in design practice;

- interpretations of standards must be documented and the standard-
committees must be made aware of the problem;

- software engineers should participate in standard-committees in order
to adapt standards to dp needs.

3.4 Program Structure and Data Flow

A program consists of routines; each routine should have a clearly de-
fined task and a clearly defined data interface to the rest of the pro-
gram. CAD standards| 5] recommend a size not exceeding 200 statements per
FORTRAN routine. It is therefore necessary to analyse the problem, to
structure it into sub-problems, until each routine meets these require-
ments.

At the same time, the data flow between components of the program must
be planned.

Interfaces can and should be defined, not only between input and output
components and the rest of the program, but between large blocks of
routines as well. For instance, the following program and data structure
has served well for FE analysis of construction stages (for bridges and
tumnels) [1]:

1. "System data" (nodal point coordinates, material parameters, element
descriptions, loads and boundary conditions) are input, checked and
stored on a permanent file ("original qualities").

2. The FE model representing a certain construction stage (oxr design
alternative) is built up using pre-defined members; data concerning
this "current structure" are stored in a working file.

3. The current structure is analysed; results are printed and stored on
a vworking file.

4. If the user so decides, resulis are stored with the "original qualitied'
as "acquired qualities".

In this way, the user can model the construction sequence, analyse alter-
natives or control non-linear processee (i.e. system creep).

A number of programs can be linked to a chain if the external files are
clearly defined.

In order to curb the proliferation of programs it seems to be absolutely
necessary to design program components to be interchangeable between
different program packages (i.e. FE-solutions or graphics packages).

I.18

Expensive interfaces become superfluous when data bases are standardized;
in any case general recommendations are very much needed. With SET the
author offers an initiative in this direction (see chapter 1.3).

4. CODING AND TEST

4.1 Programming Language Considerations

The choice of a programming language for engineering programs rests
largely between FORTRAN and BASIC. Up to now, FORTRAN is the language
generally recommended for technical programs because a standardized
version (ANSI-FORTRAN) exists giving a high degree of portability. For
smaller programs, desk-top calculators programmable in BASIC only, offer
the widest market. The problem with BASIC is its lack of standardization.
Each computer has its own dialect; this in not prohibitive however, be-
cause the popularity of desk-top calculators makes it worthwhile to adapt
programs to the different dialects. Experience with the program package
HOPP has shown that an adaption to each type of computer is necessary
but that these alterations account for only a small percentage of the
development effort.

4.2 Beduction of Software Errors

Coding means the translation of ideas (collected in the manuals) into
‘statements in a programming language. In practice, however, more time is
spent in testing. Hierarchial structures and clearly defined interfaces
make it possible to code and test program segments independently, one at
a time. By this method, one can be reasonably assured that an error (or
an alteration) in one segment has no unforseeable repercussions in an-
other.

Software errors may be defined as:

- errors in the source code,
~ errors in the manuals (i.e, description of input),

Clearly, it is efficient to use routines already tried and proved in
earlier projects because the effort for testing can be much reduced.

Testing can be made easier if the search for errors is planned in advance.
Valuable tools are:

- clear structuring;

-~ options to print intermediate values ("trace"); it is helpful to print
input and output parameters for routines and data transferred to or
from files; it must be possible to pinpoint certain areas to reduce the
bulk of dataj

- redundant validity checks whereever possible; every rountine should
"defend" itself against incorrect parameters.

Errors in the manuals are often caused by program alterations not noted in
the manual. For this reason disciplined updating is essential.

Errors in the solution algorithms occur if cases are analysed not con-
sidered in the design stage. Eere the solution process must be enhanced
or these cases must be specifically excluded in input description and

.19

by input checks.
5. PILOT INSTALLATIONS

Pilot installations following the implementation stage quickly detect:

- installation difficulties,
- errors not found by previous testing,
- practical cases not concidered in the development.

One of the most important sources of information for the precgram author
is the user feed-back. Every recommendation to extend the scope of the
program, every misinterpretation of the manuals, every question as t¢ the
theoretical background (or to the use of the program or to the meaning

of the output) has to be analysed carefully and will usually lead to al-
ternatives in code or manuals. Changes in large FE programs (i.e. ASKA,
NASTRAN) are tested for one year by pilot installations in large and ex-
perienced firms before being released to the publiec.

Pilot installations inveclve a lot of human effort and are therefore ex-
pensives; these costs have to be planned into the budget.

6. MARKETING, MAINTENANCE AND ENHANCEMENTS

Only a few large firms have the means to develop design-supporting pro-
grams on their own; hardware firms have more or less stopped to develop
application software. These days most software must be bought.

The customer is confronted by the following problems:

1. Orientation: Often the information concerning software is insufficient.

2. Choice: Reference lists of users probably provide the best judge of
performance and reliability.

3. Installation: This can be particularly difficult with software de-
signed for a special type of computer. Once again, references are
helpful,

4. Training of staff: Effort here can be reduced considerably if standards
in manuals [5], in input form'[6] and in output are generally accepted.

5. Maintenance: Correction of errors needs effort in direct relation to
the number of applications. Software has to be adapted constantly to
changing standards, techniques or solution processes, if it is not to
become obsolete. If software is accepted by the engineers of a firm,
then the number of applications grows and also the demands for ex-
ransion of the original scope of a program. Who is to maintain and
evolve a program? To do it in one's own firm, the user needs dp staff
who are willing and able to analyse the program. Otherwise, maintenance
should be done by the vendor or the author.

6. Training and advice: New software often contains new algorithms,)
different interpretations of standarde or new theoretical background.
Users must familiarize themselves with these novelties and decide
whether a new program is applicable to their problems. In this they
need help.

1. 20

These questions demand answers from the vendors:

1. New software products must be published. Mere descriptions are not
enough; examples of practical applications awaken interest. Software
lists, short information, publications in engineering journals are
possibilities. A lack of suitable marketing organizations is obvious.

2. Sample runs of data prepared by the prospective user are often ex-
pensive; on the other hand they are a welcome addition to the testing
process.

3. Installation effort is reduced considerably if
- ARSI-FORTRAN ies used,

- the data processing manual contains clear information concerning the
ingtallation procedures.

4. User’'s access to new software can be simplified by:

- detailed examples in the user manual (first program applications
usually take their pattern from examples);

-~ adaption of input to & well-known form, i.e. by use of form-sheets
familiar to the staff. :

5. Software always contains errors; every new installation brings new
maintenance problems. Maintenance and enhancement must be guaranteed.
This stage of development never stops once a program is on the market;
product without maintenance is soon obsolete.

6. The author of software acquires new knowledge in the process. As a
natural consequence he has to give advice and publish his new know-
ledge. On the other hand, councelling by phone can be time consuming,
especislly if the program is widely used. A requirement becomes
necessary for somebody who can answer standard questions and give
normal advice to customers while retaining valuable hints for trans-
migsion to maintenance staff. This person should ideally be with the
marketing organization.

These activities are quite time consuming and expensive. They increase
with the success (i.e. distribution) of software. The development in-
cluding the pilot installation accounts for about 25% of the costs, the
reat is spread over the above mentioned points. Approximatively 1 - 3
years time lag ocours between the end of phase 2 (coding and test) and the
firat sales.

7. CONCLUSIONS

A8 mentioned before, design-supporting software is never finished; it
needs constant maintenance and constant adaptions to changing surround-
ings. If a program is funded in some way, gains from sales etc. should
be fed back into maintenance and expansion.

Software engineering is & young dieclipine certain to play a key role in
future scientific and technical prograss. It should be supported and
helped to stand on its own feet. On no account, however, should subsi-
dizing public agencies shackle the free development by unnecessary re-
strictions.

I.21

ACENOWLEDGEMENT

The author wishes to thank Dipl.-Ing. K. Axhausen, member of the Group
on Electronic Computation in Structural Engineering of the TU Mumnich,
for his collaboration on this paper.

REFERENCES

1.

WERNER, H., AXHAUSEN, K., KATZ, C.: Programmaufbau und Datensirukturen
in entwurfsunterstiitzenden Programmketten. Tagungsbericht: Finite
Elemente in der Baupraxis, Hannover, 1978

DUNDER, V.F.: Finite Element Programs or Software Engineering Library?
Proceeding of the 4th Intern. Seminar on: Computational Aspects of the
Finite Element Method, Long Beach, 1977

NOPPEN, R.: Technische Datenverarbeitung bei der Planung und Fertigung
industrieller Erzeugnisse. Informatik-Fachberichte Nr. 11: Methoden
der Informatik filir Rechnerunterstiitztes Entwerfen und Konstruieren,
Springer-Verlag, Berlin, 1977

BLAND, R.L.: Engineers and Computers-Interaction or Reaction. 6th
National ASCE-Conference on Electronic Computation, Atlanta, 1974
LANG-LENDORFF, G.: CAD-Guidelines, CAD-Bericht KFE-CAD 6. Gesellschaft
fiir Kernforschung, Karlsruhe, 1976

AEN, M,, BOCKELER, K.H., HAAS, W.: Eingabekonventionen fiir CAD-
Programme. CAD-Bericht, KFK-CAD 39. Gesellschaft fiir Kernforschung,
Karlsruhe, 1977

Leere Seite
Blank page
Page vide

	Development and maintenance of design-supporting software

