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EFFECT OF INITIAL STRESSES ON PLATE BUCKLING AND
BUCKLING OF BOX COLUMNS

‘Henrik Nylander
Professor, Techn.Dr.
Department of Building Statics
and Structural Engineering
Royal Institute of Technology
Stockholm

ABSTRACT

‘The plate buckling is studied in Appendix 1, presented as a contri-
bution at the IABSE-Congress, Amsterdam 1972.

When dealing with the column buckling of the welded box columns with
quadratic cross sections it is assumed that the effective cross section
consists of four angles with the flange width by (= be in Figure 3 in
Appendix 1). by is the effective width of the compressed plate at the fai-
lure load in plate buckling.

The failure criterion at the column buckling is assumed to be that
failure occurs when the compressive stress in the two most loaded angle
flanges exceeds the value oyt b/by, where okp is the value of o5 = N/2bd
at plate buckling failure.

Results of the calqulations are given in Appendix 2. The diagrams
show that the influence of the initial stresses is of great importance.
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APPENDIX 1

FAILURE LOAD AND EFFECTIVE WIDTH OF COMPRESSED STEEL PLATES WITH INITIAL
STRESSES AND INITIAL DEFLECTIONS

Column buckling is influenced by the local plate buckling. The local
plate buckling is dependent on initial stresses due to welding and initial

deflections of the plates.

The author has studied the plate buckling in the overcritical range
using a model of calgqulation, which enables to consider the initial
stresses and the initial deflection in a relatively simple manner.
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Fig. la and 1b Model of Calculation

The investigation is part of a research project regarding the carry-
ing capacity of welded hollow columns, built up by thin plates. The pro-
ject is carried out at the Department of Building Statics and Structural
Engineering at the Royal Institute of Technology, Stockholm and at the
Swedish Institute of Steel Construction, Stockholm.
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pressive stresses in the
direction of the load N
at the edge A-E (a)) at
the line of symmetry
(b)) and the edge E-E~
(c)). Comparisaon with
solution by Coan OO/GeR
= 1,74.

The model of calqulation consists of a plate acting only in plate
bending and of the strips 1-7 and 17- 77, taking the membrane stresses
only. (Fig. 1) The strips are connected to the plate at the points
A-G and A"~ G". The areas of the strips are shown in Fig. 1, where
A = 2b-d is equal to the area of the cross section of the plate. The nor-
mal forces in the strips are caused by 1) the initial stresses, 2) the
normal force N in the plane of the plate, which gives forces in the dif-
ferent strips in proportion to their areas and 3) of forces which are
caused by the changes of length of the strips as the bending deformation
of the strips follows the bending deformation of the plate.

The mathematical treatment is omitted in this connection. It is the
author”s intention to publish the theory and the rather comprehensive
results in a near future.

A treatment of the problem starting from the fundamental Eq. by
von Karmdn and Marguerre adjusted to take into account the influence of
the initial stresses is in the author”s opinion very difficult. In Fig. lc
a comparison is made with a solution by Coan |1| for a case where oi=0.
The membrane stresses in the direction of the compressive load N at the

supports at the middle of the plate and along a free edge are considered.
It is seen from the Figure that it is a good agreement between Coan~s re-
sults and the results from the calgulations for the model in Fig. 1b
both regarding the maximum values and the distributions of stresses.

It is hardly possible to precise adeguate criteria of failure for
the highly statically indeterminate system in question where the elasto-
plastic state of stresses must be considered. The author has instead of
trying to give a complex theory started from a relatively detailed
study of the stresses in different parts of the elastic plate caused by
bending and torsional moments and the normal forces. Then that load has
been determined at which total yielding (yield stress over the whole
¢cross section) will occur at the point considered, if the bending and
torsional moments as well as the normal forces have the values calqulated
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from the theory of elasticity. At the judgement of the failure load the
following points have been considered:

1. The midpoint of strip (A-A", Fig. la). Yielding due to normal
force (compression) in the direction of the load N.

2. The midpoint of the strip 2 (B-B™, Fig. la). Yielding due to
bending moment and normal force in the direction of the com-
pressive toad N.

3. The centre of the plate (midpoint of strip 3). Yielding due to
bending moment and normal force in the direction of the com-
pressive load N.

4. The corner points. Yielding due to torsional moment and normal
force in the direction of the load N. ‘

The results are given in Fig. 2 for two values of the yield stress:
2 600 kp/cmZ and- 7 000 kp/cm2 and for the ratio initial deflection over
plate width f,/2b = 1/1 000. For most of the calqulated points of the
diagrams the alternatives 2) and 3) above were most dangerous and the
failure loads were for these points calqulated as the average values of
the failure loads for the alternatives 2) and 3).

For oi/oy = 0 and 1,2 < a < 2,0 and for o5/0y = 0,1 and « > 1,8
a]ternative-X) was most dangerous. For oj/oy = 0 and o > 2,0 alternative
1) was most dangerous.

The effective width by (see Fig., 3) is of importance for the column
buckling. Calqulated values at failure load are given in Fig. 3 for
different oj/oy (fo/2b = 1/1 000; oy = 2 600 kp/cmZ). It is seen from
the Figure that the initial stresses highly affect the values of bg/b.
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It is seen from Fig. 2 that the initial stresses have a very impor-
tant negative influence on the critical buckling stresses especially
for 0,8 < a < 1,6. The initial stresses have a negative effect on the
effective width bg (see Fig. 3). Both these effects reduce the column
buckling load. The applied di<tribution of the initial stresses is un-
favourable. Calqulations of a case where g = 0 in the strip 3 have
given higher failure loads. It is therefore a need of studying the in-
fluence of the fabrication methods on the distribution of initial
stresses. Finally the author among investigations will remind of those
by Nishino, Ueda, Tall |2|; Dwight, Moxham |3| and Dwight, Ractcliffe
[4] of buckling of welded columns of hollow sections, where it was
pointed out that the initial stresses have a Targe unfavourable effect
on the failure load.

SUMMARY

The behaviour of compressed steel plates in the overcritical range
is studied. A simplified model of calgulation, Fig. 1, which enables
to consider initial stresses and deflections is used. The results are
intended to serve as a basis for design rules. It is shown that the
initial stresses reduce the failure load especially for the dimensions
corresponding to 0,8 < o < 1,6, Fig. 2. Furtherrfore the effective width
is reduced by the initial stresses, Fig. 3. Here omitted results for
other distributions of the initial stresses are more favourable.
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APPENDIX 2
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