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LOAD FACTOR DESIGN OF COLUMNS USING SECOND MOMENT

PROBABILISTIC METHOD

Theodore V. Galambos
Professor of Civil Engineering, Washington University

St. Louis, Mo. USA

Chairman, Column Research Council, USA

ABSTRACT

A method of steel column design is presented which is based on first
order probabilistic theory, utilizing only the mean values and the coefficients

of variation of the relevant parameters. A reliability factor,
called the "safety index" is defined and a value for it is obtained by
calibration to an existing design code. Subsequently a design format

0 Rn * Y Q„

is developed, where 0 is a strength factor, R is the nominal resistance,
y is a load factor and is the nominal load effect.
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1. INTRODUCTION

This report will outline a simplified method of steel column design
based on the "first order" or "second moment" probabilistic theory
(1,2,3). In the interest of simplicity it will be assumed that the resistance

R of the column is independent of the load effect Q. Both R and Q

are random functions, and thus the probability of failure can be expressed
by either of the following expressions.

PF P[(R-Q)<0] (1)

PF P[R/Q < 1] (2)

PF P[An (R/Q) < 0] (3)

If we consider the "standardized variate"
An (R/Q) - [An (R/Q)]

U - (4)
An (R/Q)

in which [An (R/Q)]^ and Cjn (R/q) are the mean and standard deviation of
the natural logarithm of the ratio R/Q, then

- [An (R/Q)] - [An (R/Q)l
P - P [U < — — ] - F { — S } (5)

An (R/Q)
U An (R/Q)

in which F.. is the cumulative distribution function of this standardized
variate. The quantity [An (R/Q)]m / cr^n defines the reliability of
the element; hence it is called the "safety index," denoted by ß. For
example, if the random variable R/Q is lognormally distributed, then the
area under the tail R/Q < 1 i.e., the probability of failure, is 3.2 x 10

if ß 4. Similarly, the failure probabilities are 2.3 x 10"2, 1.4 x 10"3
and 2.9 x 10-6 f0r ß 2, 3 and 5, respectively. The values of ß can be
quite different if the shape of the distribution of R/Q in the tail is
different. In practice, the probability distribution of R/Q is unknown and
only R 0 o_ and a are estimated. However, ß still indicates, in an

m in K Q

approximate way, the failure probability, and an increase or a decrease of
ß by unity roughly decreases or increases the probability of failure by an
order of magnitude (i.e., 10"1). If the distribution of R/Q were lognormal
or any of a number of other commonly used distributions (e.g. Extreme Value
Type I), ß would directly indicate a value of the probability of failure.
In the first order probabilistic design method used here, ß is only a relative

measure of reliability, and it is hence called the "safety index."
Within the context of the information available, i.e., just R^, Q^, aR and

CTq, a constant value of ß effectively approximates constant reliability
for all similar structural elements.

The expression for the safety index ß, i.e.,
[An (R/Q)]

$ 2 (6)
An (R/Q)

can be simplified by using first order probability theory as follows:

362



R

[in (R/Q)]„ - Jin (R/Q)m - Jin ^ (7)
Jm % ^ m

and a a
on a.8 ~ r Un (R/Q) 8 r $ln (R/q) a= !R + (8)°&n (R/Q) L

ÔR ^m R ÔQ Jm °Q
D

8 8 ^

m

a
Qm

Since a„/R V_ and aJO V-, where V_ and V„ are the coefficients ofRmR Q Tn Q R Q

variation of R and Q, respectively,

ß -
\F7^'R 'Q

R
m

e exp ß yvRa+ vQ8) (io)

In Eq. 10, 9 is the "central safety factor."

ESTIMATION OF THE SAFETY INDEX ß

The "safety index" ß is related to the probability of failure. In
order to develop a design criterion, ß must be specified. There are
several ways in which ß can be determined: it can be a value agreed upon
by the profession to give the desired degree of reliability, or it can be
obtained by adjusting ß such that the same degree of reliability is attained

for the new criterion as in the existing design method for a given
standard situation. This procedure is called "calibration," and it will be
used here. The "standard situation" selected here is the design of an
interior column in a braced frame with simple beam-to-column connections
according to Part 2 of the "Specification for The Design, Fabrication and
Erection of Structural Steel For Buildings," American Institute of Steel
Construction (AISC), 1969. According to this specification the columns are
designed to resist the axial load as axially loaded elements with an effective

length equal to the center-to-center story height. The factored axial
load on an interior column in a braced frame in the nÜ floor below the top
of the frame (counting the roof as level n 1) is approximately equal to

Pn [Dc An + L'c (1-RF) An ]LF (11)

where
LF Load Factor; LF 1.70
D dead load intensity
c

L live load intensity specified in the code for the
c

occupancy type
A - area on any floor level contributing to the load on

the column
RF live load reduction factor specified in the code

Equation 11 assumes that the weight of the columns is included in the dead
load, that the loads on the top level (roof) are the same as for the other
levels, and that L D and A are the same at every level. Thus a regularly

loaded regular StruSture is assumed. It is stipulated that columns in
such a structure are satisfactory when designed by the present code.

The live load reduction factor RF is, according to A58.1 (1972) of the
American National Standards Institute (ANSI) Code, a function of the total
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tributary area and the ratio D /L The maximum reduction is RF 0.6 if
the total tributary area is mo¥e £han 750 sq. ft. (70 sq. in.), or RF
0.23 (1 + D /L whichever is smaller,

c c

The column capacity is equal to (AISC 1969, Part 2) 1.7 A F where
A is the cross-sectional area of the column and F is the allowafle stressc a

F (1 - 0.25 x")
F * r (12)

3 5/3 + 3/8 X//2) - 1/8 X//2)

Equation 12 is the Column Research Council Basic Column Curve Equation in
the numerator, divided by a factor of safety. It is valid for X s/2; F

(13)

where h/r is the column slenderness ratio and E is the modulus of elasticity.

By setting 1.7 A F P the required column area according to the
AISC Specification is? a n

nA [D + L (l-RF)][5/3 + 3/8 X//2) - 1/8 X//2)3]
A 2 2

S (W)
F (1 - 0.25 X

In the following derivation ß will be determined such that the column
area A from Eq. 14 serves as the basis of the calibration for the new
format.

In order to evaluate ß from Eq. 9 it is necessary to estimate the
mean and the coefficient of variation of the resistance, R and V and
the corresponding values of the load effect, and V_. ïBe mean strength
of the column is equal to "

R A F (15)mem v '
where A is the column area required according to the present code and F
is the mean stress at failure. This stress is a function of a number of
variables, such as the yield stress, the residual stress, the shape, the
initial crookedness, the unintentional eccentricity of the axial load, and
the end restraints. Each of these variables is random, and an analysis
could be made if the relevant statistical parameters of each were known.
This would be a formidable task if all these effects were included,
although analyses with some of the variables have been made (4,5,6,7). In
order to circumvent this problem, the mean failure stress was expressed in
the following way:

F^ [Bias Factor] [Nominal Formula] (16)
where
T Rias Factor! r?est caPacity "l rTheoretical prediction
L J LTheoretical prediction 'm '-Nominal strength Jm

(17)

and the nominal formula is the column strength equation which is to be used
in the new code for the particular type of column section. For the sake of
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demonstration and because the formula fits fairly well for medium size
rolled columns, the CRC Basic Column Curve was chosen, i.e.,

Fn Fy (1 - 0.25 X8) (18)

Since the theoretical prediction of column strength, including all
effects, is fairly complicated and all the necessary data were not available

to make the analysis, it was decided to determine the bias factor by
directly comparing test results to predictions from the nominal formula.

In order to assess the mean and standard deviation of the test-to-
prediction ratio, test data from reports of the Fritz Engineering Laboratory

of Lehigh University were analyzed (8,9). These samples are not
truly random because the tests were not designed statistically, and so a
better basis, involving the omitted step of the theoretical prediction, or
statistically designed tests, will eventually have to be used. The sample
used here includes about 50 US rolled medium size column shapes and the
bias factor for these was found to be equal to 1.03 and the corresponding
coefficient of variation was 0.14 (9). The test-to-prediction ratio was
determined for the nominal yield stress and so the numbers above account
also for the variability of the yield stress.

The mean column resistance is thus equal to

R 1.03 A F (1 - 0.25 \ (19)
m c y v '

where A is determined from Eq. 14 and F is the specified yield stress.
The coefficient of variation is equal to^

V J v" + v' \/0.14% 0.05S= 0.15 (20)R \l Bias Fabrication y

The coefficient of variation due to fabrication represents an estimate of
dimensional variations of the column cross sections.

The mean load effect is the mean load on the column, and it is equal
to

0 E An [D + Lm ] (21)
Tti m m m

where A and n are the tributary area and the story number, as defined
earlier, E is a random variable which accounts for the structural analysis
by which the idealized loads are translated into axial forces (E^ 1.0
and V_ 0.1 will be assumed in this analysis), and D L are the mean dead
and tne mean lifetime maximum live loads, respectively, ""in the ensuing
derivations it will be assumed that

D « D and V 0.04 (22)
id c D

L (1-RF)
L_

C (23)
a am

1 + *L \ VE + VL

and

\ " /£ (24)
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The coefficient of variation of the load effect is equal to

8 8 (HA D V )" + (nA L V )*
V v + — ^ (25)

Q
(Dn + Lm)]

Substitution and non-dimensionalization permits the determination of
ß from Eq. 9, and it is a function of A, n, X., V_, V„, C, K, V.,, V and

« K u LDLDc c
numerical study was performed by varying these parameters as

follows:

1.100.98 £ [Test/Prediction]m
0.15 VR £ 0.20

0.1 £ D /L S 10
c c

0 £ RF S 0.6
0.25 £ X. s 1.25

1 £ ^ 3

0.05 2 VR£ 0.15

0.2 S C £ 0.4
2 S n £ 40

oo £ Vn£ 0.1

These variations in the pertinent parameters defining ß are thought
to be larger than what one would expect for the structure for which
calibration is being performed. The graphs in Figs. 1 and 2 give the variation

of ß with almost every one of the parameters, except for thq effects
of VR and [test/prediction] Since three values were changed at once,
the results for these variations are best shown in tabular form:

«Ä?

[test/prediction]^ \ *
VR P

1.10 0.25 0.20 3.19
1.03 0.50 0.15 3.86
1.03 0.75 0.15 4.01
1.00 1.00 0.16 3.82
0.98 1.25 0.18 3.37

The values of ß in this table were computed with D /L 2; K. 2; V„ 0.1;
C 0.25; n 10; V 0.04. This table, as well Ss She curves in Figs. 1

and 2 show that ß varies from about 3.2 to 4.5, depending on the values of
the variables affecting the results. The coefficient of variation of the
live load, VL c//n, the number of stories, and the code dead-to-live load
ratio does not appear to result in much change in ß, while the changes in
the other variables have pronounced effects.

Based on this study a value of ß 4 is arbitrarily chosen as a reasonable
and representative value of the reliability of medium size rolled wide-

flange columns in braced simple multi-story frames as designed by the 1969
AISC Specification. Arguments could, of course, be advanced that in some

*
Based on reasonable estimates, not test results.
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cases the profession permits a lower reliability (say ß =3.2), or that in
other cases it demands a higher reliability (say ß 4.5), but the choice
of ß 4 is one which appears neither on the low nor on the high side, and
it will be used hereafter in this report.

THE LOAD FACTOR DESIGN EQUATION

Once ß is selected from the calibration process, the design equation
can be written from Eq. 10 as:

e -VSn* exPP Vr + \ (26>

Unfortunately the resistance and the load effects are not separated in this
equation. Separation is achieved by using an approach suggested by Lind (3),
where an approximation

0a exp aR ß VR exp orQ ß VQ (27)

is introduced such that the error (0 - 9)/0 is a minimum. If the extreme
ranges 2 s ß s 5, 0.1 s; VR £ 0.2 anda0.1 £ V_ £ 0.5 are used, the values of
the a's become equal to "

aR - 0.52

aq 0.90

For the most unlikely combinations the error in 0 becomes approximately 16%;
for most of the prevalent combinations the error is less than + 5%.

By the introduction of aR and w the separation between resistance and
load effect is achieved very simply.^ Furthermore, the a's are independent
of the other variables. Thus a design equation

exp aRmß
VR

2 ^ exp ®q P vq (28)

can be written. This equation can now be still further modified into the
form

0 Rn i y Qj, (29)

where Rft and Qn are nominal load effects, and

R
0 gS exp (- «R ß VR) (30)

II

and 0
Y — exp <v ß V (31)

C^ Q K Q

For exançle, if ß 4, aR 0.52,
2

R 1.03 F (1 - 0.25 X (32)
m y

Rn Fy(l-0.25X8) (33)
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V \/0.14S+ 0.058 0.15 (34)
R V

t 1.03 exp (- 0.52 x 4 x 0.15) - 0.75 (35)

The nominal load effect is

An [ D, + Lc (1-RF)] (36)

and the mean load effect is assumed to be

Qm An^m + Lm] (37)

for an axially loaded column in a braced simple multi-story frame, then

On Dc + Lc (1"RF)

Qm D- + L~ (38)
m m

s s (DmV +
m VL

V V + —Î-S (39)
g (D + L

m m

If it is assumed that

Dm Dc ' VD °-°4 (A0)

L (1-RF)

7=7==? <4l)
1 + *1 V VE + Vl

\'2 "d 7? <">

then y can be computed from Eq. 31. Since y appears not to vary a great
deal with n and D /L (see Fig. 3), a single value of y can be selected
which is y 1.30? c

The new design equation can then be expressed as follows:

0.75 Fy (1 - 0.25 \ a 1.30 An [D, + Lc (1-RF)] (43)

In case it is not desirable to use the same y value, the load factor
can always be determined from Eqs. 38 and 39 directly. This approach
becomes necessary if dead and live load plus wind load is present in the
load effect term. In this case

0,«= CiDm+c8Lm+P3Wm (44)

» (ci°m V"+ (csLm V+ <<*Wm VV ve + — g —— (45)
(c.D + c-L + CgW)m ^ m J m'
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where Cj Cg C3 are the deterministic coefficients from structural analysis,
and W and V are the mean wind load intensity and the coefficient of variation

of the wind load.

SUMMARY AND CONCLUSIONS

A simplified method of column design, based on the second moment or
first-order probabilistic approach, has been presented. While the method
lacks in the elegance of the more sophisticated probabilistic approaches,
it is far advanced of the traditional approach of selecting a factor safety
by concensus based on experience. The essential statistical and probabilistic

elements are all present, and their relationship is simple enough to
permit a rapid study of the outcome should one or several parameters change.
The approach uses the data in about as sophisticated a form in which they
are presently available. In fact, there are still many elements about which
educated guesses must be made. The formulation is open-ended, permitting
improvement as new or better data becomes available, and it allows an
analysis of the consequences if one, two, or three different column curves
are to be used. Furthermore, the level of reliability can also be adjusted
by changing ß.
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NOMENCLATURE :

A
A
cc

D
DC

Em

E

E
Fm
F®
Fm

4
L
LC

j9

'f
K
RF

Tributary area in one story
Cross-sectional area of column
Coefficient in Eq. 24

Cg C3 : Coefficients from structural analysis (Eqs. 44 and 45)
Code-specified dead load intensity
Mean dead load intensity
Modulus of elasticity
Random variable accounting for uncertainties in
structural analysis
Mean of E

Allowable column stress
Mean column failure stress
Nominal column failure stress
Specified yield stress
Coefficient in Eq. 23

Code-specified live load intensity
Mean lifetime maximum live load intensity
Load factor in current design code
Load on column n-stories below roof level
Load effect
Mean load effect
Nominal load effect
Resistance
Live load reduction factor
Mean resistance
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h V
w
hm

n
r
pR' ®Q

e
X

V CTR

"l' V V vW

Nominal resistance
Coefficients of variation of D, E, L, Q,
R and W, respectively-

Mean wind load intensity
Story height
Number of stories below roof level
Radius of gyration
Coefficients in Eq. 28
Safety index
Load factor
Resistance factor
Central safety factor
Non-dimensional slenderness parameter
Standard Deviation of Q and R, respectively.
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