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COMPUTER SIMULATION OF THE E.C.C.S. BUCKLING CURVE USING A
MONTE-CARLO METHOD

JOHN STRATING and HAN VOS

Stevin Laboratory, Delft University of Technology
Delft, The Netherlands

ABSTRACT

The application of a Monte-Carlo simulation procedure to obtain the distribn
tion function of the maximum load of a hinged column with imperfections is
discussed. Buckling tests carried out by the E.C.C.S. on IPE 160 sections
have been simulated. Information concerning the column variables is obtained
from the data-sheet of the E.C.C.S. tests. The probability density function
of each variable is derived or estimated. A good agreement is found between
the simulated buckling curve and the experimental buckling curve.
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COMPUTER SIMULATION OF THE E.C.C.S. BUCKLING CURVE
USING A MONTE-CARLO METHOD.

1. INTRODUCTION

This paper describes a procedure for computer simulation of buckling
tests, using a Monte-Carlo method. The variation of the parameters which
determine the load-carrying capacity of a column is taken into account
and the probability density-function of the buckling load is derived.

In the past years, the European Convention for Constructional Steelwork
(E.C.C.S.) has carried out an extensive experimental programme on buckling

of concentrically loaded, hinged columns with imperfections. The
results of these tests are discussed in [l]. Most specimens tested were
light-weight sections with flange thicknesses t <_ 20 (mm). The test series
has been designed in such a way that a buckling curve with a certain
probability of failure could be derived. The buckling curve is defined
by means of characteristic stresses. According^to the philosophy of the
E.C.C.S., the characteristic buckling stress cr is equal toCK

°*CR m " k-s

where m is the mean value and s is the standard deviation of the buckling
stresses; k is a constant which depends on the type of probability density

function (p.d.f.) of o ^The value of k must be chosen so that: prob. [ a <_ a ] is equal to
2.3%. If a follows a Gaussian p.d.f. the value of k=2.

CK

Information concerning the type of p.d.f. of
buckling stresses could be obtained only
through experiments at the time the E.C.C.S.
tests were started.
The number of tests involved is large, however.
The p.d.f. is estimated from the results.
As shown in [1], the shape of the experimental
buckling curve is determined mainly by the test
results on IPE 160 sections. The buckling curve
is shown in (fig. 1) together with the significant

test results. A statistical analysis of the
buckling stresses proved that the buckling stresses

are Gaussian distributed and therefore

°*CR m " 2-S

Due to the great number of tests involved in the
above-mentioned approach, it cannot be extended
easily to all the various sectional shapes and
dimensions. Neither time nor means are available
to carry out these tests.
Theoretical solutions are sought, therefore which are able to predict the
behaviour of an imperfect column with sufficient accuracy and which also
take into account the random nature of the imperfections and the mechanical

properties. Two problems can be recognized which must be solved.

1. To compute the buckling load of a concentrically loaded
column, given certain imperfections and mechanical properties
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2. To compute the probability density-function of the buckling
loads or stresses, given the imperfections and mechanical
properties are random variables.

It is obvious that the first problem must be solved before the second
problem cab be tackled. Batterman and Johnston [2]. Stüssi ]3 as well
as Beer and Schulz [4] have discussed numerical methods for solving the
case of a concentrically loaded column with certain imperfections. These
methods are used to carry out the computations involved in the outlined
procedure and they will be discussed briefly in chapter 3. This paper, is
concerned primarily with the solution of the second problem, however.
A Monte-Carlo simulation procedure is applied to derive the p.d.f. of
the buckling stresses. The results of the E.C.C.S.-tests on IPE specimens

are analysed and used to check the validity and accuracy of this
kind of approach. Information concerning the imperfections and mechanical
properties of these sections has been obtained from the data sheets which
were established for each test specimen. The p.d.f.'s of the column variables

can be derived from this information. These functions are used as
input-sources for the Monte-Carlo simulation procedure.
Finally, a buckling curve is computed with known probability of the failure.

This curve compares well with the experimental E.C.C.S. buckling
curve derived from the same specimens.

COMPUTER SIMULATION OF BUCKLING CURVES.

The buckling load of a hinged column with imperfections can be described
by the following relation

PCR f(öyt' öyc' V V V A> E> À)

where a yield stress in tension
yt

a yield stress in compression
yc

a residual stressr
e eccentricity

o

f amplitude of the initial curvature
o

E Young's modulus

X slenderness-ratio

It should be emphasized that the variables which appear in this relation
are random variables. The number of variables can be reduced if a is
assumed to be equal to a and that E is constant; the relation ?au then
be written as

PCR f (V V V V A> X)-

Proof of the influence of each variable on the scatter of the buckling
load P can be obtained through correlation analysis of tests results,
as shown by Loof for the E.C.C.S. tests [5].
According to the criteria of the E.C.C.S., the characteristic buckling
load is equal to
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PÊR 5CR - k-s

Jj
P„_ characteristic value of the buckling load

CK

P mean value of the buckling load
CK

s standard deviation of the buckling load
k constant such that prob [Pj-,^ 5. PçR ] =2.3 %

It is obvious that the value of k depends on the type of p.d.f. of Pqjj-
A value for can be determined, without much difficulties, from
experiments. A theoretical solution for PçR> is much more difficult to obtain,
however. P^R is a function of a number of random variables, consequently
PçR follows a multi-dimensional probability density-function. This function

is not known generally nor can this function be derived from information

concerning the p.d.f.s' of the random variables, except in a few
special cases. A purely theoretical solution of the problem in question
is not feasible therefore in most cases. Two approximate solutions,
however, have been suggested; they are discussed below and a new approach
is described.

2.1 Method I.
Various combinations of the variables are introduced into the formula for
PçR. Each combination leads to another buckling curve (varying X) By
comparing the computed buckling curve with the experimental E.C.C.S.
buckling curve, a combination of variables can be estimated which fits
the experimental curve most closely over the whole range of slenderness
ratios. This method has been adopted and developed by Beer and Schulz [4]
From a probabilistic point of view, this method is questionable because
a lower bound curve is approximated. There is no reason to assume that
the obtained solution is unique.
Extrapolation to other shapes and dimensions is realised by modifying
the combination of the variables. No information concerning the scatter
in the buckling loads is obtained, however This method is therefore
not truly probabilistic.

2.2 Method II.
Schor [ô] and Carpena [l] assume that all variables are uncorrelated, and
furthermore that the function f(a ,a e f A, X), can be linearized.
A linear function is obtained thrXugfî a îaylor expansion of f

f(V V V fo' A> >°r ' V Fo X, X) +3-^- (ay - ôy) +

4
3a (ar ar} +

3e (eo e0) + 3/ (fc V + dT~ (A ~ A) +

+
(gy " ay)2 a2f (ar - V2

3ay2 2 .' 3ar2 2
+

Disregarding all terms of the second order and higher, the expansion
reduces to
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3f
£(oy, or, eo, fo, A, X) % f( oy, V eQ, fQ, A,X + <ay - oy) +

3f 3f - 3f 3f
+ -5— (a - a + -5— (e - e + -rr— (f - f + tt- (A - A)3a r r 3e o o 3£ o o 3A

r o o

The mean value of P„„ can be found by substituting (a a e f A)
CR 1 y r o o

into this formula

*CR % f(V V V V À)-

The variance of PCR) after squaring and summing, is equal to

2 °f 2^fSp * < 35- V + (-âf- Sr> + (7~ Se> + (f- Sf) +

y r 9e 3f003f 2
* 15-V

where S standard deviation of P_„
p CR

S standard deviation of a
y y

S standard deviation of ar r
S standard deviation of e

e o
standard deviation of ff o

S, standard deviation of A
A

It is now possible to compute the mean value of P^ and the variance at each
slenderness-ratio X, provided function £(a a e f A, X) can be
solved. The mean values and variances of eXch variable°must also be known.
The first derivatives of f can be obtained analytically, by partial differentiation

of f or graphically from curves showing the dépendance of f upon
each variable. If furthermore is assumed that P follows a Gaussian

CR

p.d.f., the desired buckling curve can be derived by computing for each
X the value - 2S

Essential in the above-mentioned approach are the assumptions that the
variables are uncorrelated and that function f can be linearized. The
latter assumption must be viewed with reserve and may lead to significant
errors.
The described approach can be checked against the E.C.C.S. buckling
curve. The mean values and the variances of th,e variables can be obtained
from the data-sheets available for each test specimens. Comparison of the
computed buckling curve and the experimental buckling curve will show
whether the linearization of f is allowed.
This method itself is basically a probabilistic approach and therefore
in agreement with the criteria of the E.C.C.S.

2.3 Method III.
Carrying out a buckling test simply means loading a column, with a
certain combination of imperfections and mechanical properties, until
failure occurs. The values of the imperfections and the mechanical
properties of a particular column cannot be predicted in advance.
Once a column has been selected for a test, however, these values can be
measured. If the mathematical model of such a column is sufficiently
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accurate, the buckling load of this column can be computed instead of
actually carrying out a buckling test. This can be repeated for any number
of columns. None of the columns are actually tested, all buckling loads
are computed, the tests are "simulated". The simulation method can be
further generalized if it is recognized and acknowledged that the values
of the imperfections and the mechanical properties present in a column
are primarily due to chance. It is sufficient to know the distribution
function of each variable and the correlations between these variables,
to carry out the simulation procedure. One drawing from the population
of each variable, giving proper attention to the correlations between
them, results in a combination of variables which can be assigned to a
hypothetical column; the buckling load P^R of this hypothetical column
can then be computed. If this procedure is repeated a number of times,
an equal number of P values is obtained. The mean value as well as the
variance of P„_ can be determined and a p.d.f. can be fitted to the
histogram of F -values. By doing this, the E.C.C.S. testing procedure
is exactly simulated. It is very important of course, to select proper
values for each variable. This can be done correctly by deriving the
p.d.f.'s of the variables from representative data. A simulation procedure

as described above is called a "Monte-Carlo" method. This method is
particularly suited for a digital computer because numerous repeated
computations are involved.
Drawing values from a particular p.d.f. can be done by generating random
numbers which follow the same distribution law as the variable in question.
This method allows for correlation of any kind to be introduced between
the variables.

The validity of a Monte-Carlo simulation procedure will be tested by
applying it to the E.C.C.S. tests carried out on IPE 160 sections.
The data-sheets of these tests allow the derivation of most p.d.f.'s
involved. The computed buckling curve can be compared directly with the
experimental buckling curve because the shape of the latter curve is
determined completely by the test results obtained on the IPE 160
specimens. Application of the discussed method to other sections
simply means modifying the p.d.f.'s of the variables so that they
correspond to these sections.
No buckling tests have to be carried out, only simple measurements
are necessary to determine the representative values of the imperfections

and the mechanical properties. These measurements are less
expensive, however.
The application of the Monte-Carlo simulation method to the E.C.C.S.
buckling tests on IPE 160 specimens is discussed in chapters 4, 5 and
6.

3. NUMERICAL SOLUTIONS FOR THE BUCKLING LOAD OF A COLUMN WITH IMPERFECTIONS.

Most solutions for the buckling load of a column with imperfections
are based on numerically solving the equation which describes the state
where in each point of a column the moment M is equal to the internal
moment M^ (fig. 2) eX

p-y -eix
d̂x

For a given value of P, the deflected shape of the column is assumed:
y f(x). The external moments are computed and are assumed to be equal
to the internal moments. Next the shape of the column corresponding to
these internal moments is determined. P is equal to the buckling load
of the column if and only if the computed shape of the deflection curve
is identical to the assumed one. This is generally not the case and
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therefore the computation of the deflected shape is repeated starting,
however, with the shape obtained in the first computation. It has
been shown by various authors that this procedure is
rapidly converging and that a sufficiently accurate
value of P will be obtained after only a few iteration

steps. [3,4].
Next consider the column shown in (fig. 2). This
column is identical to a column with hinged ends and
twice its length. A load P is applied to this column
with an eccentricity e ; the column is assumed to
have an initial curvature which is part of a sine-
wave, the amplitude is f
As a first approximation the deflected shape of this
column is also assumed to be a sinewave, the end-
deflection of the column is equal to "a". The column is divided into
a number of segments. The external bending moments are determined at
the ends of each segment.The deflections of the column are computed
numerically, by means of the reduced moment-area method and applying
Simpson's rule.
For each segment the angle of rotation is computed; the deflection at
the top of the column is equal to the sum of the products of the angles
of rotation and the segment lengths. The computations are repeated
until the computed shape is identical to the assumed shape.
In this iteration process the computed column shape of each previous
step is used for the next step. The iteration is stopped if a certain
degree of accuracy is obtained between two successive shapes. It is not
yet necessary, however, that the computed end-deflection of the column
is equal to the assumed end-deflection "a". There are two methods which
can be used to bring those two deflections into agreement. In the first
method, the value of P is kept constant; the length of the column,
however, is varied until both deflections are equal. Next other
values of "a" are adopted and for each
"a" a corresponding column length (or
slenderness-ratio X) is computed. From
these pairs of values (A,a), the
maximum column length is determined
for which the given column will be in
equilibrium under the load P. (fig. 3)
Then the value of P is varied and the
computations are repeated. To each
value of P there corresponds a
maximum column length 1 (or X

In the second method the leng?fiXôf
the column is kept constant, the
value of P is varied until a value is found for which the assumed
deflection is equal to the computed deflection. Next "a" is varied
and other values of P are found. From
the pairs of values (P,a) the collapse
load of a column of given length is
determined (fig. 4).
The first method has been used by Beer
and Schulz for their computations [4]
They were interested in determining
complete buckling curves for each
combination of variables. The maximum length
of a column, for any given value of P,
is less interesting for the Monte-Carlo
simulation procedure because a column is
never tested by increasing the column
length during the test until failure

Fig. 2

•h

SLENDERNESS

Tiax. max}

NyP= CONSTANT

fl ^2 f3 f= DEFLECTION

Fig. 3
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occurs. Therefore the second method has been applied. For each column
of given length and given imperfections, the critical load P^R is
computed.
The computation of the deflected shape of a column is rather complicated

because the bending stiffness "EI " of the column is not a constant
but appears to be a function of the bending moment M and the load P.
The column will yield over part of the cross-section, if P is large or
if the deflections are large. The bending stiffness "EI " will be
reduced, due to this yielding. Residual stresses presen? in the column
cause premature yielding. The value of the yield stress and the dimensions

of the section will also affect the relations between M,P and EI.
The bending moment is not constant over the length of the column, and
consequently the bending stiffness EI varies over the column length.
The relations between M,P and EI can be determined for each particular
section if the stress-strain diagram, the distribution of a over the
cross-section and the residal-stcess distribution are knownY For a
constant value of P, an increasing part g
of the cross-section is assumed to yield, 100%

the corresponding stress and strain
distributions allow the values of the
bending moment M and the curvature to
be computed. For an IPE 160 section
these relations are shown in (fig.5).
The dimensions of this section are
nominal, the stress-strain diagram is
assume^ to be bi-linear and Oy 24.0
kgf/mm The residual stress is assumed
to be parabolically distributed in the
flanges and constant in the web; the
maximum compressive residual-stress is
equal to 0.3 a On the vertical axis
of figure 5 th? ratio B between the
actual bending stiffness and the
elastic bending stiffness is plotted; on the horizontal axis the ratio
H between the actual bending moment and the plastic bending-moment is
plotted. These curves provide the information necessary for the computation

of the buckling loads.
From the remarks above it can be observed that the column parameters
can be divided into two groups. The yield stress, residual stress and
the dimensions affect the shape of the M - P - E relations while the
eccentricity and the initial curvature affect the deflected shape
through the external bending moment.

All the column computations which will be discussed in a later chapter,
have been carried out under the following assumptions: the stress-strain
diagram is bi-linear; the yield stress is constant over the cross-section;
the residual stress distribution is parabolic in the flanges and constant
in the web, the distribution is symmetric; the initial curvature is half
a sinewave and the eccentricity is constant over the length of the column.
Only weak-axis buckling is considerd. It should be mentioned that the
computations involved in the Monte-Carlo simulation procedure are rather
tedious because for each column a new set of M - P - B relations must be
determined.
The accuracy of the computer programme is checked by comparing the output
with results obtained by Beer and Schulz on a similar column. This
comparison is shown in the table, below. The column is HEA 200; the initial
curvature f 1/1000, the maximum compressive residual stress is 0 or
0.5 a the°column dimensions are nominal. The slenderness-ratio and
the critical stress are given as dimensionless parameters X

and ö cCR

üy_

100%

Fig. 5
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X a a
This program Beer and Schulz1''

0.594 0
0.5

0.87
0.77

0,89
0.78

0.810 0 0.78 0.79
0.5 0.64 0.65

1.025
0 0.65 0.65
0.5 0.53 0.53

1. 132
0 0.58 0.59
0.5 0.47 0.47

1.400
0 0.42 0.43
0.5 0.36 0.35

1.725
0 0.30 0.29
0.5 0.26 0.25

1) These values are obtained from [4] p. 40, fig. 5 and [l2] p. 1)5,
fig. 5.6.

COLUMN DATA.

A considerable number of the E.C.C.S. buckling tests has been carried
out on IPE sections. These sections are responsible for the shape of the
experimental buckling curve as derived by the E.C.C.S.. It is for this
reason that these sections are chosen for the Monte-Carlo simulation
procedure.
The testing procedure, established by committee 8.1 of the E.C.C.S.,
demanded that the following measurement be carried out on each test
specimen

1. The dimensions of the specimen at 0 - 1/4 1- 1/21-3/4 1-1
2. The initial curvature at 0-1/41-1/21-3/4 1-1
3. Weighting of the specimen

The mechanical properties of each bar from which specimens were cut had to
determined

4. Tensile tests
5. Stub-column test

These data had to be recorded on a standard data sheet.
In the next paragraphs the relations between the column variables and the
measurements are discussed.

1 Eccentricity.
The dimensions of the sections are used to compute the eccentricity which
is introduced because the testing procedure requires that the load must
be applied at the center of the web of the specimen. The center of the
web, however, does not necessarily coincide with the center of gravity
of the whole section.
The center of the web lies a distance (c + { a) from the right. The center

of gravity of the flange lies J b from the right. The difference
between the two distances is equal to: (c + ^ a) - { b.
The center of gravity of the complete section is determined for the
nominal area.

The eccentricity of the web is computed from the following relation

e [ c + i a - I b ]
o A L

n
where area of a flange

A nominal area
n

* Committee 8.1 on "Buckling tests".
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bi

If both flanges are considered separately
e is equal to

+ \2
e

o 2A (Cj + i - i bj +

+ (c2 + i a2 j b2)

The mean values of the dimensions, determined
over the length of the column, are introduced
into this formula.

a1, - C1 .1

a2, - °2 ,1

b2

4.2 Initial curvature.

The initial out-of straightness has been measured at five
points along the length of a specimen. A digital computer
is used to find the best fit of a sinewave through the
points A, B, C, D and E. The amplitude f of the sinewave
is considered as the parameter of the initial curvature.
The mean value of f for both flanges is determined,

o

4.3 Area.

The weight G of a specimen is used to compute the real area of the
section. The specific weight of steel is assumed to be

p 7.85 x 1Ö6 kgf/mm"^

The area is equal to
Q

A —1 lengthp. 1 c • l_^p specific weight
G weight of the specimen
A area

4.4 Tensile tests.

Tensile tests were executed on specimens taken from the flanges,
according to Euronorm 2-57. The yield stress obtained from these
tests is denoted a
Additional tensile ïests were carried out on strips taken from the
flanges and the web. This yield stress is denoted a The figures below
show how the specimens are taken from the bar.
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4.5 Stub column test.

Stub column tests were carried out on specimens with slenderness-
ratios X 12, 15 and 20. The specimens were taken from the same length
of bar from which specimens were cut for the buckling tests. The yield
stress obtained from these tests is called a

y

The individual column data are not reproduced in this paper because
they are too numerous. In the next chapter histograms of these data are
given, however. The data have been reduced according to the relations
given in the previous paragraphs
The IPE 160 sections studied in this investigation are coded 17, 18, 19

20, 21 and 22 in Table A-l, page 30 of ref. [l]. The eccentricity and
initial curvature parameters are obtained from 150 columns; the yield
stresses and areas are obtained from 189 columns.

5. PROBABILITY DENSITY FUNCTIONS OF THE COLUMN VARIABLES;

The experimental data described in chapter 4 have been used to derive
histograms and cumulative histograms. Cumulative distribution functions
are fitted to the cumulative histograms. Throughout this chapter, the
Kolmogorov-Smirnov test of significance is applied to find the best fit
[7], except for the initial curvature. The Kolmogorov-Smirnov test
concentrates on the deviations between the hypothesized cumulative
distribution function F(x) (C.D.F.) and the observed cumulative histogram

F (x.) — where x. is the i th largest observed value in a random
,1 t n. 1

sample of size n.
The following statistic is considered

D
n

maxax
i=l L

(*.) F (x)

D is, according to this formula, the largest of the absolute values
of the differences between the hypothesized C.D.F. and the observed
C.H. evaluated at the observed values in the sample. Critical values
of D can be given at various levels of significance which will result
in either accepting or rejecting the hypothesized C.D.F. Let a be the
level of significance, then for large n, the critical statistic is equal
to

a 0.10 D 1.22 / /n
0.05
0.01

1 .36 / /n
1.63 / /n

5. 1 Eccentricity.

The histogram of e is shown in (fig. 6).
The eccentricity varies between 0 and
2.0 mm. The shape of the histogram
suggests an asymmetrical p.d.f. Three
C.D.F.'s are hypothesized

a Gaussian C.D.F.
a Log-normal C.D.F.
a Gamma C.D.F.

In fig. 7 the observed C.H. is shown
together with the hypothesized C.D.F.'s
The maximum values of D which can be
derived from this figure are

0 0.30 0.60 0.00 1.20 1.50 1.50

ECCENTRICITY «0 mm

Fig. 6
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Gaussian C.D.F.

Log-normal C.D.F.
Gamma C.D.F.

n
max F"(x.) - F(x) 0.566 - 0.420 0. 146

D 0.915 - 0.830 - 0.085
0.900 - 0.835 0.065

ECCENTRICITY On ml

Fig. 7

The critical values of D are
a 0.10 D 1.22 / /150 0.100
a 0.05 D 1.36 / /l50 0. 1 11

a 0.01 D 1.63 / /150 0.133

The log-normal and the Gamma C.D.F. cannot be rejected at the 10% level
of significance. The Gamma-model is chosen for the eccentricity. The
parameters of this model are

m 0.5949 mm À 2.798
s 0.4609 mm k 1.663

5.2 Initial curvature.

The initial curvature parameter f has been determined for each column
length 1 involved in the simulation. It is assumed that f follows a
Gaussian distribution function. In this case the Kolmogorov-Smirnov
test is not used to. check the validity of this assumption but the more
refined method of "the moments" is used instead. This method is
described in some detail in chapter 7. The following values are obtained
for the critical parameters of this test.

1 1012 1 1380 1 1748 1 1932 1 2392 1 2944
m 0.68 1.13 1 .47 1.65 1 .95 2.78
s 0.29 0.30 0.50 0.25 0.35 0.49
v, -1 .40 -2.16 -4.91 -1.18 -0.60 1 .84
V2 -0.98 0.65 4.81 0.38 -0.92 1 .09

The hytophesized Gaussian distribution function should be rejected if
Vj > 3 and v2 > 3. This is only the case for 1 1748 mm (X 95). The
hypothesized p.d.f. is accepted therefore for initial curvature.
Fig. 8 shows the computed values of m. Also plotted are the values m + 2s.
It can be seen in this figure that the relations (l,m) and (l,m + 2s) can
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be approximated by
straight lines. This
indicates that the
initial curvature
parameter can be
described independent
of the column length
through the value f /l.
This parameter is
consider d in this paper;
(fig. 9) shows the his
togram of f /!•
From (fig. 8) the
following values are
determined for the
Gaussian model

m 0.00085 1 (mm)

s 0.00020 1 (mm)

5.3 Area.

1012 13(0 1748 1032

Fig. 8

The histogram of the area is given in
(fig. 10). The observed C.H. and the
hypothesized Gaussian C.D.F. are shown
in (fig. II). Preliminary computations
indicate that hypothesizing an
asymmetrical C.D.F. is not justified. ^
The mean area is equal to m=2047.33 mm

The standard deviation is equal to
s= 81.15 mm

The parameters k and À of a Gamma

C.D.F. are a function of m and s.

lcillxbJndt [X
INITIAL CURVATURE

Fig. 9

JX

kj_
X

A
X

Fig. 10
AREA mi^

Substitution of the
measured values of
m and s into these
formula gives

k 636.51
X 0.3109

For large k-values
the Gamma C.D.F.
approaches a
Gaussian C.D.F.

2070 2130

Fig. I l

2430

AREA Cmn?>

The latter is the only function, therefore, which has been investigated.
The Kolmogorov-Smirnov test gives the following results,

n
max
i=l

F*(Xj) F(x) 0.730 - 0.610 0.120
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The critical values of D are

a 0.10 D 1.22 / /l 89 0.089
a 0.05 D 1.22 / /l89 0.099
a 0.01 D 1.22 / /l89 0. 1 18

The Gaussian model cannot be rejected at the 1 % level of significance,
which is a rather questionable result. The Gaussian model is accepted,
however, for reasons of convenience.The parameters of this model are

m 2047.33 mm^

s 81.15 mm

For the simulation procedure, the variation in the area is assumed to
be a result of the variation in the flange thickness alone. The height,
width and web thickness are assumed to be equal to the nominal values.
The mean value and the standard deviation of the flange thickness is
obtained from the following formulae

mean value
A (h - 2e) a + 2be (160 - 2e) 5 + 2 x 8.2 e 800 + 154 e

m
e

800
154

— 8.1 mm

standard deviation
s,

s
e 154 0.527 mm.

The parameters of the Gaussian model for the flange thickness, are

m 8. 1 mm

s 0.527 mm

5.4 Yield stress.

The yield stress has been determined from
three different tests.

2 2
Euronorm m=29.12 kgf/mn^ s=2.04 kgf/mm^
Strips m=27.85 kgf/mm. s=3.17 kgf/mm
Stub-column m=31.48 kgf/mm s=2.65 kgf/mm

The values obtained from the stub-column
tests have been used in the simulation
procedure because these values are the
best measure for the yield stress in
compression. This yield stress also determines

the buckling load of a column.
The histograms of the three yield stresses
are shown in (fig. 12,13 and 14). The
shape of the histograms suggests a symmetrical

p.d.f. Fig. 15 shows the observed
GH. of the stub-column yield stress together

with the hypothesized Gaussian C.D.F.
The Kolmogorov-Smirnov value D is equal to

n

ru

if LqJ

a32.50 34

YIELD STRESS EURONORM Oy*

Fig. 12

D max
i=l

F~(x.) - F(x)

10.50 22.50 25.20 27.00 30.00 33.30

YIELO STRESS STRIPS Oy*

Fig. 13

0.840 - 0.750
0.090

Bg. 23 A K 23
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The critical value D is

a 0.10 5 1.22 / A 89 0.089
a 0.05 D 1.36 / /l89 0.099
a 0.01 D 1.63 / /189 0.1 18

The Gaussian model for the yield stress
cannot be rejected at the 10 % level of
significance.
The parameters
of this model
are

ni

L-CiL

m=31.48 kgf/mm
s= 2.65 kgf/mm

5.5 Residual stress.

The residual
stresses provided

most
difficulties because
no extensive
residual stress-
measurements
have been done
on IPE 160
sections.

24.60 26.40 28.20 30 31.60 33.60 35.40

256 26.4

o, STUB COLUMN (kg/mm2)

Fig. 15

The distribution of the residual stresses is assumed to be
parabolic in the flanges and constant in the web. As the parameter of
this type of distribution the maximum compressive a at the tip of the
flange is chosen. Some stub-column tests were carried out in Belgium
for which load-deformation diagrams were recorded [8]. From these
diagrams the maximum residual stress can be estimated. Ten such diagrams
are given. The maximum compressive residual stress is determined as a
fraction of the yield stress.

a
_r
a

y
a a

A mean value a 0.204 and a standard deviation s 0.07 are computed
from the Belgian tests.
A value of a 0.61 is derived by Rokach. He performed a correlation
analysis on the IPE 160 test results, [9]. This value of a, however,
must also account for the effect of the initial curvature. For the same
sections Lenz arrives at a value of a 0.06 [lO].
Young suggests a general formula for the maximum compressive residual
stress in I sections [11].

A
16.5 1

1.2A„
A web area
Ap flange area

For an IPE 160 a value of a 0.238 is computed. Schulz proposes a
value a 0.2 for this type of section. [l2].
The residual stress parameter a is assumed to be Gaussian distributed
[l3]. The validity of this assumption cannot be tested due to lack of
information. For the simulation procedure, a mean value m 0.20 and a
standard deviation s 0.05 are adopted.
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6 Slenderness-ratio.

No variation is assumed in the slenderness-ratio X. The length of each
column has been determined with sufficient accuracy and no variation is
assumed in the width of the column flanges.
For weak-axis bending, therefore, the radius of gyration is constant.
The slenderness ratio X can thus not be treated as a random variable.

7 Summary of the model parameters.

Random variable Gamma C.D.F. Gaussian C.D.F.

Eccentricity (mm)

Initial gurvature
Area (mm

Flange thickness
Yield stress kgf/ 2

mm

Residual stress
kgf/mm

X k m s
2.798 1 .663

0.00085 1

2047.33
8. 1

31.48

0.20 a
y

0.00020 1

81. 15
0.527
2.65

0.05 a
y

GENERATING RANDOM NUMBERS.

Random numbers with a Gaussian or uniform probability density function
can be generated directly on a digital computer. Standard procedures
are generally available. Values of the variables for which a Gaussian
model is assumed, have been obtained on a I.B.M. 1130 computer using
the procedures RANDU AND GAUSS. Generating random numbers with a Gamma

p.d.f. proved more difficult. No standard procedure is available for
the inversion of the incomplete Gamma function; therefore, a graphical
method is used. First the Gamma C.D.F. is computed and intervals of
equal probability (2.5 %) are determined.
Next random numbers with a uniform p.d.f. are generated and they are
assigned to these intervals. In this particular case, the random numbers
lie between 0 and 10 ; they are assigned to each interval according to
the following scheme

0 - 2.500 interval 1 representative value Xj
2501 - 5.000 interval 2 representative value x^
5001 - 7.500 interval 3 representative value x^

97501 - 100.000 interval40 representative value x^
Each interval i is represented by a single value x.; x. is defined as
the mean value of the two boundary values of interval l. This is not
correct. Theoretically x. should be defined as the center of gravity of
the area under the C.D.Ï. between the two boundary values.. The relatively
large number of intervals, however assure that the error will be very
small if the mean is considered instead of the center of gravity. The
last interval must be treated with special care, because x The
largest observed value of the eccentricity is chosen as the representative

value of this interval. As an example of the above-mentioned
procedure., let a random number 11533 be generated. This value corresponds
to interval 5 and therefore to x,_. This value of x is assigned to the
eccentricity. It is obvious that a Gamma p.d.f. can be approximated with
increasing accuracy by raising the number of intervals.

For each variable considered in the column simulation, a series of 1000
random numbers has been generated. There is no need for a sophisticated
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procedure to combine the variables because the variables are assumed to
be uncorrelated. One must beware, however, of sequential effects in the
random numbers. A digital computer generates random numbers according
to a numerical procedure, very often the Fibonacci-method is used.
Consequently, each time the random number generator is started, the same

sequence of number appears. If the variables are combined according to
their rank-number, they will be strongly correlated; a large value of
the yield stress will be combined with a large value of the initial
curvature, eccentricity etc. For this reason more than the required
random numbers have been generated and each column variable has been
selected at random from these numbers.
The combinations of variables obtained in this way are used as input for
the computer programme described briefly in chapter 3.

Columns of various lengths have been examined. The corresponding slender-
ness-ratios are A 55, 75, 95, 105, 130 and 160. At each slenderness-
ratio experimental results are available which can be compared with the
simulated buckling stresses. Each group of experimental buckling stresses
had a significant influence on the shape and position of the experimental

buckling curve.
A total number of 120 columns has been simulated on an I.B.M. 360/65
digital computer; 20 columns at each slenderness-ratio.
The results of the computations are given in tables I through VI.
The combinations of variables which are assigned to each column are
also given in these tables. Buckling stresses are computed for the nominal
area as well as for the real area. For each section the real area is
determined from the value of the flange thickness e. These buckling
stresses are also given in tables I through VI. Columns with a yield
stress less than the guaranteed value of 24 kg/mm^, have not been included

in the computations.
The probability density-function of the buckling stress is estimated at
each slenderness-ratio A. Jaquet has shown that the experimental buckling
stresses are Gaussian distributed [l4]. He arrived at this conclusion by
applying the method of the central-moments to the test results. This
method has been described in detail by Fisher [l5]
The same method is applied to check whether the simulated buckling
stresses are Gaussian distributed. A brief discussion of this method is
given below. Consider a variate x and a random sample of size n, drawn
from the population of x. The sums of powers of deviations from the
mean are computed.

The two simplest measures of departure from normality are those dependent

from the statistics of the 3rd and 4th degree, defined as

7. RESULTS.

(n-2) (n-3)].

2

If the variate x is Gaussian distributed then gj and g^ are also Gaussian
distributed. The sampling variances of g^ and g^ are
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Sj2 6n(n-l)/(n-2)(n+1)(n+3)

s
2

24 n(n-1)2/(n-3)(n-2)(n+3)(n+5)
®1 ®2

Finally V and V *— are computed. For a perfectly Gaussian
1 2

distributed variate x, the values of V and V are equal to zero. For
each symmetrical p.d.f. Vj 0. A positive value of indicates a
positive skewness whereas a negative value of V indicates a negative
skewness. V2 is a coefficient of kurtosis (flatness).
A positive value of V2 means that the p.d.f. is more filled out than
a Gaussian p.d.f. whereas a negative value of V2 means that the p.d.f.
is more pointed that a Gaussian p.d.f.
The observed values of V and V2 determine whether the hypothesized
Gaussian p.d.f. is to be rejected. Jaquet suggests to reject the
hypothesis if Vj and V are greater than 3. For values greater than 2,
the hypothesis should Be reconsidered carefully.
The computed value of Vj and V2 are given in the tables below. The
values have heen determined for the nominal area as well as for the
real area.

NOMINAL AREA

55 75 95 105 130 160
m 26.60 22.09 16.58 14.74 1 1.22 7.73
s 2.60 1 .96 1.71 1.65 0.92 0.62
V, - 1.44 - 0.91 - 0.22 0.88 0.08 - 0. 19

V2 0.40 0.12 - 0.56 - 0.11 - 0.14 - 1.13

REAL AREA

55 75 95 105 130 160
m 26.04 21 .39 16.60 14.59 10.86 7.63
s 1.92 1.37 1.40 1.19 0.59 0.33
V, - 1.80 0.43 - 0.05 0.29 - 0.14 -0.23
V

2
0.45 1.07 0. 14 0.05 1 .77 -0.50

All values are shown to be less than 1.8, most of them being less than
1.0 There is no reason to reject the hypothesis that the buckling
stresses are Gaussian distributed. Consequently the characteristic
buckling stress a* can be computed as

CR

°Îr- m " 2 s

jg
The values of a at each slenderness-ratio are given in the next tables.CK
The simulated values and the corresponding experimental values of a
are given.

NOMINAL AREA

55 75 95 105 130 160
m 26. 60 22.09 16.58 14 74 1 1 22 7 .73

SIMULATION s 2. 60 1.96 1.71 1 65 0 92 0 .62
m- 2s 21 40 00 VJ 13.16 1 1 44 9 38 6 .59
m 27. 90 23. 15 18.70 15 27 1 1 35 7 .44

EXPERIMENT s 2. 73 2.45 1.46 1 23 1 00 0 .56
m- 2s 22. 40 18.29 15.78 12 81 9 35 6 .32
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Fig. 17

REAL AREA

55 75 95 105 130 160
m 26.04 21 39 16.60 14.59 10 86 7.66

SIMULATION s 1.92 1 37 1.40 1.19 0 59 0.33
m- 2s 22.20 18 65 13.80 12.21 9 68 7.00
m 27.48 22 81 18.45 15.06 11 14 7.34

EXPERIMENT s 2.48 2 05 1.21 1.00 0 73 0.36
m- 2s 22.52 18 71 16.03 13.06 9 68 6.62

These results are also shown graphically in (figs. 16 and 17.) A good
agreement is found between the simulated buckling stresses and the
experimental buckling stresses at slenderness-ratios À 55, 75, 130 and
160. At slenderness ratios X 95 and 105 the simulated buckling stresses

deviate significantly from the experimental buckling stresses. The
maximum deviation is 17 % (X 95, nom. area).

The dotted lines, in (figs. 16 and 17), correspond to a buckling curve
fitted to the simulated buckling stresses (real area).
The discrepancies between both curves at X 95 and X 105 cannot be
traced to exceptionally large imperfections or unfavourable mechanical
properties. Confidence intervals have been determined for the means and
the standard deviations. These intervals are important because the means
and the standard deviations are computed from samples of limited size.

Let m and s be the sample estimates, based on a random sample of size n.
the confidence interval of the mean is

m" m - t 4— < m < m' m + t. 4—
vn in
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where m is the population mean and t possesses a Student's t distribution
with n-1 degrees of freedom.

The value of t is chosen to correspond to a 98 % confidence interval.
The bounds of this interval are given in the table below.

CONFIDENCE LIMITS OF THE MEAN 98 %

55 75 9 105 130 160
m 26 60 22.09 16. 58 14 74 1 1 22 7 73

NOMINAL AREA m' 28 12 23.20 17. 55 15 68 1 1 74 8 08
m" 25 08 20.98 15. 61 13 80 10 70 7 38
m 26 04 21 .39 16. 60 14 59 10 86 7 66

REAL AREA m' 27 16 22. 17 17. 39 15 26 1 1 19 7 84
m" 24 92 20.61 15. 81 13 92 10 53 7 48

The confidence intervals of the simulated mean stress and the experimental
mean stress are shown in (figs. 18 and 19).

It can be seen that the experimental mean stresses are almost systematically

greater than the simulated stresses, except at X 160. The
confidence intervals, however, overlap slightly. The confidence interval
of the mean stress obtained from the nominal area is somewhat wider than
the confidence interval which corresponds to the real area. The reason
is that dividing the buckling loads by the real area eliminates to some
extend the influence of the flange thickness. A small flange thickness
corresponds to a smaller buckling load but also to a smaller area, and
vice-versa. Consequently, the scatter, in the buckling stresses will be
reduced.

The confidence interval of the standard deviation s has been computed
by observing that the quantity I(x. - m)^/s^ possesses a distribution
with n-1 degrees of freedom.
The confidence interval ^s given by

/l(x.-m) /E(x.-m)'
s» / _JL < s i

2 2
1 Ï2 1

Tj and are chosen such that they correspond to 5% and 95% confidence
limits. The computed values are given in the table below.

CONFIDENCE LIMITS OF THE STANDARD DEVIATION 90 %.

55 75 95 105 130 160
s 2.60 1.96 1.71 1.65 0.92 0.62

NOMINAL AREA s' 3.60 2.69 2.34 2.26 1 .26 0.85
s" 2.05 1.56 1 .36 1.31 0.73 0.49
s 1.92 1 .37 1 .40 1.19 0.59 0.33

REAL AREA s' 2.66 1 .88 1.92 1.63 0.81 0.45
s" 1.52 1 .09 1.11 0.95 0.47 0.26

8. CONCLUSIONS.

It has been demonstrated in this paper, that the distribution function
of buckling stresses can be derived theoretically. A buckling curve
which corresponds to a constant probability of failure can be determined
from the distribution functions at the various slenderness ratios. The
computed buckling curve is in reasonable agreement with the experimental

buckling curve. Deviations between the two curves are observed at
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NOMINAL AREA 150

REAL AREA

Fig. 18 Î |<Kgf/mr Fig.

slenderness-ratios X 95 and X 105. It has been pointed out by
other investigations that the effect of imperfections and/or mechanical
properties is most pronounced at slenderness-ratios X 90 -100 [2]. One
of the assumptions in the discussed simulation procedure is that all
variables are uncorrelated. There is no reason to reject this assumption

except for the initial curvature and the residual stresses. It is
believed that some correlation exists between those two variables;
consequently, the buckling stresses may be affected unfavourably.

Application of the described procedure to sections other than the IPE
160 is a rather simple matter. The distribution functions of the variables

are not expected to change in character;the parameters of these
functions will vary. These values can be determined by relatively
simple and inexpensive measurements. Once buckling curves have been
obtained for various sections, the usefullness of multiple column-curves
can be decided upon.Adoption of multiple column-curves can only be
justified if significant differences are shown to exist between
probabilistic column curves. The buckling curves which are derived by means
of the discussed procedure, are in the right format to be used as a
"strength function" in load factor design. This is generally not true
for most theoretically derived buckling curves.
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NR.
L

(nnn)

o
y 2

tgf/mm.

e
o

(mm)

f
0

(mm)

a

(mm)

b

(mm) (mm)

h

(mm)

a PCR

(kgf
°CRR

2
(kgf/mm

°CRN
2

(kgf/mm
NR.

I 506 34. 16 0.83 1.04 5 82 8.42 160 0.1260 56586 26.99 28. 15 1

2 506 23.36 0.55 0.88 5 82 8.39 160 0.2233 41971 2

3 506 27.85 1 .28 1.07 5 82 7.18 160 0.2581 40659 21 .34 20.23 3

4 506 31.67 0.44 0.81 5 82 8.74 160 0.1303 57751 26.91 28.73 4

5 506 34.85 0.50 0.90 5 82 8.04 160 0.2401 55752 27.35 27.74 5

6 506 34.70 1.28 0.73 5 82 8.02 160 0.2374 52886 25.99 26.31 6

7 506 31.24 0.23 0.72 5 82 7.85 160 0.1221 54492 27.13 27.11 7

8 506 32.24 0.52 0.86 5 82 8.09 160 0.0944 55397 27.08 27.56 8

9 506 30.29 0.64 0.95 5 82 7.67 160 0.1541 48787 24.63 24.27 9

10 506 30.15 1.42 0.79 5 82 8.16 160 0.2014 47209 22.95 23.49 10

1 1 506 29.34 0.42 1. 19 82 8.00 160 0.1862 50294 24.75 25.02 11

12 506 30.52 0.83 0.92 82 8.24 160 0.1584 51741 25.00 25.74 12

13 506 31.04 0.21 0.81, 5 82 7.81 160 0.2682 57418 28.67 28.57 13

14 506 36.19 0.61 0.65 82 8.31 160 0.2155 57917 27.85 28.81 14

15 506 35.39 0.52 0.44 82 7.10 160 0.2002 53026 28.00 26.38 15

16 506 33.92 0. 16 0.97 82 8.91 160 0.2225 57686 26.56 28.70 16

17 506 31 .78 0.16 1.06 82 9.01 160 0.2323 60876 27.83 30.29 17

18 506 34.29 1.42 0.70 82 8.46 160 0.2295 50175 23.86 24.96 18

19 506 30.83 0.58 0.69 82 9.35 160 0.1643 60453 26.99 30.07 19

20 506 32.01 0.69 0.63 82 6.95 160 0. 1366 46680 24.96 23.22 20

X - 55

TABLK L

NR.

L

(mm)

0
y

2
kgf/mm (mm)

£
o

(mm)

a

(mm)

b

(mm) (mm)

h

mm)

1 PCR

(kgf)

aCKR

2
(kgf/mm

aCRN

2
(kgf/mm

NR.

21 690 31.54 0.71 0.81 5 82 7.76 160 0.2020 42930 21 .52 21 .36 2!

22 690 31.31 0.79 1.41 5 82 8.06 160 0. 1430 42377 20.76 21 .83 22

23 690 30.50 0.25 1.39 5 82 7.71 160 0.1715 42151 21.21 20.97 23

24 690 31.68 0. 19 0.76 5 82 8.27 160 0.2375 47276 22.80 23.52 24

25 690 29.55 0.25 0.88 5 82 8.17 160 0.1411 45540 22. 13 22.66 25

26 690 32.05 0.21 1.21 5 82 9.00 160 0.232! 49174 22.49 24.46 26

27 690 31.24 0.55 0.93 5 82 9.17 160 0.2106 49090 22.19 24.42 27

28 690 32.42 0.79 1.12 5 82 8. 15 160 0.1766 44073 21 .45 21 .93 28

29 690 32.94 0.07 1.52 5 82 9.11 160 0.2801 48933 22.21 24.34 29

30 690 30.15 0.64 1.02 5 82 8.36 160 0.221 1 43319 20.75 21.55 30

31 690 31.99 0.55 1.56 5 82 7.47 160 0.2497 39357 20.18 19.58 31

32 690 30.52 0.88 1.46 5 82 6.98 160 0.2657 35125 18. 73 17.48' 32

33 690 28.39 0.07 1.61 5 82 9.00 160 0.2192 44460 20.34 22.12 33

34 690 30.89 0.07 1 .64 5 82 8.77 160 0.1602 47407 22.04 23.59 34

35 690 29.43 0.31 1.08 5 82 7.89 160 0.1887 40141 19.92 19.97 35

36 690 31.27 0.29 1.55 5 82 8.45 160 0.1047 46621 22.19 23. 19 30

37 690 29.13 0.27 0.84 5 82 7.83 160 0.1582 43848 21 .86 21.81 37

38 690 36.94 0.40 0.90 5 82 8.13 160 0.1993 50870 24.79 25.31 38

39 690 28. 18 0.83 1. 16 5 82 8.30 160 0.2278 39861 19.80 19.83 39

40 690 29.36 0.27 1.08 5 82 8.86 160 0.2438 45613 21 .07 22.69 | 40

\ 75

TABLK II
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NR.
L

(mm)

o
y

kgf/mm2)

e

(mm)

f
o

(mm) (mm)

b

(mm)

c

(mm)

h

(mm)

a P
CR

(kgf

°CRR

(kgf/mm2)

°CRN
2

(kgf/mm
NR.

41 874 34.54 0.58 1.28 5 82 7.82 160 0. >491 36172 18.05 18.00 41

42 874 39.03 1.28 1.75 5 82 7.64 160 0.2088 33020 16.71 16.43 42

43 874 34.91 1.07 1 .07 5 82 7.35 160 0.1561 33186 17.18 16.51 43

44 874 30. 13 0.25 1 .69 5 82 7.45 160 0.1909 31729 16.29 15.79 44

45 874 29.98 0.42 1.55 5 82 7.95 160 0.2631 32727 16. 17 16.28 45

46 874 29.17 0.42 1.31 5 82 7.79 160 0.1729 33545 16.78 16.69 46

47 874 27.70 1.28 2.04 5 82 7.56 160 0.2701 26730 13.67 13.30 47

48 874 28.22 0. 14 1 .63 5 82 8.65 160 0.2549 35072 16.45 17.45 48

49 874 30.73 1.28 1 .82 5 82 7.04 160 0.1772 27868 14.79 13.86 49

50 874 29.92 1.07 1.94 5 82 7.94 160 0.2870 29699 14.68 14.78 50

51 874 28.45 0.16 1.61 5 82 7. 12 160 0.1842 30554 16.11 15.20 51

52 874 34.27 0.36 1.21 5 82 8.28 160 0.2690 37220 17.94 18.52 52

53 874 26. 17 0.09 1 .40 5 82 8.77 160 0.1413 36645 17.04 18.23 53

54 874 30.66 0.23 0.80 5 82 8.09 160 0.1510 38397 18.77 19.10 54

55 874 26.54 0.42 1. 19 5 82 8.32 160 0.1983 33961 16.32 16.90 55

56 874 32.36 0.07 1.47 5 82 7.90 160 0.1831 36275 17.99 18.05 56

57 874 34.87 1.07 1.60 5 82 7.34 160 0.2053 31289 16.21 15.57 57

58 874 31.41 0.44 1 .78 5 82 8.23 160 0.2651 33596 16.25 16.71 58

59 874 32.59 1.64 1 .45 5 82 7.41 160 0.2124 29532 15.23 14.69 59

60 874 30.46 0.14 0.70 5 82 8.04 160 0.1471 39469 19.37 19.64 60

X 95

TABLE III

L
y

e f » b h a PCR °CRR °CRN

NR.NR.
(mm) kgf/mm2 (mm) (mm) (mm) (mm) (mm) (mm) (kgf (kgf/mm2) (kgf/mm2)

61 966 34.35 2.00 1.28 5 82 7.70 160 0. 1532 27861 14.03 13.86 61

62 966 31.55 0.38 1 .30 5 82 6.94 160 0.1567 27964 14.96 13.91 62

63 966 33.40 0.46 1 .24 5 82 8.69 160 0.1477 35256 16.49 17.54 63

64 966 31.93 0.58 1 .83 5 82 8.73 160 0.2262 31934 14.89 1 5.89 64

65 966 27. 14 1.07 1.95 5 82 8.64 160 0.2422 28005 13. 14 13.93 65

66 966 29.65 0.36 1.99 5 82 7.88 160 0.2458 28225 14.02 14.04 66

67 966 31.49 2.00 1.91 5 82 7.52 160 0.2368 24807 12.97 12.34 67

68 966 30.02 0.52 1.76 5 82 7.03 160 0.2153 25920 13.77 12.90 68

69 966 33.19 0.75 1.49 5 82 7 .99 160 0.1813 30607 15.07 15.23 69

70 966 35.70 0.07 1.51 5 82 8.29 160 0.1848 34468 16.60 17.15 70

71 966 29.59 1.42 2.22 5 82 7.40 160 0.2758 24003 12.38 1 1.94 71

72 966 30.77 0.75 1.28 5 82 8.49 160 0.1543 32212 15.28 16.03 72

73 966 33.94 0.50 2.18 5 82 8.41 160 0.2704 30570 14.59 15.21 73

74 966 33.79 0.42 1.82 5 82 8. 18 160 0.2239 31 199 15.15 15.52 74

75 966 32.98 0.36 2. 12 5 82 7.82 160 0.2649 28934 14.44 14.40 75

76 966 31.51 0. 16 1.20 5 82 8.91 160 0.1434 36597 16.85 18.21 76

77 966 32.03 0.29 2.09 5 82 8.29 160 0.2594 30308 14.59 15.08 77

78 966 29.24 0.52 1.35 5 82 7.54 160 0.1629 28758 14.66 14.31 78

79 966 31 .08 0.25 1 .66 5 82 7.18 160 0.2040 27797 14.59 13.83 79

60 966 32.26 0.70 2.26 5 82 7.74 160 0.2825 29292 13.70 13.58 80

X 105
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NR.

L

(mm)

y
(kgf/mm2) (mm)

fo

(mm)

a

(mm)

b

(mm) (mm)

h

(mm)

a PCR

(kgf)

aCR

(kgf/mm2)

°CRN
2

(kgf/mm
NR.

81 1196 34.67 0.09 1.71 5 82 8.65 160 0.2334 24992 11.72 12.43 81

82 1196 33.53 0.71 2.75 5 82 7.30 160 0.1932 19399 10.08 9.65 82

83 1196 31.73 0.64 1.29 5 82 7.93 160 0.2405 22183 10.98 1 1 .04 83

84 1196 29.27 1.07 I .63 5 82 8.43 160 0.1752 22378 10.67 11 .33 84

85 1 196 31.44 0.94 1.84 5 82 7.74 160 0.0975 21288 10.69 10.59 85

86 1196 32.95 0.71 2.90 5 82 8.50 160 0.2073 22198 10.53 1 1 .04 86

87 1196 31.15 0.23 2.37 5 82 8.08 160 0.2045 21985 10.75 10.94 87

88 1196 33.99 0.94 2.23 5 82 8.58 160 0.1393 23315 10.99 11 .60 88

89 1 196 33.51 0.44 2.44 5 82 8.42 160 0.1116 23390 11.16 11 .64 89

90 1 196 32.37 1.00 1.10 5 82 8.65 160 0.2213 24011 11 .26 11 .95 90

91 1 196 33.22 0.23 1.08 5 82 8.75 160 0.1686 26259 12.23 13.06 91

92 1196 36.06 0.40 2.37 5 82 8.20 160 0.2034 22833 11 .07 11.36 92

93 1 196 27.63 0.07 3.06 5 82 8.04 160 0.1756 20820 10.22 10.36 93

94 1 196 34.44 0.19 2.20 5 82 7.22 160 0.1854 20545 10.75 10.22 94

95 1 196 29.99 0.58 1.70 5 82 7.85 160 0.2327 21292 10.60 10.59 95

96 1196 35.48 0.71 2.51 5 82 8.35 160 0.2174 225 1 1 10.79 1 1 .20 96

97 1196 32.35 0.46 2.25 5 82 9.24 160 0.1897 25153 1 1.36 12.56 97

98 1196 31.21 0.64 1.37 5 82 8.42 160 0.2495 23322 11.12 1 1 .60 98

99 M 96 29.41 0.38 2.78 5 82 9.05 160 0.1467 23773 10.84 1 1.83 99

100 1196 26.95 0.61 3. 11 5 82 7.97 160 0.2815 19144 9.44 9.52 00

A - 130

TABLE V

NR.

t.

(mm)

0
y

(kgf/tnm2)

e

(mm)

f
o

(mm)

a

(mm)

b

(mm)

c

(mm)

h

(mm)

a PCR

(kgf

°CRR

(kgf/mm2)

°CRN
2

(kgf/mm
NR.

101 1472 35.37 0.03 2.22 5 82 8.26 160 0.1567 16683 8.05 8.30 101

102 1472 30.26 0.09 1 .20 5 82 6.98 160 0.1977 14276 7.6,1 7.10 102

103 1472 32.43 1.28 1 .86 5 82 8.73 160 0.1762 16641 7.76 8.28 103

104 1472 33.95 0.27 1.74 5 82 8.76 160 0.2422 17512 8.15 8.71 104

105 1472 34.80 0.61 2.67 5 82 7.09 160 0.1957 13707 7.25 6.82 105

106 1472 32.33 0.42 2.28 5 82 8.44 160 0.1368 16573 7.89 8.25 106

107 1472 29.21 0.03 1.96 5 82 7.56 160 0.2153 14980 7.63 7.45 107

108 1472 33.37 0.50 1.82 5 82 8.65 160 0.2313 17055 8.00 8.49 108

109 1472 31 .57 1 .64 0.75 5 82 8.03 160 0. 1848 15609 7.66 7.77 109

110 1472 29. 10 0.31 2.13 5 82 8.33 160 0.1758 16221 7.79 8.07 1 10

1 11 1472 36.58 0.33 2. 19 5 82 7.97 160 0.2043 15886 7.84 7.90 11 1

112 1472 32.79 0.75 2.07 5 82 7.48 160 0.2704 14326 7.34 7.13 1 12

113 1472 33.64 0.03 1.23 5 82 8.44 160 0.2239 17297 8.24 8.61 113

114 1472 33.82 0.64 3.21 5 82 7.16 160 0.1649 1 3626 7.16 6.78 114

115 1472 33.35 1 .07 3.24 5 82 8.38 160 0.1934 15519 7.42 7.72 1 15

116 1472 32.21 1.28 3.14 5 82 7.36 160 0.1594 1 3589 7.03 6.76 116

117 1472 33.06 0.88 2.28 5 82 7.80 160 0.1129 15139 7.56 7.53 117

118 1472 27.94 0.42 1.89 5 82 7.57 160 0.2040 14696 7.48 7.31 118

1 19 1472 27.47 0.64 1.32 5 82 8.27 160 0.1825 16205 7.81 8.06 119

120 1472 31-. 63 0.09 2.40 5 82 7.77 160 0.2985 15029 7.53 7.48 120

A - 160
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