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COMPUTER SIMULATION OF THE E.C.C.S. BUCKLING CURVE -USING A
MONTE-CARLO METHOD

JOHN STRATING_and HAN VOS
Stevin Laboratory, Delft University of Technology
Delft, The Netherlands

ABSTRACT

The application of a Monte-Carlo simulation procedure to obtain the distribu-
tion function of the maximum load of a hinged columm with imperfections is
discussed. Buckling tests carried out by the E.C.C.S. on IPE 160 sections
have been simulated. Information concerning the column variables is obtained
from the data-sheet of the E.C.C.S. tests. The probability density function
of each variable is derived or estimated. A good agreement is found between
the simulated buckling curve and the experimental buckling curve.
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COMPUTER SIMULATION OF THE E.C.C.S. BUCKLING CURVE
USING A MONTE-CARLO METHOD.

INTRODUCTION

This paper describes a procedure for computer simulation of buckling
tests, using a Monte—-Carlo method. The variation of the parameters which
determine the load-carrying capacity of a column is taken into account
and the probability density—function of the buckling load is derived.

In the past years, the European Convention for Constructional Steelwork
(E.C.C.S.) has carried out an extensive experimental programme on buck-
ling of concentrically loaded, hinged columns with imperfections. The
results of these tests are discussed in [1], Most specimens tested were
light-weight sections with flange thicknesses t < 20 (mm). The test series
has been designed in such a way that a buckling curve with a certain
probability of failure could be derived. The buckling curve is defined
by means of characteristic stresses. According,to the philosophy of the
E.C.C.S., the characteristic buckling stress o CR is equal to

GxCR =m - k.s
where m is the mean value and s is the standard deviation.of the buckling
stresses; k is a constant which depends on the type of probability densi-
ty function (p.d.f.) of o __. 5
The value of k must be chdSen so that: prob. [ o < o ] is equal to

2.3Z. 1If 9cRr follows a Gaussian p.d.f. the value gf—k=93

Information concerning the type of p.d.f. of
buckling stresses could be obtained only

through experiments at the time the E.C.C.S.
tests were started.

The number of tests involved is large, however.
The p.d.f. is estimated from the results.

As shown in [1], the shape of the experimental
buckling curve is determined mainly by the test
results on IPE 160 sections. The buckling curve
is shown in (fig. 1) together with the signifi-
cant test results. A statistical analysis of the
buckling stresses proved that the buckling stres-
ses are Gaussian distributed and therefore

Tyy he/mme

*
o] CR m 2.8

Due to the great number of tests involved in the
above-mentioned approach, it cannot be extended
easily to all the various sectional shapes and
dimensions. Neither time nor means are available
to carry out these tests.

Theoretical solutions are sought, therefore which are able to predict the
behaviour of an imperfect column with sufficient accuracy and which also
take into account the random nature of the imperfections and the mechan-
ical properties. Two problems can be recognized which must be solved.

Fig. 1

l. To compute the buckling load of a concentrically loaded
column, given certain imperfections and mechanical proper-
ties.
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2. To compute the probability density-function of the buckling
loads or stresses, given the imperfections and mechanical
properties are random variables.

It is obvious that the first problem must be solved before the second
problem cab be tackled. Batterman and Johnston [2]. Stussi ]3 ,» as well
as Beer and Schulz [4] have discussed numerical methods for solving the
case of a concentrically loaded column with certain imperfections. These
methods are used to carry out the computations involved in the outlined
procedure and they will be discussed briefly in chapter 3. This paper, is
concerned primarily with the solution of the second problem, however.

A Monte~Carlo simulation procedure is applied to derive the p.d.f. of
the buckling stresses. The results of the E.C.C.S.-tests on IPE speci-
mens are analysed and used to check the validity and accuracy of this
kind of approach. Information concerning the imperfections and mechanical
properties of these sections has been obtained from the data sheets which
were established for each test specimen. The p.d.f.'s of the column vari-
ables can be derived from this information. These functions are used as
input-sources for the Monte-Carlo simulation procedure.

Finally, a buckling curve is computed with known probability of the fail-
ure. This curve compares well with the experimental E.C.C.S. buckling
curve derived from the same specimens.

COMPUTER SIMULATION OF BUCKLING CURVES.

The buckling load of a hinged column with imperfections can be described
by the following relation

P

il
n
~~
Q

o] g ,e 3 £ , A, E, })

CR yt? “ye’ x? To* 7o
where Uyt = yield stress in tension
ch = yield stress in compression
o = residual stress
e, = eccentricity
fo = amplitude of the initial curvature
A = area
E = Young's modulus
X = slenderness-ratio

It should be emphasized that the variables wnich appear in this relation
are random variables. The number of variables can be reduced if o is
assumed to be equal to o__, and that E is constant; the relation ¥an then
be written as ye

PCR = f (oy, O s € fo’ A, ).
Proof of the influence of each variable on the scatter of the buckling
load P can be cobtained through correlation analysis of tests results,
as shown by Loof for the E.C.C.S. tests {5].
According to the criteria of the E.C.C.S., the characteristic buckling
load is equal to
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Per = Bor ~ k-8

P:R = characteristic value of the buckling load
ECR = mean value of the buckling load

s = gstandard deviation of the buckligg load

k = constant such that prob [PCR < Per 1=2.37%

It is obvious_ that the value of k depends on the type of p.d.f. of P R

A value for P can be determined, without much difficulties, from exper-
iments. A thedretical solution for P.,_, is much more difficult to obtain,
however. P is a function of a number of random variables, consequently
P, follows a multi-dimensional probability density-function. This func-
tion is not known generally nor can this function be derived from infor-
mation concerning the p.d.f.s' of the random variables, except in a few
special cases. A purely theoretical solution of the problem in question
is not feasible therefore in most cases. Two approximate solutions,
however, have been suggested; they are discussed below and a new approach
is described.

Method 1I.

Various combinations of the variables are introduced into the formula for
P . Each combination leads to another buckling curve (varying \). By
coénparing the computed buckling curve with the experimental E.C.C.S.
buckling curve, a combination of variables can be estimated which fits
the experimental curve most closely over the whole range of slenderness
ratios. This method has been adopted and developed by Beer and Schulz [4]
From a probabilistic point of view, this method is questionable because
a lower bound curve is approximated. There is no reason to assume that
the obtained solution is unique.

Extrapolation to other shapes and dimensions is realised by modifying

the combination of the variables. Ne information concerning the scatter
in the buckling loads is obtained, however . This method is therefore

not truly probabilistic,

2.2 Method 1II.

Schor [6] and Carpena [1] assume that all variables are uncorrelated, and
furthermore that the function f(o ,0_, e , fo, A, X)), can be linearized.
A linear function is obtained thrgugﬁ a Taylor expansion of £

- 3
f(o , , . = 7 = z = —
( y Ur eo fO, A, >\) f(Gv » Ur > eo, fo » A’ )\) +.ao. (O.y - O.y) +
3 3
f - f - af _ 3
+—— (0o - _ _ f -
o Or T o)t e~ (85 = 2y) + 5 G T E) g (- b s
2 2 2 2
d (0 - o -
* o fz y V) + . f (Or Or) 5
o 2 1 1 ce sttt e
y BorZ 3t

Disregarding all terms of the second order and higher, the expansion
reduces to
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" - -~ - - -
f(a , 0, e, fo’ A, Ay v £( oy, s € s fo’ A ) + 5o (Uy c ) +
3 d P P
£ - f - f = f
+ 55; (Gr Ur) + 5;; (eo eo) v (f fo) + 5 (A A).

The mean value of PCR can be found by substituting (cy, 05 € s fo, A)

into this formula

s mes 2 T F %
PCR f(cy, O.» €5 fo, A, M.

The variance of Poge after squaring and summing, is equal to

o 9 a P
2 ¢ 2
SN (g )7 (s r st (s’
y T de_ 3
o]
3
f 2
* Cp 8y

standard deviation of P
P i CR

= standard deviation of ©

where

y

s
S
Sr = standard deviation of o,
S
S
S

& = standard deviation of e0

£ standard deviation of fo

S standard deviation of A

It is now possible to compute the mean value of PCR and the variance at each
slenderness-ratio A, provided function £(o_, o s & o £ , A, X) can be
solved. The mean values and variances of edch Vari&ble®must also be known.
The first derivatives of f can be obtained analytically, by partial differen-
tiation of f or graphically from curves showing the dependance of f upon

each variable. If furthermore is assumed that PCR follows a Gaussian

p.d.f., the desired buckling curve can be derived by computing for each

A the value (P., - 25 ).
Essential in thé abovePmentioned approach are the assumptions that the
variables are uncorrelated and that function f can be linearized. The
latter assumption must be viewed with reserve and may lead to significant
errors.
The described approach can be checked against the E.C.C.S. buckling
curve, The mean values and the variances of the variables can be obtained
from the data-sheets available for each test specimens. Comparison of the
computed buckling curve and the experimental buckling curve will show
whether the linearization of f is allowed.
This method itself is basically a probabilistic approach and therefore

in agreement with the criteria of the E.C.C.S.

Method III.

Carrying out a buckling test simply means loading a column, with a
certain combination of imperfections and mechanical properties, until
failure occurs. The values of the imperfections and the mechanical prop-
erties of a particular column cannot be predicted in advance.

Once a column has been selected for a test, however, these values can be
measured. If the mathematical model of such a column is sufficiently
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accurate, the buckling load of this column can be computed instead of
actually carrying out a buckling test. This can be repeated for any number
of columns. None of the columns are actually tested, all buckling loads
are computed, the tests are "simulated". The simulation method can be
further generalized if it is recognized and acknowledged that the values
of the imperfections and the mechanical properties present in a column
are primarily due to chance. It is sufficient to know the distribution
function of each variable and the correlations between these variables,
to carry out the simulation procedure. One drawing from the population
of each variable, giving proper attention to the correlations between
them, results in a combination of variables which can be assigned to a
hypothetical column; the buckling load P, of this hypothetical column
can then be computed. If this procedure Is repeated a number of times,
an equal number of P, _ values is obtained. The mean value as well as the
. R . 3
variance of P g can ge determined and a p.d.f. can be fitted to the
histogram of EC -values. By doing this, the E.C.C.S. testing procedure
is exactly simu%ated. It is very important of course, to select proper
values for each variable. This can be done correctly by deriving the
p.d.f.'s of the variables from representative data. A simulation proce-
dure as described above is called a '"Monte-Carlo'" method. This method is
particularty suited for a digital computer because numerous repeated
computations are involved.
Drawing values from a particular p.d.f. can be done by generating random
numbers which follow the same distribution law as the variable in question.
This method allows for correlation of any kind to be introduced between
the variables.

The validity of a Monte-Carlo simulation procedure will be tested by
applying it to the E.C.C.S. tests carried out on IPE 160 sections.
The data-sheets of these tests allow the derivation of most p.d.f.'s

involved. The computed buckling curve can be compared directly with the
experimental buckling curve because the shape of the latter curve is

determined completely by the test results obtained on the IPE 160
specimens. Application of the discussed method to other sections
simply means modifying the p.d.f.'s of the variables so that they
correspond to these sections.

No buckling tests have to be carried out, only simple measurements
are necessary to determine the representative values of the imperfec-
tions and the mechanical properties. These measurements are less
expensive, however. :

The application of the Monte—Carlo simulation method to the E.C.C.S.
buckling tests on IPE 160 specimens is discussed in chapters 4, 5 and

6.
NUMERICAL SQLUTIONS FOR THE BUCKLING LOAD OF A COLUMN WITH IMPERFECTIONS.

Most solutions for the buckling load of a columm with imperfections
are based on numerically solving the equation which describes the state
where in each point of a column the moment M is equal to the internal
moment Mi (fig. 2) B2
2

P.y = —EIX‘E—%

) dx
For a given value of P, the deflected shape of the column is assumed:
v = f(x). The external moments are computed and are assumed to be equal
to the internal moments. Next the shape of the column corresponding to
these internal moments is determined. P is equal to the buckling load
of the column if and only if the computed shape of the deflection curve
is identical to the assumed one. This is generally not the case and
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therefore the computation of the deflected shape is repeated starting,
however, with the shape obtained in the first computation. It has
been shown by various authors that this procedure is

rapidly converging and that a sufficiently accurate P
value of P will be obtained after only a few itera-
tion steps. [3,4].

Next consider the column shown in (fig. 2). This
column is identical to a column with hinged ends and
twice its length. A load P is applied to this column
with an egcentricity e ; the column is assumed to
have an initial curvatire which is part of a sine-
wave, the amplitude is fo'

As a first approximation the deflected shape of this
column is also assumed to be a sinewave, the end-
deflection of the column is equal to "a'". The column is divided into

a number of segments. The external bending moments are determined at
the ends of each segment.The deflections of the column are computed
numerically, by means of the reduced moment—-area method and applying
Simpson's rule.

For each segment the angle of rotation is computed; the deflection at
the top of the column is equal to the sum of the products of the angles
of rotation and the gegment lengths. The computations are repeated
until the computed shape is identical to the assumed shape.

In this iteration process the computed column shape of each previous
step is used for the next step. The iteration is stopped if a certain
degree of accuracy is obtained between two successive shapes. It is not
yet necessary, however, that the computed end-deflection of the column

is equal to the assumed end-deflection "a". There are two methods which

can be used to bring those two deflections into agreement. In the first
method, the value of P is kept constant; the length of the column,
however, i1s varied until both deflections are equal. Next other

values of "a" are adopted and for each

"a" a corresponding column length (or  ,_{q cnoeaness
slenderness—-ratio A) is computed. From I S

these pairs of values (X,a), the Ag ek, ]
maximum column length is determined X %

for which the given column will be in N P CONsTANT
equilibrium under the load P. (fig. 3) ~

Then the value of P is varied and the S
computations are repeated. To each
value of P there corresponds a
maximum column length 1 (or X ). Fig. 3

In the second method the 1eng@ﬁxé

the column is kept constant, the

value of P is varied until a value is found for which the assumed
deflection 1is equal to the computed deflection. Next "a" is varied
and other values of P are found. From
the pairs of values (P,a) the collapse
load of a column of given length is
determined (fig. 4).

The first method has been used by Beer
and Schulz for their computations [4].
They were interested in determining
complete buckling curves for each combi-
nation of variables. The maximum length

Fig. 2

f, b £ f- ceFLecTION

| . (Fnax fmax)
N

\\ 1= CONSTANT
~

X 0l
[%::]]

~—

[ 1

(.

| N~
of a column, for any given value of P, | ‘
is less interesting for the Monte-Carlo bt h
simulation procedure because a column isg Fig. 4
never tested by increasing the column
length during the test until failure

f. DEFLECTION
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occurs, Therefore the second method has been applied. For each column
of given length and given imperfections, the critical load PCR is
computed.

The computation of the deflected shape of a column is ‘rather complica-
ted because the bending stiffness "EI " of the colummn is not a constant
but appears to be a function of the bénding moment M and the load P.
The column will yield over part of the cross-—section, if P is large or
if the defleetions are large. The bending stiffness "EI " will be
reduced, due to this yielding. Residual stresses present in the column
cause premature yielding. The value of the yield stress and the dimen-
sions of the section will also affect the relations between M,P and EI.
The bending moment is not constant over the length of the column, and
consequently the bending stiffness EI varies over the column length.
The relations between M,P and EI can be determined for each particular
section if the stress-strain diagram, the distribution of ¢ over the
cross-section and the residal-stress distribution are known) For a
constant value of P, an increasing part 3

of the cross—section 1s assumed to yield, 5%
the corresponding stress and strain
distributions allow the values of the
bending moment M and the curvature to
be computed. For an IPE 160 section
these relations are shown in (fig.5).
The dimensions of this section are
nominal, the stress—strain diagram is
assumed to be bi-linear and o, = 24.0
kgf/mm~. The residual stress iIs assumed
to be parabolically distributed in the
flanges and constant in the web; the
maximum compressive residual-stress is
equal to 0.3 o_. On the vertical axis
of figure 5 thd ratio B between the Fig. 5

actual bending stiffness and the ’

elastic bending stiffness is plotted; on the horizontal axis the ratio

M between the actual bending moment and the plastic bending—moment is
plotted. These curves provide the information necessary for the compu-
tation of the buckling loads.

From the remarks above it can be observed that the column parameters

can be divided into two groups. The yield stress, residual stress and

the dimensions affect the shape of the M = P - B relations while the
eccentricity and the initial curvature affect the deflected shape

through the external bending moment.

All the column computations which will be discussed in a later chapter,
have been carried out under the following assumptions: the stress-strain
diagram is bi-linear; the yield stress is constant over the cross—section;
the residual stress distribution is parabolic in the flanges and constant
in the web, the distribution is symmetric; the initial curvature is half
a sinewave and the eccentricity is comstant over the length of the columm.
Only weak-axis buckling is considerd. It should be mentioned that the
computations involved in the Monte~Carlo simulation procedure are rather
tedious because for each column a new set of M - P - B relations must be
determined.

The accuracy of the computer programme is checked by comparing the output
with results obtained by Beer and Schulz on a similar column. This com-—
parison is shown in the table, below. The column is HEA 200; the initial
curvature f = 1/1000, the maximum compressive residual stress is 0 or

0.5 0, the®column dimensions are nominal. The slenderness-ratio and

the ctitical stress are given as dimensionless parameters X = A/ﬁ/ E_

and o GCR Uy

—
y

341



! ° This program ] Beexr and Schulzl)
059 | 05 0.77 0!8
o810 | g 0-64 0.65
o2 | g RE 0.53
S 0147 ol
1400 |G 0:36 0.5
1755 | g 0:26 0:25

1) These values are obtained from [4] p. 40, fig. 5 and [12] p. 115,
fig. 5.6.

. b COLUMN DATA.

A considerable number of the E.C.C.S. buckling tests has been carried
out on IPE sections. These sections are responsible for the shape of the
experimental buckling curve as derived by the E.C.C.S.. It is for this
reason that these sections are chosen for the Monte-Carlo simulation
procedure. %
The testing procedure, established by committee 8.1  of the E.C.C.S.,
demanded that the following measurement be carried out on each test
specimen
1. The dimensions of the specimen at 0 - 1/4 1 - 1/2 1 - 3/4 1-1
2. The initial curvature at 0-1/41-1/21 - 3/4 1-1
3. Weighting of the specimen

The mechanical preperties of each bar from which specimens were cut had to be
determined

4, Tensile tests

5. Stub-column test
These data had to be recorded on a standard data sheet.

In the next paragraphs the relations between the column variables and the
measurements are discussed,

4.1 Eccentricity.
The dimensions of the sections are used to compute the eccentricity which
is introduced because the testing procedure requires that the load must
be applied at the center of the web of the specimen. The center of the
web, however, does not necessarily coincide with the center of gravity
of the whole section.
The center of the web lies a distance (¢ + { a) from the right. The cen-
ter of gravity of the flange lies }{ b from the right. The difference
between the two distances is equal to: (¢ + § a) - } b.
The center of gravity of the complete section is determined for the
nominal area.

The eccentricity of the web is computed from the following relation

Ay

e, * T [c+}ta~-ib ]
n
where AF = area of a flange
A = nominal area
n

% Conmittee 8.1 on "Buckling tests'.
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4.2

4.3

4.4

If both flanges are considered separately [ =%
e 1s equal to ay ey
e s Bl 7 (c.+ba, —ib )+ '
o 2A 1 12 .
n , 1 h,
+ - 3 b
vley by miby)) all e
The mean values of the dimensions, @etermined
over the length of the column, are introduced § [T 1 i
into this formula.
| bz i
Initial curvature.
The initial out-of straightness has been measured at five
points along the length of a specimen. A digital computer
is used to find the best fit of a sinewave through the A
points A, B, C, D and E. The amplitude fO of the sinewave
is considered as the parameter of the initial curvature. B
The mean value of fo for both flanges is determined.
(&
D
E

Area.

The weight G of a specimen is used to compute the real area of the
section. The specific weight of steel is assumed to be

7.85 x 10° kgf/mmo

1]

P

The area is equal to

A= G

Tl = length

specific weight
weight of the specimen
area

N0
1}

Tensile tests,

Tensile tests were executed on specimens taken from the flanges,
according to Euronorm 2 - 57. The yield stress obtained from these

tests is denoted o .

Additional tensile ¥€sts were carried out on strips taken from the
flanges and the web. This yield stress i1s denoted o . The figures below
show how the specimens are taken from the bar. ys

EURONORM STRIPS
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4.5

Stub column test.

Stub column tests were carried cut on specimens with slenderness—
ratios A = 12, 15 and 20. The specimens were taken from the same length
of bar from which specimens were cut for the buckling tests. The yield
stress obtained from these tests is called Gy.

The individual column data are not reproduced in this paper because
they are too numerous. In the next chapter histograms of these data are
given, however. The data have been reduced according to the relations
given in the previous paragraphs

The IPE 160 sections studied in this investigation are coded 17, 18, 19
20, 21 and 22 in Table A-!, page 30 of ref. [11. The eccentricity and
initial curvature parameters are obtained from 150 columns; the yield
stresses and areas are obtained from 189 columns.

PROBABILITY DENSITY FUNCTIONS OF THE COLUMN VARIABLES;

The experimental data described in chapter 4 have been used to derive
histograms and cumulative histograms. Cumulative distributicn functions
are fitted to the cumulative histograms. Throughout this chapter, the
Kolmogorov—Smirnov test of significance is applied to find the best fit
[7], except for the initial curvature. The Kolmogorov-Smirnov test
concentrates on the deviations between the hypothesized cumulative dis-—
tgibution function F(x) (C.D.F.) and the observed cumulative histogram
Fx (xi) (C.H.).
F7 (x,) = = where x. is the i th largest observed value in a random
samplé of size n. &
The following statistic is considered

n

D = max [ Fx (Xi) - F(x)]

i=1
D is, according to this formula, the largest of the absolute values
of the differences between the hypothesized C.D.F. and the observed
C.H., evaluated at the observed values in the sample. Critical values
of D can be given at various levels of significance which will result
in either accepting or rejecting the hypothesized C.D.F. Let o be the
level of significance, then for large n, the critical statistic is equal
to

a = 0.10 D=1,22/ vn
o = 0.05 D=1.36 / vn
o = 0.01 D=1.63/ vn
40,
Eccentricity.
- 32
The histogram of e 1is shown in (fig. 6). 2
The eccentricity varies between 0 and 2.4
2.0 mm. The shape of the histogram £
suggests an asymmetrical p.d.f, Three
C.D.F.'s are hypothesized *
a Gaussian C.D.F. 8
a Log-normal C.D.F,
a Gamma C.D.F. 5 M
o 030 0.80 0.90 120 .50 .80
In fig. 7 the observed C.H. is shown ECCENTRICITY oy mm
together with the hypothesized C.D.F.'s
The maximum values of D which can be Fig. 6

derived from this figure are
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n
Gaussian C.D.F, D= max[F*(xi) - F(xi} = 0.566 — 0,420 = 0.146
n=i
Log-normal C.D.F. D= " = 0,915 - 0,830 = 0.085
Gamma C.D.F. " = 0.900 - 0.835 = 0,065
Feoy
ol | ——
osb.. . ‘ | ‘/-‘,4»':,.
07 N < P
! ¥
of 7
os} . ... ] .
oal - —— OBSERVED C.H.
aal .| 'd —— LOG NORMAL C.D.F.
iz ol / ~~- GAMMA C.D.F.
1 .7 ' -~ -GAUSSIAN C.D.F.
]l ; S
l l | | } } l I I l i

01 02 03 04 05 08 07 08 08 10 11 12 13 14 15 1.6 1.7 18 19 20

ECCENTRICITY (mm}

Fig. 7
The critical wvalues of @ are
a = 0.10 D= 1.22 / Y150 = 0.100
@ = 0.05 D=1.36 / V150 = 0.111
o = 0.01 D=1.63/ Y150 = 0.133

The log-normal and the Gamma C.D.F. cannot be rejected at the 107 level
of significance. The Gamma-model is chosen for the eccentricity. The
parameters of this model are

2,798

= 0.5949 mm ) _ A
= 1.663

0.4609 mm )

]

=
|

5
Initial curvature.

The initial curvature parameter f has been determined for each column
length 1 involved in the simulation. It is assumed that £ follows a
Gaussian distribution function. In this case the Kolmogorgv—Smirnov
test is not used to, check the validity of this assumption but the more
refined method of '"the moments" is used instead. This method is des-
cribed in some detail in chapter 7. The following values are obtained
for the critical parameters of this test.

1 =1012 1 = 1380 1 = 1748 1l =1932 | 1 = 2392 1 = 2944
m 0.68 1.13 1.47 1.65 1.95 2.78
8 0.29 6.30 0.50 0.25 0.35 0.49
v, -1.40 -2.16 ~4.91 -1.18 =-0.060 1.84
v, -0.98 0.65 4.81 0.38 -0.92 1.08

The hytophesized Gaussian distribution function should be rejected if
vy 3 and Wy 2 3. This is only the case for I = 1748 mm ()} = 95). The

hypothesized p.d.f. is accepted therefore for initial curvature.
Fig. 8 shows the computed values of m. Also plotted are the values m + 2s.
It can be seen in this figure that the relations (1,m) and (l,m + 2s8) can
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be approximated by

. ' fotmm
straight lines. This °
indicates that the " - e
initial curvature [~ [ ¥ | ] T T
parameter can be . f
described independent si 1 |
of the column length ol [ A I O ! L
through the value £ /1. — ‘ ,Af’f !
% i o 41— —%— —— ,,i s B i e e
This parameter is con- | + 4/,mm1L
sider d in this paper; T 1 I Nl P
(fig. 9) shows the his H— - T 7T 1717 LA T ;/ﬁ:;,,k’flg
togram of £ /1. —+ |- - . P TS ne
° 2 i ! /. .i~ . S W
From (fig. 8) the , e I R N
following values are , S | }mm R N AJ
determined for the L= | & < MEAN HZ ST.DEV.
Gaussian model +— ‘ZFI t . f : | L
m= 0.00085 1 (wm) e 012 1380 18 032 2302 2044
s = 0.00020 1 (mm) Fig. 8 ﬁ
5.3 Area. . H
The histogram of the area is given in g -
" (fig. 10). The observed C.H. and the F "
hypothesized Gaussian C.D.F. are shown 1 ]
in (fig. 11). Preliminary computations =~ ®°
indicate that hypothesizing an asym~ LTl .
metrical C.D.F., is not justified. 2 a0 e Haers® m
The mean area is equal to m=2047.33 mm Fig. 9
The standard deviation is equal to
2 20
s= 8l.15% mm
The parameters k and A of a Gamma “ee e o ae :.z[? 238 2.43
C.D.F. are a function of m and s. 2
Fig ]0 AREA mm
k. _ Vi
TS me 53 =s .
F(l)
1. T [R— 1 r‘ T o=
o - A+ﬂq
Substitution of the »r- V ¥
measured values of b | .
m and s into these 8 - 7
formula gives e 1/ —t L
oM~ 1 —— OBSERVED C.H.
k = 636.51 o i ¥ —-- GAUBSIAN C.OF
A = 0.3109 N ff
1 =
For large k-values o ) T [ TJAAgT”[ '[’['I
the Gamma C.D.F. W00 weo  zow0 2070 2190 2190 2250 2310 270 2430
approaches a Fig. 11 AREA (med)

Gaussian C.D.F.

The latter is the only function, therefore, which has been investigated.
The Kolmogorov-Smirnov test gives the following results.

n
max
i=1

D
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Bg. 23 AK 23

5.4

(=]

The critical values of are
o = 0.10 D= 1.22 / /189 = 0.089
a = 0.05 D=1.22/ /189 = 0,099
a = 0.01 D=1.,22/ /189 = 0,118

The Gaussian model cannot be rejected at the 1 7 level of significance,
which is a rather questionable result. The Gaussian model is accepted,

however, for reasons of convenience.The parameters of this model are

2

m = 2047.33 mm,

s 81.15 mm

For the simulation procedure, the variation in the area is assumed to
be a result of the variation in the flange thickness alone. The height,
width and web thickness are assumed to be equal to the nominal wvalues.
The mean value and the standard deviation of the flange thickness is
obtained from the following formulae

A= (h - 2e) a+ 2be = (160 ~2) 5+2 x 8.2¢e =800+ 154 e

mean value A - 800 _

me"—'—i's_l;—"811m
standard deviation
s
_ A
sewm-0.527m.

The parameters of the Gaussian model for the flange thickness, are

m = 8. mm 32
0

1
s = 0,527 mm

FREQUENCY

24

Yield stress.

The yield stress has been determined from
three different tests.

Euronorm m=29.12 kgf/mm2 §=2.04 kgf/mm2
Strips | m=27.85 kgf/mm_ s=3.17 kgf/mm2 e hE [1
Stub-column m=31.48 kgf/mm“ s=2.65 kgf/mm S0 s ae

YHELD STRESS EURONORM oye

The values obtained from the stub-column Fig. 12
tests have been used in the simulation
precedure because these values are the
best measure for the yield stress in o0}
compression. This yield stress also deter-
mines the buckling load of a columm.

The histograms of the three yield stresses
are shown in (fig. 12,13 and 14). The
shape of the histograms suggests a symmet- *°
rical p.d.f. Fig. 15 shows the observed
CH of the stub-column yield stress togeth-
er with the hypothesized Gaussian C.D.F.

FREQUENCY

40

19.80 22.30 25.20 27.00 300 33.30 a6

The Kolmogorov—Smirnov value D is equal to YIELD STRESS STRIPS ay,
n » Fig. 13
D = max [ F (xi) - F(x)] = 0.840 - 0.750 =
i=1 = 0.090
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5.5

32

The critical value D is

FREQUENCY

24

a.=0.10 D=1.22/ /189 = 0.089 "
a=0.05 D=1.36/ /189 = 0.099
o= 0.0 D=1.63/ V189 = 0.118 .
The Gaussian model for the yield stress 1
cgnn9§_be rejected at the 10 7 level of [ Y e 33.80  38.40
;;gn;a;Z;ZEE;.S o VIELD STRESS STUB COLUMN 0y kgt/mmi®
of this model Fig. 14
are 1-0 = T

T AERENEE
m=31.48 kgf/mm BN
s= 2.65 kgf/mm B o

07—t * T 7‘
Residual stress. s e
0s ‘ o

The residual ahs . i ‘r'. — OBSERVED C.H,

P ! i ‘A
:;rizzisd?ingd oa—f—é——ﬂh-«_—-wa-;;fév ---~GAUSSIAN C.D.F.

1ffi- ;

culties because T ""L:;? T 1 T ' 1]
no extensive o8 T—r- =T 1 1 7 T T T
residual stress-— = ! .
measurements 248 258 27 282 204 ot ns E 342 354
have been done ] Oy STUB COLUMN chgfmni’s
on IPE 160 Eigy 13

sections. The distribution of the residual stresses is assumed to be
parabolic in the flanges and constant in the web. As the parameter of
this type of distribution the maximum compressive o_ at the tip of the
flange is chosen. Some stub-column tests were carried out in Belgium
for which load-deformation diagrams were recorded [8]. From these
diagrams the maximum residual stress can be estimated. Ten such diagrams
are given. The maximum compressive residual stress is determined as a
fraction of the yield stress,

o

6 =ao0 *a=—
o
y

A mean value o = 0,204 and a standard deviation s = 0.07 are computed
from the Belgian tests.

A value of o = 0.61 is derived by Rokach. He performed a correlation
analysis on the IPE 160 test results, [9]. This value of o, however,
must also account for the effect of the initial curvature. For the same
sections Lenz arrives at a value of o = 0.06 [10].

Young suggests a general formula for the maximum compressive residual
stress in I sections []]].

A
= ——-————-—w =
GR 16.5 ] oA Aw web area
F AF = flange area

For an IPE 160 a value of o = 0.238 is computed. Schulz proposes a
value o = 0.2 for this type of section. [12].

The residual stress parameter o is assumed to be Gaussian distributed
[13]. The validity of this assumption cannot be tested due to lack of
information. For the simulation procedure, a mean value m = 0.20 and a
standard deviation s = 0.05 are adopted.
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5.6

5.7

Slenderness-ratio.

No variation is assumed in the slenderness-ratio A. The length of each
column has been determined with sufficient accuracy and no variation is
assumed in the width of the column flanges.

For weak-axis bending, therefore, the radius of gyration is constant.
The slenderness ratio A can thus not be treated as a random variable.

Summary of the model parameters.

Random variable Gamma C.D.F. Gaussian C.D.F.
A k m s

Eccentricity (mm) 2.798]1.663 & &=
Initial Eurvature - = 0.000851|0.000201
Area (mm™) = &= 2047.33 81.15
Flange thickness = = 8.1 0.527
Yield stress kgfémZ - = 31.48 | 2.65
Residual stress 9 - - 0.20 ¢ 0.05 ¢

kgf/mm y y

GENERATING RANDOM NUMBERS.

Random numbers with a Gaussian or uniform probability density function
can be generated directly on a digital computer. Standard procedures
are generally available. Values of the variables for which a Gaussian
model is assumed, have been obtained on a I.B.M. 1130 computer using
the procedures RANDU AND GAUSS. Generating random numbers with a Gamma
p.d.f. proved more difficult. No standard procedure is available for
the inversion of the incomplete Gamma function; therefore, a graphical
method is used. First the Gamma C.D.F. 1s computed and interwvals of
equal probability (2.5 %) are determined.

Next random numbers with a uniform p.d.f. are generated and they are
assigned to these ingervals. In this particular case, the random numbers
lie between 0 and 107 ; they are assigned to each interval according to
the following scheme

0 - 2.500 interval 1 representative value X
2501 - 5.000 interval 2 representative value X,
5001 - 7.500 interval 3  representative value X3

97501 - 100.000 interval4Q representative value x40

Each interval i is represented by a single value x.; x. is defined as
the mean value of the two boundary values of interval 1. This is not
correct. Theoretically x. should be defined as the center of gravity of
the area under the C.D.¥. between the two boundary values. The relatively
large number of intervals, however , assure that the error will be very
small if the mean is considered instead of the center of gravity. The
last interval must be treated with special care, because x »> =. The
largest observed value of the eccentricity is chosen as the represen-—
tative value of this interval. As an example of the above-mentioned pro-
cedure ., let a random number 11533 be generated. This value corresponds

to interval 5 and therefore to Xge This value of x is assigned to the

eccentricity. It is obvious that a Gamma p.d.f. can be approximated with
lncreasing accuracy by raising the number of intervals,

For each variable considered in the column simulation, a series of 1000
random numbers has been generated. There is no need for a sophisticated
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procedure to combine the variables because the variables are assumed to
be uncorrelated. One must beware, however, of sequential effects in the
random numbers. A digital computer generates random numbers according
to a numerical procedure, very often the Fibonacci-method is used. Con-
sequently, each time the random number generator is started, the same
sequence of number appears. If the variables are combined according to
their rank-number, they will be strongly correlated; a large value of
the yield stress will be combined with a large value of the initial
curvature, eccentricity etc. For this reason more than the required
random numbers have been generated and each column variable has been
selected at random from these numbers.

The combinations of variables obtained in this way are used as input for
the computer programme described briefly in chapter 3.

RESULTS.

Columns of various lengths have been examined. The corresponding slender-—
ness-ratios are A = 55, 75, 95, 105, 130 and 160. At each slenderness—-
ratio experimental results are available which can be compared with the
simulated buckling stresses. Each group of experimental buckling stresses
had a significant influence on the shape and position of the experimen-
tal buckling curve.
A total number of 120 columns has been simulated on an I.B.M. 360/65
digital cemputer; 20 columns at each slenderness-ratio.
The results of the computations are given in tables I through VI.
The combinations of variables which are assigned to each columm are
also given in these tables. Buckling stresses are computed for the nominal
area as well as for the real area. For each section the real area is
determined from the value of the flange thickness e. These buckling
stresses are also. given in tables I through VI. Columns with a yield
stress less than the guaranteed value of 24 kg/mm“, have not been includ-
ed in the computations.
The probability density-function of the buckling stress is estimated at
each slenderness-ratio A. Jaguet has shown that the experimental buckling
stresses are Gaussian distributed [14]. He arrived at this conclusion by
applying the method of the central-moments to the test results. This
method has been described in detail by Fisher []5] .
The same method is applied to check whether the simulated buckllng
stresses are CGaussian distributed. A brief discussion of this method is
given below. Consider a variate x and a random sample of size n, drawn
from the population of x. The sums of powers of deviations from the
mean are computed.

X

m = —
n
5 S Banl” = ks = salinsl
2 )

Tx-m)°  +  k

w
fl

n 53/(n-1)(n—2)

~
I

4 E(x—m)4 > 4= 0 [(n+l)54'3(n'1)3 /n J/kn 1.
(n=2) (n-3).

w
]

The two simplest measures of departure from normality are those depen-
dent from the statistics of the 3rd and 4th degree, defined as

3/2 2

g = ky/k, g, = k,/k,

If the variate x 1s Gaussian distributed then g, and g, are also Gaussian
distributed. The sampling variances of g and g, are
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§]2 = 6n(n-1)/(n-2) (a+1) (n+3)

5.% = 24 n(n-1)2/(n-3) (n-2) (n+3) (2+5)

; g &y .

Finally V]I =z and V2 =z are computed. For a perfectly Gaussian
1 2

distributed variate x, the values of V., and V, are equal to zero. For

each symmetrical p.d.f. Vl = 0. A posi&ive va%ue of V. indicates a

positive skewness whereas a negative value of V,_, indicates a negative

skewness., V,_, is a coefficient of kurtosis (flagness).

A positive vValue of v, means that the p.d.f. is more filled out than

a Gaussian p.d.f, whereas a negative value of V, means that the p.d.f,

is more pointed that a Gaussian p.d.f.

The observed values of V. and V., determine whether the hypothesized

Gaussian p.d.f. is to be rejected. Jaquet suggests to reject the

hypothesis if V1 and V, are greater than 3. For values greater than 2,

the hypothesis should %e reconsidered carefully.

The computed value of V. and V, are given in the tables below. The
values have been determined for the nominal area as well as for the

real area.

NOMINAL AREA

55 75 95 105 130 160
m 26,60 22.09 16,58 14.74 11.22 7.73
s 2.60 1.96 1.71 1.65 0.92 0.62
V1 - 1.44 - 0.91 - 0.22 0.88 0.08 - 0.19
Vz 0.40 0.12 - 0.56 - 0.11 - 0.14 - 1,13

REAL AREA

52 75 95 105 130 160 .
™ 26.04 21,39 16.60 14.59 10.86 7.63
s 1.92 1.37 1.40 1.19 0.59 0.33
Vl - 1.80 0.43 - 0.05 0.29 - 0.14 =-0.23
V2 0.45 1.07 0.14 0.05 1.77 -0.50

All values are shown to be less than 1.8, most of them being less than
1.0 There is no reason to reject the hypothesis that the buckling
stresses are Gaussian distributed. Consequently the charactaristic
buckling stress OéR can be computed as

x = —_—
GCR = m 2 s

* : ; . . .
The values of IR at each slenderness-ratio are given in the next tables.
. x

The simulated values and the corresponding experimental values of SR
are given.

NOMINAIL AREA

55 75 95 105 130 160
m 26,60 22.09 16.58 14.74 11.22 7.73

SIMULATION s 2.60 1.96 1.71 1.65 0.92 0.62
m-2s5]21.40 18.17 13.16 11.44 9.38 6.59
m - |27.90  23.15 18.70 15.27 11.35 7.44
EXPERIMENT s 2.73 2.45 1.46 1.23 1.00 0.56
m-2s{22.40 18.29 15.78 12.81 9.35 6.32
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28

20

134

10

. T “cR (Kgf/mm’)
(Kot | ?
{ EXPERIMENT 25) I EXPERIMENT
* m-2s l m.2s
] SIMULATION SIMULATION
m-2s
20
15
— CECM BUCKLING CURVE 10 __CECM BUCKLING CURVE
—--SIMULATED BUCKLING CURVE --SIMULATED BUCKLING CURVE
A
50 100 150
IPE 180 NOMINAL AREA & 80 0o "1s0
Fig. 16 IPE 160 REAL AREA
' - Fig. 17
REAL AREA
55 75 95 105 130 160
m 26.04 21.39 16.60 14,59 10.86 7.66
SIMULATION s 1.92  ° 1.37 1.40 1.1¢ '0.59 0.33
m-2s 22.20 18.65 i3.80 12,21 9.68 7,00
m 27.48 22.81 18.45 15,06 11.14 7.34
EXPERIMENT s 2.48 2.05 1.21 1.00 0.73 .36
: m—2s 22.52 18.71 16.03 13.06 9.68 6.62

These results are also shown graphically in (figs. 16 and 17.) A good
agreement is found between the simulated buckling stresses and the ex-—
perimental buckling stresses at slenderness-ratios A = 55, 75, 130 and
160. At slenderness ratios A = 95 and 105 the simulated buckling stres-
ses deviate significantly from the experimental buckling stresses. The
maximum deviation is 17 Z (A = 95, nom. area).

The dotted lines, in (figs. 16 and !7), correspond to a buckllng curve
fitted to the simulated buckling stresses (real area).

The discrepancies between both curves at A = 95 and X = 105 cannot be
traced to exceptionally large imperfections or unfavourable mechanical
properties. Confidence intervals have been determined for the means and
the standard deviations. These intervals are important because the means
and the standard deviations are computed from samples of limited size.

Let m and s be the sample estimates, based on a random sample of size n.
the confidence interval of the mean is

" ; 5 o S

m —m'"t.7]-_—:L <m<m'=m+t.7-r;
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where m is the population mean and t possesses a Student's t distribu~
tion with n-1 degrees of freedom.

The value of t is chosen to correspond to a 98 7% confidence interval.
The bounds of this interval are given in the table below.,

CONFIDENCE LIMITS OF THE MEAN 98 7

55 75 9 105 130 160

m 26,60 22.09 16.58 14.74 11.22 7.73
NOMINAL AREA m' 28.12 23.20 17.55 15.68 11.74 8.08
m'" 25.08 20.98 15.61 13.80 10.70 7.38
m 26.04 21.39 16.60 14.59 10.86 7.66

REAL AREA m' 27.16 22.17 17.39 15.26 11.19 7.84
m' 24.92 20.61 15,81 13.92 10.53 7.48

The confidence intervals of the simulated mean stress and the experimen-
tal mean stress are shown in (figs. 18 and 19).

It can be seen that the experimental mean stresses are almost systemat-—
ically greater than the simulated stresses, except at X = 160. The
confidence intervals, however, overlap slightly. The confidence interval
of the mean stress obtained from the nominal area is somewhat wider than
the confidence interval which corresponds to the real area. The reason
is that dividing the buckling loads by the real area eliminates to some
extend the influence of the flange thickness. A small flange thickness
corresponds to a smaller buckling load but also to a smaller area, and
vice-versa. Consequently, the scatter, in the buckling stresses will be
reduced.

The confidence interval of the standard deviation s has been computed

by observing that the quantity Z(x, - m)2/s2 possesses a ¥2 distribution
with n-1 degrees of freedom. -

The confidence interval %s given by

) 2
/T (x.-m) /E(x.-m)
s" = Y < s < sg'-= --€f———

2
WZ YI

Wl and ?2 are chosen such that they correspond to 5% and 957 confidence

limits. The computed values are given in the table below.

CONFIDENCE LIMITS OF THE STANDARD DEVIATION 90 Z.

55 75 .95 105 130 160

s 2.60 1.96 1.71 1.65 0.92 0.62

NOMINAL AREA s' 3.60 2.69 2.34 2.26 1.26 0.85
s" |.2.05 1.56 1.36 1.31 0.73 0.49

s 1.92 1.37 1.40 1.19 0.59 0.33

REAL AREA s' 2.66 1.88 1.92 1.63 0.81 0.45
s" 1.52 1.09 1.11 0.95 0.47 C.26

CONCLUSIONS,

It has been demonstrated in this paper, that the distribution function
of buckling stresses can be derived theoretically. A buckling curve
which corresponds to a constant probability of failure can be determined
from the distribution functions at the various slenderness ratios. The
computed buckling curve is in reasonable agreement with the experiment-—
al buckling curve. Deviations between the two curves are observed at
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slenderness—ratios A = 95 and A = 105. It has been pointed out by

other investigations that the effect of imperfections and/or mechanical
properties is most pronounced at slenderness-ratiocs A = 90 -100 [2]. One
of the assumptions in the discussed simulation procedure is that all
variables are uncorrelated. There is no reason to reject this assump-
tion except for the initial curvature and the residual stresses. It is
believed that some correlation exists between those two variables;
consequently, the buckling stresses may be affected unfavourably.

Application of the described procedure to sections other than the IPE
160 is a rather simple matter., The distribution functions of the vari-
ables are not expected to change in character;the parameters of these
functions will wvary. These values can be determined by relatively
simple and inexpensive measurements. Once buckling curves have been
obtained for various sections, the usefullness of multiple column-curves
can be decided upon.Adoption of multiple column-curves can only be
justified if significant differences are shown to exist between proba-
bilistic column curves. The buckling curves which are derived by means
of the discussed procedure, are in the right format to be used as a
"strength function" in load factor design. This is generally not true
for most theoretically derived buckling curves,
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- L y g eo fo a b e h o PCR SeRR 5 UCRN 5 b,
| (om) [kgf/mm | (mo) | (mm) [(men) [{wen) | (man) | (oem) (kgf) | (kgf/mm™) |(kgf/mm™)
i |506 | 34.16 (0.83[1.04| 5 |82 [8.42] 160 [0.1260(56586| 26.99 28,15
2 |506 | 23.36 |0.55/0.88 | 5 |82 [8.39] 160:0.2233 /41971 --- - 2
3 {so6 | 27.85 [1.28]1.07 ] 5 {82 |7.18| 1600.2581(40659| 21.34 20.23 | 3
4 |soe | 31.67 |0.44(0.81 | 5 |82 [8.74| 160]0.1303[57751] 26.91 28.73 | 4
5 {506 | 34.85 [0.50(0.90 | 5 |82 [8.04| (60(0.2401(55752] 27.35 27.74 |5
6 |506 | 34.70 J1.28[0.73| 5 {82 [8.02] 160/0.2374]52886( 25.99 26.31 6
7 [506 31.24 (0.23]0.72 5 B2 (7.85) 16010.1221 54492 27.13 27.11 7
8 [506 | 32.24 [0.52[0.86 | 5 |82 [8.09! 160{0.0944|55397| 27.08 27.56 | 8
9 (506 | 30.29 10.64{0.95| 5 (82 |7.67| 160 [0.1541]48787| 24.63 34,27 | 9
10 {506 | 30.15 l1.42j0.79| 5 l8z ls.16! 160 |0.2014(47209) 22.95 23.49 |10
11 [s06 |29.34 [0.42l1.19 | 5 (82 [8.00] 160 |0.1862|50294] 24.75 25.02 |1
12 |506 | 30.52 [0.83f0.92 | 5 |82 [8.24 160 (0.1584(51741] 25.00 25.74 (12
13 {506 | 31.04 [0.21]0.81,| 5 |82 |7.81| 160|0.2682|57418] 28.67 28.57 |13
14 |506 | 36.19 |o.610.65| 5 |82 |8.31[ 160(0.2155(57917{ 27.85 28.81 |14
15 ts06 | 35.39 [0.52]0.44 | 5 |82 |7.10] 160|0.2002153026| 28.00 26.38 |15
16 [506 | 33.92 [0.160.97 { 5 |82 {8.91; 1600.222557686 | 26.56 28.70 lig
17 |s06 | 31.78 |0.16]1.06 | 5 |82 [0.01| 160 [0.2323|60876| 27.83 10.29 |17
18 [506 | 34.29 |1.42)0.70 | 5 |82 [8.46] 160 |0.2295(50175] 23.86 24,96 |18
19 {s06 | 30.83 [o.58lo.69 [ 5 (82 l9.35( 160 [0.1643 60453 26.99 10.07 |19
20 |506 | 32.01 [0.69(0.63 | 5 |82 [6.95] 160 [0.1366 46680 24.96 23.22 |20
A =55
TABLE I
Loy it ] ®]2| =ghy} o Peg | Tcrr “CRN
NR- | o) {heg /| ) | (ron) | () |G | G (oo (xgf) | (gt ) | (kg fmm )| ¥
21 690 | 31.54 [0.71[0.81] 5 | 82 [7.76 | 160[0.2020)42930]| 21.52 21,36 |21
22 {690 | 31.91 fo.79lt.41] 5 | 82 {8.06 | 160{0.1430]42377| 20.76 21.83 |22
23 |690 | 30.50 {0.25(1.39| 5 | 82 |7.71 | 160|0.1715 (42151 21.21 20.97 |23
24 [690 | 31.68 [0.19]0.76| 5 | 82 [B.27 | 160]0.2375 47276} 22.80 23,52 |24
25 {690 | 29.55 [0.25(0.88{ 5 | 82 }B.17 | 160|0.1411]45540] 22,13 22.66 |25
26 |690 | 32,05 lo.21(1.21 ] 5 | 82 |9.00 | 180{0.2321 (40174} 22.49 26,46 |26
27 |690 | 31.24 |0.55/0.93] 5 |82 19.17 | 160|0.2106 (49090 22.1¢ 26,42 |27
28 |690 | 32.42 |0.79]1.12| 5 | 82 |8.15 | 160]|0.1766|44073| 21.45 21.93 |28
29 leoo | 32.94 lo.07{1.52{ 5 | 82 {9.11 | 160(0.2801(48933( 22.21 24,34 |29
30 1690 | 30.15 lo.64({1.02| 5 |82 |8.36 | 160]0.2211143319] 20.75 21.55 |30
31 690 | 31.99 10.55/1.561 5 | 82 [7.47 | 160{0.2497139357) 20.18 19.58 |31
32 (690 | 30.52 |0.88|1.46| 5 | B2 [6.98 { 160[0.2657(35125| 18.73 17.48" |32
33 690 | 28.39 |0.07]1.61| 5 | 82 |9.00 | 160]0.2192 44460 20,34 22,12 |33
34 [690 | 30.89 |0.07|1.64] 5 |82 18,77 | 160]0.1602]47407} 22,04 23.59 |34
35 690 | 29.43 [0.31{1.08| 5 |82 [7.89 | 160[0.1887140141 19.92 19.97 |35
36 690 | 31.27 [0.29]|1.55] 5 | 82 [8.45 | 160]0.1047 46621 | 22,19 23.19 |30
37 690 | 29.13 j0.27]0.84| 5 | 82 [7.83]160]0.1582 43848 21.86 21.81 17
38 690 | 36.94 |0.40{0.90| 5 | 82 [8.13 [ 1e0[0.1993(50870} 24.79 25.31 18
39 (690 | 28.18 [0.83[i.16| 5 | 82 [8.30 | 160]0.2278]39861| 19.80 19.83  [139
40 690 | 29.36 (0.27{1.08| 5 | 8z |8.861160(0.2438(45613{ 21.07 Jgg;.se 40
\ =75
TABLE [T
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il L Uy e, fo a b ¢ h a %R TCRR SRy .
(mm) sz/mmz) (rn) [{mm) |(mm) | (mm) | (mm) | (mm (kgf) (kgf/mmz) (kgf/mmz)
41 | 874 34,54 0.581.28 5 82 |7.82 (160 (0.1491]|36172 18.05 18.00 41
42 | 874 | 39.03 |1.28[1.75| 5 | 82 |7.64|160 [0.2088(33020 | 16.71 16.43 | 42
43| 874 | 34.91 |1.07|1.07| 5 | 82 |7.35])1800.1561{33186 | 17.18 16.51 |43
44 | B74 30.13 0.25]1.69 5 82 |[7.45(160(0.1909131729 16.29 15.79 &4
45 876 | 29.98 |o0.42|1.55] 5 | 82 |7.95]1600.2631 (32727 | 16.17 16.28 | 45
46 {876 | 29.17 |o.az|i.31] 5 | 82 |7.79]160|0.1729(33545 | 16.78 16.69 | 46
47 | 874 | 27.70 {1.28(2.04| 5 | 82 |7.56|160l0.2701{26730 } 13.67 13.30 |47
48 | 874 | 28.22 [0.14|1.63| 5 | 82 |8.65]160 [0.2549]{35072 | 16.45 17.45 |48
49 | 874 | 30.73 {1.28|1.82| 5 | 82 |7.04{160 [0.1772|27868 | 14.79 13.86 | 49
50| 874 | 29.92 |1.07|1.94f 5 | 82 |7.94]160 [0.2870]|29699 | 14.68 14.78 | 50
s1| 874 | 28.45 fo.16(t.61] 5 | 82 |7.12|1600.1842{30554 | 16.11 15.20 | 51
52| 874 | 34.27 |0.36|1.21 5 | 82 |8.28]160 [0.2690]|37220 | 17.94 18,52 | 52
531874 | 26.17 |0.09|1.40| 5 | 82 |8.77]160 [0.1413]36645 | 17.04 18,23 | 53
54 | 874 30.66 0.23(0.80 5 82 (8.09(160(0.1510)38397 18.77 19.10 54
55| 874 | 26.54 [0.42]1.18| 5 | 82 |8.32{1600.1983]33961 | 16.32 16.90 |55
56 | 874 | 32.36 (0.07|1.47] 5 | 82 |7.90|1600.1831[36275 | 17.99 18.05 | 56
57| 874 | 34.87 |1.07]1.60] 5 | 82 |7.34]160 [0.2053[31289 [ 16.21 15.57 |57
58| 874 | 31.41 Jo.a6|1.78] 5 | 82 |8.23[1600.2651[33596 [ 16.25 16.71 | s8
59| 874 | 32.59 |1.eal1.as| 5 | 82 |7.41]160 |0.2124[29532 | 15.23 14,69 |59
60| 874 | 30.46 |0.14(0.70] 5 | 82 [8.04[160 [0, 147139469 | 19.37 19.64 | 60
A =95
TABLE III
Loy S i by | B B[ &) b2 Per | “err “CcRN
MR () [kt /| Cmmd | ¢mm) | (mm) | (o) | (rom) | (e (xgf) |[(kge/mn) |(kgE/mu®) *F
61 | 966 | 34.35|2.00|1.28] 5 | 82 [7.70|1600.1532 [ 27861 | 14.03 13.86 | 61
62 | 966 31.55]10.38:1,30 5 82 | 6.94!160(0,1567 | 27964 14.96 13.91 62
63 | 966 | 33.40 | 0.46|1.24] 5 | 82 |8.69]160(0.1477 | 35256 [ 16.49 17.54 |63
64 | 966 31.93 | 0.58|1.83 5 82 [8.73(160[0.2262 | 31934 14,89 15,89 64
65 | 966 27.14 | 1.07]1.95 5 82 [8.64 160 |0.2422 | 28005 13,14 13.93 65
66 | 966 29.65 | 0.36:1.99 5 82 {7.88|160|0.2458 | 28225 14.02 14,04 66
67 | 966 31.49 | 2.00(1.91 5 82 |7.52116010,2368 | 24807 12.97 12,34 67
68 | 966 30.02 | 0.52:1.76 5 82 |7.03]160(0.2153 | 25920 13.77 12,90 68
€9 1966 33,19 | 0.75(1.49 5 82 17.99|160(0.1813 | 30607 15.07 15,23 69
70 | 966 35.70 | 0.0711.51] 5 82 18.29 160 [0.1848 | 34468 16.60 17.15 70
71 | 966 29.59 | 1.42]2.22 5 82 |[7.40(160|0.2758 | 24003 12.38 11.9%4 71
72 | 966 30.77 | 0.75]1.28 5 82 |8.49(160 |0.1543 | 32212 15.28 16.03 72
73 | 966 33,94 | 0.50]2.18 5 82 |8.41}160)0.2704 | 30570 14.59 15,213 73
75 | 966 | 33.79 [0.42(1.82| 5 | 82 {8.18|160]0.2239 | 31199 | 15.15 15.52 |74
75 | 966 32.98 (0.36(2.12 5 82 {7.82]160|0,2649 | 28934 14,44 14.40 75
76 | 966 31.51 [0.16(1.20 5 82 18.91|160 [0.1434 | 36597 16.85 18.21 76
77 | 966 32.03 [ 0.29(2.09 5 82 18.29(160 [0.2594 | 30308 14.59 15.08 77
78 | 966 29.24 10.52]1.35 5 82 |7.541160 [0.1629 | 28758 14.66 ‘ 14.31 78
79 {966 | 31.08 |0.25|1.66 | 5 | 82 |7.18]160 02000 | 27797 | 14.59 13.83 |79
80 | 966 32.26 [0.7012.26 5 82 |7.74 {160 |0.2825 | 29292 13.70 13.58 80
A = 105
TABLE 1V
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L Gy e, fc a b c h a PCR TR TCRN
VB (om) (kg€ /mn?) | (uem) | Gam) o) [ () | o) | () (kgE) |(kgf/mn®) |(kg/mmp R
81| 1196 34.67 0.09(1.71 5 82 |8.651160 | 0.2334}24992 11.72 12.43 | 81
B2 | 1196 33.53 0.71§2.75 5 82 [7.30(160 1 0.1932119399 10.08 9.65 |82
83 r196 _3'.73 0.64)1.29 5 82 |7.93 (160 {0,2405)22183 10.98 11.04 |83
841 1196 29.27 1.07|1.63 5 82 (8.43 (160 |0.1752|22378 10.67 11.33 |84
as5 | 1196 31,44 0.94|1,84 5 82 |7.74 (160 1 0.0975(21288 10.69 10.59 | 85
86| 1196 32.95 0.71(2.90 5 82 [8.50160 | 0.2073:22198 10.53 11.04 | 86
87| ¥196 31,15 0.23|2.37 5 82 18.08[160 | 0.2045|21985 10.75 10.94 | 87
a8t 1196 33.99 0.94(2.23 5 82 {8.58(160 | 0,1393]|23315 10.99 11.60 | 88
89 [ 1196 33.51 0.44)2.44 5 82 18.42(160 {0.1116123390 11.16 11.64 | 89
90 | 1196 32.37 1.0091.10 S 82 18.651160 {0.2213]24011 11.26 11.95 |90
91 ] 1196 33.22 0.23|1.08 5 82 |8.75|160 { 0.1686!26259 12.23 13.06 | 91
92‘ 1196 36.06 0.40(2.37 5 82 |8.201160 | 0.2034122833 11.07 11.36 | 92
93] 1196 27.63 0.07|3.06 5 82 18.04 (160 | 0.1756]|20820 10.22 10.36 | 93
g4 | 1196 34.44 0.1912.20 5 82 |7.22|i60 | 0,1854)20545 10.75 10.22 | 94
95| 1196 29.99 0.58{1.70 5 82 {7.85]160 | 0.2327;21292 10.60 10.59 | 95
g6 L196 35.48 0.71]2.51 5 82 18.35{160 |0.2174]|22511 10.79 11.20 |96
97 | L1196 32.35 0.46]2,25 5 82 [2.24{160 | 0.1897]25153 11.36 12,356 |97
98 ( 1196 i 31.21 0.64]1.37 5 82 18.42[160 [0.2495]|23322 11.12 11.60 | 98
99 | 1196 29.41 0.3812.78 5 82 (9.05(160 [0,1467[23773 10,84 11.83 |99
100 ] 1196 26,95 0.61]3.10t1 5 82 {7.97160 [ 0.2815[19144 9.44 9.52 jOO
A = 130
TABLE V
L % e (Eg Al B e k| e P! %crr ICRN
BR ) omy- [(kg € /man® | €om) | Gum) [ (o) | Gom) | G | ) (kgf) |kt /mm?) | (kgt/mm®y| N%
101 | 1472 35,37 0,0312,22 5 82 18.261160 | 0.1567 16683 8.05 8.30 101
102 {1672 30.26 9.09}1.20 5 82 |6.981160 | 0.1977|14276 7.6) 7.10 102
103 (1472 32.43 1.28]1.86 5 82 i8.731160 1 0.1762 16641 7.76 8.28 103
104 | 1472 33.95 0.27)1.74 5 82 18.76 (160 | 0.2422 17512 8.15 8.71 104
10511472 34.80 0.6112.67 5 82 17.09{160 | 0.1957|13707 7.25 65,82 105
106 | 1472 32.33 0,42]2.28 5 82 {8.44 160 | 0.1368|16573 7.89 8.25 106
107 [1472 29.21 0.0311.96 5 82 {7.56(160| 0.2153|14980 7.63 7.45 107
108 | 1472 33.37 0.50]1.82 5 82 [8.65(|160| 0.2313|17055 8.00 8,49 108
109 | 1472 31.57 1.64]0.75 5 82 |8.03{160 | 0,1848 15609 7.66 7.77 109
110 | 1472 29.10 0.3112,13 5 82 [8.,33160| G.1758116221 7.79 8.07 110
111 1472 36.58 0.33|2.,19 5 82 |7.97(160 | 0.2043|15886 7.84 7.90 111
112 | 1472 32.7% 0.75(2.07 5 82 17.48 (160 0.2704 14326 7.34 7.13 112
113 ] 1472 33.64 0.03(:.23 5 82 {8.44 11601 0,2239(17297 8.24 8.61 113
114 1472 33.82 0.6413.,21 5 82 (7.16(160 ] 0.1649}13626 7.16 6.78 114
115 ] 1472 | 33.35 1,07(3.24 5 82 |8.381160| 0.1934}15519 7 .42 7.72 115
116 1472 32.21 1.28(3.14 5 82 [7.361]160 | 0.1594 13589 7.03 6.76 116
117 | 1472 33.06 0.88|2.28 5 82 {7.80(160 | 0.1129]15139 7.56 7.53 117
118 ] 1472 27.94 0.42(1.89 5 B2 |7.57|160| 0.2040 (14696 7.?8 7.3 118
119 ] 1472 27.47 0.64(1.32 5 82 {8.27)160 | 0.1825|16205 7.81 8.06 119
120 ] 1472 3%.63 0.0912.40 5 82 17.771160 | 0.2985]15029 7.53 7.48 120
X = 160
TABLE VI
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	Computer simulation of the E.C.C.S. buckling curve-using a Monte-Carlo method

