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DETERMINATION OF THE ELASTIC LIMITS FCR BUCKLING ANALYSIS

A. Carpena
Senior Development Engineer
Societd Anonima Elettrificazione 5.p.A.
Milan, Italy

ABSTRACT

This paper presents the results of a statistical research on the yie
1d points to introduce in the buckling curves. If an even degree of safety
should be obtained for all the components of a structure, whether in ten-
sion or in compression, a higher yield point than the minimum guaranteed
tensile limit must be adopted for the buckling curves.

This conclusion was accepted by the "Convention Européenne' for its
column strength curves,

RESUME

Ce rapport présente les résultats d'une recherche statistique sur
les limites élastiques d introduire dans les courbes de flambement. Si
1l'on veut obtenir une sécurité homogéne pour toutes les pidces d'une struc
ture, tant tendues que comprimées, une limite &lastique plus é&levée que
celle minima garantie en traction, doit &tre adopté pour les courbes de
flambement.

Cette conclusion a été acceptée par la "Convention Européenne' dans
ses courbes de flambement.
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The buckling curves recommended by Commission No. 8 of the "Conven-
tion Européenne de la Construction M&tallique" (CECM) represent a substan-
tial achievement by that organization, illustrated by the fact that the fai
lure stresses given thereon are some 20% higher than those of the German
Standard DIN #4114 for the majority of ordinary sections over the range of
slenderness with which constructors are mainly concerned.

This outcome is based on:

- a very extensive programme of experimental research into the mechanical
properties of the steel and the buckling strength of columns with varying
cross section and slenderness ratiog

- an equally comprehensive programme of theoretical research into buckling
of columns with or without geometrical and structural imperfections, un-
dertaken on computers on which the buckling phenomenon has been simulated
in a certain way to reproduce the loading tests;

- the "statistical-probabilistic" philosophy of safety adopted by the CECM,
which not only led to a rational interpretation of the theoretical and ex
perimental results but was used to specify the research programmes them-—
selves.

DEFINITION OF PROBLEM

A significant aspect of the buckling curves, related in part to the
probabilistic theory of safety, is their termination, for slenderness ratio
0, at points sometimes higher than the allowable elastic limits of 24 and
36 kg/mm? for steels E24 and E36 (previously designated as A37 and A52).

It is perhaps without precedent that values higher than the guaran-
teed minimum elastic limits should be adopted for standards, or recommenda-
tions, as allowable structural failure stresses.

There are three reasons for this conclusion:

a) the experimental curve, connecting points situated at two Standard Devia
tions SD below the mean values curve, ends at 26 kg/mm?;

b) the elastic limit of open walled sections is higher in overall compres-
sion than in tension, the compression limit being the failure stress at
slenderness ratio 0. Both the mean value derived from these tests and
that value minus two SD are higher in overall compression than in ten-
sion - as per EURONORM (1) - this latter value (mean M - 2 SD) being the
failure stress according to the failure criterion of Commission No. 1 of
the "Convention Européenne". If this guaranteed tensile level is 24 for
A37 and 36 kg/mm? for A52, it is logical to adopt higher values for the
buckling curves at slenderness ratio 0, since these are directly affec-
ted by the overall elastic limit in compression and not by that in ten-
sion;

c¢) an even degree of safety should be maintained for all components, whe-
ther In tension or in compression, constituting a structure.

This last point, however, requires a much longer explanation.

HOMOGENEQOUS SAFETY AND FAILURE CRITERION

The failure criterion adopted by Commission No. 1 of the "Convention
Européenne" is the following: the stress or failure load of a member is
the measured mean value for a series of specimens minus two SD. If the sta
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tistical distribution is a normal one of the "Gauss-Laplace” type (as is
the case for the CECM measurements), there is a 97.7% probability that the
value question will be under the member's strength and a 2.3% one that it
will be over.

The CECM experimental programme has been precisely elaborated so
that members were tested under conditions very close to those found in ac-
tual structures, and in sufficient number to obtain mean ultimate loads
and Standard Deviations possessing statistical validity for the whole Euro
pean production.

The designer wishing to maintain an even degree of safety in the va-
ricus elements of a structure must base his calculations on the failure
loads of the various component parts, all such loads having the same proba
bility of being exceeded (or of not being reached) irvespective of whether
the loading is in tension, compression or bending.

According to the failure criterion of Commission No. 1 - buckling
load equal to the mean minus two SD - the probability of not reaching this
value is 2.3% and must be the same for all components so as to avoid was-
ting material in some part of the structure without rationally adding to
its general safety.

Under these conditions, it is fairly easy to check that the elastic
limit used for the buckling curves must be higher than that of the tensile
specimens (and also higher than that adopted for designing parts in simple
tension); in other words, if 24 kg/mm? is guaranteed as mean minus two SD,
the elastic limit to be used for establishing the buckling curves must be
higher than 24 kg/mm? in order to preserve the failure probability of 2.3%
for compressed members.

INVESTIGATION OF STATISTICAL VALUES FOR ULTIMATE BUCKLING LOADS

The ultimate buckling load P of a member is given to the structural
designer by functions of the type:

P=P (R, T, F, A, 2) (1)
where:
R = elastic limit in kg/mm2
T

t

residual stress at a given point (at the edges of the flanges, for ex-
ample) in kg/mm?

F = initial deflection of the member per °/oo of its length

A = section area in mm?

A = slenderness ratio

Functions (1) can be determined either experimentally or more rapidly
by means of a computer by simulating load tests under various initial condi
tions [2].

R, T, F, A are not exactly known, though their probable distribution
can be found, and a normal dlstrlbutlon of the Gauss-Laplace type can be as
sumed with average wvalues R, T F A and Standard Deviations r, t, £, a.
The slenderness ratio L, on the other hand, can be assumed, at least at its
first approximation, exactly known, since any variation of A (due in gene-
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ral, more to wall thickness differences than to wall dimensions) has negligi
ble effect on the radius of gyration. The member's length is an obviously
known factor.

The mean value P of the buckling load, its Standard Deviation and the
value P of this leoad, to which reference is made after the adopted failure
criterion, will be:

P=P (R, T, F, A, 1) (2)

2= (32 G2+ G D2+ & a2 (3)

2 V Gr o2+ Gro?+ & o2+ & ay ()

We would be tempted, knowing (1), to calculate (4) as follows:

Py

P(R-2r, T+ 2t, F+2F, A - 2a, A) (5)

lawll]

but we would find: Py < P.

This appears evident when we reflegt that the 2.3% probability of ha-
ving a column with a failure load below P (4) is equal to that of having a
column with an elastic limit below: (R - 2r), with any T, F and A, or a colu
mn with T > (T + 2t) and any R, F, A, or else F > (F + 2f) and any R, T, A,
or, finally, A < (A - 2a) and any R, T F.

The "composite" probability of having simultaneously R < R - 2vp,
T> T 2t, F>F + 2f, A<A - 2a is the product of four 2.3% degrees of pro
bability that each event should occur 1ndependently of the three others,
this is equal to:_(2.3 x 1072)% = 28 x 1078 which is well below the 2.3%
probability that P (4) be smaller than the member's buckling load, assuming

fairly reasonably that the variables R, T, F, A are statistically indepen-
dent.

It follows that, in order to obtain f, it will be necessary to intro
duce at (1) the values Ry, Ty, Fy, A; so that:

e /1]

=P (Ry, Ty, F1, A1, A) = P - 2p (6)
with
Rlzﬁ‘Ot!’,Tl:T-'l'Ot't,Fl:f'{'Otf,Al:K-OCa (7)

where o < 2.

This coefficient o has been determined with sufficient accuracy in
various conditions as follows. P can be calculated by means of (4) or by
developing in series (6), we can write (the terms in the bracket are all
positive, taking into account the signs r, t, £, a and the partial deriva-
tes - see Table II):

P=P (Ry, Ty, F1, A7, A) = P (R, T, F, A, \) -

3P 3P oP 3P
a(ﬁr+ﬁt+ﬁf+a—Aa) (8)
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and by comparing (4) and (8):

c o (B, B3R 3P
2p-u(aRr+aTt+8Ff+aAa) (9)

By squaring and taking account of (3):

2 - AP vo . (8P o . 3P o 3P zgz
4p -'-L?(aRr) +(8T t) +(aP £) +(3A a)
- 2 (9P 3P 3Pk 8P y2 _
-a(aRr+aTt+aFf+aAa)

3P aP 3P oP
= 2 9 52 9r 42 9P -yo 9F 2
= o éaRr) +(3T t) +(al—" £) +(8Aa)§+

2 {, 3P 2P 3P 3P 2P 3P
+ 528R8Trt+28RaPrf+28RaAra+_
3P aP oP 3P oP 3P
+23_T8_th+2 aTﬁta+2 SF 3A fag (10)

All the terms of (10) being positive or equal to zero, we obtain ad-
ditional confirmation of the fact that a < 2. Indeed, in the last of the
expressions for 4p? set down in (10) above, we recognize the value of p2
in the first quantity between the braces; let us designate the second quan
tity between the braces y2. We thus have:

1
4p? = a?(p? + y2) then a = 2(—“""""2"'""‘2')1/2 (11)
P 1+ v4/p
TABLE I - Mean values R, T, F, A and their SDr, t, £, a
in % and ip absolute values for calculating a
(R=R - 2r = 24 kg/mmz)
— r — t - f — a
- A
R T | F _
kofmmt o | kg/mmd | Kefmmt 1 or kg/mm? A mm? o | opunt
26.70 5 1,35 33 10 0.13 10-2 10 §0—4 20i0 2 40
2670 5 133 333 15 0,50 102 15 1,5 x 10-1 2010 2 40
26,70 5 1,35 313 15 0,50 10-3 15 1.5 x 10— 1010 ) 60
2610 | 5 1,35 333 20 0.66 10-2 20 2 % 10— 2010 3 60
26,70 5 1.35 3,13 20 0,66 i0-? 20 2 % 10— 2010 4 50
28,25 7,5 2,12 3,53 10 0,35 10~ 10 10 | 2000 2 40
28,25 7.5 212 3.53 15 0.53 10— 15 1,5 x 10— 2010 2 40
28.25 7.5 2.12 3.53 15 0.53 10-3 15 15 x 10— 2010 3 0
28,25 7.5 212 3.53 20 0,70 10— 20 2 x 16— 2010 3 60
28,25 7.5 242 3,53 20 0,70 10— 20 2% 104 2010 4 £0
30,00 10 3,00 3,75 10 0,375 10 10 10— | 2010 2 40
30,00 10 3.00 3,15 15 0,56 10— 15 1.5 % 10— 20i0 2 40
30,00 10 300 3,75 15 0,56 10-2 15 1,5 X 10~ 2010 3 60
30,00 10 3.00 3,75 20 0,75 104 20 2% 30— | 2010 3 £
30,00 10 3.00 3,15 20 0.7 10-* 20 2% 104 2010 4 £0

EXPERIMENTAL DATA

We have adopted in the Table I values of r, t, £, a and R, T, T, A.
Those of R have been selected so that, for deviations of 5%, 7.5% and 10%
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of R, the elastic limit R = R - 2r amounts to 24 kg/mm? . The actual value
of ¢, derived from CECM stub column tests 1 was 7.5% of R, thus giving

an R value always above 24 kg/mm?. A Standard Deviation of about 10% would
seem to result from a Belgian statistical investigation [4].

For T and T and their Standard Deviations t,.f (10%, 15% and 20%),
we have adopted values equal to or below those experimentally ascertained
by the "Convention Européenne" or other research workers. A SD smaller
than that actually found has been adopted, since the resulting value of «
is then greater and this would further penalise the mean values R as can
be seen in Table III. We have even found values of t above 30% of T (figu-
re 3, reproduced after [3], figure 2a).

The nominal section IPE 160 has been used for A. The deviation a% of
4% has been experimentally obtained but the deviations of 2% and 3% have
alsc been adopted for this investigation.

The partial derivatives have been extracted, for different slender-
ness ratios, from figures in report [2] and more precisely:

% from the curve with initial deflection F = 1/1,000 (fig. 2)

g—,Er’ by comparing the curves for F = 1/1,000 of both figures with and wi-
thout residual stresses T (fig. 1 and 2)

§_§ by comparing the curves fof F=1/1,000 and F = 1/500 (fig. 2)

% limit buckling stresses obtained from the curve with F = 1/1,000

(fig. 2)

These derivates are recorded in Table II.

TABLE II -Partial derivates of buckling locad P of the column in relation to:
elastic limit R, residual stress T, initial deflection T, scction area A

l eP or epP &P
.| R Fa 3 5
mm? mm? kg kg/mm?

R = 26,70 kg/mm?

0| +2010 0 0 + 26,70
55| +135 ~- 580 — 2950 x 10? + 23,20
751 4 905 { — 580 — 4 850 x 10® + 19,75
95 1 4 455 | —330 — 4300 x 10? + 15,90
105} + 135 — 83 — 3750 x 14° + 14,15

R == 28,25 kg/mm®
0

0| 42010 0 -+ 28,25
$5 | + 13501 — 562 — 3400 x 107 - 24,30
7531 + 905 — 482 — 5100 x 10° -+ 20,50
95 | + 435 —241 — 4300 x 10° -+ 16,25

105 + 135} — B3 — 3700 x 10° -+ 14,30
R = 30 kg/mm?

| +2100 0 0 -+ 30,00
551 4+ 1430 — 652 — 3900 x 107 -+ 25,50
51+ 975 — 650 — 5450 w 16 - 21,30
95 | + 460 — 190 — 4 550 x 19? 4 16,55

1050 + 150 — 93 — 3650 x 10 + 14,40




CALCULATIONS AND RESULTS ANALYSIS

The values of o and Ry = R -~ or have been calculated for various slen
derness ratios, for different combinations of the Standard Deviations r, t,
£, a and for three values of R (26.70 - 28.25 - 30 kg/mm?), The results, gi
ven in Table III, indicate that:

a) o increases when the SD t% and f% are reduced and the value of Rj =R -
- or to be adopted for the buckling curves is thus also reduced; this is
‘the reason for chosing t and £ smaller than the actual values.

b) o increases with r% and Ry = R - ar decreases_to equality with E; for
the cases referred to in Table III, however, R = R - 2r being fixed at
24 kg/mmz, r% increases with R and Ry follows sult (see column 6 of Ta
ble TIII).
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Fig. 1 - Theoretical curves, non-dimensional,
for IPE 160, without residual stresses.
Buckling about the minor axis
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Fig. 2 - Theoretical curves, non-dimensional,
for IPE 160, with residual stresses.
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Fig. 3 - Diagram of distribution of residual stres
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Bg. 20 AK 23

TABLE III c) when a% increases, a can ei-
_ ther increase or decredse.

* r/t/t/s % 1 Bef-2z | B =F-ohe )
: % xe/ma’ kg/an’ wwa® | d) the Ry values, in the last co
b (2) ) ) 2] (6) lumn of Table III, are the e-
lastic limits to be used for
[ 5/10/10/2 1,54 26,70 24 24,62 - N .
0 5/15/15/2 1,54 26,70 24 24,62 the buckling curves which gi-
0 5/15/15/3 1,46 26,70 24 24,73 K ° 7 .
0 oz 1ris En 2t 21 ve loads with a 2.3% probabili
L] L] ’ . e
o | 7.5/1071072 1,68 28,25 2% 24,70 ty of not being reached. Ry va
2 ,yggﬂgg yé 20,25 24 25 ries with the slenderness ra-
R e 28125 2 FHPR tio, but this variation is fai
- 2 24,9 1 3
@ | jannne i %;_ gs Eﬁﬁ ‘ rly small, espe?lally in the
0 0/15/15/3 1,61 == -
2 | i e i 2 S slenderness ratlo.range bet
o | 19/20/20/k 1354 My 4 2“? ween 50 and- 90 which concerns
10/10/2 1,28 26,70 24 24,97
5 AR 1,21 26,70 24 25,06 the constructor.
55 5/15/15/3 1,19 26,70 24 25,09
n|owen || oEm | o8 | EW
55 5/20, s . . > Q. i o)
s | muprepio by 28.25 I 55,75 ) For steel with r% = 7.5%,
98 I e by iy o 4% | i.e. with the most probable value
: ' 5720720 1,23 28,25 24 25,65 . .
2 Q;NZJi e o 2 e of the SD (accordlng to 4 , fig.
55 | 19/10/10/2 149 0. 2 25,33 8, 9, 10, etc.) R; is almost con-
5¢ 10/15/15/2 4 »-- ’ i .
5 | 10505 1% 30,-- 2 23,92 sistently higher than 25.5 kg/mm2
55 10/20/20/3 1,31 30,-- 24 26,07 = Py =
55 | 10/20/20/4 1,27 30,— 2 26,20 for X > 55. For r% = 5% we have
1,15 26,70 24 25,15 ”
B myvie 108 gég an 25,23 Ry > 25 kg/mm? and for steel wi-
:l;; 2523237?1 1,06 22:70 24 gg:g th r% = 10% we then have 25.5 <
5 5/20/20/4 1,08 26,70 4 5 5
an | 75100002 5 0,75 5 s | < Ry < 26.5 kg/mm* for A > 55.
75 1 T,5/15/15/2 1,19 28,25 24 25,73
T R e 20155 o 20,80
» 2 ' s '
| Y eoreoni i 28723 54 25188 Th?re results an R; value
75 | 10/10/10/2 1,36 30,-- 24 25,52 systematically and clearly above
75 10/15/15/2 1,28 30, == 24 26,16 = _ = -
75 | 10/15/15/3 1,23 30,— 24 e, | R = R - 2r = 24 kg/mm .
5 10/20/20/3 1,18 30, == 24 26,46
15 10/20/20/4 1,16 30,-- 24 26,53 _
10/10/2 1,11 26,70 24 25,21 = . 2
| Bann ihor ot o 23123 If R is above 24 kg/mm®, as
o3 AL 1,09 26,70 24 ﬁ%é the tests of the "Convention Euro
95 5/20/20/4 1,13 26,70 24 ’ - " s § —_
- | Farepes et 28.25 54 s | béenne hgve confirmed, R} will
% | Ay e 25125 o 5% | be even higher and be above the
45 1 £ a )
55 | Tyeee) 10 2,25 2 25,9 | values given in Table IIT for the
45 Ty , ? + .
o5 | 1671071072 1,24 30, 2 %,21 | equality between r%, t%, £% and
95 10/15/15/2 1,29 30,-~ 24 26,44 9
95 10/15/15/3 1,16 30,— 24 26,52 a%s.
35 10/20/20/3 1,13 30,-- 24 26,61
95 10/20/20/4 1,13 30,-- 24 26,61 '
5 10/10/2 1,22 26,70 24 25,05 g
105 %”?%2 nit ferio i 2505 N "CThe va%uesEof R} adogt;d by
o 5/15/15/3 , i
1oz e 15t 270 i 25— the 9nvgntlon uropeenne or
105 5/20/20/4 1,29 26,70 24 gy establishing the buckling curves
0/10/2 1,18 28,25 24 B v i
it RZhﬁﬁz 116 .23 2 | are sufficiently near the values
4 5/15/15/3 . ’ P v
102 | i 1120 28125 2 25,0 | of Table III, in particular those
105 7'5/20/20/4 1,25 28,25 24 25,60 f 2 = A
o5 | 10n0n0s 4.5 .- 2 2,5 oundzfor stgel w1t? R = 28.25
o/15/15/2 1,13 Ml ? =
tor | teitaliae 2 e bt %4 | kg/mm= and r% 7.5%.
105 10/20/20/3 1,15 0,-- 24 26,54
105 10/20/20/4 1,20 130,-- 24 26,41

It is worth recalling that
the overall compression values of

R found experimentally have been consistently higher than those measured
in tension for open sections.

CONCLUSIONS

For the reasons given above, and in particular for preserving an even
degree of safety over the various parts of a structure, whateYer the type
of loading, the "Convention Européenne” has deemed it appropr}ate Fo adopt .,
for relatively thin sections (thickness < 20 mm), elastic limits higher
than the minimum values guaranteed by conventional tensile tests.
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This decision, which may appear audacious and strange at first sight,
does not introduce an entirely new principle in structural design. Indeed,
this same principle has been applied for a long time, if not from the incep
tion, when we are dealing with applied loads, and there seems to be no va-
1lid reason for not accepting it for strength of materials.

When loads act separately, we take from each the maximum value that
can be anticipated. When several statistically independent loads work in
unison, we apply reduction coefficients to the maximum loads adopted when
each was acting on its own. In the same way, it is fairly logical in a com
plex phenomenon depending on several independent variables (R, T, F and A)
such as buckling to admit that these variables do not all possess simulta-
neously the most unfavourable values amounting to the minimum or maximum
values imposed by inspection regulations, or adopted for investigating
less complex phenomena. For phenomenon less complex than buckling, it does,
however, appear that a single variable can play a determining role which
must be counteracted by taking a mean value less 2 Standard Deviations and
not merely less o < 2.
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