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COLUMN BUCKLING CURVE OF WELDED STEEL TUBE

Ben Kato
Professor of Structural Engineering

Faculty of Engineering
University of Tokyo

Japon

ABSTRACT

This paper presents the results of experimental research regarding the
buckling strength of centrally loaded welded steel tubular columns.

The specific contents of this paper are:

(1) Effect of thermal residual stress and locked-in stress induced by
cold forming on the tangent modulus in elasto-plastic range.

(2) Effect of supporting fixtures.

(3) Formulation of column buckling curve and comparison with test results.
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1. INTRODUCTION

The column curve for steel tubular struts adopted by Commission 8 of
the European Convention of Constructional Steelwork seems to be derived
from the knowledge of the performance of seamless tube which is almost
free from residual stress, and it was ranked with the superior class(a)
of the eventually settled three curves. For the use of structural members,
however, welded steel tubes produced by cold forming and high frequency
induction welding are much more popular than seamless tubes because of
their excellent productivity and of versatility of sizes. Mechanical
properties of welded steel tube as a whole are somewhat different from
that of seamless steel tube mainly by the influences of welding thermal
residual stress and of locked in stress induced by cold forming. Hence
the column buckling behavior of welded steel tube in inelastic region may
also differ from that of seamless tube.

A series of buckling test of welded steel tubular columns were carried
out under pin-ended centrally loaded condition. Test results are compared
with the theoretical prediction based on the mechanical properties obtained
from the stub-column tests. They are also compared with design loads
allowed by the current Japanese specification.

2. TANGENT MODULUS AND CRITICAL STRESS OF WELDED STEEL TUBE

In a welded tube, three types of stress may be introduced during its
producing process;
1) Elastic and plastic bending stress of tube wall along the circumferential
direction as shown in Fig.1(a). Combined with the applied compressive
axial load, this causes the biaxial state of stress and thus affects the
yielding of a column. On this problem, a study on the basis of
mathematical plasticity had been made (1).
2) When a steel strip is bent to tubular shape by cold forming,it will
warp upward as shown in Fig.1(b). This is forced to straighten up in the
course of cold rolling process. Thus bending stress of wall in
longitudinal direction is induced. Several examples of measurement of the
distribution of this bending stress(2) are shown in Fig.2(b).

m m

(a) (b)

Fig.l Cold Forming of Steel Tube
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(16)1 3 5 79 11 13 15 (16)

(b) Bending Stress due to Cold Forming

(c) Thermal Residual Stress due to Welding
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3) Thermal residual stress due to welding. Examples of the distribution
of this residual stress(2) are shown in Fig.2(c).

Yielding of the column subject to axial compression is affected by these
locked in stresses,and the average stress-strain relationship obtained from
stub-column test shows so called round house shape as is shown in Fig.3.
In case of seamless tube which is almost
free from residual stress, it shows a kqf/mm
rather clear yield point(Fig.3).

To obtain the general expression of
stress-strain relationship of this round
house type,stub-column tubes with different

yield points and diameter-to-
thickness ratios were tested. As shown
in Fig. 4, crp/ Oy ratios can be roughly
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Fi9-4 Op/Oy ratios Fig.3 a—e curve from

stub-column tests

estimated as 0.6 through all tests, where crp is the proportional limit
and Oy is the yield strength defined by 0.2% offset basis. Assuming that

ap 0.6 CTy it was found that a-e relation could be well approximated as

a a(80a + 1.0)E
x2 (80a + 0.4) 2E

e + a (80a - 0.2)
where a CTy/E

E Young's modulus

From eq.(1), tangent modulus Et can be expressed as

(1)

d a _ [ a(80a + 1.0)E - a ]2
d e a2(80a + 0.4)2 E

(2)

Then the critical stress in inelastic region is
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IT2 E. 2 [ a(80a + 1.0)E - a ]'
7T ' cr

a2(80a + 0.4)2 EA A

Eq. (3) can be written in nondimensional form as

(3)

where

80a + (1.0 - a /a „1 cr y 2

t-2
1

80a + 0.4 J

A A El
*l Tf2 E

\>h stenderness

3. EFFECT OF SUPPORTING FIXTURES

It has been reported that it is very difficult to realize the ideal
pin-end condition in column testing(3)(4). Knife edges and conventional
spherical seats were reported to be unsatisfactory because of their
inevitable friction. Shown in Fig.5 are hydraulically-supported spherically
seated compression testing machine platens invented by R.L.Templin(5)
which seems to be one of the best devices. Two series of test results of
tubular columns are shown in Fig.6. Templin type platens were used in one

oil input

Fig.5 Templin Type End Fixture

test, while conventional spherical seats were used in the other(6) The
latter test resulted in higher values up to 40% than theoretical prediction.
Hence,test results of tubular columns refered in this report are limited to
those obtained by using Templin type platens.
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4. TEST RESULTS

Available test results of welded tubular columns are shown in Fig.7 and
in Table 1.(7)(8)(9). Test results are compared with eq.(4). Deviation
from theoretical prediction becomes large in elastic-to-plastic transitive
region. Many test results are higher than Eular value in elastic region,
which means that even the Templin's device would be not ideal.

In Fig.7, test results of seamless tubes are also plotted by open
circles(6)(8). The column curve after DIN4114 is shown by dashed line in
the same figure, which is described as

(5)

KIT Ex

a - a ~
X 1 - -2. )2 a 0.6 a

y
~

p
P y

This can be written in nondimensional form as

a a /a - 0.6 „— - 1 )21 (6)a -2 1 v 0.4
y *

X A I—i
,2 E

Test results on seamless tubes which are almost free from residual stress
seem to show better correlation with eq.(6) than with eq.(4).
Substantial difference can be seen between the buckling strength of welded
tubes and of seamless tubes.

COMPARISON WITH JAPANESE COLUMN FORMULA

Column formulae specified by Japan Architectural Institute(A.I.J.)(10)
are as follows;

f [1-0.4(-t)2]<J/v for A < A
c Ay0.6a (7)

f y for X > A
c t A v IV(—)

where f allowable compressive stress

it2 E

0.6a
y

3 j 2 A .2 •
__v y + -j ~ for x S A

=2.17 for A > A

Above formulae can be written in nondimensional form as

(8)

a
0.31 A 2-

f J 2 fd-Z- for A —Z- < 1.29

o 1.5 + 0.4(AEI)2 ^ ' E

' I E
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a 2.17
y

V TT E

for
TT2E

>1.29

•(9)

The column curve expressed by eq.(9) is depicted in Fig.7 to compare with
test results.

3.0,.

Q I I I I I I I I I I I I I I I 1 I I I—I

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig.8 Factor of Safety

Each average of test results which have identical slenderness ratio are
divided by corresponding nondimensional allowable stress comes from eq.(9),
and is plotted in Fig.8. Nominal factor of safety specified by A.I.J,
standard (eq.(8)) is also shown in the figure. In inelastic region,
specified factor of safety increases paraborically starting from 1.5, while
it is constantly designated as 2.17 throughout elastic region as seen in
eq.(8). Safety factor of 1.5 is the one which is designated for the
tension member. Test results of reference(8) show rather lower value.
This might be caused by some imperfections(initial curvature.eccentricity)
or unfavorable locked in stress for which no information is available from
reference(8). Anyhow, as far as available test results are concerned,
factor of safety of 1.5 is secured through the whole range.
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Table 1. TEST RESULTS

Test A. Reference(6) Welded Tube, Grade of Steel:STK 50, 0^=52.4 kgf/mm2

size length slenderness a (a a /a
max cr max y A

a
y
9

(fxt.mm mm X ^ kgf/mm2 4 IT E

79.1 36.4 0.695 1 .255
1,600 79.1 33.4 0.638 1

79.1 33.0 0.630 1
.255
.255

88.9 "25.1 0.480 1 7413
1,800 88.7 26.8 0.511 1 .410

60.5x2.9 88.9 30.6 0.585 1 .413
98.7 2372 0.443 " 1 7570

2,000 98.9 23.4 0.446 1
98.9 24.0 0.458 1

.571

.571
118.5 " "18.1 Ö.346 " 1 7885

2,400 118.7 20.1 0.384 1
118.4 20.2 0.386 1

.890

.885

139.8x4.5

Test B. Reference(7), Welded Tube, Grade of Steel:STK 50,
2

0^=42.3 kgf/mm for 139. 8<)>x4. 5mm 0^=43.8 kgf/mm for 60. 5<|>x3. 2mm

17410
'

26.7 42.0 0.993 0.382
1^409 26^7 40^0 2^945 0. 382

"1,910 36.2 39.0 0.921 07517
1^910 36^2 39^2 0.926 2^.517

-2j 412 45.6 "33.8 ~ 07799 0.651
2,413 45^6 35J) 0.850 0.651
1.210 59.7 33.2 0.758 0.871
1.211 59^7 30^5 0^696 2^§Z1

"l,411~ 69.5 " "28.5 ~ Ö.651 1.01Ö
1_,411 69^5 29^7 2i2Z§ Zi2Z2

"1,610" 79.4 " 7 ~ 1.155
1,612 79 A 27^8 2.t222 i.ii22

"1,812 89.2 24.6 0.561 1.299
1,812 89^2 26 A 2i212 Lt229

"2,012 99.1 23.1 0.527 1.44Ö
2^013 99^1 22.9 2i222 1*222

"2,213 109.1 "2073 0.464 ~ l7590~
2^213 _129il 22*2 2^222 1^.222

"2,412 ~" 118.9 "1876 0.425 ~ ~1.730
2,412 118.9 19j_5 0.445 1.730

60.5x3.2
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2
Test C. Reference(8), Welded Tube, Grade of Steel:STK 50, 0^=46.3 kgf/mm

i
size length slenderness a (cr a /a ymax cr max y X

2
<j>xt.mm mm X l/r kgf/mm^ TT E

3,840 110.0 14.6 0.316 1 .640
3^840 110.0 15.1 0.326 1 .640
3,491 100.0 17.4 0.377 1 .490
3,491 100.0 16.9 0.365 1 490
3,142 90.0 19.1 0.411 1 .340
3,142 90.0 20.8 0.448 1 .340

101.6x2.9 2,793 80.0 21.7 0.468 1 193
2,793 80.0 22.2 0.478 1 .193
2,444 70.0 25.6 0.552 1 .043
2,095 60.0 29.7 0.643 0 .895
1,746 50.0 33.5 0.725 0 745
1,396 40.0 39.5 0.852 0 597

698 20.0 44.0 0.952 0 .299

Test D. Reference(6), Seamless Tube,
2

a =52.0 kgf/mm for 60.5<|>x2. 9mm.

0^=37.6 kgf/ 2
mm for 89. l<j)X3. 5mm, 101.6<j>x3. 5mm, 114. 3<(>x4 5mm.

1,400 68.8 40.3 0.770 1 095
DU ->XZ y 1,400 69.0 39.2 0.749 1 100

1,200 39.9 35.4 0.940 0 535
89.1x3•5 1,800 60.0 34.2 0.910 0 807

1,400 40.8 35.8 0.950 0 550
±U1•oxj.3 2,100 60.8 35.6 0.945 0 818

1,550 39.9 34.7 0.920 0 537IIA.3x4.5 2,300 59.1 31.0 0.824 0 795

Test E. Reference(8), Seamless Tube,
2

a =46.1 kgf/mm
y

3,442 99.0 22.26 0.482 1 470
2,793 80.0 31.31 0.680 1 192

IUI.bxz.y 2,095 60.0 38.30 0.832 0 895
1,396 40.0 46.45 1.020 0 596
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CENTRALLY COMPRESSED BUILT-UP STRUTS

G. Ballio,L.
Istituto di Scienza e

Politecnico

Finzi,C. Urbano
Tecnica delle Costruzioni
di Milano-Italy

ABSTRACT

This paper presents the results of both an experimental
and theoretical research on built-up compact struts.

Channels and unequal angles back to back are considered
with different slendernesses and type of connectors.

The experimental results are compared with the ones obtained
using the C.E.C.M.buckling curves for:

1) welded connectors
2) tightened bolted connections
3) untightened bolted connections
4) hotgalvanized or painted elements.

A numerical approach allowing for elastic unloading processes
is finally presented.
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1. Introductory Remarks

So far as the authors know, built-up struts are still
designed with the theory of elastic equilibrium bifurcation for
the fasterners as well as the whole strut (fig.l).

It is normally assumed that subjected to the critical load
the equilibrium configuration and, in particular, the deflection

f that characterises overall collapse, will be indeterminate.
^CIn this case, the fasteners (e.g. batten plates) are

designed (fig. 2^ for a deflection f^ that will provoke the local
failure of the most compressed of ihe chords.This means that i-
nitial out-of streightness in the axis and the load eccentricities

will have no influence, nor will the transversally distributed
loads (dead load, wind etc)

For simple struts, however, this concept was given up about
twenty years ago, and replaced by another, which follows the be,
haviour of the strut step by step as the loads increase, taking
into account realistic values of the geometrical and mechanical
imperfections as well as real transversal loads.

im
L J

II
S

I T

r

V

A

FIG. 1 FIG.2

This leads to a curve P=P (f) which is characterised by a
well defined maximum, and therefore by a value f of the
deflection which characterises overall collapse
x imurn,

gc for that ma-

Both PMAX an<^ f c are greatly influenced by a number of factors

that are present during loading.They are:mechanical
characteristics (residual stresses S"«) geometrical imperfections
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(the initial out-of-straightness of the axis fo and load
eccentricity eo) loads <j distributed along the axis of the strut
(forces linked to the volume or the surface - dead weight,wind,
dynamic forces).

So it may be said that:
+4e ~ "fâc ^ •

£»
> 1 I *0

where 6^, -f„ eoand ^ must be worked out beforehand, on a stati
stical basis as well as the yield point <r.

The load P is less than that calculated without 6*0, To i So
and q but being much more realistic, a safety factor may
be adopted for these axially loaded struts that is the same as
for tensioned bars. To sum up this new concept, then overall
collapse deflection is no longer indeterminate, and can in fact
be worked out quantitatively by a clear calculation process.

This kind of approach, when applied to simple struts of
different cross section has lead to the definition of the European

Curves yCl). If reference is now made in particular to
built-up struts it will be seen that there need be no guarantee
that the fasteners along the strut remain efficient until,
between one fastener and the next, the failure of one of the
component struts All that is required now is that neither of the
following conditions arises separately:
a) failure of a component strut between one fastener and the

next when < "f^c >

b) failure of a fastener along the strut when

This represents a different way of looking at the situation.
The design of the fastener no longer depends on the local
design of the component strut,but both depend on the overall
behaviour of the structure.

This overall behaviour has only been studied within the
limits of the theory of bifurcation.

Other more worthwile approaches are being looked into, but
this, of course, is not easy.

It is particularly unrealistic to use calculation methods
that do not take into account the unloading processes during
lateral buckling of the strut. The component strut furthest
from the original line of the axis may even become tensioned
rather than compressed.

2. Experimental Results

The behaviour of one particular class of built-up compact
struts was studied with back to back separators.

Two sets of experiments have so far been carried out. The
first (see figs.3 and 4) used back to back 140UNP channels 15
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mm apart, fastened at 2,3 or 4 intermediate points with solid^
washers or packings. The specified yield point was <T =24Kg/mm.
The total slenderness ratios, depending on the number of fast-
ners, were 103,129, and 155, while the local ratio (between
packings) was 50. The end fasteners (24 shear resistent sections
with 016 bolts of type 10 K) were all the same and designed for
the ultimate load of the struts at zero slenderness.The
intermediate fasteners were of the following kinds:

Connections Symbol

welds

M 0 16 of type 10 K, tightened
2 " " " 10 K,

bolts
If II

II II
8 G,
8 G,

10 K, untightened
10 K,

W

4K
2K

4G
2G

4U
2U

The experimental results are given in fig.5 and are compared
with the curve PMM > P„« (X)(maximum load depending on the

slenderness of the simple strut) deduced from the European Curve
Cl-24.

The struts with untightened fasteners (in which the settlement
of the bolt in its hole becomes significant) were the

least successful.lt also became clear that the European curve
Cl-24 for simple struts, at least for high slendernesses was
not safe enough while the dashed curve referring to an ideal
slenderness ~ certainly is.

The second set of experiments was on (fig.61 unequal angles
S'xS** 5/ifc* with 2,3 and 4 intermediate fasteners.

The specified yield point was <T =36 K/mm2. The total
slendernesses, depending on the number of fasteners, were 97,117
and 137, while the local slenderness was 50.

The end connections were this time designed for the real ca
pacities of the strut and were made of the same kind of bolts
used for the intermediate fasteners.These latter were of the
following kinds:

bolts

Connections

welds
2 0 24 of type 10 K, tightened
1 70 K

2
1

5 D
5 D

Symbol
W

2K
IK
2D

ID
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The fasteners shown by the letter G were for hot galvanized
struts and bolts.

The experimental results are given in fig.7 and are compared
to the curve deduced from the European Curve Cl-36.
Clearly the curve cannot be used for our purposes. Here two dijf
ferent effects come together, the first being the unfavourable
influence of flexural-torsional instability the second being
the greater or lesser stiffness of the intermediate fasteners.
Even reference to the dashed curve, which corrects the slender-
ness by taking into account the above mentioned effects in the
elastic range, does not guarantee safety in all situations. The
authors consider that if normal safety margins are to be respect
ed, welded joints or high strength friction type bolts are essen
tial.

To sum up:
al B uilt-up struts with washers or packings can only be consi¬

dered as perfectly solid if their design assumes the ideal
slenderness.

b) If the cross-section of the struts is not orthogonally sym¬
metrical to the plain of deflection, and so flexural-torsion
al instability arises, it is no longer possible to make
direct reference to the European Curves Cl-24 and Cl-36.

c) The stiffer are the end connections, the better is the per
formance of built-up struts.

d) The forces acting on the intermediate fasteners are less
than those allowed for by the theory of bifurcation.The
design must therefore pay particular attention to the qualitative

aspects of constructional detailing, stressing stiffness

rather than strength of the intermediate fasteners.

3. Test Equipment

The hydraulic press used for experiments had a pair of
fixtures for the test struts to the machine. These make up a

cylindrical elastic hinge which allows the end section of the
strut to rotate around an axis when loaded, without friction
but with a known elastic moment.The test equipment can be used
on compressed structural elements of up to 7m in length, and
the fixtures have a capacity of 100 metric tons.

These elastic hinges eliminate friction, since the end-hinged

system (fig.8), adopted by many researchers, has been
abandoned in favour of a continuous beam. In this way the test strut
constitues the intermediate element, and the ends always remain
within the elastic range thus allowing the end sections of the
test strut to rotate, bringing into play an elastic end moment.
By using very flexible elements at the ends to transmit the
axial load, the elastic end moments can be greatly reduced. In
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this way the effective length of the test piece is not much less
than the distance between the intermediate supports and a furth
er advantage is that the transversal reactions of the supports
are quite small compared to the axial loads. Since the members
at the ends never leave the elastic range, the moment applied
at the ends of the test piece can always be measured.The equi;g
ment is shown in fig.9.

The calculation method for establishing the effective length
of the test piece is given in fig.10. This, as can easily be
seen, is suitable for determining the critical loads correspond
ing to a symmetrical deformation.

The calculation results establish the effective length for
a strut in these test conditions. The diagram in fig.lO shows
the distance L between the axes of the elastic hinges as x-coor
dinate. The y-coordinate gives, for different values of the
moment of inertia I of the test piece, the ratio between its
actual slenderness X and the slenderness Xeit would have if hing;
ed at the ends of span L.

hf d2
V/A

^2 vfy///.

FIG. 8

tc 1»
â t t U

FIG.10 FIG.11
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The fixtures were given a series of checks and calibra,
tions to verify their static behavior, both when and when
not connected to the test machine. Deflection test were car
ried out in the absence of axial loads. These showed that
the actual position of the axis of rotation coincided with
the theoretical position. They also checked the flexural
stiffness, and calibrated the measuring equipment for bend
ing moments.

The experimental value of the flexural stiffness was
298.6 metric ton cm/rad and agreed very well with the thec>

ry based on the model of fig. 10: UT =299.4 metric tons crt/rad.
A further series of tests was carried out to verify the ef_
fective lengths of a set of struts with the same moment of
inertia but different lengths. The dynamic method was used
to find Euler critical load experimentally (fig.11).This
was then compared with the theory. The theory turned out to
be only 2% lower than the experimental results, so the
calculation criteria may be considered precise enough for all
practical purposes.
4. Numerical Approach

A numerical approach for calculating the bearing capacjL
ty of a built-up strut should allow for:
a) establishing compatibility of displacements at the inter

mediate and end connections in order to calculate the
equilibrium configuration. This is possible, in principle,

if solution techniques are used which assume that
the axial load is an indipendent variable.

DM,C<P,.P5
i

'!)

A-s.

h
h/,-«

COMPRESSION

jp yield stress

FIG.12 FIG.13
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bl global or local elastic unloadings of the chords because as
the axial load increases one of the chords might become ten
sioned instead compressed. This unloading is possible if the
problem is posed in incremental terms, and the equilibrium
configuration that corresponds to the loadP+APis calculât
ed by starting from the configuration corresponding to P

Since the non-holonomy of the moment-curvature law cannot
be left out, a calculation method was developed that respected
points a) and b) in order to study the behaviour of built-up
struts. This method has been proved for simple struts, and must
now be extended to built-up columns

The principles of the method are (fig.12):
aï the strut is reduced to a model with a finite number of de¬

grees of freedom and made up of rigide parts and elementary
cells in which all the flexibility, both axial and flexural,
is concentrated.

b) the equilibrium equations are written in non dimensional
form through the equivalence of both the Euler criticalload
and the limit elastic bending moment of the beam and of the
model.

c) the relative rotations of the parts of the model are as¬
sumed as the unknowns depending on the applied load 6^ : <ß(6ii)

d) the problem is reduced to incremental form by differentiat¬
ing the equilibrium equation with respect to the independent
variable 0*#

e) integration of the system of differential equations is ob¬
tained by a technique widely used for dynamic problems based

on a modification of Euler-Cauchy method, starting from
the initial configuration.
So far, the mathematical program has been checked against

some known results. In particular, HE200A and box struts, with
or without residual stresses were considered (fig.13)and the
results compared with those obtained by Beer and Schulz (see
figs. 14 and 15).

The axial load-deflection laws for different slendernesses
were computed, also for loads decreasing as the deflection
increases (fig.16,17,18,19).

Overall unloading was also studied (fig.20). Finally the ma
ximum axial load carried by struts subject to constant bending
moments and increasing axial loads was calculated (fig. 21).
5. Details of the Calculation Method.

With reference to fig.12 the equilibrium equations are:

4) (m) - P& Lc](e(F*}4 p{e})

where are:
Mi bending moment,
P axial load,
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I length of the parts,
relative rotations,

Fi" generalised external forces,
e.; generalised eccentricities,
G); transversal displacements,

[C] a matrix defined by the relation: [^\jt\-•
The following quantities are defined:

(T yield point,
A area of the cross section,
5s radius of inertia of the cross section,
k. distance of the most compressed fibres from the

centroid of the cross section,
X slenderness,
XP Tr VrË7F

The following non dimensional quantities are defined:

M-lv-} • <'•£- Hi- if}'

The first eigenvalue of the problem:

k

defines the parameter:

p p — •

Because of the equivalence of both the limit elastic moment
and the Euler critical load of the strut as well as the model
equations (1) can be written in the non dimensional form:

2) [c]an + ff-ie*i)
A.

Differentiation with respect to 6k gives:

31 jiij ^([o] - (ptc3{4} + [o]{e1-
with: O ior i+kf « +.

J. O r i =r k

Starting from the configuration A corresponding to
0"w the solution is obtained by using the iterative formula:
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The integration step is automatically regulated and becomes
smaller and smaller as the number of iterations needed for the
required accuracy increases. When the step becomes very small
or the derivative (3) is very great the loading process stops.
At this point constant axial load is assumed, the relative
rotation at the middle is increased and the second equilibrium
configuration is found by iteration. After which the integration

method is taken up again, making A&» < c> in formula
(3) of the derivatives [3^/96^,} -

If overall unloading is required, A <3? ; must also be negative
in formula (3) of the derivatives as well as A •

Of course the functionyi=yu.(f/») must be calculated at each
attempt. This is done by iteration, starting from the
characteristics of the cross section. For this purpose in order to
speed up the process for ideally elastic-plastic material,the
neutral axis can be obtained by a method which take into
account the variation of the boundary of the plastic region of
the cross section.
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ABSTRACT

The purpose of this study is to investigate the ultimate strength of
elastic-plastic steel wide-flange columns subjected to axial load and
symmetrical end moments. The presence of residual stresses arising from
fabrication processes leads to moment-thrust-curvature relationships which
are untractable analytically. The latter is determined numerically. The
integration procedure employs a numerical marching technique. The results
are presented in the form of critical load-slenderness ratio relationship
obtained for welding-type and cooling-type (parabolic) patterns of residual
stress distribution. The effects of initial curvature on the strength of
the columns are also compared with that of straight columns.
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1. INTRODUCTION

The strength of steel columns is influenced by such unavoidable factors
as residual stresses, initial imperfection and eccentricity of loading.
Residual stresses are present as the result of uneven cooling after the hot
rolling for rolled sections or of welding for built-up sections.

The strength of columns was studied earlier by Karman (10), Chawalla (5),
Jezek (9), Shanley (16) and many other investigators. More recently Home (8)
presented a criterion of stability for columns which was utilized later by
other investigators (7,11,15) to treat wide flange and box columns with initial

imperfection but free of residual stresses. Chen and Santathadaporn (4)
studied the strength of eccentrically loaded rectangular columns, formulating
the governing equation in term of curvature rather than deflection. The
influence of residual stresses on the buckling strength of concentrically loaded
steel columns was discussed by Osgood (14) and Beedle and Tall (2). The
combined effect of residual stresses and initial imperfection on the strength of
concentrically loaded aluminum alloy and steel columns was studied by Batter-
man and Johnston (1) who employed a numerical incremental scheme to obtain the
complete load deflection curves. Recently, Sherman (17) studied the strength
of eccentrically loaded straight steel box column with linearly varying residual

stresses across the width of the component plates. The latter also made
use of Home's criterion of stability. The reduction of strength due to the
presence of residual stresses was found to be as high as 407=. Chen (3) studied

the strength of beam-columns using the moment-thrust-curvature relationships
of wide flange sections with linearly varying residual stresses.

The purpose of this study is to investigate the influence, on the
strength of wide flange and box columns, of the eccentricity of end loading,
the initial crookedness and residual stresses arising from the cooling of
hot rolled wide flange sections and from the welding of built-up sections.
These residual stress patterns as reported in Refs. (2,12) can be idealized
more closely by the distributions shown in Fig. 1, where the welding pattern
consisting of a series of straight lines represents that encountered in welded
built-up shapes while the pattern with parabolic curves represents that in
hot-rolled wide flange shapes. The ultimate strength is determined by numerically

integrating the governing differential equation and applying Home's
criterion of stability. The moment-thrust-curvature relationships are also
determined numerically for the two residual stress patterns considered. Only
columns which fail by bending about the strong axis will be considered. It
is of interest to mention that the results of this analysis for the special
case of the concentrically loaded perfectly straight columns lie in between
the values predicted by the tangent modulus theory and the reduced modulus
theory.

2. MOMENT-THRUST-CURVATURE RELATIONSHIPS

In order to compute the moment-thrust-curvature relationships numerically,
a wide flange section is divided into finite grid elements. The coordinate

system is chosen to pass through the centroid of the section. Under the
action of bending moment and axial thrust, the strain at element i with residual

stress can be expressed in the nondimensional form,

c e Y. el o i (1)
e e

y y
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where e. total strain at element i, positive for tensile strain; e

strain at the centroid of the section; cp curvature nondimensionalized by
the curvature at initial yielding for pure bending moment, § s^/d;
distance of the center of element i from the centroidal axis^ er^ residual
strain at element i; e =strain at yield point; and d half depth of the
section. ^

Assuming an elastic-perfectly plastic stress-strain relationship for
the steel, the strain in Eq. 1 is related to the stress by

a. s. I e. I

for < 1 (2a)1 1

a e e
y y y

G. IG. I

— - 1 for 1-^ ^ 1 (2b)
a e
y y

in which a. and a normal stress at element i and the yield stress respectively,

a^1being positive for tensile stress.
The axial thrust and moment are then determined from the following two

equilibrium equations in nondimensionalized form,
1 n °i s

p - f .2 —AA. 3)v A i=i a iy
1 n CT-

m =- L — Y. AA. (4)
Z i=i aiiy

where p and m axial thrust and moment nondimensionalized by the yield load,
Py CTyA, and the fully plastic moment, Mp OyZ, of the section respectively;
A and Z area and plastic modulus of the section respectively; AA. area
of element i; and n total number of elements.

The moment-thrust-curvature relationships are obtained from Eqs. 3 and
4, together with Eqs. 1 and 2, by specifying the residual stress distribution,

hence the residual strain distribution, and systematically varying eQ
and cp. For simplicity, it is assumed that the residual stress is constant
across the thickness and that equilibrium is maintained within each plate
component. Typical curves showing moment-thrust-curvature relationships for
different patterns and levels of residual stresses are shown in Fig. 2 for
8 WF 31. The moment-thrust-curvature relationships for a wide flange section
is identical with those obtained for a box section provided that the cross
sectional shapes of the halves of the wide flange and the box section as well
as the residual stress pattern and level are identical.

3. GOVERNING EQUATIONS

The problem of simply supported columns loaded symmetrically at both
ends can be represented as a cantilever column loaded as shown in Fig. 3.
The free end is subjected to bending moment M and axial thrust P. Initial
imperfection can be characterized by initial curvature along the length of
the column. The equilibrium of moment and the curvature-displacement
relationships, in terms of small deflection theory, are given by

M Mf - PV (5)

0 " » + 5o <«
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where M moment; fixed end moment; X distance along the length of
column; V transverse deflection; and $ and bending and initial
curvatures, respectively.

Introducing x and v as the nondimensionalized axial distance and transverse

deflection defined by

x |/T (7a)

v ^ (7b)

where r radius of gyration of the cross section, Eqs. 5 and 6 can be written
in the nondimensionalized form,

m mr - pv (8)f z

S - (cp+tp0) f (9)

in which m^ fixed end moment nondimensionalized by the fully plastic moment
of the section; cpc initial curvature nondimensionalized by §

With prescribed values of cpQ, for given values of m^ and p as parameters,
the deflected shape of a column can be determined by integrating Eq. 9 in view
of Eq. 8 and the moment-thrust-curvature relationship for a particular cross
section and residual stress pattern and level. It is noted that, with this
formulation, the strength of the steel is not involved and that the results
can be applied to columns made of any grade of steel.

4. EQUILIBRIUM CURVES AND ENVELOPE

The integration of Eq. 9 for the general case is analytically untracta-
ble and numerical integration is necessary. The procedure is basically as
follows :

(1) For a particular value of p, moment m can be determined from Eq. 8, pro¬
vided displacement v is known. Knowing m, curvature cp is determined
from Eqs. 3 and 4 in view of Eqs. 1 and 2. From the value of 9 so
obtained, together with the prescribed initial curvature, the right hand
side of Eq. 9 is calculated.

(2) Dividing the column into small segments, such that curvature inside each
segment may be assumed to be constant, Eq. 9 can be integrated with
respect to x within the segment to yield the following relationships
among the slope and displacement at both ends of the segment:

v.' k. (Ax) + v! (10)
1+1 r 1

Vi+i
k.
-t^(Ax)2 + v! (Ax) + v. (11)

where k. quantity on the right hand side of Eq. 9 at segment i; v.
and v^ deflection and slope at the left end of segment i; anà

and Ax length of the1+1
segment

(3) For a specified value of m£, the integration can be started from the
fixed end where v and v' are known to be zero until m vanishes.
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(4) Repeat the procedure by systematically changing p and m£. In practical
computation, the moment-curvature relationship for a particular value
of p and pattern and level of residual stress such as shown in Fig. 2

was represented by a series of points and stored in the computer. The
curvature corresponding to a particular value of moment was then obtained

by interpolating between the points.

The m versus x relationships referred to as the equilibrium curves (7),
for particular values of p and m^, can be plotted as shown in Fig. 4. Applying

Home's criterion (8), the envelope of these curves is the boundary of
the domain inside which a cantilever column with a combination of end moment,
length and thrust is in stable equilibrium. It shows the relationships
between the slenderness ratio and the maximum end moment that the column can
carry for a given thrust. Fig. 5a illustrates a set of envelopes ohtained
for various values of p. They are plotted on the m- X plane in which X is
the normalized slenderness ratio defined by

* - (12)

where L length of simply supported columns, being twice the length X of
the corresponding cantilever columns. It should be noted that the integration

scheme requires no iteration and is always stable resulting in accurate
predictions of the ultimate strength.

For the purpose of discussions, it is convenient to replot the results
of the foregoing analysis as shown in Figs. 5b and 5c where the construction
of the column curves relating the maximum load to the normalized slenderness
ratio and the interaction curves relating the end moment and axial thrust
are depicted respectively.

5. NUMERICAL RESULTS AND DISCUSSIONS

Parameters for Numerical Computation

It was reported by Hauck and Lee (7) that, for the study of the strength
of wide flange columns, the area ratio, i.e., the ratio of the flange area to
the web area, is the most appropriate parameter for describing the sectional
properties. The reason for this lies in the fact that, in the non-dimen-
sionalized formulation of the problem, the equilibrium equation and the
curvature displacement relationship, Eqs. 8 and 9, involve the parameters Ar/Z
and r/d respectively which are primarily functions of the area ratio. For
idealized wide flange sections with thin flanges, these two parameters are
given in terms of the area ratio by

J(l+R)(-j+ R)
Ar _
Z

J+R

r _ 3v + R

d ^ 1 + R

(13)

(14)

in which R Af/A^, Af being the total flange area and the web area. The
moment-thrust-curvature relationship is also primarily a function of the area
ratio.
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The area ratios of all wide flange column sections lie between 2.9 to
3.6, and the ultimate strength analysis is insensitive to the variation of
the area ratio. The numerical computations of this study are made for
8 WF 31 of which the area ratio is "3.27.

The magnitudes of the maximum compressive residual stress are varied
from 0.1 Qy to 0.5 a for both the welding pattern of Fig. la and the cooling
pattern of Fig. lb. When initial imperfection is present, the initial shape
of the column is assumed to be an arc of a circle in which the initial curvature

is constant throughout the length. The degree of initial curvature is
included by varying the factor cpQ in Eq. 9 in the range 0 to 0.4 for both
patterns of residual stresses. The numerical results are presented in Figs.
6 to 12.

In addition to 8 WF 31, two sections which are approximately on the
extreme limits of the range of the area ratio for column sections are studied;
they are 8 WF 24 and 14 WF 127 whose area ratios are 2.88 and 3.40 respectively.

The results, when plotted on the column curves or on the interaction
curves, are almost identical to those for 8 WF 31. Therefore the results of
this study on 8 WF 31 can be applied for all wide flange columns as well as
box columns of similar dimensions.

Effect of Residual Stresses on Column Curves

Figs. 6 and 7 show the strength of straight columns with residual
stresses of the welding and cooling patterns respectively. It can be seen
from Fig. 6 that the reduction of column strength is greatest for concentrically

loaded columns. Generally speaking, the larger the maximum compressive
residual stress, the larger is the reduction in strength. However, in
columns with very small eccentricity, higher maximum compressive residual stress
results in smaller reduction in strength for the lower range of the slender-
ness ratio. This can be explained in terms of the penetration of yielding.
In the case of low maximum compressive residual stress, when yielding starts,
the stiffness decreases faster than the case with high maximum compressive
residual stress. It is also noted that the strengths of concentrically loaded

columns are constant over a larger range of X for lower maximum compressive
residual stresses.

For eccentrically loaded columns, the effect of residual stresses tends
to decrease with increasing eccentricity. The presence of residual stresses
reduces the strength appreciably for columns of medium length loaded with the
same eccentricity, the reductions being smaller for the short and long columns.

Proceeding from Fig. 6 to Fig. 7, the reduction of strength is less
severe for the case of cooling type residual stresses. The strength of
concentrically loaded columns for the same X is much higher for the latter than
that for the welding type with the same maximum compressive residual stress
level. The effect of residual stresses diminishes with increasing eccentricity

more rapidly for the case of welding type residual stresses.

The different effect of the two residual stress patterns on column
strength, together with the fact that the magnitude of compressive residual
stresses present in welded sections is larger than those in hot rolled shapes
(2,11), suggests that different consideration may be necessary in the design
of welded built-up columns and hot rolled wide flange columns.
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Effect of Initial Imperfection

The effect of initial curvature alone and the combined effect of residual
stresses and initial curvature for both types of residual stresses can be seen
in Figs. 8, 9 and 10. Initial curvature generally decreases the strength of
otherwise straight columns. The effect of initial curvature is greatest in
the intermediate column range. The same conclusion was reported by Batterman
and Johnston (1). Comparing with Figs. 6 and 7, the reduction in strength due
to initial curvature covers a wider range of X than that due to residual stresses

alone. The behaviour of eccentrically loaded columns with the presence of
initial curvature alone or in combination with residual stresses show the same
trends. The effect of the difference in residual stress patterns on column
strength tends to be diminished by the presence of initial curvature.

Effect of Residual Stresses on Interaction Curves

The interaction curves shown in Fig. 11 may be more convenient for
presenting the ultimate strength of beam-columns. The effect of different
patterns and levels of residual stresses is shown in this figure. The parameter
X covers the range 0 ä l s 1.5. it can be seen that the reduction of strength
is significant for high p and the effect tends to diminish with increasing X.
Finally, the cooling type exhibits less effect than the welding type of residual

stresses.

Buckling and Ultimate Strengths

It is well understood that the tangent modulus load is the smallest axial
load at which bifurcation of the equilibrium position for a concentrically
loaded straight column can occur and that the reduced modulus load is the
upper bound of the bifurcation load (6). Fig. 12 shows a comparison between the
ultimate strengths of initially straight columns obtained in this study and
the buckling loads of concentrically loaded straight columns with welding type
residual stresses (13). The effect of maximum compressive residual stresses
of 0.2 Oy and 0.4 Oy is shown. For each residual stress level, the ultimate
strength curve lies between the two buckling curves, being close to the tangent
modulus curve at high p and tend to approach the reduced modulus curve as the
load decreases.

6. CONCLUSIONS

The present study supplements the investigation of the influence of
residual stresses, initial imperfection and eccentricity of loading on the
ultimate strength of steel columns. Two types of residual stress patterns are
chosen with varying magnitudes to represent the residual stress distribution
present in hot rolled wide flange and welded built-up I and box columns.

It was found that eccentricity, initial imperfection and residual stresses
are adverse factors which reduce the strength of columns. For low

eccentricity, the reduction of column strength due to initial imperfection and
residual stresses is more pronounced in the intermediate column range. However,
the reduction diminishes as the eccentricity increases. It was also found
that residual stresses and initial curvature exhibit similar trends in the
reduction of the strength of practical columns.

The welding type residual stress causes more pronounced reduction in,
strength than the cooling type for the same level of maximum compressive
residual stress. This fact suggests that different considerations should
be given to the design of welded built-up sections and hot rolled wide
flange columns.
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APPENDIX II.- NOTATION

The following symbols are used in this paper:

A area of section;

A£,Aw total flange and web areas, respectively;
d half depth of section;
E Young's modulus of elasticity;
i index number;

k quantity on the right hand side of Eq. 9;
L length of simply supported column;
M bending moment;

M£ fixed-end moment;

Mp plastic moment;

m M/Mpj

m£ Mf/Mp;
n total number of area elements;
P thrust;
Py axial yield load;
p P/Py;
R area ratio, A£/Aw;

r radius of gyration;
Y transverse deflection;
v,v' V/r and V'/r, respectively;
X distance along the length of cantilever column;

ZJT ;r ' y
Y vertical coordinate of cross section;
Z plastic section modulus;
AA area of sectional element;
Ax length of segment;

e total normal strain;
eQ - strain at the centroid of section;
e residual strain;r '
Sy strain at yield point;
a normal stress;
au ultimate strength of columns;

a yield stress;
* - ^ ;

$ curvature caused by bending;
§ initial curvature;o

§y curvature at initial yielding for pure bending moment;

cp §/ 4 ; andY y
cp § / $
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SOME REMARKS REGARDING BUCKLING CURVES

Mi I os Morincek
Professor of Civil Engineering

University of Ljubljana

Yugoslavia

ABSTRACT

Remarks are given in connection with the buckling resp.instability design

curves for pin-ended struts relating the effective stiffness of the cross-section

with the influence of residual stresses and of unavoidable geometrical

imperfections.

Correlation between buckling and instability design curves is shown.

Instability and buckling curves for the struts made of material with Romberg-

Osgood stress-strain diagrams are discussed and the problem of composite struts

and of the calculation of load-carrying sistems are mentioned. The need for

the typification of the shapes of the stress-strain diagrams for different materials/

shapes of the cross-section and the distribution of residual stresses is

emphasized.
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INTRODUCTION

Under the guidance of the late Professor Beer there have been determined in Graz,

on the basis of extensive analyses, three European curves. Some changes have

been done lately for the region of very small slendernesses according to the

suggestion of the team from Cambridge. This one parallelly made the British version

of curves. Regarding the buckling curves of Graz there is an important addition

for the simple consideration of dead and/or wind load of very slender struts. Graz

has one more additional proposition, for one higher lying curve for high-strength

steel, and lower lying for "jumbo" profiles. Dwight suggests in his present report

an interesting simplification of the presentation of curves. Also in the USA an

extensive study of multiple curves is going on, both deterministic and probabilistic,

as Bjorhovde and Tall will report. We might expect on this colloquium also

other important reports regarding strut curves and, of course, possible different

vi ews.

In the invitation for this colloquium Professor Beer expressed a very justified wish

that there would be reached an unified view about the buckling curves. This

would be very important not only for the treatment of pin-ended struts, but

especially for struts in a system and so for the determination of the buckling and

the instability limit state of the load-carrying system as a whole. It might come

very soon to an agreement about the basic curves for compression members made

of steel, because an extensive research work has been already done in this field.

Or it might not come so soon. There should also be done much more about the

composite sections steel - concrete and regarding struts made of alluminium

alloys the finite propositions are still expected. That is why it would be extremely

useful to come, at least, to an agreement about the basic assumptions.

In the following some remarks, which should contribute to a better further progress,

are given.

FLEXURAL STIFFNESS, IMPERFECTIONS

For numerical simulation computer programs, which have the decisive part in

research of compression instability, the data about the effective flexural stiffness

of cross-sections due to the influence of nonelasticity are very important. The

effective flexural stiffness depends on the shape of the cross-section, on the shape

Bg. 18 AK 23
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of stress-strain diagram of the material, on its cross-section nonhomogenity, and

on residual stresses. It would be necessary to make a corresponding selection of

the typical cross-sections regarding their geometrical shape and the distribution

of residual stresses, taking into account different possible technologies of production

l-profiles, box sections, tubes, other sections

While typifying the sections, only the ratios of dimensions are important. Fig. 1

shows both extreme profiles and a kind of the average section for narrow and wide

flange European l-profiles.

The typification of curved stress-strain diagrams i.e. of the alluminium alloys

is possibile when using one single parameter with the dimensionless form of the

Osggod- Romberg's equation, if we omit the classical definition of the yield

stress C&q 2*
We replace it with, for example <s

^ / which represents the stress

when the plastic strains are equal to the elastic ones Fig. 2 Fig. 3 shows a

choice of the dimensionless curves, the shapes of which are given with only one

parameter n. It should not be a problem nowadays to introduce the registration

of all necessary parameters, which determine the basic mechanical behaviour of

material, into the routine testing. For mild steel also the strain and the tangent

modulus at the beginning of strain hardenin should be included. In the stress-strain

diagram for concrete we'd better decide, if possible, for only one curve out of

different propositions according to Fig. 4. This is important for the treatment of

the composite cross-sections.

The determination of typical dimensionless distribution of residual stresses for typical

sections would especially help in quicker application of research made till
now about the load-carrying capacity of industrially produced compression members.

Here team work with metallurgists would be useful. The important thing is, first,

to determine the normal technology and then the various possibilities in the

technology, and not before this to determine the corresponding distribution of

residual stresses. Such a way is, of course, more reliable than that with incidentally

taken specimens. The question what should be taken for typical residual

stresses, those out of normal technology or those out of irregular processing, but

the most unfavourable, is of special consideration.

The use of the load-shortening diagrams obtained by stub column test, will be

well exploited, when we analyse them in comparison with computed diagrams at
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the consideration of the influence of residual stresses and nonhomogenity. The

agreement with computed diagrams should exist also in full tension tests and in

tension tests of single strips. For the consideration of the separate influence of

nonhomogenity in the strength of the section also the parallel tests in stress-

relieved state are useful.

Geometrical imperfections of compression members can be more easily controlled

than structural imperfections. Here we have a possibility of variations from the

ideal perfect strut regarding the sections and length to those imperfections, which

are not permitted according to the definitions of standards of tolerances of

measures and shapes.

BUCKLING AND INSTABILITY CURVES

The possibility that in compression members the most inconvenient structural and

geometrical imperfections will appear simultaneously, is of course small. But

from the viewpoint of safety we need such curves of instability, which represent

the minimum guaranteed instability limit load with the consideration of the most

inconvenient state of structural imperfections and the most inconvenient, but still

permitted, geometrical imperfections. At the same time, with the help of the

appropriate buckling curves without geometrical imperfections also the

determination of the buckling load of compressed members is possible with

consideration of normal structural imperfections In such a way we can have

always the survey about the region of the possible actual state Fig. 5

I do not know if in the present situation there is necessary to think much more

about the probability of the appearance of different intermediate possibilities.
But it would be very useful to gather sistematically the statistical data about

the possible geometrical imperfections of the struts in the systems, where the

question of the probability of the simultaneous appearance of the most unfavourable

geometrical imperfections is more important.

Previous buckling curves in inelastic region, which at the higher slendernesses

pass on to the Euler's curve and are connected with a variable coeficient of

safety, are, in fact, principally identical with new instability curves, which

take into account the initial crookedness of struts and the constant factor of
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safety. The variable coeficient of safety at the buckling curve somehow

includes the influence of the initial crookedness. The relations are shown in Rg.

6. In Fig.7 there are shown the present buckling rules for compression members

in the USA and West Germany, translated in the instability curves with the

constant factor of safety.

There is always and advantage to have a dimensionless presentation of the buckling

and instability curves.

To determine the buckling load of the linear systems, we need effective flexural

stiffness of the cross-sections or the effective modulus of elasticity dependent

on the axial force in the individual struts. The corresponding relations are given

in Rg.8.

We can rely on the fact that in the course of time it will be necessary to have

still more dimensionless buckling and instability curves, even interlacing ones.

This is to be expected because of the different shapes of cross-sections, stress-strain

diagrams and distribution of residual stresses and also because of the different

influence of the initial crookedness on the instability limit load at different

strength of the material, and smaller effect of residual stresses in high strength

materi al.

STRUTS FROM RAMBERG-OSGOOD MATERIAL

In the following figures from 9 to 12 there is shown how the instability curves

for compressed members of rectangular cross-section with initial crookedness

1/1000 depend on the strength degree of the materials at different shapes of

stress-strain diagram, expressed by the parameter n. This numerical experimentation

with the help of a computer was made with the assumption that there is

no strain reversal. Fig.13 shows the comparison of the T curves without strain

reversal with the R curves, where strain reversal is taken into account. We

can see in Fig. 14 the corresponding diagram for the determination of the

effective flexural stiffness of the rectangular cross-section, as a function of the

dimensionless axial force and bending moment. There is also evident the limited

region of R curves, which are computed according to the assumption that the

axial force is constant, while the bending moment increases. Fig.15 reminds us

of the fact that in materials with the low parameter n of the stress-strain diagram
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exists considerable difference between the buckling loads according to tangent

modulus concept and the buckling loads according to reduced modulus concept

for different cross-sections. Although, as it is well known, the actual load-carrying

capacity is somewhere in-between, the question is whether it will not be

worthwhile, sometimes to take into account the increased carrying capacity

because of strain reversal. When n is high (Fig.16 the differences are

considerably smaller. However, also here the question exists whether the use of the

increased buckling loads above N 1, is convenient in the region of very small

slenderness, because here the unreversal shortening of the strut becomes substantial.

May be we should pay attention sometimes also to a serviceability limit state,
defined with an appropriate limit of the unreversal deformation.

COMPOSITE STRUTS

The suitability of the dimensionless presentation of the bugkling curves, also for

the struts with composite cross-sections steel - concrete can be well seen

in Fig.17. The curves for all composite cross-sections are always between the

lower curve for plane concrete and the upper one for plane mild steel here

without influence of residual stresses Of course in N and X there are

involved parameters, which take into account the shape of single cross-sections

and the properties of single materials. And in Fig. 18 there is shown the diagram

for the determination of effective flexural stiffness for a concrete filled tube.

It is intended for changing compressed axial force and bending moment without

strain reversal. According to so many variations regarding possible cross-sections

and material properties, the question of the typical composite cross-sections is

even more important.

LOAD CARRYING SVSTEMS

At the end, we might discuss very shortly the question of buckling and instability

of the linear systems. We can say in connection with buckling that it is no

problem for any multistory plane frame to get automatically the shape of the

buckling deformation and the buckling safety factor with the help of computers

after- Vianello's method, that is with the iteration and the use of the 1st order

theory. With given relations of effective flexural stiffness for the given cross-

section and with the consideration of structural imperfections, if necessary, we

can automatically take into account the influence of inelasticity.
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While the buckling calculations of plane frames with the help of computer

represent today a routine work input of data as in the STRESS program the

calculation of the elasto-plastic instability of multistory frames, loaded vertically

and horizontally, is nowadays possible, but still very unpractical and

expensive, because the inelasticity changes in cross-sections, both for the

iteration of a given loading and for the increase in loading. That is why this

way of computing is intended today before all for research work and especially

for the evaluation of different approximate methods like the 2nd order plastic

hinge theory, the Merchant's formulae, and interaction formulae for beam-

columns. It is evident that the degree of the accuracy of the approximate methods

can be well evaluated only with the help of a more precise method.

But the most important basis for the elasto-plastic calculation are the data about

the variation of the effective stiffness of the cross-sections. And so we must

return to the appeal for the necessity of unification of these data which is even

more unavoidable especially at the additional consideration of biaxial bending,

torsion and plate buckling. In this way it would be possible to reliably compare

the results of the calculation of instability behaviour of complicated structures

carried out with different numerical methods in different places. And this would

enable considerably quicker progress in the spreading of knowledge in the field

of compression instability.

CONCLUSION

The appropriate unification of stress-strain diagrams, cross-sections and the

corresponding distribution of residual stresses give a general value of the data

about the effective stiffness, which are the most important basis for the

determination of the buckling or instability limit load of any linear load carrying

system.
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SOME SIMPLE THOUGHTS ON COLUMN BUCKLING

Thomas A. Barta
Lecturer in Engineering Structures

Department of Civil and Municipal Engineering
University College London

ABSTRACT

This paper describes briefly the "physical" and
"mathematical" moo els in physics and structural mechanics, leading
to the model!ing of fJexural buckling of pin-ended columns;
(this later aspect is presented to a certain extent as a
history of ideas). Some simple thoughts on column buckling
lead to a modern interpretation and generalisation of Young's
formula for the "imperfect" column. A criterion for the
definition of the imperfection parameter is established and
it's simplest expression proposed. Various possible formulations

are shown and a discussion of the "natural parameters"
of the problem is followed by an example showing the potential
and simplicity of the suggested approach.

The specific contents of this paper are:

1. Introduction
1.1 Modelling in Physics
1.2 Modelling in Structural Mechanics
1.3 Objective

2. Column Models
2.1 Outline
2.2 The Mechanical Model
2.3 The Mathematical Model (theory)
2.4- The Phénoménologieal Hoar 1 (analogue)

3. Some Simple Thoughts on Column Buckling
3.1 The Interaction Diagram for Column Buckling
3.2 Young's Formula, Modern. Version
3.3 A Criterion for the Definition of the Non-dimensional

Imperfection
3.4 The Simp]est Expression for the Non-dimensional

Imperfection
3-5 Discussion of Other Expressions for the Non-dimensional

Imperfection
3.6 The Buck! ri.g Curve and an Alternative Interpretation
3.7 The Introduction of Alternative Variables
3.8 On Some Simplified Formulae
3.9 The ''Natural" Column Parameters
3.10 The European Column Curves and an Example for the

Use of the Proposed Formulae.
3.11 Concluding Remarks
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1. INTRODUCTION

1.1 Modelling in Physics

The real "^h^sical^ world is extremely complex. In
order to "understand it, at least partially, we restrict
ourselves to a particular system, within certain limits of
practical interest, which we study from a specific point of
view, separating - as far as possible - the major (or primary)
parameters of the system from the minor (or secondary) and
from the negligible ones. (Secondary parameters may be called
"junjoerfboxions"). We have thus defined - somehow subjectively
- a "]oh;£sical model" on which we can make observations and
experiments, "(within the limitations of equipment and
techniques). In defining the model, the question "how good is
good enough?" has to be asked (and answered as far as possible)
as obviously the importance and value of the expected results,
have to be corelated with the features of the model and with
the cost, complexity and accuracy of its investigation.

The mathematical description of the physical model
(consistent with the general principles of physics) will
involve necessarily idealisations and simplifications; and
further simplifications will be necessary if a specific
mathematical method is to be used. We have now defined -
again somehow subjectively - a "mathemjatical_model" or "theory".If we consider that the physical model is a reasonably "rejfL71"
representation of the actual physical system, then the
mathematical model is it's more or less "ideal" representation.
Thus from the physicist's point of vTew the physical model
is "perfect" and the mathematical model is more or less
"jLmjoerfect""". From the mathematicians or theoreticians pointof view Cässuming that the idealisations of the mathematical
model are fundamental axioms) it is sometimes (wrongly) stated
that he deals with a pure "perfect" model, whereas nature is
"imperfect". However both points of view can be unified by
defining the differences between the physical and the
mathematical models as '(imperfecti_ons_". Obviously the question
"how good is good enough?""" will govern again the choice of
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idealisations and simplifications made in the definition of
the "mathematical model".

The exaggeration of certain magor parameters of the
models can lead to the very useful concepts of upper and
lower hounds of the problem.

A better understanding of the phenomena can be achieved
through an oversimplification of the mathematical model (which
sometimes can be specially constructed physically). Such
models are called "Ph^nom^nologic^^mo^d^els^" or "ana^gues".

The three mode3.s_are_intj3r^ejDendent as they have to be
checked against each other; e.g. the simple analogue may lead
to the discovery of a major parameter which has been
overlooked in the initial physical model, or it might explain some
apparently odd behaviour of the physical model.

1.2 Modelling in Structural Mechanics

In structural mechanics the limit states of engineering
structures interacting with their environment are studied
from the point of view of their serviceability. This is the
broad definition of the physical or "mechanic_al_model".
Various publications on measurements of loading actTons and
tests of structures, structural elements and structural materials

cover this subject. Other publications cover the "theories"
or "mathematiica.l_modielps" of these different topics. Pheno-
menological-models of materials are covered in the literature
on rheology etc., whereas the most extensive treatment of
phenomenological models for structural components is given in
a recent book by CEOLL and WALKEBCH 3(1972). Unfortunately,
there are no textbooks (as far as the author knows) covering
all models in equal depth and breadth, and practically no
satisfactory attempts have been made to answer the questions
of "limitation of validity" and "how good is good enough".

1.3 Objective

The main objective of this introduction is to stress thatit is necessary again and again to judge and assess assumptions,
idealisations, simplifications etc. of the different models,
their interrelationship, and to ask - and answer as far as
possible - the questions about the range of validity and the
question "how good is good enough". In fact every engineer
acts, to a certain extent, consciously or unconsciously, in
this way.

2. COLUMN MODELS

2.1 Outline
We will approach this subject (using modern terminology

and notation) by following its historical development,, as far
as it constitutes a history of ideas (not covered in this
form elsewhere) and as it will be used in this paper later
on.
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2.2 The Mechanical Model

A straight;, axially loaded, slender rod is called a
column (strut, or stanchion) and its pr^mar^ J^ehaviounal.
feature (in the context of this paper; is its flexural deformation.

This loose description of flexural buckling goes back
to HERON of Alexandria PW (~A.D. 75) and to LEONARDO da VINCI
[2-1)1 (1^52-1519). The lûiiiit state of the column can be defined
either through _fa_ilurp MUSSCHENBROEK [A4J (1729) or the onset;
of_lar£e deformations EULER C.153 1744) MUSSCHENBROEK [233
T1726) was the first to dej?ine_material properties as: "hard,
perfectly hard, soft, perfectly soft, flexible, elastic and
perfectly elastic" and to design Resting machines permitting
systematic variations of parameters for the testing of material

properties and structural components (1729-op.ck)EHLER
(1744) (op. cit.) considers plastic deformations and later
(1757)063 inelastic bending "... because it occurs in all bodies
that resist flexure, whether they are elastic or not". He
suggests to determine the flexural stiffness through bending
tests under similar boundary conditions (as for the column).
This concept was rediscovered 1J2 years later by CONSIDERE

19 1 (1889) and ENGESSER [143 (1889) and marked the beginning of
modern research into inelastic buckling. THOMAS YOUNG L3D3

(1807) had an even clearer understanding of inelastic deformations,

stating: "... a permanent alteration of form limits
the strength of materials with regard to practical purposes,
almost as much as fracture, since in general the force which is
capable of producing this effect, is sufficient, with a small
addition, to increase it till fracture takes place". He notices
the different behaviour of stocky and slender columns and gives
-Limit_s for various materials for the two types of behaviour.
His understanding of what we call today _inh0m.0genei.t2 of
material_projDerti_e_s and imperfections is amazing, and has its
origin in analyzing experimental results; "... considerable
irregularities may be observed in all the experiments and
there is no doubt but some of them were occasioned by the
difficulty of applying the force precisely at the extremities
of the axis, and others by the accidental inequalities of the
substances, of which the fibres must often have been in such
directions as to constitute originally rather bent than
straight columns". This concept was rediscovered by several
authors, but is usually attributed to AYRTON and PERRY [ 1 J
(1886) 79 years later. The importance of "pa_st_history_of
the material" has been demonstrated by B. BAKER L 3 JC1888) and
only since WILSON and BROWNL293(1955) showed the importance
of residual_str£sse_s (47 years later) began to be a sub.iect
for modern research. R.H. SMITH 127)1(1878) (who rediscovered
Young's concept of imperfections) recognized that "... the
whole question of the strength of struts is one of probability"
a concept which gained acceptance only after its rediscovery
72 years later by LUTHEIL L12](1950).

It can be seen that the physical model of flexural
buckling was reasonably well established almost 100 years ago
(or even longer) but unfortunately not well known or understood.
Rayleigh's remarks about Young as quoted by TIMOSHENKOC^ai
Xl953) that he "... did not succeed in gaining due attention
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from Ms contemporaries. Positions which he had already
occupied were in more than one instance reconquered by his
successes at great expense of intellectual energy", apply
equally well to the 18th and 19th century scientists mentioned
above.

2.3 The Mathematical Model (theory)
We restrict ourselves to the elementary case of the pin-

ended straight column with constant cross-section. In his
second memoir EULER (1757) (op.cit), gives his general formula
for the "idea^l inillasii2. co]_umn", of length £ :

where B is termed "stiffness moment", or in todays terminology
"flexural stiffness" and includes such more recent concepts as
tangent modulus, or deteriorated stiffness etc. In his first
memoir (17^) (op.cit) he calls this term the "elastic moment",
and in his third memoir (1778)t\7] gives it's more precise
version, (for the classical "elastic EuMrMoad")

N (2)
E £*

Euler's definition of the elastic modulus E (usually attributed
to Young) and of the second moment of area I,are correct, but
he ignores JAKOB BERNOULLI'S (1695) t"73 correct definition of
the position of the neutral axis. YOUNG (1807) (op.cit) gives
the correct value for I (with the correct position of the
neutral axis) and gives also a, clumsy but correct, derivation
for the mechanical model of his physical model (see chapter 22).
He considers pin-ended elastic columns with an initial
sinusoidal curvature of amplitude e and a straight column with
a load N applied with an eccentricity ec. We will transcribe
his results for these "imperfect jooJLunms" into a more modern
form so as to express the ^e^ond^order^oment M1- by multiplying

the first order moment

Mt Ne0 (3)
with an amplification ^aÇ.'to.r oi so that:

M* M1«- (4)

For the initially curved column:
1

1-N,
<*=—L- (5)

"E

and for the eccentrically loaded column:
noi sec (6)

with the non-dimensional parameter:
% W/Ne (7)
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where NE is the elastic Euler load, equ.(2). A numerical
comparison of (5) and (6), by AYRTON. and PERRY (1886) (op.cit)
shows that for practical values of NE the algebric expression
(5) is a good approximation of (6); so that the initial curvature

can be considered as a "generalised imjoerf^ctiari'. RAVIER
(1826-1833)[&Q writes the first modern textbook on engineering
mechanics, and gives an elegant mathematical derivation for the
eccentrically loaded column, (without indicating the concept
of the "imperfect" column). Comparing theoretical results with
tests he concludes that the elastic Euler-load NE and a suitable

failure load N0 for the stocky column are upjoer bounds
for the experimental results. Relatively late, MERCHANT "(1954)
L22]suggested empirically (in the more general context of
frame-buckling) that the special form of the well-known
Rahkine-formula __

N. + NE 1 (8)

with the non-dimensional parameter
No N/N0 (9)

is a lower bound. HOHNE (1963) tzöl has proved theoretically
that this is correct under certain conditions (which are
satisfied for the pin-ended column). Young did not apply his
findings to bridge the gap between the experimental results and
his theory. The first best-known attempts in this direction
are due to AYRTON and PERRY (1886) (op.cit) who admitted as
limit state yield in the extreme fibre; and suggested various
expressions for ûnjDerfections. This approach was adopted in
various codes of practice mainly due to work by ROBERTSON
(1925)L20 and DUTHEIL (1950) (op.cit). The development of
theories for inelastic buckling including the effect of
imperfections, and the extensive study of residual stresses,
are well known and will not be discussed here.

2.4 The Phenomenological Model (analogue)

JAKOB BERNOULLI, or G. CRAMER (the editor and commentator
of his works) (1744)C10] have imagined the two-spring model for
the bending of a cross-section, which may be considered as the
predecessor of the well-known Shanley-model. EULER (1778)
L18Hwhen faced with the problem of self-weight buckling of a
column, considers two rigid links connected by a torsional
spring. Eor the modern treatment of such analogues see the
book by CROLL and WALKER (1972) (op.cit).
3. SOME SIMPLE THOUGHTS ON COLUMN BUCKLING

3.1 The Interaction Diagram for Column Behaviour

The mechanical model of the _slender column has been defined
in (2.2). Obviously a very £toc^_c£lumn launder identical
loading and support conditions")" ha^ to be represented by a
different mechanical model. Eor a solid cross-section the column
degenerates into a block and for a built-up cross-section into
a jclate^assembl.age. Eor a ductile material like steel, to which
we restrict ourselves in this paper, barreling and plate-deformation
will be the respective primary behavioural features. Eor a
certain region of slendernesses the behaviour of the slender and
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very stocky columns may interact, and for a certain value of
slenderness (treating the problem as it has been done tacitlytill here, as a deterministic-one) buckling will be predominant.
We could thus identify by experiment the practical limit of
column behaviour, and will call this limit the "stocky column"
with a buckling load for which (The very stocky
columns fall outside our present object of study, and as their_
behaviour depends on different parameters, cannot be included in
the same diagrams or tables as the slender columns). When the
length of the column tends to zero, the'column degenerates into
a "sheet", and ends up as a "mathematical_fiction" which might
be used eventually as a "conventional""" value; but could be
dangereously misleading in understanding column behaviour. As
forces are readily measureable in experiments, we shall call
N0 and Nj the "primary natural çolumjiarameters" which can
be studied experimentally and evaluated from a probabilistic
point of view. With the non-dimensional parameters 1

as defined in (9) and N* ^ <• 1 as defined in (7)» with
3 N°/NE (10)

the equations for the bounds can now
readily be written:
N0 + NE - N0Ne 1 (upper bound) (11-a)

N0 + Ne - No 1 (lower bound) (11-b)
The equations (11) define a triangle
which will contain all experimental
results. We will assume that the
experimental results can be represented
by a curve. (See the interaction
diagram in figure 1).

3.2. Young's Formula, Modern Version

Young's approach (see 2.2 and 2.3) will be used to find
an expression for the experimental curve in fig. 1. Considering
the initial curvature e0 as the "generalised imperfection", the
second order.moment can be written, using equs. (3 to 5):

M* (12)

The interaction diagram in figure 2 shows (as an example for the
idealised I-section) the well-known (conventional) elastic and

rigid-plastic failure-conditions (limit-
states) It can be seen that any failure-
condition for any cross-section can be
approximated by the linear interaction-
formula :

K + c0 M0 1 (13)

where,
"M s M/M0 (14)

is the ratio of the actual moment M to
the (rigid-plastic) ultimate moment Mo
and c0 is a suitable approximation const-
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On substituting (12) into (13) we obtain with (14), aftersome algebric manipulations:
(1 - N0)(1 - Ne) -opo 0 (15)

with, the ' ' non-dimens ional_ _£generalis_ecQ_ imperfection"

m= SLÊsl. (16)
C M0/No

Equation (15) with (15) represents the modern version of Young'_s
formula. (In view of the historical account in (2) we consider
this name more appropriate than the current name of Perry's
formula).

3.3 A Criterion for the Definition of the Non-dimensional
Imperfection

Young's epigones found it difficult to define a suitable
expression for m The interaction-diagram in figure 1 is now
very useful in providing a nepessary criterion for the definition

of ft? This criterion is: "Upon specialisation, the
expression (15) for and equ. (15) should yield the bounds
(11), and so automatically contain the corner points of the
interaction diagram (fig. 1)". (There is no proof that this
condition is also sufficient).
3.4 The Simplest Expression for the Non-dimensional Imperfection

It is obviously possible to define many expressions for
Tj^ which satisfy the criterion given above. The simplest
expression will be linear in the three primary natural
parameters of the problem (as defined in 3-1):

«2= c (îfE - N° (17)

with the "imperfpctipn_jppramptpr" c, where: 0<c<r1. The upper
bound is obtained for c s 0, and the lower bound for c s 1.
We consider c to be the fourth natural parameter of the problem.

3.5 Discussion of Other Expressions for the Non-dimensional
Imperfection

The most popular expressions for are due to ROBERTSON
(1925) (op.cit) (although his expression is implied already
in the paper by AYRTON and PERRY) and DÜTHEIL (1950) (op. cit.)
both expressions will be generalised so that they contain the
corner point (N0 1, Ne N| The ROBERTSON £arameter can
be written in non-dimensional form (this is a further
generalisation of his concept) in our variables

c (18_a)

r c -fä/N.) (18-b) *)

* An expression of the type (18-b) has been suggested by DWIGHT
in his contribution to this colloquium.
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Both, expressions pass through both corner points; and with
c 0 yield the upper bound, but do no_t ^ield upon specialisation

the lower bound. DUTHEIL was the first to use non-
dimensional parameters, and his generalised parameter is:

7 C# Ne_" Wg°
(18-c)

* N0

Equation (15) with (18-c) will_n£t_pas£[ through the lowe]?
_corner^p£int and will not £i£ld upon specialisation the
lower bound. A combination of the satisfactory parameter (17)
with the Robertson and (or) Dutheil parameters (18) will
obviously not satisfy the criterion defined in 3.3«

3.6 The Buckling Curve and an Alternative Interpretation
Substitution of (17) into (15) yields the hyperbola:

1-1 -(1-cF|)I0+(1-c)IEI0 =0 (19-a)

N _
1-ITe — (19-b) N (19-c)° (1-cN® )-(1-c)Ne 1-(1-c)No

An alternative interpretation of Ne can be obtained if we
consider 11 to be identical with N& as defined by equ. (l)
Dividing equ. (1) and (2) yields then •

1E s B/EI (20)

i.e. NEcan be used to define the ratio of actual and elastic
stiffness (or in a more specialised interpretation, the ratio
of tangent and elastic moduli).

3-7 The Introduction of Alternative Variables

_ In our previous formulation both non-dimensional variables
N0 and NE were load-dependent. By taking the ratio

^=¥E/f0 (21-a)
or it's equivalent:

ts N,/Ne (21 -b)
we obtain a load-independent, non-dimensional variable which
we may call the "strength'stiffness-ratio". Accordingly we
will have „

n; (22)

so that "f °° With (21) and (22)- the equations (19)
becomes the cubic:

l-d-cY^-Yi^ + d-c)^ 0 (23-a)

or, explicitly:
>|f 2-(1-c,v'/0)Nl (23-b) N [d-cVd+^-Vld-ct'O+^-d-d-c)?

N0[l-(1-c)Nj °
2(1-c)

(23-c)
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An alternative form of (23-c), more suitable for numerical
evaluation is :

*.= (23-d)
[o-c^n+^k V[(i-c^)+r32-4(i-c)t

0-5-

or
X= N0"XaAaEA

A representation of equ. (23) together
with the corresponding upper bound:

(1-I)(l-tN 0 (24-a)

and lower bound:

1-(1-f)N0 -If, 0 (24-b)

is given in figure 3-
Usually the slenderness-ratio X=£/±
(i radius of gyration of the cross-
section) is used as parameter for
buckling problems. It can be easily
shown that the "non-dimensional
^l£ndernes_s-raJtio is :

(25-a)

(25-b)

and it1 s corresponding limiting value :

xa=fr (26)

Substituting (25) and (26) in (23) we obtain the quartic:
1-(1-c 7?2)N.-^.+(1-c)Vn.2 0 (27-a)

or explicitly:
x ii-(i-c^)ü0 (27_b)

[l-(1-c)Nj

N0
L(1-cX°2)A*]-V[(1-cX°* )+X2] -4(1-c)\2 (27-c)

2(1-c)>f

and the more suitable form:

\ 2 (27.4)
[(1-cVoi )+ \l]+ V[( 1 -cl? +"Xl] -4(1-c) X2

Similarly, substituting (25) and (26) in (24) we have the
upper bound:

(1-No)(1-^No) 0 (28-a)

and the lower bound:
1-(1- Jêljïï0-1?N,o 0
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The equations (27) and (28) are
shown in figure 4; this is the
well known presentation of the
buckling curve. It should be
noted that the order of the
equivalent equations (19)(23)
and (2?) is increasing by one,
and that the corresponding curves
in figures (1)(3) and (4) get
more complicated.

FIG. 4
3.8 On Some Simplified formulae

Considering only relatively small values of X (27-d)
may be expanded into power series, and retaining only the major
terms, we obtain

1
or

N

N
1+c("3f-"5P)

(29-a)

(29-b)

Equ. (29-a) is a generalised form of the JOHNSON-^arabola.
(as used in the USA with "5? s 0) and equ. T2^-b) is the generalised

form of the well known MMŒNE-formula.

3.9 The "Natural" Column Parameters

The natural column parameters, defined earlier will be
discussed again. The "elastic" Euler load Ne (equ. 2) is well
understood and reasonably well known experimentally. Eor the
coupled parameters N0 and of the "stocky column" (chapter 3-1)
there is little experimental evidence and few theoretical studies
available, and values are adopted at present through some kind of
intuitive extrapolation. The imperfection parameter c should
be studied in the region of highest "imperfection sensitivity".
The scatter of experimental results, and column behaviour in
this region has been explained, on an analogue, by CHILVER and
BRITVEC (1963)£8], and there is sufficient experimental
evidence available. It seems that a single imperfection
parameter c is good enough for the description of column
behaviour. Obviously a probabilistic study of all these
parameters is desirable for design purposes. As the number of
parameters is small, such an approach is feasible.

3.10 The European Column Curves and an Example for the Use of
the Proposed Formulae

The late Professor H. BEER chaired and inspired Commission
8 (Buckling) of the European Convention for Structural Steelwork.
The main results on column buckling obtained by this commission
are reported in several papers in the September 1970 issue of
"Construction Métallique". The theoretical foundations for the
European Column Curves are given in a paper by BEER and SCHULZ
(1970) [5 "J. At a meeting of Commission 8 in London (April 1971)
J.B. DWIGHT and B.W. YOUNG (1971)C13J summarized their work, on
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similar lines but adopting the concept of 0*). At the
discussions at this meeting BARTA (1971)C4-] proposed the use of
Young's formulae (equs. 15 and 16) suggesting as generalised
imperfection the sum of the Dutheil term (equ. 18-c) and of his
term (17), both with the assumption 0. Barta's final
formula is practically identical with an algebric approximation
formula reported by BEER and SCHULZ (1971)1-61 at the same
meeting and due to BAAR (1970)L2J and unknown to the author
at that time. (Baar investigated four algebric approximation
formulae, without any attempt of a theoretical justification).
In the search for a generally accepted approach, the concept

# 0 has been adopted, but (to the authors knowledge) the
final curves are still subject to discussions. In order to
show the potential of the proposed simple^approach, we reproduce

in figure (5) the European curves (N|= 0) from a paper
by BEER and SCHULZ (1971) £6} to which we have (N^s: 0)

_

added the
Merchant lower-bound curve. Eor the present purpose it is
"good enough" to use equ. (27-d) with^?=o and to determine
the imperfection parameter c for the most imperfection-sensitive
value of ^ ; (i.e.~£=1); This results in the following values
for the three curves

c^ 0.232 ; cb 0.444 ; cc 0.743

*) Dwight's and Young's contribution to this colloquim represent
a more detailed version of this report.

a

Euter

H rolled I--...
h/b > 1,2

H welded I-shape
flame-cut flg.pl.I rolled I-shape w.
welded cover-pi.

B box-shape
annealed

H I-shape
annealed

0 Q2

F16.5
Q4 Ofi Q8 10

welded
box-shape
rolled I-shape

h/b > 1,2

rolled I-shape
h/b <12

welded I-shape
flame -cut fig pi
welded I-shape
rolled flange pi
rolled I-shape w
welded cover pi.
I-shape
annealed

I rolled _I-shape h/b<.\2I welded I-shape
rolled flange pi.

-4| T-shape r~~T U-shape
12 U Ifi IS *

The results differ so little from those of Beer and Schulz that
the curves could not be clearly traced together. We give
therefore a numerical table of comparison:
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Values of N„

curvu^\^
0 0.25 0.50 0.75 • OO 1.50 2.00

U.B. 1 1 1 1 1 0.444 0.250

a
B-S

B
1
1

0.990
0.985

0.923
0.934

0.821
0.831

0.675
0.675

0.381
0.388

0.228
0.234

b B-S
B

1
1

0.983
0.972

0.885
0.887

0.757
0.754

0.600
0.600

0.343
0.357

0.207
0.222

c
B-S

B
1
1

0.975
0.955

0.884
0.836

0.687
0.683

0.537
0.537

0.323
0.327

0.202
0.209

L.B. 1 0.941 0.800 0.640 0.500 0.308 0.200

U.B. upper "bound; L.B. lower bound
B-S results by Beer and Schulz*)

B present paper

3.11 Concluding Remarks

The approach shown in this paper will be extended in
further publications to other materials, boundary conditions
and loading cases. It's extension to post-buckling of structures
will be given in joint paper with Dr. A.C. Walker.

*) The numerical values have been obtained in a private commun-
ication from Professor H. Beer.
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DETERMINATION OF THE ELASTIC LIMITS FOR BUCKLING ANALYSIS

A. Carpena
Senior Development Engineer

Società Anonima Elettrificazione S.p.A.
Milan, Italy

ABSTRACT

This paper presents the results of a statistical research on the yie
Id points to introduce in the buckling curves. If an even degree of safety
should be obtained for all the components of a structure, whether in
tension or in compression, a higher yield point than the minimum guaranteed
tensile limit must be adopted for the buckling curves.

This conclusion was accepted by the "Convention Européenne" for its
column strength curves.

RESUME

Ce rapport présente les résultats d'une recherche statistique sur
les limites élastiques à introduire dans les courbes de flambement. Si
l'on veut obtenir une sécurité homogène pour toutes les pièces d'une struc
ture, tant tendues que comprimées, une limite élastique plus élevée que
celle minima garantie en traction, doit être adopté pour les courbes de
flambement.

Cette conclusion a été acceptée par la "Convention Européenne" dans
ses courbes de flambement.
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The buckling curves recommended by Commission No. 8 of the "Convention

Européenne de la Construction Métallique" (CECM) represent a substantial
achievement by that organization, illustrated by the fact that the fa_i

lure stresses given thereon are some 20% higher than those of the German
Standard DIN 4114 for the majority of ordinary sections over the range of
slenderness with which constructors are mainly concerned.

This outcome is based on:

- a very extensive programme of experimental research into the mechanical
properties of the steel and the buckling strength of columns with varying
cross section and slenderness ratio;

- an equally comprehensive programme of theoretical research into buckling
of columns with or without geometrical and structural imperfections,
undertaken on computers on which the buckling phenomenon has been simulated
in a certain way to reproduce the loading tests;

- the "statistical-probabilistic" philosophy of safety adopted by the CECM,
which not only led to a rational interpretation of the theoretical and ex
perimental results but was used to specify the research programmes
themselves

DEFINITION OF PROBLEM

A significant aspect of the buckling curves, related in part to the
probabilistic theory of safety, is their termination, for slenderness ratio
0, at points sometimes higher than the allowable elastic limits of 24 and
36 kg/mm2 for steels E24 and E36 (previously designated as A37 and A52).

It is perhaps without precedent that values higher than the guaranteed
minimum elastic limits should be adopted for standards, or recommendations,

as allowable structural failure stresses.

There are three reasons for this conclusion :

a) the experimental curve, connecting points situated at two Standard Devia
tions SD below the mean values curve, ends at 26 kg/mm2;

b) the elastic limit of open walled sections is higher in overall compression
than in tension, the compression limit being the failure stress at

slenderness ratio 0. Both the mean value derived from these tests and
that value minus two SD are higher in overall compression than in tension

- as per EURONORM (1) - this latter value (mean M - 2 SD) being the
failure stress according to the failure criterion of Commission No. 1 of
the "Convention Européenne". If this guaranteed tensile level is 24 for
A37 and 36 kg/mm2 for A52, it is logical to adopt higher values for the
buckling curves at slenderness ratio 0, since these are directly affected

by the overall elastic limit in compression and not by that in
tension;

c) an even degree of safety should be maintained for all components, whether

in tension or in compression, constituting a structure.
This last point, however, requires a much longer explanation.

HOMOGENEOUS SAFETY AND FAILURE CRITERION

The failure criterion adopted by Commission No. 1 of the "Convention
Européenne" is the following: the stress or failure load of a member is
the measured mean value for a series of specimens minus two SD. If the sta
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tistical distribution is a normal one of the "Gauss-Laplace" type (as is
the case for the CECM measurements), there is a 97.7% probability that the
value question will be under the member's strength and a 2.3% one that it
will be over.

The CECM experimental programme has been precisely elaborated so
that members were tested under conditions very close to those found in
actual structures, and in sufficient number to obtain mean ultimate loads
and Standard Deviations possessing statistical validity for the whole Eurcj
pean production.

The designer wishing to maintain an even degree of safety in the
various elements of a structure must base his calculations on the failure
loads of the various component parts, all such loads having the same proba_
bility of being exceeded (or of not being reached) irrespective of whether
the loading is in tension, compression or bending.

According to the failure criterion of Commission No. 1 - buckling
load equal to the mean minus two SD - the probability of not reaching this
value is 2.3% and must be the same for all components so as to avoid
wasting material in some part of the structure without rationally adding to
its general safety.

Under these conditions, it is fairly easy to check that the elastic
limit used for the buckling curves must be higher than that of the tensile
specimens (and also higher than that adopted for designing parts in simple
tension); in other words, if 24 kg/mm2 is guaranteed as mean minus two SD,
the elastic limit to be used for establishing the buckling curves must be
higher than 24 kg/mm2 in order to preserve the failure probability of 2.3%

for compressed members.

INVESTIGATION OF STATISTICAL VALUES FOR ULTIMATE BUCKLING LOADS

The ultimate buckling load P of a member is given to the structural
designer by functions of the type:

P P (R, T, F, A, A) (i)
where:
R elastic limit in kg/mm2

T residual stress at a given point (at the edges of the flanges, for ex¬
ample) in kg/mm2

F initial deflection of the member per °/oo of its length
A section area in mm2

A slenderness ratio

Functions (1) can be determined either experimentally or more rapidly
by means of a computer by simulating load tests under various initial condi_
tions [2].

R, T, F, A are not exactly known, though their probable distribution
can be found, and a normal_distribution of the Gauss-Laplace type can be as_
sumed with average values R, T, F, A and Standard Deviations r, t, f, a.
The slenderness ratio A, on the other hand, can be assumed, at least at its
first approximation, exactly known, since any variation of A (due in gene-
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ral, more to wall thickness differencœthan to wall dimensions) has negligi_
ble effect on the radius of gyration. The member's length is an obviously
known factor.

The mean value P of the buckling load, its Standard Deviation and the
value P of this load, to which reference is made after the adopted failure
criterion, will be:

P P (R, T, F, Â, X) (2)

9 — t \ 9 /9R _\? S=\9 \9P ~ 3R W ^ ^3F ^ + (jK ^ ^

P P - 2p P (R, T, F, A, X) -

We would be tempted, knowing (1), to calculate (4) as follows:

Px P (R - 2r, T + 2t, F + 2f, A - 2a, X) (5)

but we would find: Pp < P.

This appears evident when we reflect that the 2.3% probability of
having a column with a failure load below P (4) is equal to that of having a
column with an elastic limit below (R - 2r), with any T, F and A, or a colu
mn with T > (T + 2t_) and any R, F, A, or else F > (F + 2f) and any R, T, A,
or, finally, A < (A - 2a) and any R, T, F.

_ The "composite" probability of having simultaneously R < R - 2r,T>T + 2t, F>F + 2f, A<A - 2a is the product of four 2.3% degrees of prc>
bability that each event should occur independently of the three others,
this is equal to:_(2.3 x lO-2)1* 28 x 10-8 which is well below the 2.3%
probability that P (4) be smaller than the member's buckling load, assuming
fairly reasonably that the variables R, T, F, A are statistically independent

It follows that, in order to obtain P, it will be necessary to intrc)
duce at (1) the values Rp, Tj, F^, Aj_ so that:

F P (Rp, Tp, Fp, Ap, X) P - 2p (6)
with

Rp R - ar, Tp T + at, Fj F + af, Ap A - aa (7)

where a < 2.

This coefficient a has been determined with sufficient accuracy in
various conditions as follows. P can be calculated by means of (4) or by
developing in series (6), we can write (the terms in the bracket are all
positive, taking into account the signs r, t, f, a and the partial dérivâtes

- see Table II):
P P (Rp, Tp, Fp, Ap, X) P (R, T, F, Â, X) -

,3P ^ 3P ^ ^ 3P ^ 3P
3R 3T 3F 3A a) ^
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and by comparing (4-) and (8):

By squaring and taking account of (3):

^p2 =4 i(Hr)2 + (lft)2 + (lff)2 + (H a)2i=

«2 (Hr + Ift + Iff + Ifa)2
o 3P »9 /^P J=\2 /^P

a \(m r) + % t + % f) + (3Ä a) i +

(„ 3P 3P „ 3P 3P „ 3P 3P
+ a 3R 3T 3R 3F 3R 3A ra

3p 3P ^ A 3P 3P ^ x 3P 3P f /iri.
3T 3F 3T 3A 3F 3A

*

All the terms of (10) being positive or equal to zero, we obtain
additional confirmation of the fact that a < 2. Indeed, in the last of the
expressions for 4p2 set down in (10) above, we recognize the value of p2
in the first quantity between the braces ; let us designate the second quail
tity between the braces y2. We thus have:

4p2 a2(p2 + y2) then a 2(^ + ^2/p2)1;/2 Î11)

TABLE I - Mean values R, T, F, A and their SDr, t, f, a
in % and in absolute values for calculating a

(R R - 2r 24 kg/mm2)

R

kg/mm*

r r
kg/mm'

t
F

/ A

mm*

a

% kg/mm1 % kg/mm* % % mm*

26,70 5 1,35 3,33 10 0,33 10-' 10 10-» 2010 2 40

26,70 5 1,35 3,33 15 0,50 10-' 15 1,5 x 10-« 2010 2 40

26,70 5 1,35 3,33 15 0,50 10-» 15 1,5 x I0-4 2010 3 on

26,70 5 1,35 3,33 20 0,66 10-» 20 2 x 10-* 2010 3 60

26,70 5 Ü35 3,33 20 0,66 10-' 20 2 x 10-» 2010 4 80

28,25 7,5 2,12 3,53 10 0,35 10-' 10 J0-» 2 010 2 40
28,25 7,5 2,12 3,53 15 0.53 10-» 15 1,5 x 10-» 2010 2

'
40

28,25 7,5 2,12 3,53 15 0,53 10-» 15 1,5 x 10-» 2010 3 60
28,25 7,5 2,12 3,53 20 0,70 10-» 20 2 X 10"*» 2010 60

28,25 7,5 2.12 3,53 20 0,70 10-» 20 2 X 10-» 2 010 4 80

30,00 10 3,00 3,75 10 0,375 10-' 10 10-» 2010 2 40
30,00 10 3,00 3,75 15 0,56 10-» 15 1,5 x 10-» 2010 2 40
30,00 10 3,00 3,75 15 0,56 10-' IS 1,5 X 10" » 2010 3 60

30,00 10 3,00 3,75 20 0,75 10-» 20 2 X 10-» 2010 3 60

30,00 10 3,00 '3,75 20 0,75 10-» 20 2 x 10-» 2 010 4 to

EXPERIMENTAL DATA

We have adopted in the Table I values of r, t, f, a and R, T, F, A.
Those of R have been selected so that, for deviations of 5%, 7.5% and 10%
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of R, the elastic limit R R - 2r amounts to 24- kg/mm2. The actual value
of e, derived from CECM stub column tests 1 was 7.5% of R, thus giving
an R value always above 24 kg/mm2. A Standard Deviation of about 10% would
seem to result from a Belgian statistical investigation [4].

For T and F and their Standard Deviations t,.f (10%, 15% and 20%),
we have adopted values equal to or below those experimentally ascertained
by the "Convention Européenne" or other research workers. A SD smaller
than that actually found has been adopted, since the resulting value of a
is then greater and this would further penalise the mean values R as can
be seen in Table III. We have even found values of t above 30% of T (figure

3, reproduced after [3], figure 2a).

The nominal section IPE 160 has been used for A. The deviation a% of
4% has been experimentally obtained but the deviations of 2% and 3% have
also been adopted for this investigation.

The partial derivatives have been extracted, for different slender-
ness ratios, from figures in report [2] and more precisely:

3P from the curve with initial deflection F 1/1,000 (fig. 2)

3P
by comparing the curves for F 1/1,000 of both figures with and
without residual stresses T (fig. 1 and 2)

3P
by comparing the curves for F 1/1,000 and F 1/500 (fig. 2)

or

ÔP
— limit buckling stresses obtained from the curve with F 1/1,0003A (fig. 2)

These dérivâtes are recorded in Table II.

TABLE II - Partial dérivâtes of buckling load P of the column in relation to:
elastic limit R, residual stress T, initial deflection F, section area A

r SP SP SP CP

X SR ST SF 3.4

mm* mm* kg kg/mm3

R 26,70 kg/mm*

0 + 2010 0 0 + 26,70
55 + 1 350 — 5S0 — 2 950 X 10' + 23,20
75 + 905 — 580 — 4 850 X 103 + 19,75
95 + 455 — 330 — 4 300 X 103 + 15,90

105 + 135 — 83 — 3 750 X 143 + 14,15

R — 28,25 kg/mm3

0 + 2010 0 0 + 28,25
55 + 1 350 — 562 — 3 400 X 103 + 24,30
75 + 905 — 482 — 5 100 X !03 + 20,50
95 + 455 — 24! — 4 300 X 103 + 16,25

105 + 135 — 83 — 3 700 X 103 + 14,30

~R 30 kg/mm3

0 + 2 100 0 0 + 30,00
55 + 1 430 — 652 — 3 900 X 103 + 25,50
75 + 975 — 650 — 5 450 X 103 + 21,30
95 + 460 — 190 — 4 550 x 10' + 16,55

105 + 150 — 93 — 3 650 X 103 + 14,40
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CALCULATIONS AND RESULTS ANALYSIS

The values of a and R-^ R - ar have been calculated for various sien
derness ratios, for different_combinations of the Standard. Deviations r, t,
f, a and for three values of R (26.70 - 28.25 - 30 kg/mm2). The results, gi_
ven in Table III, indicate that:

a) a increases when the SD t% and f% are reduced and the value of Rj_ R -
- ar to be adopted for the buckling curves is thus also reduced; this is
the reason for chosing t and f smaller than the actual values.

b) a increases with r% and Rj_ R - ar decreases to equality with R; for
the cases referred to in Table^ III, however, R R - 2r being fixed at
24 kg/mm2, r% increases with R and R]_ follows suit (see column 6 of Ta^

ble III).

Fig. 1 - Theoretical curves, non-dimensional,
for IPE 160, without residual stresses.
Buckling about the minor axis

Fig. 2 - Theoretical curves, non-dimensional,
for IPE 160, with residual stresses.

moyenne 9 kg /m m2

XJ
15 crr

Compression kg/mm 2

Fig. 3 - Diagram of distribution of residual stres.
ses ar measured in flanges of sections.
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c) when a% increases, a can ei¬
ther increase or decrease.

d) the R]_ values, in the last co
lumn of Table III, are the e-
lastic limits to be used for
the buckling curves which give

loads with a 2.3% probabili
ty of not being reached. Rq va.
ries with the slenderness
ratio, but this variation is fai^
rly small, especially in the
slenderness ratio range between

50 and 90 which concerns
the constructor.

For steel with r% 7.5%,
i.e. with the most probable value
of the SD (according to 4 fig.
8, 9, 10, etc.) Rj_ is almost
consistently higher than 25.5 kg/mm2
for A > 55. For r% 5% we have
Rj_ > 25 kg/mm2 and for steel with

r% 10% we then have 25.5 <

< R^ < 26.5 kg/mm2 for A > 55.

There results an Rq value
systematically and clearly above
R R - 2r 214- kg/mm

If R is above 24- kg/mm2, as
the tests of the "Convention Eures
péenne" have confirmed, Ri will
be even higher and be above the
values given in Table III for the
equality between r%, t%, f% and
a%.

The values of Rq adopted by
the "Convention Européenne" for
establishing the buckling curves
are sufficiently near the values
of Table III, in particular those
found for steel with R 28.25
kg/mm2 and r% 7.5%.

It is worth recalling that
the overall compression values of

R found experimentally have been consistently higher than those measured
in tension for open sections.

TABLE III
r/t/t/m

*
(2)

1 8 « R - 2r «1 - 5
k&/«a2 kg/aa2 w-2

(4) (5Î (6)

26,70 24 24,62
26,70 24 24,62
26,70 24 24,73
26,70 24 24,73
26,70 24 24,78

28,25 24 24,78
28,25 24 24,78
28,25 24 25,--
28,25 24 25,--
28,25 24 25,11

30,— 24 24,9
30,— 24 24» 9

30,— 24 25,18
30,— 24 25,18
30,— 24 25,38

26,70 24 24,97
26,70 24 25,06
26,70 24 25,09
26,70 24 25,15
26,70 24 25,U
28,25 24 25,29
28,25 24 25,44
28,25 24 25,55
28,25 24 25,65
28,25 24 25,69

30,— 24 25,53
30,— 24 25,72
30,— 24 25,92
30,— 24 26,07
30,— 24 26,20

26,70 24 25,15
26,70 24 25,23
26,70 24 25,22
26,70 24 25,27
26,70 24 25,24

28,25 24 25,58
28,25 24 25,73
28,25 24 25,79
28,25 24 25,88
28,25 24 25,88

30,— 24 25,92
30,— 24 26,16
30,— 24 26,31
30,— 24 26,46
30,— 24 26,53

26,70 24 25,21
26,70 24 25,25
26,70 24 25,21
26,70 24 25,23
26,70 24 25,18

28,25 24 25,77
28,25 24 25,88
28,25 24 25,87
28,25 24 25,93
28,25 24 25,88

30,— 24 26,27
30,— 24 26,44
30,— 24 26,52
30,— 24 26,61
30,— 24 26,61

26,70 24 25,05
26,70 24 25,06
26,70 24 25,—
26,70 24 25,—
26,70 24 24,95

28,25 24 25,76
28,25 24 25,78
28,25 24 25,67
28,25 24 25,70
28,25 24 25,60

30,— 24 26,56
30,— 24 26,62
30,— 24 26,49
30,— 24 26,54
30,— 24 26,41

105
105
105
105

105
105
105
105
105

5/10/10/2
5/15/15/2
5/15/15/3
5/20/20/3
5/20/20/4

7,5/10/10/2
7,5/15/15/2
7,5/15/15/3
7,5/20/20/3
7,5/20/20/4
10/10/10/2
10/15/15/2
10/15/15/3
10/20/20/3
10/20/20/4
5/10/10/2
5/15/15/2
5/15/1 5/3
5/20/20/3
5/20/20/4

7,5/10/10/2
7,5/15/15/2
7,5/15/15/3
7,5/20/20/3
7,5/20/20/4
10/10/10/2
10/15/15/2
10/15/15/3
10/20/20/3
10/20/20/4
5/10/10/2
5/1 5/1 5/2
5/15/15/3
5/20/20/3
5/20/20/4

7,5/10/10/2
7,5/15/15/2
7,5/15/15/3
7,5/20/20/3
7,5/20/20/4
10/10/10/2
10/15/15/2
10/15/15/3
10/20/20/3
10/20/20/4
5/-0/10/2
5/1 5/1 5/2
5/15/15/3
5/20/20/3
5/20/20/4

7,5/10/10/2
7,5/15/15/2
7,5/15/1 5/3
7,5/20/20/3
7,5/20/20/4
10/10/10/2
10/15/15/2
10/15/15/3
10/20/20/3
10/20/20/4
5/10/10/2
5/1 5/1 5/2
5/15/15/3
5/20/20/3
5/20/20/4

7,5/10/10/2
7,5/15/15/2
7,5/15/15/3
7,5/20/20/3
7,5/20/20/4

10/10/10/2
10/15/15/2
10/15/15/3
10/20/20/3
10/20/20/4

1.54
1.54
1,46
1.46
1.42

1,64
1,64
1.54
1.54
1.48

1,70
1,70
1,61
1,61
1,54
1,28
1,21
1,19
1.15
1.16

1,39
1,33
1,27
1,23
1,21

1.49
1.43
1,36
1,31
1.27
1.15
1,09
1,09
1.06
1.08

1,26
1,19
1.16
1,12
1.12

1,36
1.28
1.23
1,18
1.16
1,11
1.07
1.11
1.09
1.13

1.17
1.12
1,12
1.10
1.12

1.24
1 ,29
1,16
1.13
1,13
1,22
1.21
1,27
1.25
1,29
1.18
1.16
1.22
1,20
1,25

1,15
1,13
1.17
1,15
1,20

CONCLUSIONS

For the reasons given above, and in particular for preserving an even

degree of safety over the various parts of a structure, whatever the "tyP®

of loading, the "Convention Européenne" has deemed it appropriate to adop

for relatively thin sections (thickness < 20 mm), elastic limits higher
than the minimum values guaranteed by conventional tensile tests.
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This decision, which may appear audacious and strange at first sight,
does not introduce an entirely new principle in structural design. Indeed,
this same principle has been applied for a long time, if not from the ince£
tion, when we are dealing with applied loads, and there seems to be no
valid reason for not accepting it for strength of materials.

When loads act separately, we take from each the maximum value that
can be anticipated. When several statistically independent loads work in
unison, we apply reduction coefficients to the maximum loads adopted when
each was acting on its own. In the same way, it is fairly logical in a com
plex phenomenon depending on several independent variables (R, T, F and A)
such as buckling to admit that these variables do not all possess simultaneously

the most unfavourable values amounting to the minimum or maximum
values imposed by inspection regulations, or adopted for investigating
less complex phenomena. For phenomenon less complex than buckling, it does,
however, appear that a single variable can play a determining role which
must be counteracted by taking a mean value less 2 Standard Deviations and
not merely less a < 2.
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