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RECHERCHE SUR LE FLAMBEMENT DES BARRES EN ALUMINIUM

H. Djalaly ; _ D. Sfintesco
Ingénieur au Service Recherches Directeur des Recherches
C.T.I.C.M., Puteaux C.T.I.C.M., Puteaux
France ' France
ABSTRACT

With reference to a series of tests carried out by P. Arnault
and D. Sfintesco on pin-ended axially compressed members in various
aluminium alloys, column curves for this type of members have been
established by the authors according to a probabilistic method of
approach. This method consists in determining statistically the
collapse loads with a given probability.

The random parameters concerning the various initial imperfections
have a significant influence on the actual behavior of the member in
compression. The stochastic analysis of these parameters and of their
combined effects require long calculations and extensive use of computer
programs, whilst the statistical analysis of test results is relatively
simple and easy.

The statistical approach leads to a clear and consistent degree of
safety.

Non-dimensional column curves have been thus established for the
probable collapse limit, with a constant probability of 2.5 %.

In addition, the probable dispersion is presented as a function
of the slenderness ratio, thus allowing to define a variable safety
factor in view of obtaining a constant probability.
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1. ORIENTATION PFONDAMENTALE DE LA RECHBRCHE

Cette recherche, dont le but était d'établir une courbe de base du flambement en
compression simple, a été réalisée afin de déterminer dans quelles conditions les mé-
thodes de calcul des Régles CM 66 relatives aux constructions en acier pouvaient étre

-3

gppliquées d celles en alliages d'aluminium.

Ce programme d'essais, limité dans son ampleur, n'avait pour objectif que de
situer la question. L'exploitation statistique des résultats a permis d'évaluer les
. paramétres des "courbes Dutheil" de flambement pour les barres en alliages d'alumi-
nium.

La présente étude vise a exposer briévement l'interprétation des résultats expé-
rimentaux par les moyens statistiques et 3 présenter les courbes qui en résultent.
Nous ne nous attacherons donc pas & décrire les essals et les appareillages.

La méthode probabiliste, employée dans le cadre de cette recherche, consiste a
déterminer statistiquement la charge limite d'affaissement pour une probabilité inté-
grale donnée moyennant un nombre d'essais jugé satisfaisant, effectués sur des barres
industrielles qui ne sont ni géométriquement, ni matériellement parfaites. On sait,
en effet, que les imperfections initiales (défauts de rectitude et de centrage, tolé-
rances dimensicnnelles de la section, contraintes rémanentes, etc...)} de nature aléa-
toire changent sensiblement le comportement des barres prévu par la théorie de 1'ins-
tabilité élastique ou de l'instabilité élasto-plastique.

Les facteurs aléatcires des imperfections initiales intervenant dans le comporte-
ment de la barre comprimée sont 3 l'origine de divergences importantes. L'é€tude sto-
-chastique des combinaisons de tous ces facteurs aléatoires permet de déterminer théo-
riquement l'intensité des divergences entre le comportement réel de la barre indus-
trielle et celui d'une barre idéalement parfaite.

Bien entendu, l'étude stochastique du comportement de la barre, compte tenu de
ces variables aléatoires, serait non seulement longue et fastidieuse mais aussi fort
complexe. C'est pourquoi, ce type de probléme requiert, de préférence, une étude expé-
rimentale.

L'étude statistique des résultats d'essais permet aussi de clarifier le probléme
de la sécurité et d'en donner des bases cohérentes.

Lorsqu'il s'agit de flambement simple, pour un élancement donné et un certain
nombre d'essals effectués pour cet &lancement, on peut définir des contraintes proba-
bles d'affaissement et des contraintes conventionnelles d'affaissement correspondant
d une probabilité intégrale de 2,5 %

T
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Comme on le sait, la détermination de cette probabilité ne peut se faire que si
l'on connalt la lol de répartition de la population totale, ici la répartition des
contraintes d'affaissement auxquelles on se référe.

Une é&prouvette de flambement en aluminium est caractérisée, avant méme sa mise
en charge, par un certain nombre de paramétres qui font que, d&s que cette éprouvet-
te est sollicitée, la charge d'affaissement est influencée par un nombre de variables
aléatoires. Pour que dans ces conditions nous puissions calculer la charge d'affais-
sement probable, nous devons envisager une loi de répartition telle que celle de
Laplace-Gauss, mais encore faut-il s'assurer de la justesse de cette hypothése.

Pour y parvenir, deux méthodes dites tests d'hypothéses ont été appliquées aux
résultats d'essais, ce sont : la méthode de la droite de Henry et la méthode par les
coefficients v: et ¥, de Karl Pearson, qui montrent respectivement si la distribution
est symétrique et si elle correspond d une loi normale ou non.

2. CLASSES D'ALLIAGES DES BARRES

Les essais ont porté sur des barres industrielles fabriquées dans les conditions
normales et plus précisément sur le profilé unique H de 63 x 63 x 4 mm défini par
la norme A 65-162, dont les tolérances dimensionnelles sont rassemblées dans le ta-
bleau ci-dessous.

H B D ‘Section
! mm mm mm mm?
Dimensions 63 63 4 737
Tolérances + 0,95 + 0,95 + 0,24 —
B
P,—ﬁ__i,._¥7

Le tableau I donne les compositions chimiques et les caractéristiques mécaniques
des alliages d'aluminium utilisés dans cette recherche.

Les lots livrés provenaient d'une méme fusion pour 1'A-G5, 1'A-SG et 1'AS-GM et
de trois fusions pour 1'AULG.
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TABLEAU 1. — Valeurs nominales des compositions chimiques et des caractéristiques mécaniques

limj te limite
rsna_isic_e 233 tiq;e de rupture .
Fe | Si [ Co|Mn| 2Zn : Mg | Cr | Ti g’;ue o %o Ftat
g/cm? | &~ |moyen-| ga- |moyen-
rantic | ne |rantiec| ne
min. — — — 0,2 —_ 4,5 —_ —_ 2,63 ; Brut de -
A-G5 ’ 12 15 27 32
max. | 0,5 04 | 010 1,0 | 0,2 55 0,4 0,2 —_ fabrication
min. — 0,3 3.5 0,3 — 0,4 — — 2,80 . Trempé
A-U4G 25 28 39 42
max.| 0,7 0,8 47 (08 | 025! 1,0 | 0,1 0,2 —_ miri
A-Z5G — — — — 4.8 1,2 1 02 — 2,80 —_ 30 — 37 Trempé revenu
{ min, — 0,8 — — — 0,7 — — 2,70
A-SG ;
max. | 0,5 1,5 ) 0,10 | 0,2 [025] 1,3 — 0,2 — N 5 B 5 | Trempé
min. | — 0,6 — 0,1 - 06 | — _ _ revenu dur
AS-GM
max. | 0,5 1,6 |0,10§ 1,0 | 0,25 ]| 14 0,3 0,2 -

3. EXPLOITATION STATISTIQUE DES RESULTATS

La loi de Laplace-Gauss constitue une famille de lois de probabilité dont 1la
fonction de densité est :

o= s[4 W

sV2n s

et dont la fonction de distribution est

. 1 x I fx; — nrye
F) = — —3i—y ) dx
) SM[ZTF_[_we 2( ) (2)

o3 nixy
ol m, valeur moyenne ou moyenne arithmétique, est égal a iN et s, qui est 1'écart-

type, est égal &
\/Zni(xi-m)”
s=N 4t
N1

x;{—m
5

Avec un changement de variable = » on peut écrire :

1 7
Fi = —4$2.2
(1) 73 J-_OO ety (3)

La loi normale est une distributicn symétrique. Pour appliquer la loi de distri-
bution gaussienne, il faut que la répartition expérimentale ou le raccordement opéré
soit légitime.
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4. METHODE DE LA DROITE DE HENRY

La méthode de la droite de Henry est une méthode graphique ; elle indique & simple
vue si la rdpartition expérimentale est une distribution 1légitime de Gauss, et montre
aussi si certaines données ne s'éloignent pas trop de la droite passant par les autres
points d'essais, permettant ainsi d'écarter des données aberrantes qui seraient conser-
vées dans un calcul trop systématigue.

Considérant la formule (2), on peut 3 toute valeur z; de X, faisant partie de la
série de mesures, faire correspondre la valeur de la fréquence expérimentale &gale au
rapport du nombre de mesures inférieures ou égales d x; au nombre total de mesures.
Puis, gr3ce & une table relative & la relation (3) on trouve la valeur %, en portant
les valeurs £ et ¢t sur des axes de coordonnées cartésiennes, on constate que tous ces
points d'une distribution normale sont en ligne droite, que cette ligne droite coupe
1l'axe des abscisses au point m et que la pente de cette droite est égale a 1. Si la

répartition de la série de mesures est une distribution légitime de Gauss, 8les points
de mesures se trouvent au voilsinage ou sur la droite de Henry. Le graphique fait ainsi
connaltre les deux paramétres m et § respectivement moyenne et écart-type. La pratique
courante est de graduer l'axe des ordonnées non pas suivant les valeurs de ¢, mais
directement en fréquence cumulée. Cette graduation n'est évidemment pas linéaire, aus-
si pour faciliter encore la mise en ceuvre de la méthode, Dumas et Maheu préconisent-
ils,de faire correspondre d chaque mesure de rang #, la frégquence cumulée n—0,5
clest-d-dire : N

Faly = =02 (%)

I1 existe des tables donnant la valeur de ¢ en fonction de ¥ et n. On peut, dans
ces conditions, travailler directement sur papler millimétré au lieu de papier loga-
rithmique. Sur un graphique représentant une loi normale, l'aire comprise entre les
valeurs m — g et m + 8, c'est-da-dire t = 1, est égale 3 68,3 % de l'aire totale si-
tuée sous la courbe en cloche.

4,1. Méthode des moments

Afin de mieux vérifier si la répartition des mesures est symétrique et si elle
est pointue par rapport 3 la distribution normale, on exécute les calculs suivants :

1. Calcul de la valeur moyenne :
% X4

o=

2. Calcul des écarts :

3. Calcul des valeurs
N
Sp= > 8 Si= o 8 Si=> ¥
i=1 i

Sy

4. Ky = 52
N—1

d'ol 1l'écart-type S5 =k,

N

—m o —>

Ss

N

= IN—1)
N—D(N—-2)(N —

K. 5 [(N + s, — 22 Sg]
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S G = KKy, G, =Kk}

6. 5 = Avar. (G) = Y6 N(N— 1) J(N—2)(N + ) (N + 3)

55 = vvar. (Gy) = ,\/ 24N —1p
(N—2)(N—3N+ DN+ 5

7. Les rapports Yl et y, sont tels que :
G _ G
i 5%

Y1 =

pour une distribution parfaitement normale, on a Y, TV = 0.

Pour toute distribution symétrique, on aurait encore y, = 0. Y, indique combien
et comment, par sa valeur et son signe, la distribution n'est pas symétrique. y,
indique si la distribution est plus ou moins pointue par rapport & la distribution
normale.

Lorsque y, et v, ont des valeurs assez grandes, on ne peut pas accepter 1l'hypo-
thése de la normalité de la distribution de la série de mesures. Ainsi pour v; et s
supérieurs 3 3, l'hypothése doit €tre réfutée.

5. INTERVALLE DE CONFIANCE POUR LA MOYENNE D'UNE POPULATION NORMALE
DE REFERENCE

. . . 2
5.1. Estimation de la moyenne guand la variance ¢ n'est pas connue

Comme la variance réelle n'est pas connue, nous devons déterminer l'intervalle de
Confiance de la moyenne pour une probahilité a donnée par le procédé suivant.

Nous savons que la distribution des moyennes d'échantillons de taille N, préle-
vés non exhaustivement dans une population normale (m,u) est elle-méme normale et
telle que :

E (m'") = m (moyenne de la population)

Pour tdurner la difficulté créée par cette estimation, les statisticiens se sont
efforcés de trouver une valeur caractéristique de 1'échantillon dont la loi de distri-
bution (contrairement 3 celle de m'), ne fasse pas intervenir ¢2. Cela a conduit Student

& préconiser la variable 2 m' -—m . Par la suite, R.A. FPischer a préconisé la varia-
ble : o]

f:zf’_;ﬂgm’;m)m (5)
IN—1

Cette variable a pour loi de probabilité la loi de Student-Fischer représentée par
l'équation ci-aprés :

f(r)ng—_—la(”‘”l‘) (r+ =) ®

2 2 N—1
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B (a, b) étant la fonction bE€ta qui a pour expression

1
B(a, b) = ?Ez) _'Ij(Z; = f nu(“*‘_) (1 — w) 01 dy

avec @ > 0 et b > O.
I1 s'agit d'une lol symétrique, comme la loi normale mais un peu plus aplatie.
Le t, qui en résulte, pour un seuil de probabilité (1 — o) donné, est donc légere-

ment supérieur 3 celui qui fournit la loi normale.

Par référence 3 la loi de Student-Fischer, l'intervalle de probabilité (1 — a)

m' —m P
de e glécrit en effet
o1
7?' .
—Iqim msfa (7)
1
i
ou encore ;
m—A e cmcmt+ i, o —s (8)
\/TV \/N ] 1

ol ta est déterminé pour la probabilité de %-ou 1- -% dans les tables correspondantes
avec v = N — 1 degrés de liberté.

6. LIMITE DE CONFIANCE DES VARIANCES

Comme la valeur de la moyenne réelle est inconnue, l'intervalle de confiance des
variances doit €tre défini pour ce cas.

Etant donné une série de N mesures extraite d'une population normale N (m, o),
la somme quadratique est égale 3 :

(xi—my)2 No'2
2
Xz = EZ_T*_—T (9)

~

et suit une loi de X2 3 v = N — 1 degrés de libertd, deux quantités X207 et X2a,
telles que

- probabilité (X? expérimental > X2a;) = a3

- probabilité (X2 expérimental > X2%ay) = ay

o} et op étant les seuils de probabilité. On a alors

No'?
O < Xt (10)

X, <

[+
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on passe a l'intervalle de confiance :

(N—Da? _

2
a
<
X2,

(N—1) o,*
= X 2oy

ou encore

. <ex ' (11)
X X, - ‘

Nous avons effectué les calculs en prenant o] =-% = 0,025 et ap = 1 —-%-= 0,975,

c'est-d-dire qu'il y a 95 % de chances pour que les variances vraies se trouvent dans
les intervalles de confiance. Ces valeurs sont rassemblées dans les tableaux 2, 3, 4,
5 et 6. Dans chacun de ces tableaux, on trouve la moyenne, les limites de confiance de
la moyenne et de 1'écart-type, les coefficients de Pearson, la valeur des variables
Student-Fischer, les contraintes limites d'affaissement compte tenu de 2,5 % de proba-
bilité intégrale et finalement la plus petite et le plus grande valeur observées dans
les séries de mesures. Un examen rapide de ces tableaux nous montre que la plupart des
séries de mesures correspondant aux différents élancements ont une distribution norma-
le légitime, sauf pour les élancements 120 et 150 de tous les alliages utilisés.

Il est bon de remarquer que les répartitions de la contrainte d'affaissement des
barres en A-SG aux élancements 85, 100, 120, 150 ne sont pas du tout des répartitions
normales légitimes. :

TABLEAU I1. — Résultats des caleuls statistiques pour des barres a profil Hen A-U 4G

Elancements 2 10 50 70 85 100 120 150
Nombre d’essais N 19 17 17 16 12 5 9
Valeurs moyennes X=m 31,884 22,980 14,658 9,951 7,587 5,244 3,447
Lirites deconfiance de 1 m 30,380 22,183 14,327 9,628 7,478 5,122 3171

moyenne m’ 32,888 23,777 14,989 10,274 7,696 15,366 3,723
Fcarts-types _ S 2,084 1,550 0,644 0,607 0,171 0,098 0,359
Timtterde confiance des S 1,577 1,155 0,491 0,502 0,122 (0,058 0,242

ceanisiynes s 3,082 2,358 1,030 1,203 0,290 0,282 0,687

Y1 - 0,076 — 1,113 1,046 - 2,279 0,509 - 0,560 3,481
Coefficients de Pearson
Ya - 0,169 - 0,036 0,583 0,627 1,050 51,024 4,901

Variable de Stu. Fischer 1y 2,337 2,400 2,400 2,437 2,655 4,275 4,275
m—1t, .S 27,014 19,260 13,112 8,471 7,133 4,825 2,382
Ay 1,390 1,421 1,421 1,437 1,551 2,372 1,711
S'in = Ay . S 2,897 2,202 0,915 0,872 0,265 0,232 0,614
La plus petite valeur expéri- }

mentale X 274 19,78 13,84 8,50 7,33 5,13 3,18
La plus grande valeur expéri-

mentale X 35,9 25,49 15,95 10,50 7,89 5,35 4,36
Dispersion en % 3 19,3 20,5 14,0 24,1 7.6 10,7 20
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TABLEAU IIl. — Résultats des caleuls statistiques pour des barres a profil Hen A -Z.5 G

Elancements A 10 50 70 85 100 120 150
Nombre d’essais N 24 10 10 10 9 5 5
Valeurs moyennes xX=m 32,771 24,204 14,051 9,908 7,233 4,860 3,134
1imites e confiance: de Ta m’ 32,108 23,384 13,582 9,702 7,082 4,750 3,040
moyenne w 33,434 25,025 14,519 10,114 7,384 4,970 3,228
Ecarts-types S 1,571 1,146 0,655 0,288 0,196 0,089 0,076
Lirlnite de:eoubance des S 1,220 0,789 0,450 0,198 0,132 0,053 0,0450
Hearts-Lypes s 2,203 2,092 1,196 0,525 0,375 0,255 0,218
Y2 - 1,607 0,163 0,941 0,865 - 0,645 0,114 0,884
Coefficients de Pearson
Ys 1,037 - 0,355 0,831 - 0,067 0,237 61,65 31,35
Variable de Stu. Fischer ¢ 2,225 2,839 2,839 2,839 2,967 4,275 4,275
Mm—ty.S 29,275 20,950 12,191 9,090 6,651 4,479 2,809
Ay 1,338 1,645 1,645 1,645 1,711 2,372 2,372
Sin=4A4_,.5 2,102 1,885 1,077 0,474 0,335 0,211 0,180
La plus petite valeur expéri-
mentale X, 28,6 22,4 13,05 9,5 6,95 4,76 3,07
La plus grande valeur expéri-
mentale Xy 35,4 26,00 15,40 10,40 7,53 4,98 3,24
Dispersion en % 3 13,4 17,2 17,0 10,6 10,3 10,5 13,8
TABLEAU 1V. — Résultats des calculs statistiques pour des barres a profil Hen AS G
Elancements A 10 50 70 85 100 120 150
Nombre d’essais N 26 10 10 10 10 5 L]
Yaleurs moyennes T =m 29,381 21,775 14,677 9,547 6,687 4,760 2,986
Limites de confiance de Ia m 29,103 20,840 14,364 B 9,423 6,586 4,586 2,959
moyenhe m 29,659 22,710 14,990 9,671 6,788 4,934 3,013
Ecarts-types S 0,688 1,307 0,438 0,173 0,141 0,140 0,022
Lirnite de confiance des S 0,539 0,899 0,302 0,i19 B 0,036 0,034 0,010
ecarts-types s 0,95 2,386 0,797 0,316 0,257 0,402 0,062
Y. - 0,982 - 0,235 0,366 - 1,575 1,374 2,037 —
Cocefficients de Pearson — -
Ya - 0,465 - 0,693 0,408 6,441 4,021 2,684 —
Variable de Stu. Fischer Ty 2,193 2,839 2,839 2,839 2,839 4,275 4,275
m—iy.S 27,872 18,064 13,433 9,056 6,287 4,161 2,892
Ay 1,308 1,645 1,645 1,645 1,645 2,372 2,372
Sip=A_y.S 0,500 2,15 0,720 0,284 0,232 0,332 0,052
La plus petite valeur expéri-
mentale Xe 28,00 19,65 14,00 9,15 6,50 4,64 2,95
La plus grande valeur expéri-
mentale Xy 30,60 23,70 15,50 9,82 7,00 5,00 3,02
Dispersion en %, B 6,5 21,9 10,9 7.8 7.7 16,8 —




TABLEAU V. — Résultats des calculs statistiques pour des barres a profil Hen A -S GM

Elancements A 10 50 70 . 85
Nombre d’essais N 9 10 10 9
Valeurs moyennes X=m 32,111 24,586 15,186 10,037
Limites de confiance de ia m 31,879 23,363 342 9,663

gEI m" 32,879 25,809 16,025 10,390
Ecarts-types S 0,302 1,710 1,173 0,460
Limite de confiance des S 0,204 1,176 0.307 .31

ecarts-types s 0,578 3,122 2,141 0,881

Y1 - 0,043 0,815 0,951 1,707
Coefficients de Pearson
' -~ 0,089 - 0,904 0,323 1,727

Variable de Stu. Fischer o 2,967 2,839 2,839 2,967
m—ty. S 31,215 19,731 11,856 8,672
Ay 0,517 2,813 1,929 0,787
Sin = Ay . S 0,517 2,813 1,929 0,787
La plus petite valeur expéri-

mentale ' X 31,6 224 13,7 9,55
La plus grande valeur expéri-

mentale Xy 32,6 27,1 17,54 10,97
Dispersion en % 3 1,8 12,7 14 8,8

TABLEAU V1. — Résultats des calculs statistiques pour des barres en A G S

Elancements ) 10 50 70 85 100 120 150
Nombre d’essais N 27 8 8 8 8 5 5
Yaleurs moyennes Fy=m 12,00 9,580 7,810 7,040 6,229 4,850 3,070
Limites de confiance de la m 11,871 9,396 7,504 6,747 6,038 4,803 2,983

HOyEIe m" 12,129 9,764 8,116 7,333 6,420 4,897 3,156
Ecafts-types S 0,326 0,220 0,366 0,351 0,229 0,038 0,089
Fitittes de confiancs des A 0,257 0,145 0,242 0,231 0,151 0,022 0,053

éearts-types s 0,447 0,448 0,745 0,714 0,466 0,108 0,255

T1 - 1,239 0,189 - 1,318 0,211 0,183 — - 0,947
Coefficients de Pearson
Ya - 0,704 0,234 1,013 0,424 0,388 — 30,35

Variable de Stu. Fischer te 2,178 3,136 3,136 3,136 3,136 4,275 4,275
m—ty.S 11,29 8,89 6,66 5,94 5,51 4,69 2,69
Ay 1,300 1,797 1,797 1,797 1,797 2,373 2,372
S =4_,.5 0,424 0,393 0,658 0,631 0,411 0,091 0,211
La plus petite valeur expéri-

mentale Xe 11,3 9,29 7,09 6,51 5,9 4,81 2,94
La plus grande valeur expéri-

mentale Yu 12,5 9,90 8,27 7,54 6,56 4,90 3,16
Dispersion en % 3 1,5 10,2 ~19,1 20,3 15 12 12
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TABLEAU VIL. — Comparaison somimaire des moyennes

de contraintes en compression et en traction

Pour tous les alliages m, — my > u.

. T | AYZSG | A-UAG | A-SG | A-GS

Na | 48 |44 51 23
Compression Sa 1,739 | 1,687 | 0,665 | 0,906
ma™ | 32,642 | 36,176 | 29,374 | 15,987

Np 39 38 41 27
Traction Sr 1,743 | 1,187 | 0,944 | 0,326
“mp | 31,47 | 32,384 | 28,956 | 12,000
Sp 1,741 | 1,477 | 0,801 | 0,659

Valeur appr. de vy 83 78 71 27
Lo 1,989 | 1,991 | 1,996 | 2,052
mas — mp 1,171 | 3,792 | 0,418 [ 3,987
u* 0,439 | 0,635 0,348 | 0,408
* u=r1—mSp\/—AI,—A+NLB ‘ ou u:t’l—u\/fv—‘i—l—%

TABLEAU VIN. — Résultats des calculs statistiques a I'élancement niel sur A - G §

Compression Traction

Contraintes limites de Goaz Go Trup. Go,02 O,z Grup.
Nombre d’essais N 27 27 28 23 23 23
Valeur minimale Xu 7,30 11,30 18,50 12,00 14,50 30,90
Valeur maximale Xe 8,80 12,50 21,10 16,00 17,90 33,90 -
Valeur moyenne m 7,963 12,00 19,964 13,930 15,987 31,783 -
Ecart-type S 0,373 0,326 0,612 0,866 0,906 0,718

Y1 0,103 - 1,239 - 0,314 0,397 2,142 3,598 -

Ya 0,344 - 0,704 0,029 1,110 1,756 3,613

ty 2,612 2,612 2,595 2,697 2,697 2,697

m—ty S 6,990 11,149 18,376 11,000 13,543 29,847 N
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TABLEAU IX. — Résultats des calculs statistiques a I’élancement nul sur 'A - S G

Compression Traction
Contraintes limites de Go,02 G,z Srup. Go 02 Gg Srup.
Nombre d’essais N 51 51 51 42 41 40
VYaleur minimale Xy 23,50 28,0 28,4 26,5 27,3 30,9
Valeur maximale X, 27.4 30,6 30,8 30,5 32,9 45,8
Valeur moyenne m 25,47 29,37 29,68 28,10 28,96 32,26
Ecart-type S 0,924 0,665 0,623 0,878 0,944 2,293
T - 1,217 ~ 1,401 - 0912 1,575 4,312 14,654
Yz 0,292 - 0,810 - 0,924 0,910 9,145 45,334
y g 2,379 2,379 2,379 2,438 2,445 —
m—ty S 23,27 27,79 28,20 25,95 26,65 —
TABLEAU X, — 1™ es2° lin_zraison A-U4G)
Compression Traction
Contraintes limites de T 02 a2 Grup, o 02 Sy Grup.
Nombre d’essais N 34 34 35 28 28 28
Valeur minimale Xy 22,0 27,0 35,3 30,1 31,7 42,5
Valeur maximale X 20,7 35,9 389 38,0 39,6 53,0
Valeur moyenne 26,74 33,02 37,15 35,64 37,17 50,61
Ecart-type S 2,142 1,745 0,992 2,249 2,393 2,572
Yi - 1,496 - 3,902* - 0,932 - 2,339 - 1,853 — 4,243*
Yo - 0,268 4,664* - 0,831 0,255 0,259 3,592*
ty 2,513 2,513 2,501 2,595 2,595 2,595
m—ty S 21,36 28,64 34,66 29,80 30,96 43,94*
TABLEAU XI. — 3¢ livraison (A - U 4 G)
Compression Traction
Contraintes limites de G 02 Goe Srup. To,02 G,z Grup.
Nombre d’essais N 10 10 10 10 10 10
Valeur minimale Xy 15,0 27,4 36,1 27,5 30,3 43,5
Valeur maximale ¥z 23,7 31,2 38,1 32,9 35,3 47,0
Valeur moyenne 19,08 30,22 36,99 29,68 33,39 45,43
Ecart-type S 2,738 1,094 0,671 1,674 1,645 1,091
Y1 - 0,036 - 3,107* 0,398 1,606 - 1,247 - 0,927
Ya - 0,593 - 4,206* - 0,821 0,530 - 0,045 0,054
[ 3,532 3,532 3,532 3,532 3,532 3,532
m—t, S 9,67 26,36* 34,62 23,77 27,58 41,58
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TABLEAU X11. — Résulrats des calculs statistiques a I'élancement nul sur 'A - Z5G

Compression Traction
Contraintes limites de Go,02 LI Grup. Co.0z Ooz Grup.
Nombre d’essais N 48 48 48 39 39 39
Valeur minimale Xy 25,00 26,6 29,2 22,7 25,8 32,7
Valeur maximale v, | 328 354 15,8 31,1 34,2 40,1
Valeur moyenne m 28,746 32,642 33,548 27,931 31,471 36,302
Ecart-type S 1,628 1,739 1,419 1,973 1,743 1,991
Y1 0,123 — 3,740 —~ 3,154 - 2,590 — 4,501 ~ 2,642
Ya 0,502 3,799 2,202 1,144 5,279 2,937
o 2,385 2,385 2,385 2,472 2,472 2,472
m—t, S 24,863 28,495* 30,164* ) 23,05 27,16% 31,38

(*) La distribution de la série de mesures n’est pas symétrigue.

7. INTERPRETATION DES RESULTATS PAR LA METHODE DUTHEIL

Si 1'on soumet une barre prismatique pratiquement droite 3 un effort de compres-
sion centré constamment croissant, appliqué 3 ses extrémités articulées, on constate
gqu'elle se courbe dés le début du chargement (& condition d'utiliser des appareils de
mesure suffisamment sensibles). La relation empirique de la fldche au milieu de 1la
barre soumise & l'effort de compression simple, aussi bien centré que possible, est
définie d'aprés Dutheil par

o I a(l +bos I
=a————=\{l+bg—-— = ——— (12)
St TN, T —a T he A
ol :
£
ck=T;—2E et N = Aoy

a et b étant les paramétres empiriques (déterminéds 3 partir des résultats statistiques
de la charge d'affaissement probable).

Cette fléche provogue un moment fléchissant qui a pour valeur :

a@ + b J (13)

M= N = Ao = e

La contrainte maximale a donc pour expression

_N+Mv__ all + b U[Gkg(l —I—b)(l—a)o‘]
Cmar =4 T O A be or —{ 1 bjo (1)
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- La valeur de la contrainte limite d'affaissement gz pour laquelle max - e
satisfait alors 3 :

op-— (1 + B (1 —a)ag] _ ' (15)
% [ ot — (1 T b, ] = e
dlou :
0% (1 + b (1 —a) — o5 fox + 60 (1 + b)) + ceop = 0 el
ou encore
o, — O T + b T°k+(1+M%]ﬂ_ S
SR R A g p—ps \/2(1+b)(1—a) T+rod—a

(17)

Ainsi nous avons introduit trois paramétres a, b, et o, qui se déterminent a 1l'aide
des résultats expérimentaux.

7.1. Détermination de a, b et o,

Si 1'on considére trois valeurs de 1'élancement A3, As et A3 auxquelles correspon-
dent les contraintes critiques 4'Euler Oxls Og2s 0f3 et trois valeurs expérimentales
Ogls Og2, O g3 de la contrainte d'affaissement, on peut écrire en vertu de 1l'équation
(16) le systeme de trois équations suivant :

ot (l + b)) (t —a) — o5 (I + b)og -+ Oju8e = 01081 | ‘ .
53 (1 + b) (1 — @) — 05 (1 + b) + ka0 = Opsks (18)
Gsi (1 + ) (t — @) — o4 (1 + B)og + Ok3Te == O530ks

qui permet de calculer les trois inconnues a, b, et Og-

Aprés avoir résolu le systéme de trois équations (18), on obtient

951 (Okz — o1) + Gy (Ofy — Oka) + O3 (O — )

Okz 77 C: g, o G
%4___%+%0£_£ﬂ+%tﬁ_ﬂ)
Oga g3 Cs3 Tg1 gy Gga

Cn ose[ows (%) —os (fj—j)g] + 0 [ (%) — o @]+ oos [ (Z—’;); (%) | 203

Ts/1
g1 (Oks — Ofs) + Gz (Oks — Ok} -+ Gga (S5 — Oa)

(19)

7% a3 (o} a ‘
%%J_ﬁMWAErﬁhﬂdﬁﬁ%)

A+b(1—a =25 % s Om G510 (21)
Ok Oks Oks Sk Sk Of
Oi |—————) + g | ——=| + a5, ("—‘*'_2)
7 Ts3 Ggq Cg1 Fs1 Tgo

218



Dans le tableau ci-dessous nous avons rassemblé les valeurs de a, b, et Og pour chaque
alliage d'aluminium dans cet article,

TABLEAU
A-U4G A-SG AS-GM A-Z5G A-GS -
. 0,0954 0,2605 0,2091 0,1174 0,8885
b 02346 | 00370 0,252 0,0378 — 0,1545
s miz 28,11 31,53 29,15 11.24
E 7400 7000 7000 7200 7000

8. CONCLUSIONS

8.1, Essals sur matériaux

A l'examen des tableaux 8, 9, 10, 11 et 12 on constate que :

- 1'alliage A-U4G présente, pour les différentes fusions, des écarts considérables
aussi bien en traction qu'en compression ;

- 1l'alliage A-SG ne manifeste pas d'anomalie appréciable, mais qu'il posséde,
contrairement 3 1l'alliage précédent, une limite d'élasticité de compression
légdrement supérieure & celle de traction.

8.2. Essais de flambement et comparaison avec la courbe Dutheil

Les coefficients de Pearson, insérés dans les tableaux 2, 3, 4, 5 et 6, nous per-
mettent de relever quelques é&lancements pour lesquels la série de mesures de contrain-~
te d'affaissement n'a pas de répartition normale. Dans le souci de faciliter la déter-
mination de la contrainte probable d'affaissement, on a utilisé une méme relation,
clest-d-dire X = m —-tas ol ta varie avec le nombre de mesures d chaque élancement.

Comme le montrent les figures 1 d& 5, la courbe théorique de chaque alliage ne
dépasse presque en aucun cas la limite des contraintes d'affaissement ; ces courbes
peuvent donc servir de base au calcul de la résistance au flambement simple des bar-
res en alliage d'aluminium 3 traitement thermigue, compte tenu du facteur de sécurité
de la barre.

Sur la figure 6, on voit que les courbes non-dimensionnelles de flambement pour
les alliages 3 traitement thermique, plus précisément A-U4G, A-SG, A-SGM et A-Z5G,
sont proches les unes des autres.

Afin de simplifier le calcul, H. Djalaly a été amené & proposer une courbe moyen-
ne (représentée par des points sur le figure 6) ayant pour expression :

399 :
5 =22 os50041 \/[0’5_32993 +ossoa | 1R
B 1 X

o et A étant les valeurs non-dimensionnelles de la contrainte et de l'élancement.

Bg. 15 AK 23
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I1 est intéressant de remarquer que la loi de comportement de 1l'alliage A-G5 (al-
liage sans traitement thermique) présente un écrouissage important, par conséquent la
courbe de flambement eulérienne ne peut répondre 3@ la résistance ultime des barres en
A-G5 pour des barres relativement élancées. Cela est parfaitement visible sur la figure
5. Bien entendu, en ce qui concerne les barres élancées la courbe eulérienne est vala-
ble pour les matériaux dont le phénom@ne d'écrouissage n'est pas considérable, notam-
ment pour le cas des alliages d'aluminium 3 traitement thermique.
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La partie expérimentale de cette recherche a été effectuée avec l'appui de
1'Aluminium Francais, au Laboratoire du C.E.B.T.P. par MM. Dauphin et Texier.

M. P. Arnault, Ingénieur au Service Recherches du C.T.I.C.M., était chargé de
cette recherche et a effectué la premiére exploitation des résultats, sous la direc-

tion de D. Sfintesco, 3 1l'usage des régles de conception et de calcul des charpentes
en alliages d'aluminium,

223



BIBLIOGRAPHTIE

/1/ J. Dutheil Conception probabiliste de la sécurité dans le flambement.
Commission 8. Note n® 8, octobre 1959.

/2/ D. Sfintesco Etude expérimentale du flambement des barres en acter.
P. Dauphin Annales de 1'I.T.B.T.P. n® 217 EM-89, janvier 1966.
J. Jacquet

/3/ D. Sfintesco Etude expérimentale du flambement.

Construction Métallique, n°® 1-1965, p. 19-22.

/4/ J. Jacquet Essate de flambement et exploitation statistique.
Construction Métallique, n® 3-1970, p. 13-36.

/5/ J. Mothes Prévisione et décisions statistiques dans l'entreprise.
Ed. Dunod, Paris, 1968.

/6/ R.L. Anderson Statical theory in research.
T.B. Bancroft Mec Graw-Hill book Co., 1952.
/7/ R.A. Fischer Statical methods for research workers.

Oliver and Boyd, Edimbourg, 1958.

/8/ M.G. Natrella Experimental statistics.
NBS, Handbook 91, Issued August 1, 1963

/9/ P. Arnault Recherche sur le flambement des profils en alliages légers.
D. Sfintesco Rapport interne du C.T.I.C.M., octobre 1967.

/10/ H. Djalaly Recherche sur le flambement des barres en aluminium.
D. Sfintesco Rapport présenté au Collogue sur le Flambement, Paris,

novembre 1972.

224



	Recherche sur le flambement des barres en aluminium

