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RECHERCHE SUR LE FLAMBEMENT DES BARRES EN ALUMINIUM

H. Djalaly
Ingénieur au Service Recherches

C.T.I.C.M., Puteaux

D. Sfintesco
Directeur des Recherches

C. T. I. C. M., Puteaux
FranceFrance

ABSTRACT

With reference to a series of tests carried out by P. Arnault
and D. Sfintesco on pin-ended axially compressed members in various
aluminium alloys, column curves for this type of members have been
established by the authors according to a probabilistic method of
approach. This method consists in determining statistically the
collapse loads with a given probability.

The random parameters concerning the various initial imperfections
have a significant influence on the actual behavior of the member in
compression. The stochastic analysis of these parameters and of their
combined effects require long calculations and extensive use of computer
programs, whilst the statistical analysis of test results is relatively
simple and easy.

The statistical approach leads to a clear and consistent degree of
safety.

Non-dimensional column curves have been thus established for the
probable collapse limit, with a constant probability of 2.5 %.

In addition, the probable dispersion is presented as a function
of the slenderness ratio, thus allowing to define a variable safety
factor in view of obtaining a constant probability.
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1. ORIENTATION FONDAMENTALE DE LA RECHERCHE

Cette recherche, dont le but était d'établir une courbe de base du flambement en
compression simple, a été réalisée afin de déterminer dans quelles conditions les
méthodes de calcul des Règles CM 66 relatives aux constructions en acier pouvaient être
appliquées à celles en alliages d'aluminium.

Ce programme d'essais, limité dans son ampleur, n'avait pour objectif que de
situer la question. L'exploitation statistique des résultats a permis d'évaluer les
paramètres des "courbes Dutheil" de flambement pour les barres en alliages d'aluminium.

La présente étude vise à exposer brièvement l'interprétation des résultats
expérimentaux par les moyens statistiques et à présenter les courbes qui en résultent.
Nous ne nous attacherons donc pas à décrire les essais et les appareillages.

La méthode probabiliste, employée dans le cadre de cette recherche, consiste à

déterminer statistiquement la charge limite d'affaissement pour une probabilité
intégrale donnée moyennant un nombre d'essais jugé satisfaisant, effectués sur des barres
industrielles qui ne sont ni géométriquement, ni matériellement parfaites. On sait,
en effet, que les imperfections initiales (défauts de rectitude et de centrage,
tolérances dimensionnelles de la section, contraintes rémanentes, etc...) de nature
aléatoire changent sensiblement le comportement des barres prévu par la théorie de
l'instabilité élastique ou de l'instabilité élasto-plastique.

Les facteurs aléatoires des imperfections initiales intervenant dans le comportement
de la barre comprimée sont à l'origine de divergences importantes. L'étude

stochastique des combinaisons de tous ces facteurs aléatoires permet de déterminer
théoriquement l'intensité des divergences entre le comportement réel de la barre
industrielle et celui d'une barre idéalement parfaite.

Bien entendu, l'étude stochastique du comportement de la barre, compte tenu de
ces variables aléatoires, serait non seulement longue et fastidieuse mais aussi fort
complexe. C'est pourquoi, ce type de problème requiert, de préférence, une étude
expérimentale.

L'étude statistique des résultats d'essais permet aussi de clarifier le problème
de la sécurité et d'en donner des bases cohérentes.

Lorsqu'il s'agit de flambement simple, pour un élancement donné et un certain
nombre d'essais effectués pour cet élancement, on peut définir des contraintes probables

d'affaissement et des contraintes conventionnelles d'affaissement correspondant
à une probabilité intégrale de 2,5 %.
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Comme on le sait, la détermination de cette probabilité ne peut se faire que si
l'on connaît la loi de répartition de la population totale, ici la répartition des
contraintes d'affaissement auxquelles on se réfère.

Une éprouvette de flambement en aluminium est caractérisée, avant même sa mise
en charge, par un certain nombre de paramètres qui font que, dès que cette éprouvette

est sollicitée, la charge d'affaissement est influencée par un nombre de variables
aléatoires. Pour que dans ces conditions nous puissions calculer la charge d'affaissement

probable, nous devons envisager une loi de répartition telle que celle de
Laplace-Gauss, mais encore faut-il s'assurer de la justesse de cette hypothèse.

Pom? y parvenir, deux méthodes dites tests d'hypothèses ont été appliquées aux
résultats d'essais, ce sont : la méthode de la droite de Henry et la méthode par les
coefficients y^ et y2 de Karl Pearson, qui montrent respectivement si la distribution
est symétrique et si elle correspond à une loi normale ou non.

2. CLASSES D'ALLIAGES DES BARRES

Les essais ont porté sur des barres industrielles fabriquées dans les conditions
normales et plus précisément sur le profilé unique H de 63 x 63 x t mm défini par
la norme A 65-162, dont les tolérances dimensionnelles sont rassemblées dans le
tableau ci-dessous.

H B D Section
mm mm mm mm2

Dimensions 63 63 4 737

Tolérances ± 0,95 ± 0,95 ± 0,24 —

Le tableau I donne les compositions chimiques et les caractéristiques mécaniques
des alliages d'aluminium utilisés dans cette recherche.

Les lots livrés provenaient d'une même fusion pour l'A-G5, l'A-SG et l'AS-GM et
de trois fusions pour l'AU4-G.
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TABLEAU I. — Valeurs nominates des compositions chimiques et des caractéristiques mécaniques

Fe Si Cu Mn Zn Mg Cr Ti
masse
spécifique

g/cm3

limite
élastique
à 0,2 %

limite
de rupture

État

garantie
moyenne

garantie
moyenne

A-G5
min.

max. 0,5 0,4 0,10

0,2

1,0 0,2

4,5

5,5 0,4 0,2

2,63
12 15 27 32

Brut de

fabrication

A-U4G
min.

max. 0,7

0,3

0,8

3,5

4,7

0,3

0,8 0,25

0,4

1,0 0,1 0,2

2,80
25 28 39 42

Trempé

mûri

A-Z5G - — - - 4,8 1,2 0,2 - 2,80 — 30 - 37 Trempé revenu

A-SG

AS-GM

min.

' max.

min.

' max.

0,5

0,5

0,8

1.5

0,6

1.6

0,10

0,10

0,2

0,1

1,0

0,25

0,25

0,7

1.3

0,6

1.4 0,3

0,2

0,2

2,70

— 26 - 32 Trempé
revenu dur

3. EXPLOITATION STATISTIQUE DES RESULTATS

La loi de Laplace-Gauss constitue une famille de lois de probabilité dont la
fonction de densité est :

-»Hm']
et dont la fonction de distribution est :

(1)

FQ<) dx
(2)

s mxi
où m, valeur moyenne ou moyenne arithmétique, est égal à i et s, qui est l'écart
type, est égal à :

£ «i (*"{ — m)1

N— 1

Avec un changement de variable t *' m, on peut écrire :

F(t) : if. (3)

La loi normale est une distribution symétrique. Pour appliquer la loi de distribution

gaussienne, il faut que la répartition expérimentale ou le raccordement opéré
soit légitime.
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4. METHODE DE LA DROITE DE HENRY

La méthode de la droite de Henry est une méthode graphique ; elle indique à simple
vue si la répartition expérimentale est une distribution légitime de Gauss, et montre
aussi si certaines données ne s'éloignent pas trop de la droite passant par les autres
points d'essais, permettant ainsi d'écarter des données aberrantes qui seraient conservées

dans un calcul trop systématique.

Considérant la formule (2), on peut à toute valeur x^ de X, faisant partie de la
série de mesures, faire correspondre la valeur de la fréquence expérimentale égale au
rapport du nombre de mesures inférieures ou égales à x-£ au nombre total de mesures.
Puis, grâce à une table relative à la relation (3) on trouve la valeur t, en portant
les valeurs i et t sur des axes de coordonnées cartésiennes, on constate que tous ces
points d'une distribution normale sont en ligne droite, que cette ligne droite coupe
l'axe des abscisses au point m et que la pente de cette droite est égale à _1. Si la
répartition de la série de mesures est une distribution légitime de Gauss, Sles points
de mesures se trouvent au voisinage ou sur la droite de Henry. Le graphique fait ainsi
connaître les deux paramètres m et s respectivement moyenne et écart-type. La pratique
courante est de graduer l'axe des ordonnées non pas suivant les valeurs de t, mais
directement en fréquence cumulée. Cette graduation n'est évidemment pas linéaire, aussi

pour faciliter encore la mise en oeuvre de la méthode, Dumas et Maheu préconisent-
ils,de faire correspondre à chaque mesure de rang w, la fréquence cumulée " — 0.5

c'est-à-dire : N

(h)

Il existe des tables donnant la valeur de t en fonction de if et n. On peut, dans
ces conditions, travailler directement sur papier millimétré au lieu de papier
logarithmique. Sur un graphique représentant une loi normale, l'aire comprise entre les
valeurs m — s et m + s, c'est-à-dire t - 1, est égale à 68,3 % de l'aire totale
située sous la courbe en cloche.

4.1. Méthode des moments

Afin de mieux vérifier si la répartition des mesures est symétrique et si elle
est pointue par rapport à la distribution normale, on exécute les calculs suivants :

1. Calcul de la valeur moyenne :

2 tiiXi
m N

2. Calcul des écarts :

Xf — m

3. Calcul des valeurs :
N N N

S2 2 S|. S. 2 8J, S. 2
;=1 1 1 1 1

4. k2 s' d'où l'écart-type S — VS,
N — 1 J "

K N
yK* (N— 1) (N— 2)

(V- D (jV- 2) (*-=3) [(" + W *i]
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5 G K,!KÏ>\ G, KJKl

6. s; -Ivar. (Gj) V6 Af(AT— 1) / (AT— 2) (JV + 1) (J\r + 3>

77TT / 24lV(JV— 1)'
J2 Vvar. (G2) /-

V (AT — 2) (A' — 3) (AT + 3) (AT + 5)

7. Les rapports Yj et y2 sont tels que

Gj Ga
Yi ~=T, Ya ~Ji J2

pour une distribution parfaitement normale, on a Yj y2 0.

Pour toute distribution symétrique, on aurait encore y 0. Yj
et comment, par sa valeur et son signe, la distribution n'est pas symétrique. y2
indique si la distribution est plus ou moins pointue par rapport à la distribution
normale.

Lorsque Yj et y, ont des valeurs assez grandes, on ne peut pas accepter l'hypothèse

de la normalité de la distribution de la série de mesures. Ainsi pour Yj et y2
supérieurs à 3, l'hypothèse doit être réfutée.

5. INTERVALLE DE CONFIANCE POUR LA MOYENNE D'UNE POPULATION NORMALE

DE REFERENCE

2
5.1. Estimation de la moyenne quand la variance a n'est pas connue

Comme la variance réelle n'est pas connue, nous devons déterminer l'intervalle de
confiance de la moyenne pour une probahilité a donnée par le procédé suivant.

Nous savons que la distribution des moyennes d'échantillons de taille N, prélevés
non exhaustivement dans une population normale (m,a) est elle-même normale et

telle que :

E (m') m (moyenne de la population)

Pour tourner la difficulté créée par cette estimation, les statisticiens se sont
efforcés de trouver une valeur caractéristique de l'échantillon dont la loi de distribution

(contrairement à celle de m'), ne fasse pas intervenir a2. Cela a conduit Student

à préconiser la variable z m' — m Par la suite, R.A. Fischer a préconisé la variable
: a

(m' — (5)

Cette variable a pour loi de probabilité la loi de Student-Fischer représentée par
l'équation ci-après :

(6)
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S (a, h) étant la fonction Bêta qui a pour expression

I'"
J 0

*(", « ly r(L? I (1 — «) c-1) du
1 (a + b) 1

a > 0 et b > 0.

Il s'agit d'une loi symétrique, comme la loi normale mais un peu plus aplatie.
Be ta qui en résulte, pour un seuil de probabilité Cl — a) donné, est donc légèrement

supérieur à celui qui fournît la loi normale.

Par référence à la loi de Student-Fischer, l'intervalle de probabilité (1 — a)
m' — m ^ jrx-a,de s'écrit en effet :

01

\/N m' — m f n\V — fa « * tu "
qi

•In

ou encore

où ta est déterminé pour la probabilité de ou 1- dans les tables correspondantes
avec v N — 1 degrés de liberté.

6. LIMITE DE CONFIANCE DES VARIANCES

Comme la valeur de la moyenne réelle est inconnue, l'intervalle de confiance des
variances doit être défini pour ce cas.

Etant donné une série de N mesures extraite d'une population normale N (m, 0),
la somme quadratique est égale à :

V2 v (Xi — m')1 Nty'2X ^r (9)

et suit une loi de X2 à v N — 1 degrés de liberté, deux quantités X2aj et X2aj
telles que :

- probabilité (X2 expérimental > X2aj) aj

- probabilité (X2 expérimental > X2oi2) 012

al e"t a2 étant les seuils de probabilité. On a alors :

X'a, WSX'», (10)
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on passe à l'intervalle de confiance :

(N— lia,2 (N 1) CTi2

- -—— ^ a2 < V9
X20C2 X2ax

ou encore

et et
Nous avons effectué les calculs en prenant ai — 0,025 et a2 1 —y 0,975,

c'est-à-dire qu'il y a 95 % de chances pour que les variances vraies se trouvent dans
les intervalles de confiance. Ces valeurs sont rassemblées dans les tableaux 2, 3, 4,
5 et 6. Dans chacun de ces tableaux, on trouve la moyenne, les limites de confiance de
la moyenne et de l'écart-type, les coefficients de Pearson, la valeur des variables
Student-Fischer, les contraintes limites d'affaissement compte tenu de 2,5 % de
probabilité intégrale et finalement la plus petite et le plus grande valeur observées dans
les séries de mesures. Un examen rapide de ces tableaux nous montre que la plupart des
séries de mesures correspondant aux différents élancements ont une distribution normale

légitime, sauf pour les élancements 120 et 150 de tous les alliages utilisés.

Il est bon de remarquer que les répartitions de la contrainte d'affaissement des
barres en A-SG aux élancements 85, 100, 120, 150 ne sont pas du tout des répartitions
normales légitimes.

TABLEAU II. — Résultats des calculs statistiques pour des barres à profil H en A - U 4 G

Élancements X 10 50 70 85 100 120 150

Nombre d'essais N 19 17 17 16 12 5 9

Valeurs moyennes x m 31,884 22,980 14,658 9,951 7,587 5,244 3,447

Limites de confiance de la m' 30,880 22,183 14,327 9,628 7,478 5,122 3,171

moyenne m" 32,888 23,777 14,989 10,274 7,696 5,366 3,723

Écarts-types S 2,084 1,550 0,644 0,607 0,171 0,098 0,359

Limite de confiance des
S' 1,577 1,155 0,491 0,502 0,122 0,058 0,242

écarts-types S" 3,082 2,358 1,030 1,203 0,290 0,282 0,687

Coefficients de Pearson
Yi - 0,076 - 1,113 1,046 - 2,279 0,509 - 0,560 3,481

Ï2 - 0,169 - 0,036 0,583 0,627 1,050 51,024 4,901

Variable de Stu. Fischer U 2,337 2,400 2,400 2,437 2,655 4,275 4,275

m — ta S 27,014 19,260 13,112 8,471 7,133 4,825 2,382

Ay—a 1,390 1,421 1,421 1,437 1,551 2,372 1,711

S in ~ Ai—a S 2,897 2,202 0,915 0,872 0,265 0,232 0,614

La plus petite valeur
expérimentale xe 27,4 19,78 13,84 8,50 7,33 5,13 3,18

La plus grande valeur
expérimentale xu 35,9 25,49 15,95 10,50 7,89 5,35 4,36

Dispersion en % s 19,3 20,5 14,0 24,1 7,6 10,7 20

212



TABLEAU III. — Résultats des calculs statistiques pour des barres a profil H en A - Z 5 G

Élancements X 10 50 70 85 100 120 150

Nombre d'essais N 24 10 10 10 9 5 5

Valeurs moyennes x m 32,771 24,204 14,051 9,908 7,233 4,860 3,134

Limites de confiance de la
moyenne

m' 32,108 23,384 13,582 9,702 7,082 4,750 3,040

m" 33,434 25,025 14,519 10,114 7,384 4,970 3,228

Écarts-types 5 1,571 1,146 0,655 0,288 0,196 0,089 0,076

Limite de confiance des
écarts-types

S' 1,220 0,789 0,450 0,198 0,132 0,053 0,0450

S" 2,203 2,092 1,196 0,525 0,375 0,255 0,218

Coefficients de Pearson
Yi - 1,607 0,163 0,941 0,865 - 0,645 0,114 0,884

Y2 1,037 - 0,355 0,831 - 0,067 0,237 61,65 31,35

Variable de Stu Fischer ta 2,225 2,839 2,839 2,839 2,967 4,275 4,275

m — ta S 29,275 20,950 12,191 9,090 6,651 4,479 2,809

1,338 1,645 1,645 1,645 1,711 2,372 2,372

S m a S 2,102 1,885 3,077 0,474 0,335 0,211 0,180

La plus petite valeur
expérimentale xe 28,6 22,4 13,05 9,5 6,95 4,76 3,07

La plus grande valeur
expérimentale Xfi 35,4 26,00 15,40 10,40 7,53 4,98 3,24

Dispersion en % S 13,4 17,2 17,0 10,6 10,3 10,5 13,8

TABLEAU IV. — Resultats des calculs statistiques pour des barres a profil H en A S G

Élancements X 10 50 70 85 100 120 150

Nombre d'essais N 26 10 10 10 10 5 5

Valeurs moyennes £= m 29,381 21,775 14,677 9,547 6,687 4,760 2,986

Limites de confiance de la
moyenne

m' 29,103 20,840 14,364 9,423 6,586 4,586 2,959

m" 29,659 22,710 14,990 9,671 6,788 4,934 3,013

Écarts-types S 0,688 1,307 0,438 0,173 0,141 0,140 0,022

Limite de confiance des

ecarts-types

S' 0,539 0,899 0,302 0,119 0,096 0,084 0,010

S" 0,95 2,386 0,799 0,316 0,257 0,402 0,062

Coefficients de Pearson
Yi - 0,982 - 0,235 0,366 - 1,575 1,374 2,037 —

Y2 - 0,465 - 0,695 0,408 6,441 4,021 2,684 —

Variable de Stu Fischer /a 2,193 2,839 2,839 2,839 2,839 4,275 4,275

m — S 27,872 18,064 13,433 9,056 6,287 4,161 2,892

1,308 1,645 1,645 1,645 1,645 2,372 2,372

s m ~ ^i—a S 0,900 2,15 0,720 0,284 0,232 0,332 0,052

La plus petite valeur
expérimentale A e 28,00 19,65 14,00 9,15 6,50 4,64 2,95

La plus grande valeur
expérimentale xu 30,60 23,70 15,50 9,82 7,00 5,00 3,02

Dispersion en % 8 6,5 21,9 10,9 7,8 7,7 16,8 —
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TABLEAU V. — Résultats des calculs statistiques pour des barres à profil H en A - S G M

Élancements X 10 50 70 85

Nombre d'essais N 9 10 10 9

Valeurs moyennes x m 32,111 24,586 15,186 10,037

Limites de confiance de la
moyenne

m' 31,879 23,363 14,347 9,683

m" 32,879 25,809 16,025 10,390

Écarts-types S 0,302 1,710 1,173 0,460

Limite de confiance des
écarts-types

S' 0,204 1,176 0,807 0,311

S" 0,578 3,122 2,141 0,881

Coefficients de Pearson
Ti - 0,043 0,815 0,951 1,707

Ï2 - 0,089 - 0,904 0,323 1,727

Variable de Stu. Fischer ta 2,967 2,839 2,839 2,967

m — ta S 31,215 19,731 11,856 8,672

Ai—a 0,517 2,813 1,929 0,787

S tn —a S 0,517 2,813 1,929 0,787

La plus petite valeur
expérimentale xe 31,6 22,4 13,7 9,55

La plus grande valeur
expérimentale xu 32,6 27,1 17,54 10,97

Dispersion en % S 1,8 12,7 14 8,8

TABLEAU VI. — Résultats des calculs statistiques pour des barres en A G 5

Élancements X 10 50 70 85 100 120 150

Nombre d'essais N 27 8 8 8 8 5 5

Valeurs moyennes x — tn 12,00 9,580 7,810 7,040 6,229 4,850 3,070

Limites de confiance de la
moyenne

m' 11,871 9,396 7,504 6,747 6,038 4,803 2,983

m" 12,129 9,764 8,116 7,333 6,420 4,897 3,156

Écarts-types S 0,326 0,220 0,366 0,351 0,229 0,038 0,089

Limites de confiance des
écarts-types

S' 0,257 0,145 0,242 0,231 0,151 0,022 0,053

S" 0,447 0,448 0,745 0,714 0,466 0,108 0,255

Coefficients de Pearson
Yi - 1,239 0,189 - 1,318 - 0,211 - 0,183 - - 0,947

Ï2 - 0,704 0,234 1,013 - 0,424 0,388 - 30,35

Variable de Stu. Fischer ta 2,178 3,136 3,136 3,136 3,136 4,275 4,275

m — ta S 11,29 8,89 6,66 5,94 5,51 4,69 2,69

A\—a 1,300 1,797 1,797 1,797 1,797 2,373 2,372

S' A1^a S 0,424 0,393 0,658 0,631 0,411 0,091 0,211

La plus petite valeur
expérimentale xe 11,3 9,29 7,09 6,51 5,9 4,81 2,94

La plus grande valeur
expérimentale xu 12,5 9,90 8,27 7,54 6,56 4,90 3,16

Dispersion en % 8 7,5 10,2 19,1 20,3 15 12 12
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TABLEAU VII. — Comparaison sommaire des moyennes
de contraintes en compression et en traction

- A-Z5G A-U4G A-SG A-G5

Compression

NA 48 1 44 51 23

Sa 1,739 1,687 0,665 0,906

ma" 32,642 36,176 29,374 15,987

Traction

Nb 39 38 41 27

Sb 1,743 1,187 0,944 0,326

mß 31,47 32,384 28,956 12,000

Sp 1,741 1,477 0,801 0,659

Valeur appr. de v/ 83 78 71 27

i 0,975 1,989 1,991 1,996 2,052

ma — niB 1,171 3,792 0,418 3,987

u* 0,439 0,635 0,348 0,408

* u t1 — aLSp* 4r + 4r ou » =''i —«a/tt + tt Pour tous les alliages mA — > «.

\ NB V"a n*

TABLEAU VIII. — Résultats des calculs statistiques à rélancement nul sur VA - G 5

Compression Traction

Contraintes limites de ®0,02 °0,2 Gritp. ®(>,02 a„,2 Gl tip.

Nombre d'essais N 27 27 28 23 23 23

Valeur minimale xu 7,30 11,30 18,50 12,00 14,50 30,90

Valeur maximale xe 8,80 12,50 21,10 16,00 17,90 33,90

Valeur moyenne m 7,963 12,00 19,964 13,930 15,987 31,783

Écart-type S 0,373 0,326 0,612 0,866 0,906 0,718

Yi 0,103 - 1,239 - 0,314 0,397 2,142 3,598

Ï2 0,344 - 0,704 0,029 1,110 1,756 3,613

2,612 2,612 2,595 2,697 2,697 2,697

m f<x S 6,990 11,149 18,376 11,000 13,543 29,847
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TABLEAU IX. — Résultats des calculs statistiques à /'élancement nul sur VA - S G

Compression Traction

Contraintes limites de CT0,02 ^0,2 Grup. ^0,02 CT0,2 Grup.

Nombre d'essais N 51 51 51 42 41 40

Valeur minimale xu 23,50 28,0 28,4 26,5 27,3 30,9

Valeur maximale xe 27,4 30,6 30,8 30,5 32,9 45,8

Valeur moyenne m 25,47 29,37 29,68 28,10 28,96 32,26

Écart-type S 0,924 0,665 0,623 0,878 0,944 2,293

Yi - 1,217 - 1,401 - 0,912 1,575 4,312 14,654

Ï2 0,292 - 0,810 - 0,924 0,910 9,145 45,334

la 2,379 2,379 2,379 2,438 2,445 -
m la $ 23,27 27,79 28,20 25,95 26,65 —

TABLEAU X. — Ve et 2e livraison (A - U 4 G)

Compression Traction

Contraintes limites de CT0,02 CT0,2 Grup. ^0,02 ^0,2 Grup.

Nombre d'essais N 34 34 35 28 28 28

Valeur minimale xu 22,0 27,0 35,3 30,1 31,7 42,5

Valeur maximale xe 20,7 35,9 38,9 38,0 39,6 53,0

Valeur moyenne m 26,74 33,02 37,15 35,64 37,17 50,61

Écart-type S 2,142 1,745 0,992 2,249 2,393 2,572

Ti - 1,496 - 3,902* - 0,932 - 2,339 - 1,853 - 4,243*

Ï2 - 0,268 4,664* - 0,831 0,255 0,259 3,592*

la 2,513 2,513 2,501 2,595 2,595 2,595

m $ 21,36 28,64 34,66 29,80 30,96 43,94*

TABLEAU XI. — 3e livraison (A - U 4 G)

Compression Traction

Contraintes limites de ff0,02 CT0,2 Grup. CT0,02 ^0,2 Grup.

Nombre d'essais N 10 10 10 10 10 10

Valeur minimale xu 15,0 27,4 36,1 27,5 30,3 43,5

Valeur maximale xe 23,7 31,2 38,1 32,9 35,3 47,0

Valeur moyenne m 19,08 30,22 36,99 29,68 33,39 45,43

Écart-type S 2.738 1,094 0,671 1,674 1,645 1,091

Yi - 0,036 - 3,107* 0,398 1,606 - 1,247 - 0,927

Y2 - 0,593 - 4,206* - 0,821 0,530 - 0,045 0,054

la 3,532 3,532 3,532 3,532 3,532 3,532

m — la S 9,67 26,36* 34,62 23,77 27,58 41,58
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TABLEAU XII. — Résultats des calculs statistiques à relancement nul sur /'A - Z5G

Compression Traction

Contraintes limites de °0,02 O0,2 Grup. C0,02 a0,2 Grup.

Nombre d'essais N 48 48 48 39 39 39

Valeur minimale xu 25,00 26,6 29,2 22,7 25,8 32,7

Valeur maximale 32,8 35,4 35,8 31,1 34,2 40,1

Valeur moyenne m 28,746 32,642 33,548 27,931 31,471 36,302

Écart-type S 1,628 1,739 1,419 1,973 1,743 1,991

Yi 0,123 - 3,740 - 3,154 - 2,590 - 4,501 - 2,642

Ya 0,502 3,799 2,202 1,144 5,279 2,937

2,385 2,385 2,385 2,472 2,472 2,472

m — t*s 24,863 28,495* 30,164* 23,05 27,16* 31,38

(*) La distribution de la série de mesures n'est pas symétrique.

7. INTERPRETATION DES RESULTATS PAR LA METHODE DUTHEIL

Si l'on soumet une barre prismatique pratiquement droite à un effort de compression
centré constamment croissant, appliqué à ses extrémités articulées, on constate

qu'elle se courbe dès le début du chargement (à condition d'utiliser des appareils de
mesure suffisamment sensibles). La relation empirique de la flèche au milieu de la
barre soumise à l'effort de compression simple, aussi bien centré que possible, est
définie d'après Dutheil par :

f=a- - (1 4- h)G
(1 + i)o

1
_ a 14- b)a I

vN]c G/- — (1 + b)G Av
(12)

k*E
' T—v- et Nie AGk

a et b étant les paramètres empiriques (déterminés à partir des résultats statistiques
de la charge d'affaissement probable).

Cette flèche provoque un moment fléchissant qui a pour valeur :

a (l + /M Nf Auf " b)G v

La contrainte maximale a donc pour expression :

cmax — ~N
Mv _ a( 14- b)o2

A 1
C

— (1 + b)a
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La valeur de la contrainte limite d'affaissement as pour laquelle ae
satisfait alors à :

- (1 + A) (1 - àpt
"k - - (i + byig j "e

(15)

d'où
"2s 0 + A) (1 — a) — CTS [at + ae (1 + A)] + Os"k -

(16)

ou encore :

"k + (I + b)ae

2 (1 + b) (1 - a) -VI: "e"k"k + (1 + b)rse I2
2 (1 + A) (1 — a)J (1 + b) (1 — a) (17)

Ainsi nous avons introduit trois paramètres a, b, et ae qui se déterminent à l'aide
des résultats expérimentaux.

7.1. Détermination de a, b et aa

Si l'on considère trois valeurs de l'élancement Xj, Xj et X3 auxquelles correspondent
les contraintes critiques d'Euler crj,1, 0^2» CT£3 et trois valeurs expérimentales

Cgi as2, Og3 de la contrainte d'affaissement, on peut écrire en vertu de l'équation
(16) le système de trois équations suivant :

"si (1 + A) (1 — a) — <TS1 (I + b)ae + aklae aslakl \

",\ (1 + A) (1 — a) — "si (1 + b)ae + ak&e [ 18

"si (1 + A) (1 — a) — a,, (1 + A)cie + ak3"e -= as3ak3

qui permet de calculer les trois inconnues ay b} et a&.

Après avoir résolu le système de trois équations (18), on obtient :

(1 + A)

a _ "si ("ki — "kù + "si (cTfc2 — "kù + "S3 ("ki — "ki)-c:s
'[•" ©, --Q] + l°» ©. -" ©,] +«» [«. ©,—•©,]

°si ("ki — "ks) + "si ("kl — "kù + "si ("kl — "ki)

(19)

(20)

(1 + A) (1 - a)
^CTS2

gA?3\

G83'
+ GfC2

fGks
W53 GsJ

1 _ / CTft2\

a82'
'°JC2

>CT52 GS3'
H"

(Gkz
Wsa GsJ

1 „ (Gki+ <*33 I ~wsi
_

CTA2\

G82/

(21)
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Dans le tableau ci-dessous nous avons rassemblé les valeurs de a, b, et ae pour chaque
alliage d'aluminium dans cet article,

TABLEAU

A-U4G A-SG AS-GM A-Z5G A-G5

a 0,0954 0,2605 0,2091 0,1174 0,8885

b 0,2346 0,0370 0,252 0,0378 - 0,1545

27,12 28,11 31,53 29,15 11.24

E 7400 7000 7000 7200 7000

8. CONCLUSIONS

8.1. Essais sur matériaux

A l'examen des tableaux 8, 9, 10, 11 et 12 on constate que :

- l'alliage A-U4G présente, pour les différentes fusions, des écarts considérables
aussi bien en traction qu'en compression ;

- l'alliage A-SG ne manifeste pas d'anomalie appréciable, mais qu'il possède,
contrairement à l'alliage précédent, une limite d'élasticité de compression
légèrement supérieure à celle de traction.

8.2. Essais de flambement et comparaison avec la courbe Dutheil

Les coefficients de Pearson, insérés dans les tableaux 2, 3, 4, 5 et 6, nous
permettent de relever quelques élancements pour lesquels la série de mesures de contrainte

d'affaissement n'a pas de répartition normale. Dans le souci de faciliter la
détermination de la contrainte probable d'affaissement, on a utilisé une même relation,
c'est-à-dire X m — t s où t varie avec le nombre de mesures à chaque élancement.

a a

Comme le montrent les figures 1 à 5, la courbe théorique de chaque alliage ne
dépasse presque en aucun cas la limite des contraintes d'affaissement ; ces courbes
peuvent donc servir de base au calcul de la résistance au flambement simple des barres

en alliage d'aluminium à traitement thermique, compte tenu du facteur de sécurité
de la barre.

Sur la figure 6, on voit que les courbes non-dimensionnelles de flambement pour
les alliages à traitement thermique, plus précisément A-U4G, A-SG, A-SGM et A-Z5G,
sont proches les unes des autres.

Afin de simplifier le calcul, H. Djalaly a été amené à proposer une courbe moyenne
(représentée par des points sur le figure 6) ayant pour expression :

°'53"3
0,59041 - + 0,59041 ]2 '-07987

A V L A J A'

a et X étant les valeurs non-dimensionnelles de la contrainte et de l'élancement.

Bg. 1 5 AK 23
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Il est intéressant de remarquer que la loi de comportement de l'alliage A-G5
(alliage sans traitement thermique) présente un écrouissage important, par conséquent la
courbe de flambement eulérienne ne peut répondre à la résistance ultime des barres en
A-G5 pour des barres relativement élancées. Cela est parfaitement visible sur la figure
5. Bien entendu, en ce qui concerne les barres élancées la courbe eulérienne est valable

pour les matériaux dont le phénomène d'écrouissage n'est pas considérable, notam-

Fig. 2
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Fig. 5

Fig. 6
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Flg. 7

La partie expérimentale de cette recherche a été effectuée avec l'appui de
l'Aluminium Français, au Laboratoire du C.E.B.T.P. par MM. Dauphin et Texier.

M. P. Arnault, Ingénieur au Service Recherches du C.T.I.C.M., était chargé de
cette recherche et a effectué la première exploitation des résultats, sous la direction

de D. Sfintesco, à l'usage des règles de conception et de calcul des charpentes
en alliages d'aluminium.
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