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ABSTRACT

An efficlent numerical procedure which enables the ultimate strength
of an eccentrically loaded column to be found without developing the load-
deflection curve itself is discussed in this paper. Solutions for symmetri-
cal and unsymmetrical uniaxial bending and for the general case of unsym-—
metrical biaxial bending are considered,

The condition for a maximum value of P for the case of uniaxial bend-
ing with equal end eccentricities e is shown to be 8e/3y0, where yg is the
deflection y at midlength. By constructing an auxiliary curve whose ordi-
nate is 8y/8y , the problem is reduced to a simultaneous solution of two
initial value problems. The equations are solved by numerical integration,
proceeding along the z-axis until By/ByO The corresponding value of
z 1s the half length L/2 of the column and y(L/2) is the eccentricity e.

The initial-value problems for the case of uniaxial bending with un-
equal eccentricities are also developed and the techmique for their solution
explained. Finally, the extension to the general case of columns with bi-
axial eccentricities unlike at the two ends is discussed.

Comparisons of results with results of previous investigations are
noted. ‘
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2.1

PREVIOUS WORK

Elastic flexural-torsional behavior of beam~columns is discussed
by Bleich,! Timoshenko and Gere,? and Vlasov.® 1In 1935 Jezek" pre-
sented an approximate method for determining the ultimate load of a
beam-column in uniaxial bending with equal end eccentricities.
Galambos and Ketter® and Ketter® developed a more accurate solutionm,
applicable for unequal end eccentricities, in which the effect of
residual stresses is considered. Kabaila and Hall’ presented a new
approach to the solution of the problem for equal eccentricities.
Their procedure is extended in this paper to the case of unequal ec-
centricities, and a technique is developed which results in greater
accuracy and a considerable reduction in computational effort.

Investigation of the inelastic behavior of beam~columns under bi-
axially eccentric load has been undertaken only recently. Birnstiel
and Michalos® and Harstead, Birnstiel, and Leu® developed a general
procedure for determining the ultimate load with the same eccentric-
ities at each end. The procedure requires considerable computational
effort. Sharma and Gaylord10 gave a simple approximate solution in
which the lateral displacements and twist of the cross section are
assumed to vary sinusoidally along the axis of the column. The so-
lution of the nonlinear differential equations is simplified by im-
posing the equilibrium condition only at midlength of the column.
Syal and Sharma'! presented a numerical technique for the general
case in which eccentricities at one end differ from those at the
other. However, it is limited to elastic behavior, so that only the
load at first yield is obtained. Residual stresses are taken into
account in both (10) and (11) and computed loads are in good agree-
ment with test results.

UNIAXTAL BENDING WITH EQUAL END ECCENTRICITIES

Method of Analysis

The curvature ¢, the axial load P, and the bending moment M at
any cross section of the member are related by

¢ = £@,M N EY)

In the elastic range, this equation has the familiar form ¢ = M/EI.
Since displacements are small, ¢ can be taken equal to y'', the sec-
ond derivative of displacement with respect to distance along the
column:

ly'"| = £@,M 2)

With the coordinate axes shown in Fig. 1, y" is negative and M = Py,
so that Eq. 2 yields

L

y + f(P,Py) = O (3)
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Fig. 1 Eccentrically loaded column

The deflected shape can be found by solving an initial-value problem
of Eq. 3. With the following initial values at midlength

y@ =y, y (0 = 0 )

the solution is obtained in the form

y = y(P,yo) (5)

From this equation the end eccentricity e is

e = e(P,yO) (6)

Kabaila and Hall’ plot on the e-M, plane (M0 = Pyo) a family of
P-curves for a column of given length (Fig. 2). The peak of each
P-curve gives the maximum eccentricity for the corresponding wvalue
of P. Thus, the ultimate load is identified by

g_;_ 0 (7)
0 .

In the analysis presented in this paper the ultimate load is de-
termined without developing the P-curves of Fig. 2. This is done by
constructing an auxiliary curve whose ordinate is Bylayo (Fig. 3).
To develop this curve, Eq. 3 is differentiated with respect to Yor
Thus, for any P-curve of Fig. 2




Fig. 2 Plots of P/P_ for column Fig. 3 Auxiliary curve
of given length

ty ]
3y BECR,M) o By _ | .
3y * Ty P e 0 (8)

n

which, with the notation 8y By/ByO can be written

L

1
8y + f, (B,M) POy

I

0 (9)

The auxiliary curve 8y is symmetrical about the 8y axis (Fig. 3).
The initial values are :

y(@) = 1 v © = 0 (10)

Solutions of Eqs. 3 and 9 with the respective initial values of

Eqs. 4 and 10 can be carried out simultaneously by numerical integra-
tion, proceeding along the z axis until §y = 0. This point satisfies
the condition expressed by Eq. 7. The corresponding value of z is the
half length L/2 of the column and y(L/2) is the eccentricity e.

Evaluation of P, M, and ¢

The cross section of the column is shown in Fig. 4a. The stress-
strain curve of the steel is assumed to have a plateau at the yield
stress Oy and strain hardening is neglected. The member is assumed

2b arc= Rc Ty

) Oy~Oy¢ oy o s R' a

e = R
f—- gt 1™ d /

Lol 4 4

i Roy Roy
(a) (b) (¢} (d).
Fig. 4 | Fig. 5

to have cooling residual stresses as shown in Fig, 5, This distri-
bution was chosen so that results of the analysis could be compared
with those of previous investigations in which it was used (5,10).
Ketter, Kaminsky and Beedlel? developed equations for P, M, and ¢.
Formulas are given for the case of initial yield of the extreme fiber
in compression (Fig. 4b), for the compression side partially plastic
(Fig. 4c), and for both sides partially plastic (Fig. 4d). For the
case shown in Fig. 4d the equations are
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2.

3

P

g = 2btf (Rc + Rt) + tw(d - 2tf)Rt + twd(a -v) (11a)

M twd2 2 2

5 = tf(d - tf)(Zb - tw) + ~€——-(l +a+y - 20" + 20y - 2y7)
y _ (11b)

B o e (11c)

1 - -
¢y Rt
In Eq. 1lc ¢ = M_/EI = 20_/Ed. The other symbols are defined in

Figs. 4 and “5. Formulas for the other two cases are not repeated
here. Figure 6 shows an M-¢ relationship for a given value of P.
Point A corresponds to initial yielding of the extreme fiber in com-
pression, while point B corresponds to the case where yielding is
complete through the thickness of the compression flange. TFor sim-
plification the M-¢ relation is assumed to be linear between A and B.

Equations 11 can be written in the form

M
‘B
A
. Fig. 6 Moment-rotation curve
é
P = P(0,Y) | (12a)
M o= M(a,Y) (12b)
¢ = ¢,y (12¢)

The general forms of the equations for the case shown in Fig. 4c are
the same as Egs. 12 except that R replaces y. For the case of Fig.
4b, however, the member is elastic and P, M, and ¢ are functions of
R only.

Ty LI
Calculation of y and 8y for Inelastic Behavior

The numerical integration of Eqs. 3 and 9 requires the evaluation
of the curvatures y" and 6y" for given values of P and M. Since
these cannot be obtained in closed form when the cross section is
partially yielded, a numerical procedure which is an extension of the
Newton-Raphson method??® is used.
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Expansion of Eqs. 12 using Taylor's theorem and retaining only
the linear terms yields

_ 9P oP

dPp = ga-da + §§-dY (13a)
_ M oM

dM = B do + 5§-dy | (13b)
= 3% 3¢

dp = v do + Ty dy (13¢)

For a given value of P, dP = 0. Therefore, Eq. 13a gives

oP /oy

ap/aa dy (14)

doo =

which upon substitution into Egs. 13b and 13c gives

L amoesEy,
o, = 5 5P/00 T ) dy (152)

- /oy, 2
a0 - <--a%ap/au ) oy 1sb)

Then, dividing Eq. 15b by Eq. 15a we get

9¢ 9P/9y 9%
d¢ ! Jo. 3P/ 3y
== = f (P,M) =

dM M _ oM oP/3y u M
da OP/3a Y

(16)

ty e
The follawing procedure describes the evaluation of y and S8y

for given values of P, M, and &y.
a. Assume o and §'and compute P and ﬁhby Eqs. 12a and 12b.

b. With dP =P - P and dM = M - M, solve Eqs. 13a and 13b to
get do, and dy. The new values for o and vy are then

a = o + da

Y + dy

v

c. Substitute the values of o and y from step b inte Eqs. 1l2a
and 12b and compare the resulting values of P and M with
the given values. If the agreement is not satisfactory,
use the new values to start a new cycle. This process is
repeated until the desired accuracy is obtained.

d. Substitute the flnal values of o and vy from step ¢ into
Eq. 12¢ to obtain y''.

e. Substitute the final values of o and Y from step c into Eq.-

16 to obtain fM(P M). Use this and the known value of &y
to obtain Gy from Eq. 9.
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2.4

Numerical Integration of Equations 3 and 9

The procedure for determining the column configuration at any
station when its configuration at the preceding station is known is
as follows:

Step 1. Having P, y, (or Mp), and Jyy at station 0, the corres-—
ponding 76' and ¥, are found by the procedure outlined in Art. 2.3.

Step 2. Assume yi' and Gyi' of the next station and use the
trapezoidal rule of numerical integration

1] 1 h 11 LA |
h T 1
yp = Y9 * 3 Ogtyy) CIb)

to compute ¥y Similarly, use

¥ 1

6yl = Gyo -+

ol

(R ot
Gy, + 8y, ) (18a)

(8yq + Sy, ) (18b)

(S1h=x

) = ca
71 R0
to compute Gyl. In these equations h is the interval between stations.

Step 3. With y; from Step 2 compute My = Py; and through the
procedure described in Art. 2,3 determine yl"and Syi'.

Step 4. 1If the values of yi' and Syi' of Step 3 do not agree 'y
with the assumed values of Step 2 start a new cycle with y; and 8yj
as new initial values and repeat the procedure. When agreement be-
tween the computed values and those of the previous cycle is satis-
factory, return te Step 2.

With the method just described, the solutions of Eqs. 2 and 9
are carried out simultaneously until §y becomes zero. As noted be-
fore, the corresponding value of z is the half length of the column
and the value of y is the end eccentricity e of P. This procedure was
programmed for the IBM 360/75 system of the Digital Computer Laboratory
of the University of Illinois at Urbana-Champaign. The procedure con-
verges rapidly, and the solution for a given P and My is obtained with
a few seconds of computer time. Computed values for the W8 x 31 column
of (5) for a number of cases were found to agree within 3 percent of
values irnterpclated from interaction curves in that reference. Further
details are given in (14).

It is of interest to note that y(z) and 8y(z) become zero at the
same station if the initial value of ¥, is such that the cross section
is elastic at statiom 0. Of course, this corresponds to a concentri-
cally loaded column and the given P is the Euler load.
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UNIAXTAL BENDING WITH UNEQUAL END ECCENTRICITIES

Method of Analysis

The method of analysls for the case of unequal end eccentricities
is similar to the case of equal end eccentricities. The procedure
starts at the station at which the column has its maximum displace-
ment yg measured from the pressure line (Fig. 7a). In general, the
auxiliary curve 8y is not symmetrical about the y axis and has an
initial slope c (Fig. 7b). To obtain the ordinates of this curve it
is convenient to consider it as a combination of two curves 6y1 and
8yo which are determined by the following initial conditions:

. 1
6y1(0) = 1 _5Y1(0) = 0 , (19a)
1
6y2(0) = 0 Gyz(O) = 1 (19b)
The ordinate of the 8y curve is then
§y = Gyl + c6y2 7 (20)

The instability condition Be/ayo = 0 of Eq. 7 can be written

Gy(Li,c) = Syl(Li) + céyz(Li) = 0 i=1,2 (21a)
which gives

6y, (L)
c = -W (21b)

where Li is an end of the column,

The deflected shape y(z) and the values of §y; and 8y, at each
station point are found by a straightforward solution of the follow-
ing initial-value problems:

ty

y + £@M) = 0 (22a)
v =y, y @ = 0 (22)
Gyi' + E£,(,M) Poy, = 0 | (23a)
5y,(0) = 1 87,0 = 0 (23b)
6y;" + f;(P,M) PSy, = 0 (242)
5y,(0) = 0 8y,(0) = 1 (24b)

The following steps describe the procedure for given values of P and
Yot
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Step 1. 1Integrate Eqs.  22a, 23a, and 24a numerically with the
prescribed initial values, starting at z = 0 and proceeding to the
1ef§ to any negative value L., The procedure for finding vy = and
dy  at each station point i85 theé same as for the case of equal end
eccentricities (Art. 2.3). The corresponding e] = (Ll) is the ec~
centricity of P at the left end of the column (Fig. 7).

Step 2. Compute c¢ from Eq. 21b.
Step 3. Integrate the same system of equations, with the same

initial values, from z = 0 to the right until Sy(Lj,c) = 0, using the
value of ¢ from Step 2. The corresponding ey = y(Ly) is the eccentric-

ity at the right end of the column and L = -L; + L, is the length of

the column (Fig. 7), where it is to be remembered that L; is negative.

The procedure described above gave results for a number of cases
which checked within 3 percent of values according to (15). Further
details are given in (14).

GENERAL CASE OF BIAXIAL BENDING
The procedure described gbove was extended to the analysis of
columns with biaxial eccentricities unlike at the two ends. The so-
lution is given by
du Ju Ju
] 1 1
BuA BVA BBA
3v' Bv' Bv' % 0 (25)
BuA BVA BBA
ap aB 3B .
1 1 ]
BuA avA BBA
where u and v are ‘displacements 1n the ,x and y 'directions, respective~
ly, B is the angle of twist, and uA, v,, and B, are first derivatives
with respect to z at the end A of the column. Numerical results for a
number of cases are reported in (14).
y
.r_-[—"---- Yo
3| e
} 2
p
» 2
(a)
3 Fig. 7 (a) Column with unequal eccentricities
y (b) Auxiliary curve for column in (a)
=T
L L2 z
L
(b)
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The concept of an equivalent uniform moment for uniaxial bending
with unequal end eccentricities was suggested by Massonnet in 1947,
and a formula based on an approximate mathematical investigation was
given.17 Later, other similar formulas were proposed, and the con—
cept was used in codes and specifications. Sharma and Gaylord1
showed that their interaction curves for biaxially bent columns with
eccentricities the same at both ends gave good predictions of the
results of four tests’® on columns with eccentricities unlike at the
two ends by using an equivalent uniform moment M__ in each prinecipal
plane xz and vz according to €4

Meq = 0.4M + 0.6M, > 0.4M, (26)

In this formula, which was suggested by Austin,'® M; and M, are posi-
tive when the member bends in single curvature and M, is the smaller
of the two. Furthermore, results for 15 columns with unlike eccentric-
ities analyzed in (14) by Eq. 25 differed from values given by Sharma
and Gaylord's interaction curves with the equivalent uniform moment
according to Eq. 26 by not more than 5 percent. Thus, it appears that
the extended concept of equivalent uniform moment can be relied upon

to simplify the analysis of the biaxially bent column with eccentric~
ities unlike at the two ends.

If twist is neglected Eq. 25 reduces to a second-order determi-
nantal equation. Results for 22 columns analyzed by this procedure
differed from values given by the interaction curves of (10) by not
more than 8.5 percent. This suggests that the analysis of biaxially
bent columns can be reduced with good approximation to one of plane
bending in the x and y dlrections. This conclusion was also demon-
strated in (10).
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