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ABSTRACT

An efficient numerical procedure which enables the ultimate strength
of an eccentrically loaded column to be found without developing the load-
deflection curve itself is discussed in this paper. Solutions for symmetrical

and unsymmetrical uniaxial bending and for the general case of unsym-
metrical biaxial bending are considered.

The condition for a maximum value of P for the case of uniaxial bending

with equal end eccentricities e is shown to be Se/Syp, where yQ is the
deflection y at midlength. By constructing an auxiliary curve whose ordinate

is 3y/3yQ, the problem is reduced to a simultaneous solution of two
initial value problems. The equations are solved by numerical integration,
proceeding along the z-axis until 3y/3yg 0. The corresponding value of
z is the half length L/2 of the column and y(L/2) is the eccentricity e.

The initial-value problems for the case of uniaxial bending with
unequal eccentricities are also developed and the technique for their solution
explained. Finally, the extension to the general case of columns with
biaxial eccentricities unlike at the two ends is discussed.

Comparisons of results with results of previous investigations are
noted.
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1. PREVIOUS WORK

Elastic flexural-torsional behavior of beam-columns is discussed
by Bleich,1 Timoshenko and Gere,2 and Vlasov.3 In 1935 Jezek9
presented an approximate method for determining the ultimate load of a
beam-column in uniaxial bending with equal end eccentricities.
Galambos and Ketter5 and Ketter6 developed a more accurate solution,
applicable for unequal end eccentricities, in which the effect of
residual stresses is considered. Kabaila and Hall7 presented a new
approach to the solution of the problem for equal eccentricities.
Their procedure is extended in this paper to the case of unequal
eccentricities, and a technique is developed which results in greater
accuracy and a considerable reduction in computational effort.

Investigation of the inelastic behavior of beam-columns under bi-
axially eccentric load has been undertaken only recently. Birnstiel
and Michalos0 and Harstead, Birnstiel, and Leu9 developed a general
procedure for determining the ultimate load with the same eccentricities

at each end. The procedure requires considerable computational
effort. Sharma and Gaylord10 gave a simple approximate solution in
which the lateral displacements and twist of the cross section are
assumed to vary sinusoidally along the axis of the column. The
solution of the nonlinear differential equations is simplified by
imposing the equilibrium condition only at midlength of the column.
Syal and Sharma11 presented a numerical technique for the general
case in which eccentricities at one end differ from those at the
other. However, it is limited to elastic behavior, so that only the
load at first yield is obtained. Residual stresses are taken into
account in both (10) and (11) and computed loads are in good agreement

with test results.

2- UNIAXIAL BENDING WITH EQUAL END ECCENTRICITIES

2.1 Method of Analysis

The curvature <j>, the axial load P, and the bending moment M at
any cross section of the member are related by

<j> f(P,M) (1)

In the elastic range, this equation has the familiar form <j> M/EI.
Since displacements are small, <}> can be taken equal to y'', the second

derivative of displacement with respect to distance along the
column:

I y
* '

I f(P.M) (2)

With the coordinate axes shown in Fig. 1, y'' is negative and M Py,
so that Eq. 2 yields

y" + f(P,Py) 0 (3)
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L/2 L/2

Fig. 1 Eccentrically loaded column

The deflected shape can be found by solving an initial-value problem
of Eq. 3. With the following initial values at midlength

y (0) y0 y (0) =0 (4)

the solution is obtained in the form

y y(P»y0) (5)

From this equation the end eccentricity e is

e e(p»yQ) (6)

Kabaila and Hall7 plot on the e-Mg plane (Mq Pyg) a family of
P-curves for a column of given length (Fig. 2). The peak of each
P-curve gives the maximum eccentricity for the corresponding value
of P. Thus, the ultimate load is identified by

3e
9y,

0 (7)
0

In the analysis presented in this paper the ultimate load is
determined without developing the P-curves of Fig. 2. This is done by
constructing an auxiliary curve whose ordinate is 3y/3yg (Fig. 3).
To develop this curve, Eq. 3 is differentiated with respect to y^.
Thus, for any P-curve of Fig. 2

P/P„ 0.6

8y dy/dy0

z

L/2 L/2
M0 « Py0
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Fig. 2 Plots of P/Py for column Fig. 3 Auxiliary curve
of given length

3Z_ + p3JL_ _ o
3yQ 3M 3yQ

(8)

which, with the notation 6y 3y/3yg can be written

6y + fM (P,M) Pôy 0 (9)

The auxiliary curve <5y is symmetrical about the 6y axis (Fig. 3),
The initial values are

y(0) 1 y (0) =0 (10)

Solutions of Eqs. 3 and 9 with the respective initial values of
Eqs. 4 and 10 can be carried out simultaneously by numerical integration,

proceeding along the z axis until ôy 0. This point satisfies
the condition expressed by Eq. 7. The corresponding value of z is the
half length L/2 of the column and y(L/2) is the eccentricity e.

2 • 2 Evaluation of P, M, and tj)

The cross section of the column is shown in Fig. 4a. The stress-
strain curve of the steel is assumed to have a plateau at the yield
stress a and strain hardening is neglected. The member is assumed

(a)

Fl/ A
ROy

(b)

Fig. 4

(C) (d)

Fig. 5

to have cooling residual stresses as shown in Fig. 5. This distribution

was chosen so that results of the analysis could be compared
with those of previous investigations in which it was used (5,10).
Ketter, Kaminsky and Beedle12 developed equations for P, M, and c(>.

Formulas are given for the case of initial yield of the extreme fiber
in compression (Fig. 4b), for the compression side partially plastic
(Fig. 4c), and for both sides partially plastic (Fig. 4d). For the
case shown in Fig. 4d the equations are
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— 2bt,(R + R + t (d - 2tf)R + t d(a - y) (Ha)
CT fctw rtwy

,2
M t d

— (d - t.) (2b - t + —?— (1 + a + y - 2a + 2ocy - 2y
a f f w 6
y (11b)

1 (11c)
6 1 - a - yy

In Eq. 11c <j) Hy/EI 2a /Ed. The other symbols are defined in
Figs. 4 and ^5. Formulas for the other two cases are not repeated
here. Figure 6 shows an M-c)> relationship for a given value of P.
Point A corresponds to initial yielding of the extreme fiber in
compression, while point B corresponds to the case where yielding is
complete through the thickness of the compression flange. For
simplification the M-<j) relation is assumed to be linear between A and B.

Equations 11 can be written in the form

Fig. 6 Moment-rotation curve

*

P P(a,y) (12a)

M M(a,y) (12b)

<j> <j>(a>Y) (12c)

The general forms of the equations for the case shown in Fig. 4c are
the same as Eqs. 12 except that R replaces y. For the case of Fig.
4b, however, the member is elastic and P, M, and (j> are functions of
R only.

fi 11
2.3 Calculation of y and 6y for Inelastic Behavior

The numerical integration of Eqs. 3 and 9 requires the evaluation
of the curvatures y and <5y for given values of P and M. Since
these cannot be obtained in closed form when the cross section is
partially yielded, a numerical procedure which is an extension of the
Newton-Raphson method13 is used.
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Expansion of Eqs. 12 using Taylor's theorem and retaining only
the linear terms yields

dP
8P jïïa + 37 dY (13a)

dM
3M

ïïa + W dY (13b)

dcj)
3<f>

da3a
^ 3<f> J+ w dY (13c)

a given value of P, dP 0. Therefore, Eq. 13a gives

da - 3P/3y
3P/3a dy (14)

which upon substitution into Eqs. 13b and 13c gives

« -

Then, dividing Eq. 15b by Eq. 15a we get

_ 3£ 3P/3y 3£

— f'(P M) —3a 3P/3a 3y_
dM rMk ' ; 3M 3P/3y ,3M ^

3a 3P/3a 3y

it M
The following procedure describes the evaluation of y and <5y

for given values of P, M, and <5y.

a. Assume a and y and compute P and M by Eqs. 12a and 12b.

b. With dP P - P and dM M - M, solve Eqs. 13a and 13b to
get da and dy. The new values for a and y are then

a a + da

y y + dy

c. Substitute the values of a and y from step b into Eqs. 12a
and 12b and compare the resulting values of P and M with
the given values. If the agreement is not satisfactory,
use the new values to start a new cycle. This process is
repeated until the desired accuracy is obtained.

d. Substitute the final values of a and y from step c into
Eq. 12c to obtain y

e. Substitute the(final values of a and y from step c into Eq.
16 to obtain(fM(P,M). Use this and the known value of ôy
to obtain <Sy from Eq. 9.
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2.4 Numerical Integration of Equations 3 and 9

The procedure for determining the column configuration at any
station when its configuration at the preceding station is known is
as follows:

Step 1. Having P, yg (or Mg), and ôyg at station 0, the corresponding

y"g' and yg are found by the procedure outlined in Art. 2.3.

Step 2. Assume y|' and 6y^' of the next station and use the
trapezoidal rule of numerical integration

' ' h ' ' —' '

y± y0 +
2 (yo + yi }

yi yo + I (yo + yl>

to compute y^. Similarly, use

5y1 <Sy0 + I (<5y0 + ^
<5yi <Sy0 + I (<SyQ + 6yi

to compute Sy-^. In these equations h is the interval between stations.

Step 3. With y-^ from Step 2 compute M-^ Py^ and through the
procedure described in Art. 2.3 determine y ' ' and <5y^'

If If
Step 4. If the values of y^ and oyj_ of Step 3 do not f agree

with the assumed values of Step 2 start a new cycle with y^ and Ôy^
as new initial values and repeat the procedure. When agreement
between the computed values and those of the previous cycle is
satisfactory, return to Step 2.

With the method just described, the solutions of Eqs. 2 and 9

are carried out simultaneously until <5y becomes zero. As noted
before, the corresponding value of z is the half length of the column
and the value of y is the end eccentricity e of P. This procedure was
programmed for the IBM 360/75 system of the Digital Computer Laboratory
of the University of Illinois at Urbana-Champaign. The procedure
converges rapidly, and the solution for a given P and Mg is obtained with
a few seconds of computer time. Computed values for the W8 x 31 column
of (5) for a number of cases were found to agree within 3 percent of
values interpolated from interaction curves in that reference. Further
details are given in (14).

It is of interest to note that y(z) and 6y(z) become zero at the
same station if the initial value of yg is such that the cross section
is elastic at station 0. Of course, this corresponds to a concentrically

loaded column and the given P is the Euler load.

(17a)

(17b)

(18a)

(18b)
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3. UNIAXIAL BENDING WITH UNEQUAL END ECCENTRICITIES

3.1 Method of Analysis

The method of analysis for the case of unequal end eccentricities
is similar to the case of equal end eccentricities. The procedure
starts at the station at which the column has its maximum displacement

yg measured from the pressure line (Fig. 7a). In general, the
auxiliary curve <5y is not symmetrical about the y axis and has an
initial slope c (Fig. 7b). To obtain the ordinates of this curve it
is convenient to consider it as a combination of two curves 6y^ and
<5y2 which are determined by the following initial conditions:

fiy^O) 1 ôy^(O) 0 (19a)

<Sy2(0) 0 ôy2(0) 1 (19b)

The ordinate of the 6y curve is then

<5y 6y1 + c<Sy2 (20)

The instability condition 3e/3y^ 0 of Eq. 7 can be written

0y(L±,c) ôy^L^ + c6y2(L±) 0 i 1,2 (21a)

which gives

<Sy, <Li
C - -6Ï7V <21b>

where L. is an end of the column.l
The deflected shape y(z) and the values of <5y^ and 6y2 at each

station point are found by a straightforward solution of the following
initial-value problems:

y" + f (P ,M) 0 (22a)

y (0) y0 y'(0) 0 (22b)

6yi + fM(P,M) P6y^ 0 (23a)

ôy^O) 1 6y^(0) 0 (23b)

6y2 + f^j(P,M) P6y2 0 (24a)

<Sy2(0) 0 Sy2(0) 1 (24b)

The following steps describe the procedure for given values of P and

V
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Step 1. Integrate Eqs. 22a, 23a, and 24a numerically with the
prescribed initial values, starting at z 0 and proceedingfto the
left to any negative value L^. The procedure for finding y and
6y at each station point is the same as for the case of equal end
eccentricities (Art. 2.3). The corresponding e^ y(L^) is the
eccentricity of P at the left end of the column (Fig. 7).

Step 2. Compute c from Eq. 21b.

Step 3. Integrate the same system of equations, with the same
initial values, from z 0 to the right until <5y(L2,c) 0, using the
value of c from Step 2. The corresponding e2 y(L2) is the eccentricity

at the right end of the column and L -L^ + L2 is the length of
the column (Fig. 7), where it is to be remembered that is negative.

The procedure described above gave results for a number of cases
which checked within 3 percent of values according to (15) Further
details are given in (14).

GENERAL CASE OF BIAXIAL BENDING

The procedure described above was extended to the analysis of
columns with biaxial eccentricities unlike at the two ends. The
solution is given by

3u

3u!
3u

3v!
3u

3v
3u'

3v
3v!

3v

3ß'
0 (25)

3u.

3JL
t

9v,
ÜL
93!

where u and v are displacements in thetx and y directions, respectively,
3 is the angle of twist, and u^, v^, and 3^ are first derivatives

with respect to z at the end A of the column,
number of cases are reported in (14).

Numerical results for a

y0

(b)
179

(a) Column with unequal eccentricities
(b) Auxiliary curve for column in (a)



The concept of an equivalent uniform moment for uniaxial bending
with unequal end eccentricities was suggested by Hassonnet in 1947,
and a formula based on an approximate mathematical investigation was
given.17 Later, other similar formulas were proposed, and the
concept was used in codes and specifications. Sharma and Gaylord10
showed that their interaction curves for biaxially bent columns with
eccentricities the same at both ends gave good predictions of the
results of four tests16 on columns with eccentricities unlike at the
two ends by using an equivalent uniform moment M in each principal
plane xz and yz according to e<*

M 0.4 M. + 0.6 M„ > 0.4 M„ (26)
eq i I - I

In this formula, which was suggested by Austin,18 M-^ and M2 are positive
when the member bends in single curvature and M-^ is the smaller

of the two. Furthermore, results for 15 columns with unlike eccentricities
analyzed in (14) by Eq. 25 differed from values given by Sharma

and Gaylord's interaction curves with the equivalent uniform moment
according to Eq. 26 by not more than 5 percent. Thus, it appears that
the extended concept of equivalent uniform moment can be relied upon
to simplify the analysis of the biaxially bent column with eccentricities

unlike at the two ends.

If twist is neglected Eq. 25 reduces to a second-order determi-
nantal equation. Results for 22 columns analyzed by this procedure
differed from values given by the interaction curves of (10) by not
more than 8.5 percent. This suggests that the analysis of biaxially
bent columns can be reduced with good approximation to one of plane
bending in the x and y directions. This conclusion was also
demonstrated in (10)
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