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FLAMBEMENT PAR FLEXION-TORSION DES COLONNES COMPRIMEES
CENTRIQUEMENT , APPUYEES ELASTIQUEMENT AUX EXTREMITLS

D. Mateescu E. Cuteanu

Institutul Politehnic "Traian Vuia"
Catedra de Constructii Metalice
Timisoara, Roumanie

ABSTRACT

The determination of the critical load on a column of a mono-
symmetric secticn 1s presented herein for the general case of end
restraints. The column, whose centroid does not necessarily coincide
with the shear centre, is represented by a system of eight first-
order differential equations. Since ten analytical treatments of the
problem poses great difficulties, ten solutions of the differential
equations are obtained numerically by applying the method of Runge-
Kutta-Gill. A general program was prepared and ten numerical compu-
tations are carried out in the IRIS-50 electronic digital computer.
The influence of the end conditions on the value of the critical load
in flexural-torsional buckling are examined using several numerical.
examples. A few conclusions are drawn on the influence of the geo-—
metric parameters, related to flexural, torsional, and bimoment
restraints, on the buckling behaviour.
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1. INTRODUCTION

Le calcul de stabilité qui refléte le plus fiddlement le comportement réel d'une
structure, c'est le calcul & la divergence d'équilibre. Un tel calcul, effectué sur
l'ensemble de la structure, est extr&mement laborieux et -jusqu'3d présent- difficile
d aborder. Toutefois, du fait que l'instabilité de la structure par divergence peut
&tre causée par l'affaissement d'un seul élément composant, on a proposé des méthodes
de calcul basées sur 1l'étude de l'instabilité d'une seule Barre de la structure. En
isclant done la barre, mais en tenant compte de 1'influence du reste de la structure,
on arrive 3 des simplifications essentielles qui permettent d'aborder le probléme.
Evidemment, l'exactitude de cette substitution reste dépendante de la correction
avec laquelle on détermine les paramétres de connexion entre 1'él8ment examiné et le
reste de la structure. Comme exemples d'application de ce procédé on peut citer /1/,
/2/ pour les cadres et /3/,/4/ pour les poutres d treillis constituées de barres a
Parois minces formées & froid.

Les colonnes des cadres sont généralement comprimées et fléchies, avec ou sans
Charges transversales appliquées entre les noeuds. Pour tenir compte des effets de
Charges transversales et des imperfections, on dispose de relations d'interaction,
connues dans la littérature et adoptées par les rdéglements /S5/,/6/,/7/.

2. DETINITION DU PROBLEME

L'un des paramétres essentiels, dans les relations d'interaction mentionnées ci-
dessus, c'est la valeur critique de l'effort de compression centrique pour la barre
idéale (sans aucune imperfection).

Si la barre comprimée présente un seul plan de symétrie longitudinal, ce qui
arrive bien souvent en pratique (Fig. 1), les centres de gravité et de torsiocn ne
coIncident pas ; de ce fait 1'instabilité se produit généralement par flexion trans-
versale et torsion. Dans le but d'une utilisation plus généralisée des relations
d'interaction, il est nécessaire de connaltre 1'effort critique du flambement centrique
par flexion transversale et torsion, dans 1'hypothése d'appuis élastiques.

Le systéme (1-2) est remplacé par un systéme équivalent de huit équations
différentielles du premier ordre, ce qui permet de réduire les erreurs dans le
cadre du procés d'intégration numérique /12/. Le systéme est écrit dans une forme
non dimensionnelle : )

o=y
-
o
§= gk —Pm
=



Pour cette forme d'instabilité, on connait une formule généralisée par un pa-
ramétre tenant compte des conditions d'appui /8/. Il faut toutefois souligner que
la formule mentionnée et respectivement les valeurs du paramétre ne concernent pas
les appuis élastiques ; méme dans les autres situations, les résultats ne sont
exacts que si les déformées de flexion et de torsion de 1l'équilibre indifférent sont
affinées. (Dans 1'article /9/, on donne une justification théorique de cette obser-
vation, par l'utilisation des fonctions fondamentales du flambement par flexion).
Pour autres modes d'appui, la formule peut conduire & des valeurs plus ou moins sa-
tisfaisantes ; dans certains cas, les résultats peuvent devenir inutilisables (nom-
bres imaginaires), ce qui nous impose une grande réserve.

Le but de 1l'article présent est de déterminer cet effort critique des barres &
section monosymétrique, pour le cas général d'appui. Puisque un traitement analyti-
que aurait présenté des difficultés on a fait appel a un procédé de calcul numéri-
que, en intégrant le systéme d'équations différentielles du probléme par la méthode
Runge-Kutta-Gill.

3. EQUATIONS DU PROBLEME

Par rapport au systéme de référence intrinséque ayant l'origine dans le centre
de torsion (Fig. 2) le systéme d'équations différentielles est /10/, /11/

- -4 - N
S B +Nw - N =0

(1...2)

- =M

L caf= (cmi)f'- N =0

ou
u est le déplacement du centre de torsion selon la direction de 1l'axe X
-Y rotation de la section transversale autour du centre de torsion C
N effort de compression centrique, dont on calcule la valeur
§G ordonnée du centre de gravité G par rapport au centre de torsion C
iC rayon d'inertie polaire par rapport au centre de torsion C
et

15:.-518 , C=GL, , G~El, (3...5)

sont les modules de rigidité 3 la flexion dans un plan perpendiculaire au plan de
symétrie, & la torsion pure (du type Saint-Venant) et respectivement au gauchisse-
ment.
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On a utilisé les notations suivantes dans (6-13)

be B (6...13)

ol 1, représente la longueur de la barre.
On peut mentionner que les mémes paramétres géométriques de la barre (16-18)

sont mis en évidence si l1l'on procéde & 1'intégration du systéme (1-2), ce qui prou-
ve qu'ils sont intrinséques au phénoméne et facilitent 1'étude de celui-ci.

4. CONDITIONS AUX LIMITES

Les conditions aux limites nécessaires 3 l'intégration du systéme d'équations
différentielles (6-13) s'obtiennent en écrivant les équations d'équilibre des 81é&-
ments différentiels découpés de la barre déformée dans 1'état d'équilibre indiffé-
rent, 3 proximité des appuis. Qutre l'effort de compression, aux extrémités de la
barre agissent des réactions proportionnelles aux déplacements des appuls, notam-
ment : une force transversale k (u - a‘P”, un moment fléchissant K (4 - & 'P'), un
bimoment?(f?"et un moemnt de torsionjC'f (Fig. 3...8), ol k/daN/cm/, K/daNem/rad/,
¥ /daNem?/cm~1/et¥(/daNem/rad/ représentent les rigidités de la structure corres-
pondant respectivement & un déplacement de l'extrémité de la barre en question se-
lon la direction x, d une rotation de cette section autour de l'axe y, 3 un_gauchis-
sement de la ligne médiane de la section et 3 une rotation autour de l'axe %

(Fig. 3...6). En vue d'une généralisation, on a considéré que 1'appui élastique uti-
lisé contre le déplacement latéral est appliqué d une distance a du centre de tor-
sion et que le centre de gravité de 1l'appul utilisé contre la rotation autour de
1'axe de symétrie se trouve a une distance b (Fig. 3...6). Les sens positifs des dé-
formations u et ¥ sont indiqués sur la figure 3. Sur les figures 3...6, on a indi-
qué séparément toutes les réactions qui interviennent dans les équations d'équili-

bre.
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Ces équations sont, pour % =0 :

Jb_v(ii,; a,,@ ¥ Nu(@‘%ﬂ',) Hﬂ:B =0

u:o— E’okfl) = IL: B =0
%o‘?‘o“ L, K, (A‘L'O—E;{’;)-t(’f Cp=0 (19...22)
Ctu\f +(‘,‘P ~ &N, +‘&0(u-a,\f)p, Ncr( oy, o }&3

D'une maniére similaire, on écrit les conditions pour l'appui % = Q, en obser-
vant les mé&mes conventions de signe et en affectant de l'1nd1ce‘£ les valeurs pour
cette section.

Le dernier terme de l'équation (22) a été obtenu en intégrant sur la section
transversale l'effet des contraintes normales G; , parce que le principe de Saint-
Venant n'est pas applicable a la torsion des barrés 3 parois minces.

En utilisant les notations (14-18) et les rigidités non dimensionnelles :

o - —_— ;L=K% 3(,"}6% (23...26)
B ’ B Co Co

a= _.2'_.. N 4(.,,-# (27...28)
A6 L.

0 deviennent :

(19'...22")
.&



De méme on écrit les conditions pour 5:.-—3,——- = 1e

Les conditions aux limites pour des modes d'appui particuliers /8/ peuvent @tre ob-
tenues en rendant les rigidités nulles ou infinies (selon le cas). Les calculs numé-
riques, effectués 3 l'aide d'un ordinateur IRIS-50 selon le programme &laboré par les
auteurs {(en FORTRAN IV), ont traité les modes d'appul indiqués dans le tableau 1.

TABLEAU 1
ne| TYPE D'APPUI e TYPE\RD’{-\PPUI Nq TYPE DAPPU
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5. METHODE DE CALCUL

Lt'intégration du systdme d'équations différentielles a été effectude en traitant
le probléme de stabilité non pas comme un probléme 3 conditions marginales, mais com-
me un probléme 3 valeurs initiales. Ce procéd? est utilisé dans de divers domaines
/12/, /13/, gr3ce aux possibilités offertes par les ordinateurs. Donc, les solutions

du systéme (6-13) sont &crites sous la forme

~ ~¥ ~& ~ %k ~3
= Gl + G, + Cyie, + Cy bty
* * % =
g' C, g, T C'ﬂ-gq, T C‘bg;g + C,,. gq (29...36)

- - . . =

. . -~ . .

* * * *
3 = C(é: + G0, + Caﬁb 4 C,,?B‘,,
A

ol (Gﬂ, w5 w A . ), i=1,2,3,4 sont quatre groupes de solutions particu-
lidres lindairefent indepéndantes qui satisfont aux conditions initiales pour \= 0
et au systéme d'équations différentielles. Ces solutions particulidres sont obtenues
numériquement a 1'aide de la méthode Runge-Kutta-Gill.

Les conditions initiales nécessaires dans ce procédé de calcul sont établies en

- . . . - L d
précisant les vecteurs linéairement indépendants (ﬁ;, u; s eees ?g . g' ) pour

‘3 = 0. Ainsi, par exemple, dans le cas des conditions d'appui (19'-22') qui corres-

pondent au type 1 du tableau 1, les quantités'ﬁ;"', ug, o"’ et'fg' pouvant &tre ex-

é, les quatre solutions particuliéres linéaire-

ment indépendantes sont établies 3 l'aide des vecteurs linéairement indépendants sui-
vants

. P -~ ~F
primées en fonction de U, ué,‘fo et \f

~ el |
1. LL;=‘4 ) ‘€;=(7 ) &Lv==o } q%1= 0
et les autres valeurs conformément 3 (19'-22'),
~ nol |
ELs u-°=0 ) (?9“4 y W, =0 )\ro"o
et les autres valeurs conformément a (19'-22'),
~ ~} |
II1I. M =0 ‘?‘,: °, u'o:'{ ) \fo =0
et les autres valeurs conformément & (19'-22'),
H
. M’o=° ) \Yo-o y U=0 ‘?9_4

et les autres valeurs conformément a (19'-22').

En effectuant les quatre intégrations numériques, les valeurs des fonctions (29-
36) pour :f: 1 sont '

ﬁ1= Cpty + Colyy t Cy it Cy Ay (37...44)
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€;‘== C% clz4 + CQLClﬂL i-(:b CLLb % 4 (:q clﬁ#
- ) : ) (37...44)
) : ’ * . suite

. . . L]

'3;-: CaQg t Calgy + Cylpy+ Gy Qay

Avec les valeurs (37-44) on impose la satisfaction aux conditions de 1'autre
extrémité US==1J et 1'on obtient un systéme d'équations homogénes ayant pour incon-
nues les constantes d'intégration C » C L'élimination de la solution banale
(qui correspondrait 3 la forme non %eformee de ia barre) prétend l'annulation du dé-
terminant formé par les coefficients de ces inconnues ; il en résulte la valeur cri-
tique de 1l'effort de compression. Cette opération est effectuée par un calcul itera-
tif, 3 partir d'une valeur appréciée n_, qui est modifiée successivement jusqu'a ce
que le déterminant change de signe. La valeur n__ recherchée se trouvera située en-
tre deux valeurs consécutives de n, qui correspondent a des signes différents du dé-
terminant. En appliquant la méthode de la corde et en diminuant chaque fois le pas

n, comme il résulte de la figure 7, on peut considérer l'itération terminée lors-
que pour une modification A'né E‘ de n, le déterminant change de signe.

Dans certains cas, il est souhaitable de connaitre aussi les allures des défor-

- ~F u ~ Py s 5 . . z
mées u et‘fqul correspondent 3 1'équilibre indifférent. Dans ce but, les valeurs de
solutions particuliéres ui& *Eﬂ, i=1,2,3,4 en 9 points intermédiaires équidistants

et aux extrémités sont retenus dans la subroutine d'intégration du systéme d'équa-
tions différentielles. Avec ces valeurs, la subroutine DEF¢RM (Fig.8) calcule les va-
leurs de trois constantes d'intégration du systéme d'équations différentielles en

fonction de la quatridme constante (que l'on prend égale d 1) et construit les dé-
formées a3 1'aide de (33) et (37).

6. DOMAINE DE VARIATION DES PARAMETRES 8118583+

Pour établir les domaines de variation des trois paramétres géométriques, on a
d'abord construit la section typique pour une colonne d'un hall industriel & pont
roulant (Fig. 9). En variant le paramétre‘?= b2/b1 entre 1 et 0,5, on a obtenu pour
une longueur = 10 h les valeurs suivantes

) 1,¢0 0,75 0,50
3,41 . 5,88 15,060

5y
g, 1,13 0,79 0,30
5, 0,214 0,25 0,505
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Ce domaine a été &largi par la considération des barres d sections transversales
O etJLétant donné leur sensibilité aigu& au flambement par flexion-torsion mais aus-
si leur utilisation fréquente comme &1&ments sollicités axialement dans certaines
structures planes et spatiales. En supposant, pour le calcul des paramétres, des lon-
gueurs de barres entre 0,5 et 4,0 m, les valeurs obtenues ont été situées entre les
limites suivantes

<

2 £z

)

; €120 0,02 & 2, £1,2 0,1 £ gy € 1,0

qui ont &té retrouvées lors de la vérification numérique de certains cas concrets.

G

7. CALCUL DE L'EFFORT CRITIQUE ET INTERPRETATION DES RESULTATS

Afin d'étudier 1'influence des conditions d'appui sur la valeur de 1l'effort cri-
tique du flambement par flexion-torsion on a calculé plusieurs exemples numériques.
Les valeurs des paramétres géométriques ont été choisies de sorte qu'elles correspon-—
dent pour une barre sensible 3 ce mode d'instabilité, comme le sont par exemple les
barres 3 parois minces formées 3 froid, 3 sectionJl . Ainsi, les valeurs g, = 0,07 et

g, = 0,8 correspondent 3 un profilJl de dimensions moyennes de la gamme des profils
laminés couramment ; pour g1> qui dépend aussi de la longueur de la barre, on a consi-
déré quatre valeurs : 2, 25, 50 et 100.

Les conditions d'appui ont &té choisies pour modeler une colonne faisant partie
d'un cadre et qui, a 1l'extrémité supérieure, est liée de diverses fagons au reste de
la structure. Afin d4'avoir un critérium pour le choix des rigidités de 1l'appui supé-
rieur, on a défini trois degrés d'encastrement, notamment :

M B Me

= 3 g = — > B —— (45...47)
K > ¥ T

ol les numérateurs représentent respectivement le moment de flexion, le bimoment et le
moment de torsion engendrés par le flambement de flexion-torsion 3 1'extrémité appuyée
é€lastiquement ; le dénominateur de chaque fraction représente la valeur de la sollici-
tation au cas ou la déformation afférente serait complétement annulée par l'appui.
Dans les calculs effectués, on a considéré les valeurs extrémes des degrés d'encastre-
mengv(c'es;;é—dire 0 et 1) et la valeur 0,5. Avec les définitions (46-47), les quanti-
tésC et 30 ont été exprimées en fonction du paramdtre g, et du degré d'encastrement

respectif. Les diagrgmmes tracés (en hypotheése a = b = 0) montrent les effets des trois
composantes K,C et'H{ qui définissent l'ensemble de la rigidité de l'appui (Fig. 10...
1),

Afin d'obtenir des conclusions directes de ces diagrammes, vu que le paramétre g4

dépend (outre les caractéristiques géométriques de la section transversale) du carré de
le longueur (16), les diagrammes de la figure 12 ont été retracés, de sorte que seule

la longueur géométrique de la barre a été maintenue comme variable. On observe que l'ef-
fet de variation du degré d'encastrement est maximum dans le domaine g, < 25 (Fig. 15).
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En examinant les diagrammes représentés dans les figures 10, 13, 14, on peut
observer que pour g, 2 25 un degré d'encastrement yJ{ = 0,5 rapproche la valeur
du paramétre critiqie n de celle qui correspond 3 un degré d'encastrement limite
X, =1 ; plus le degré d'encastrement au gauchissement §3C est grand, plus cet
effet est marqué. Par conséquent, les diagrammes montrent 1'inutilité des trop gran-
des rigidités de ces liaisons dans le domaine des grandes valeurs gli

En effet, une analyse comparative des diagrammes des figures 10, 11, 12 d'une
part, respectivement 10, 13, 14 de l'autre, montre que dans les situations ol 1l'on
opére des modifications sur les liaisons qui empé&chent la rotation due 3 la flexion
('), le taux d'augmentation du paramétre critique n est plus grand dans le domaine
des grandes valeurs g., ol le flambement par flexion est prédominant ; en ce qui
concerne les modifica%ions qui affectent les liaisons concernant 1'autre comp sante
du phénoméne, c'est-3~dire la rotation et le gauchissement dus 3 la torsion (¥ ‘P'),
le taux d'augmentation du paramétre critique est plus grand dans le domaine des peti-
tes valeurs g1+

En modifiant aussi les deux autres paramétres g, et g, de la barre, il résulte
que pour l'augmentation de g,, la valeur du paramétré critique n diminue (Fig. 16).
L'explication réside dans la"signification géométrique de ce paramétre, qui est pro-
portionnel a la distance entre les deux centres de la section transversale. Si cette
distance est plus grande, l'effort de compression centrique produit (par sa composan-
te transversale dans 1'état déformé de la barre) un effet défavorable plus marqué.
Certaines grandes valeurs de ce paramétre peuvent &tre aussi interprétées comme une
réduction de la rigidité de la barre a la torsion, de sorte qu'une liaison a 1'extré-
mité, plus rigide du point de vue de la torsion, ne saurait influencer la valeur
du paramétre critique, d'une maniére décisive.

L'influence du paramétre géométrique g, est inverse d celle de g, le paramétre
critique n augmentant pour les grandes vaieurs de g,. Toutefois, son Importance pour
l'analyse phénoménologique du flambement par flexion-torsion est moindre.

L'influence des rigidités des appuis a été suivie aussi 3 l'aide de diagrammes
du type de celui de la figure 17, construits pour plusieurs valeurs constantes des
paramétres géométriques, respectivement par l'interprétation des allures déformées
(%" et P) correspondant 3 1'édquilibre indifférent:. Ainsi sur la figure 18, sont repré-
sentées les allures des déformations d'équilibre indifférent (pour deux modes d'appui)
d'une barre avec g, = 10, g, = 0,07 et g, = 0,8, ol l'inflyence favorable de 1'emp&-

chement du gauchisSement de“la ligne médiane de la section transversale 3 l'extrémité
est illustrée aussi par la géométrie des allures déformées.

. - . . = = ”
En ce qui concerne l'influence des niveaux d'appul a et b les calculs effectués
ont mis en évidence l'existence de niveaux optimums d'appui en fonction de 1l'élastici-
té de l1l'appui.

Ainsi, par exemple si le degré d'encastrementjeﬁo(Fig. 17) tombe au-dessous de
la valeur 0,75, pour obtenir une charge critique maximale (correspondant au degré
d'en'_t\:‘astrementS’jc respectif) 1'appui simple supérieur devra &tre disposé 3 une distan-
ce a de plus en plus importante du centre de torsion, cette distance tendant vers

_la valeur +1. (Fig. 17-18 :

Les auteurs ont l'intention de poursuivre leurs recherches concernant les barres
comprimées et fléchies.
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