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PHENOMENE DE SAUT DANS LE PROBLEME DE FLAMBEMENT EULERIEN

S.D. Leites
Gosstroy

Moscow
USSR

ABSTRACT

A more exact solution of non-linear buckling of columns is
obtained, based on the governing differential equation whose
curvature expressions are modified to correspond to ten real
values. The non-linear differential equations are solved
numerically and the phenomenon of "jump" (the discontinuity of
the two states of equilibrium) is analysed as an Eulerian problem.
The rigidity of the column is observed to be reduced when the
geometric non-linearity is taken into account. The results
obtained show the relation of the phenomenon of "jump" and the
level of bifurcation.
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1. INTRODUCTION

Il n'existe de systéme idéal (c'est-a-dire dépourvu de toute imperfection) ni
dans la nature, ni dans le domaine technique. C'est pourquoi il ne faut envisager
un systéme idéal que comme un résultat de la transition limite & partir du systéme
non idéal.

De ce point de vue le probléme classique Euler concernant la bifurcation
d'équilibre d'une barre &lastique comprimée axialement présente un cas limite du
probléme plus général, celui du comportement de la barre comprimée et fléchie.

Le présent exposé donne une analyse de grands déplacements d'une barre &las-
tique biarticulée scumise 3 une charge de compression appiquée avec des excentrici-
tés inégales, cette analyse étant faite par voie de l'intégration de 1l'équation
différentielle de flexion qui comprend une expression précise de courbure.

Plusieurs é&tudes ont été consacrées aux problémes de grands déplacements des
barres élastiques sollicitées aussi bien en compression simple qu'en compression
avec flexion. C'étaient J.-L. Lagrange [18] , L. Saalschiitz[20] , G.H. Halphen]|16}] ,
C.J. Kriemler [17] , M. Born[i2] , L. Malkin[19] et beaucoup d'autres qui s'en occu-
paient.

Une différence essentielle entre le présent exposé et les études précédentes
basées d'ailleurs sur le méme mécanisme mathématique, consiste en une plus large
interprétation des relations analytiques obtenues. Pour une barre comprimée et flé-
chie (systéme non idé&al) il existe au moins deux séries de solutions des équations
de calcul. La premidre série refldte des états primaires d'équilibre d'une barre
correspondant 3 une croissance naturelle de la compression. La deuxiéme série de
solutions que les auteurs mentionnés ci-dessus passent sous silence, refléte des états
secondaires d'équilibre d'une barre qui ne peuvent pas avoir lieu au cours de cette
croissance naturelle de la compression. I1 n'est possible de "jeter" une barre i
un état secondaire d'équilibre qu'd l'aide du saut, c'est-3-dire d'un procédé de
transition 3 travers les états d'équilibre adjacents. Les états primaires d'équili-
bre sont toujours stables, tandis que ceux secondaires se divisent en stables et Insta-
bles. Une valeur minima de la force de compression qui rend possibles des états
secondaires d'équilibre est nommée transcritique [5]. Sur la courbe de comportement
d'une barre (déformation caractéristique - force de compression) le point transcri-
tique sert de limite pour les états secondaires de 1'équilibre stable et instable.

Lorsque le paramétre d'une non-idéalité tend vers zéro, on obtient une solu-
tion du systéme idéal (barre soumise & une compression simple ou bien 3 une charge
de compression appliquée 3 ses extrémités avec des excentricités égales mais dia-
métralement opposées). La forme d'équilibre du systéme idéal 3 un état non-troublé
(avant-critique) est orthogonale 3 sa forme primaire, c'est-3-dire a la courbe de
flambement. D&s qu'une force de compression gagne sa valeur critique, le systéme
idéal subit un flambement au sens eulérien, et alors une bifurcation d'équilibre
a lieu. Une analyse montre qu'il faut considérer cette bifurcation comme un cas
limite du phénoméne de saut, et notamment, comme un saut de longueur nulle.

Une telle interprétation du probléme Euler a été illustrée [5] grdce 3 une
analyse des états primaires et secondaires d'équilibre d'une barre comprimée et
fléchie par une charge appliquée 3 ses extrémités avec des excentricités &gales.

La transition limite vers une compression simple a mis en lumiére une corrélation
mentionnée ci-dessus entre le phénoméne de bifurcation et celui de saut. Avec cela,
il faut considérer la force critique eulérienne comme une limite inférieure de la
force transcritique réalisable au fur et 3 mesure de la réduction de 1'excentricité
au zéro.
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Quelques résultats de 1'étude [5] ont &té reproduits dans 1'exposé de

T. Renzulli [21], deux années plus tard.

2. BARRE COMPRIMEE ET FLECHIE CHARGEE AUX EXTREMITES
AVEC DES EXCENTRICITES INEGALES

Nous allons étudier des déplacements de flexion dans le plan des forces appli-

quées 3 une barre initialement rectiligne (fig. 1) tout en négligeant des dé&forma-
tions de compression axiale. On désigne par :

X -

s -

Ka-

(1

l'abscisse d'un point situé sur la ligne élastique de la barre et mesurée 3 par-
tir de son appui gauche fixe,

l'ordonnée d'un point situé sur la ligne élastique de la barre et mesurée 3 par-
tir de l'axe initial rectiligne,

une direction de la fléche vers le bas est estimée comme positive,

la longueur de l'arc de la ligne élastique de la barre mesurée 3 partir de 1l'ap-
pui gauche,

L'angle de rotation de la section autour de l'appui gauche, la rotation au sens
des aiguilles de montre est estimée comme positive,

la longueur de la barre,
la distance entre les extrémités de la barre déformée,

la rigidité de la barre lorsque celle-ci fléchit dans le plan de l'application
des forces,

la force normale de compression,
la réaction d'appui perpendiculaire & 1'axe non-déformé de la barre,
l'excentricité de la force de compression appliquée & 1'appui gauche,

~

1'excentricité de la force de compression appliquée a 1l'appui droit (~1<k <1).

L'équation différentielle de flexion de la barre est du type suivant

EIds[ {dsj] +N(a+y) - Hx =0 (1)

Cette équation comprend une expression de courbure proposée par F.S. Iassinski

En posant dLe=N/EI, /G =H/” (2)
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on peut écrire la solution de 1l'équation (1) sous la forme paramétrique :

X=WIF2)—;,—; '?l(ﬁ(f”s’?’n i {'0850)';

/ l?k SL/Z 4 d
.‘.
—/ VI k° sin y ¥

(3)

y:-j’i (’*ﬁ) cassa+J3X -q ) r

S =

<[ f ik suzgp J

ol : 9 est une variable auxiliaire (parametre) et yo est une amplitude (la va-
leur de cette variable pour x = 0, s = 0 et le module k{|k|<l ) jouent le rdle de
constantes d'intégration).

I1 est possible de transformer des intégrales elliptiques définies par la
solution (3) en une forme normale de Legendre en se basant sur les relations :

¥ ¥
[ it o), [V dt<E(pH)
g ~-K Sin - :

(u)

i inet
[ J'_'?k";_n- ot =2F (ip,K)-F(9.%)

On peut écrire 1'équation des tangentes des angles de rotation :

d_l/ ﬂ ifé | (5)
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2 .
@= 1/2 - k" sin’ g (6)
k sin pVi-k¥sinp

l'angle de rotation de la section autour de 1l'appui gauche est déterminé par :
dy 1+ p° )

tg8=(24) < p - 7

7 dx/, P B

ol la valeur d.'ln est obtenue 4 1l'aide de la substitution de ¥, par g) dans
1l'expression (6)

Lorsque le total de moments de toutes les forces appliquées & 1'extrémité
droite de la barre est égal 4 zéro, on obtient :

X, =a (1-x) (e)
A partir des conditions limites :

y=0 pour x-2 , s:0, g-y,

(9)
y=a pour X=X, s=f, P=1p
et de la relation (8) on peut trouver :
—__*ka _ Nxa
Cas % - 2’([’?}7”" 2 C'US_(P’ _gk{l*‘ﬁz)’h’ (10)

La distance entre les extrémités de la barre déformée est égale 3 :

-2 . -aU (11)
xi“oc(/rjsfj’/'f kp(casy, -rosy) -& J u
La longueur de la barre est présenté&e par une relation ci-aprés :
__ 2T
[“oc(l*ﬁa)w (12)

Pour les intégrales elliptiques dont les valeurs de Hz, et 96 servant de
limite, on a admis des notations suivantes

T=if 7 !
2? V1-Kk2sin®y

> (13)

¥ 2 2
4 Ya-k"sin
U—F V e . & 0/50
g V{-ksin” g
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En éliminant la valeur X, , des équations (8) et (11) on a

(1-X) k ras y, (1)

B=ag

Si nous introduisons un paramétre sans dimension :

u=oaf=VNJ/ET £, (15)

nous obtiendrons une expression pour la force de compression :

2
= “[f[ (16)
L'expression (14) donne
Y A
Llﬂ{753?7ﬁ7— (17)

Les relations (10) et (12) ménent au systéme des équations de calcul

cas p =Kcos
T (18)

K casgp‘,:% —I—:ﬁ—e

3. ETATS PRIMAIRES ET SECONDAIRES
D'EQUILIBRE D'UNE BARRE

Puisque les fonctions trigonométriques inverses sont multiformes, le systéme
d'équations (18) a un nombre infini de solutions. Nous ne considérons ici que des
solutions pour lesquelles u<?2 w et, par ccnséquent , la foree de compression N est
inférieure 3 la deuxidme valeur critique.

Si une valeur de 1'excentricité et celle de K sont constantes, les trois va-
leurs K, lj"ue‘c ’:01 satisfaisant aux équations (18) détermineront un certain état d'é-
quilibre de la barre. Les trois valeurs en question forment la solution du systéme
(20).

Dans le plan des coordonnées (K, Y) chacune de ces solutions est présentée
par deux points (fig. 2). Un ensemble de solutions du systéme (18) présenté sur la
figure 2 3 1'aide de deux courbesbp (K} et‘ﬂ(l()forme une série de solutions.

o

Pour U= 2JTle systéme (18) n'aura que deux séries de sclutions. La premiére
série correspondant 3 un rapport des amplitudes Y, = arc cos(}Ff €05 Y¥,) détermine
des états primaires d'équilibre qui surgissent au cours d'une croissance naturelle
de la force de compression N d partir de sa valeur initiale, nulle. Le symbole arc

cos correspond ici 3 la valeur principale de la fonction trigonométrique inverse.

La deuxieéme série de solutions satisfaisant 3 la relation 501 =29 —— arc cos
()f cos SPD) interpréte des états secondaires d'équilibre qui ne peuvent pas étre
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réalisés au cours de cette croissance naturelle de la force de compression N. Il
n'est possible de "jeter" une barre en un état secondaire d'équilibre que par un
moyen artificiel. :

S8i les trois valeurs R,ff’a ,_‘flprésentent' une solution du systéme (18), les
valeurs

Bk, 3 -g-m, B g T

correspondant & lew tour aux équations du systéme (18) et refldteront le méme
état d'équilibre de la barre.

L'algorithme, forme commode pour réaliser un calcul a l'ordinateur, suppose
une recherche des radicaux du systéme d'équations, une détermination des paramétres
de 1'état d'équilibre de la barre et un tragage de son axe courbe. On a pour points
de départ des valeurs telles que a/l, oy p_ - Les valeurs de ¢ sont calculées
d'aprés la formule : o !

p =[axe cos (cos g ) -/ (20)

1

avec Y =0 ( (P =2 YZ') pour la premidre (deuxidme) série de solutions ; une
valeur du module K correspondant 3 la deuxidme équation du systdme (18) est basée
sur un procédé itératif., Ces valeurs une fois définies, on passe 3 la détermination
du paramétre de charge z égal au rapport de la force de compression ﬁd a sa valeur

eulérienne NE = yl_‘e EI-/Z 27

{9?) 7 m* L2l

L'angle de rotation autour de l'appuili gauche é?est déterminé d'aprés 1'équa-
tion (7).

Pour tracer 1l'axe courbe de la barre on utilise des relations suivantes :

X . Wle)-Wle) |
£ T(1+8%)

L (22)
ﬁ:_Ckras ..X__.g
I 7T LAV
Une désignation admise ci-dessus : =

o -k Z"
W) ALl gy o
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L'algorithme décrit est utilisé dans un programme pour ordinateur. Les inté-
grales elliptiques sont calculées d'aprés la formule d'intégration numérique de

Simpson. :
4. BARRES IDEALES ET NON-IDEALES

On a analysé, 3 l'aide d'un ordinateur, des états d'équilibre d'une barre re-
presentes par sept schémas qui ex:l.stent pour des valeurs particulidres a/l et)¢

Schéma a,@d >0 , M =/ (fig. 3a). Les excentricités aux extrémités de la bar-
re sont égales et diamétralement opposées.

Schéma b, > #,% =0,5(fig. 3b). Les excentricités aux extrémités de la
barre ont une méme direction et des valeurs absolues différentes.

Schéma c,a' >ﬂ o =0 (fig. 3c). L'excentricité a 1'extrémité droite de 1la
barre est égale a zéro.

Schéma 4, =0 ,3[-."0',5(fig. 3d). Les excentricités aux extrémités de la bar-
re ont des directions opposées et des valeurs différentes.

Schéma e, @ >ﬂ,3f.:-0,95(fig. 3e). Les excentricités aux extrémités de la bar-
re ont des directions opposées tandis que leurs valeurs absolues sont presque voisi-
nes.

Schéma £, A >0 ) = =1 (fig. 3f). Les excentricités aux extrémités de la
barre sont égales, mais diamétralement opposées (charge antisymétrique).

Schéma g, o =0 (fig. 3g). Barre soumise & une compression simple.

Pou.é]f le calcul numérique se rapportant aux schémas a 8 £ il est admis que
a = 0,01%,

La notion d'un schéma idéal suppose une forme géométrique parfaite (dans notre
cas il s'agit d'un axe rigoureusement rectiligne avant l'application d'une charge)
et une charge exactement centrée (une charge de compression appliquée strictement
suivant l'axe de la barre).

D'une fagon plus générale, nous allons nommer idéale une barre dont la ligne
€lastique dés le commencement de l'application d'une charge est orthogonale 3 sa
propre forme originale (d une courbe de flambement).

Les barres dont l'axe 3 un état non-troublé (avant-critique) ne correspond pas
a une condition d'orthogonalité stipulée ci-dessus sont nommées non-idéales.

Dans une barre biarticulée (dont l'axe initial est rectiligne, 1la rigidité
longitudinale constante et sa propre forme originale symétrique par rapport i la

sectlon moyenne de la barre) les schémas ci-aprés peuvent &tre rapportés aux systé-
mes idéaux :

Schéma £, H =-{ (fig. 3f). L'axe courbe de la barre est antisymétrique
par rapport & la section moyenne de cette barre, dés le commencement de 1l'application

d'une charge.

Schéma g, a=g (fig. 3g). La forme rectiligne d'équilibre reste cons-
tante pour n'importe quelle charge de compression dont la valeur est inférieure 3
celle d'Euler.
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Dans tous les autres cas (Q>D, K &+ 'I) la barre est non-idéale.

5. ANALYSE DU COMPORTEMENT DES BARRES NON-IDEALES

En utilisant le programme d'ordinateur mentionné ci-dessus, nous avons obtenu
les résultats numériques pour un grand nombre de problémes particuliers et tracé -
les courbes du comportement pour les sept schémas indiqués sur la figure 3. Les
figures 4, 5 montrent les courbes de comportement pour les schémas a et e. Ces
courbes correspondent d une allure du paramétre de charge #& = N//VE fonction du dé-
Placement caractéristique (angle de rotation autour de 1'appui gauche).

La courbe OLM sur ces abaques se rapporte aux é&tats primaires de 1'équilibre
qui est stable pour N< NEainsi que pour/v > NE'

Des états secondaires d'équilibre sont représentés par la courbe RTS, la bran-
che RT y correspondant d 1'équilibre stable et la branche TS & 1l'équilibre instable
de la barre.

Le point T sert de limite entre des états secondaires de 1'équilibre stable et
instiéie. Une force de compression spéecifique de cette limite est nommée transcriti-
que |5

2
LU EL gy (24)
N"' [ - + E
t ? '
La force transcritique est une valeur minima de la force de compression ren-
dant possible 1l'apparition des états secondaires d'équilibre, pour une valeur donnée

de 1l'excentricité a/l. Une étude théorique de cette force transcritique est basée
sur la condition de stabilité ci-aprés

a//V (25)
78 =Y
Une interprétation développée de ce critére pour une barre 3 une extrémité en-
castrée et une autre libre est donnée dans un autre exposé [ﬂ .

A chaque valeur de la force de compression AF:lvtne correspond qu'un seul état
d'équilibre de la barre, et notamment, 1'état primaire, stable. A chaque valeur de
la force de compression N< N correspondent trois é&tats d'équilibre de la barre,
et notamment un état primaire, stable, et deux autres secondaires dont 1l'un est sta-
ble (celui qui est caractérisé par des déplacements de valeur absolue plus grande) et
l'autre instable (celui qui est caractérisé par des déplacements de valeur absolue
plus petite).

La figure 6 représentg une allure de la force transcritique A/ en fonction du
rapport des excentricités dont une (a/l) est fixée d'avance. Aux environs du point
= -1 la force transcritiqueAlt est un peu inférieure 3 la valeur eulérienne

l'ordre de grandeur de la différence N, - N ¢ (pour des &lancements et des excen-

£
tricités ordinaires) ne dépassant que quelques centiémes du pour cent.

Sur la fig. 7 est rapporté un tracé de la force transcrlthueﬂd en fonction

de l'excentricité a/i pour )f“l (les excentricités aux extrémités de la barre sont
égales).
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6. ANALYSE DU COMPORTEMENT ET DE LA STABILITE
D'UNE BARRE CHARGEE ANTISYMETRIQUEMENT

Une barre comprimée et fléchie par une charge appliquée 3 ses extrémités avec
des excentricités égales et diamétralement opposées (schéma e, a:>o,9f = -1, fig.
3f) se rapporte aux barres idéales.

I1 est assez difficile d'analyser ce cas, une interprétation contradictoire
de ce probléme dans la littérature spéciale en é&tant la preuve. G. Blirgermeister et
H. Steup [13] , auteurs d'une monographie volumineuse concernant la théorie de stabi-
lité, se référent 3 une étude de W. Cornelius et estiment qu'une bifurcation d'équi-
libre a lieu dés le commencement de 1l'application d'une charge, c'est-d-dire pour
une force nulle de compression. Le point de vue de G.O. Iarochévitch[ldlest tout &
fait contraire puisqu'il nie complétement la possibilité d'un flambement dans une
barre antisymétriquement chargée.

E.G. Kossykh dans son exposé [2] donnerait une soluticn véritable de ce phéno-
méne : il a constaté que la force critique devient inférieure a celle d'Euler.
E.G. Kossykh a passé sous silence les problémes des &tats secondaires d'équilibre
et du mécanisme du flambement.

Sur la base du calcul sur ordinateur poura&U,UfZ%n a établi un abaque de com-
portement d'une barre chargée antisymétriquement (fig. 8) ol le point k correspond &
la force critique Ny et la courbe OKS 3 des &tats non troublés de 1'équilibre qui est
stable pour A/ < A/ (branche OK) et instablepour N >N* (branche KS).

.x.

Des états troublés d'équilibre de la barre représentés sur 1l'abaque en question
par la courbe RKM sont possibles pour N<N et peuvent etre considérés comme ceux
de l'equlllbre stable. A chaque valeur de la force de compre531on/v >ﬁv correspond
un état non-troublé de l'equlllbre instable et deux &tats non troubléds de 1'équilibre
ble pour lesquels une symétrie inverse de la ligne &lastique initiale (sous la forme
de S) est transformée par la superposition d'une courbe de flambement symétrique
(par rapport a la section moyenne de la barre).

De petites courbes aux environs du point critique K (fig. 8) représentent des
~états d'équilibre d'une barre non-idéale 3 paramétred@=-f +Eol & est une quantité
infime. Il est 3 noter d‘'ailleurs, que la courbe inférieure correspond aux états
primaires et la courbe supérieure aux états secondaires d'équilibre.

Si on passe maintenant 4 une transition limite avec £ se visant au zéro, ces
deux courbes séparées se rapprocheront successivement et pourf =/l elles se rencon-
treront au point K qui caractérise une bifurcation d'équilibre dans une barre idéale
chargée antisymétriquement.

En admettant que SP =0 , Y =7, (état critique) et en se ré&férant 3 1'équa-
tion (7) on peut déduire une relation précise

tg@* =B =2a /X, (26)

Au moment du flambement les tangentes aux extrémités de 1'axe courbe de la bar-
re deviennent paralléles a l'axe des excentricités, c'est-3-dire 3 une ligne reliant
les points d'application des forces de compression (fig. 9).

Ce critére géométrique du flambement d'une barre chargée antisymé&triquement
peut €tre utilisé pour la solution de diverses problémes. En particulier, E. Chwalla
l'avait introduit dans son étude n'embrassant que de faibles déplacements de la bar-
re.
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En analysant la relation (17) pourﬁ” =0 Se = Jron constate que la valeur cri-

tique u, est inférieure a m, d'ol :

*ET
N, = u,{z <A, (27)

Cette constatation a un sens théorique pilutdt que pratique, la diminution de
N, par rapport 3 Ng &tant trds faible. Le module K étant sensiblement inférieur &
l1'unité, on cbtient une relation approximative :

2

U, >y |1-0,383 ( ¢) (28)

Le calcul d'aprés cette formule et 1l'étude de 1l'abaque & échelle réduite
(fig. 8) montrent qu'une réduction de la force critique pour a = 0,011 n'atteint
méme pas un centiéme de pour cent.

Une non-linéarité géométrique prise en compte, la valeur de la force critique
Peut &tre précisée tandis qu'un probldme géométrique linéaire ne donne qu'une va-
leur approximative de Nyas Ng . Dans le cas considéré un état non-troublé (avant-
critique) de la barre est celui de déformation, c'est pourquoi une valeur réelle de
la force critique dépend de l'excentricité a/l. Afin que la valeur de la force cri-
tique soit rigoureusement précisée, une analyse exacte de 1'état avant-critique de
contrainte est aussi nécessaire.

I1 est 3 noter que dans le cadre du probléme envisagé la prise en compte d'une
" non-linéarité géométrique est équivalente 3 une réduction de la Plgldlte de flexion
de la barre.

Une analyse de la transition limite d partir d'une barre non idéale d paramé-
tre ¢ =-{%*E pouwr £ -» [J , montre que la force critique Ny appliquée 3 une
barre chargée antisymétriquement présente une valeur limite de la force transcriti-

que Nt : N /UTZ A/ /

* £+l

7. ANALYSE DU COMPORTEMENT ET DE LA STABILITE D'UNE
BARRE SOUMISE A UNE COMPRESSION SIMPLE

(29)

Une barre comprimée axialement est une barre idéale (schéma g, azo, fig. 3g)
Les équations de calcul (18) deviennent du type :

=g -p, keesy =0 (30)

La fig. 10 refléte un comportement de la barre suivant lequel pour la force cri-
tique eulérienne N, il existe une bifurcation (point K). Une analyse compléte de 1l'a-
baque analogue est donnée dans un autre exposé [5] de l'auteur.

Une confrontation avec les courbes de comportement d'une barre non-idéale
(schéma a,g >pg, £ =/ fig. 4) montre que la courbe OKM de la fig. 10 n'est qu'une-
position limite (au fur et & mesure de la réduction de l'excentricité a au zéro) de
la courbe OLM des états primaires d'équilibre tracée sur la figure 4. La courbe RKS
de la figure 10 présente une position limite de la courbe RTS des &états secondaires
d'équilibre tracée sur le figure Y4,

La configuration des courbes (fig. 10) aux environs du point K est poussée a 1l'ex-
tréme pour montrer d'une fagon plus nette la nature du point de bifurcation.
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L'excentricité a tendamt vers zéro, le point T s'approche du point K (point de bi-
furcation) et ils coincident pour a = 0. Il s'en suit que la force critique eulé-
rienne appliquée 3 une barre le long de son axe présente une limite inférieure de 1la
force transcritique

N_=Pim N, (31)
£ E~D

Soit, d une valeupr quelconque de la force de compressionN>Ntcorr'espondent
trois états d'équilibre d'une barre non-idéale désignés sur le figure 4 par des ca-
ractéres Kl: Ko, K3. Une barre se trouvant dansun état primaire 4°' equlllbre Kq ne
peut &tre mise en état K, , puis en état K3 gqu'd l'aide du saut, c'est-a-dire &
1'aide d'un procédé dynamique de transition 3 travers des états adjacents non équi-

1ibrés.

Ce phénoméne de saut est représenté sur le figure 4 par un tracé discontinu.
La longueur de saut minima a{est égale a l'écart des points K; u Ko. Au cours de la
transition limite 3 partir de la barre non-idéale ( (¥ >D) vers la barre idéale
( =0 ) cette longueur de saut d décroit successivemént et sa valeur limite devient
nulle

Jim a"=ﬂ C(32)
E—=7p ‘

Cette analyse montre qu'une bifurcation d'équilibre présente un cas limite (dé-
gradé) du phénoméne de saut (saut 3 longueur nulle).

Pour rendre plus claires des particularités essentielles du comportement des
barres élastiques soumises 3 une compression simple et & une compression avec flexion
il est recommandé d'utiliser un prototype constitué d'un systéme & 1l'unique degré de

liberté.

En étudiant le comportement de ce prototype on constate que toutes les lois
établies sont inhérentes au probléme en question, pour n'importe quel nombre de de-
grés de liberté, et elles ne sont pas liées (comme on pouvait le supposer) au carac-
tére compliqué des fonctions transcendantes déterminant de grands déplacements de la
barre élastique.

Ce prototype est décrit dans une monographie de l'auteur[ﬂ] , 1l'analyse de son
comportement &tant donnée dans un autre article [5].

8. CONCLUSIONS

Les résultats obtenus servent & établir une corrélation entre le phénoméne de
bifurcation et celui de saut ainsi qu'a mettre au jour la nature de la force critique

et le mécanisme du flambement dans le domaine élastique.

Les lois établies gardent leur importance pour une gamme assez large de problé-
mes de stabilité &lastique 1iés au phénoméne de bifurcation.
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