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PHENOMENE DE SAUT DANS LE PROBLEME DE FLAMBEMENT EULERIEN

S.D. Leites
Gosstroy

Moscow
USSR

ABSTRACT

A more exact solution of non-linear buckling of columns is
obtained, based on the governing differential equation whose

curvature expressions are modified to correspond to ten real
values. The non-linear differential equations are solved
numerically and the phenomenon of "jump" (the discontinuity of
the two states of equilibrium) is analysed as an Eulerian problem.
The rigidity of the column is observed to be reduced when the
geometric non-linearity is taken into account. The results
obtained show the relation of the phenomenon of "jump" and the
level of bifurcation.
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1. INTRODUCTION

Il n'existe de système idéal (c'est-à-dire dépourvu de toute imperfection) ni
dans la nature, ni dans le domaine technique. C'est pourquoi il ne faut envisager
un système idéal que comme un résultat de la transition limite à partir du système
non idéal.

De ce point de vue le problème classique Euler concernant la bifurcation
d'équilibre d'une barre élastique comprimée axialement présente un cas limite du
problème plus général, celui du comportement de la barre comprimée et fléchie.

Le présent exposé donne une analyse de grands déplacements d'une barre élastique

biarticulée soumise à une charge de compression appiquée avec des excentricités
inégales, cette analyse étant faite par voie de l'intégration de l'équation

différentielle de flexion qui comprend une expression précise de courbure.

Plusieurs études ont été consacrées aux problèmes de grands déplacements des
barres élastiques sollicitées aussi bien en compression simple qu'en compression
avec flexion. C'étaient J.-L. Lagrange [181, L. Saalschütz [20] G.H. Halphen [16]
C.J. Kriemler [17] M. Born [12] L. Malkin [l9] et beaucoup d'autres qui s'en
occupaient

Une différence essentielle entre le présent exposé et les études précédentes
basées d'ailleurs sur le même mécanisme mathématique, consiste en une plus- large
interprétation des relations analytiques obtenues. Pour une barre comprimée et fléchie

(système non idéal) il existe au moins deux séries de solutions des équations
de calcul. La première série reflète des états primaires d'équilibre d'une barre
correspondant à une croissance naturelle de la compression. La deuxième série de
solutions que les auteurs mentionnés ci-dessus passent sous silence, reflète des états
secondaires d'équilibre d'une barre qui ne peuvent pas avoir lieu au cours de cette
croissance naturelle de la compression. Il n'est possible de "jeter" une barre à
un état secondaire d'équilibre qu'à l'aide du saut, c'est-à-dire d'un procédé de
transition à travers les états d'équilibre adjacents. Les états primaires d'équilibre

sont toujours stables, tandis que ceux secondaires se divisent en stables et instables.

Une valeur minima de la force de compression qui rend possibles des états
secondaires d'équilibre est nommée transcritique [5]. Sur la courbe de comportement
d'une barre (déformation caractéristique - force de compression) le point transcritique

sert de limite pour les états secondaires de l'équilibre stable et instable.

Lorsque le paramètre d'une non-idéalité tend vers zéro, on obtient une solution

du système idéal (barre soumise à une compression simple ou bien à une charge
de compression appliquée à ses extrémités avec des excentricités égales mais
diamétralement opposées). La forme d'équilibre du système idéal à un état non-troublé
(avant-critique) est orthogonale à sa forme primaire, c'est-à-dire à la courbe de
flambement. Dès qu'une force de compression gagne sa valeur critique, le système
idéal subit un flambement au sens eulérien, et alors une bifurcation d'équilibre
a lieu. Une analyse montre qu'il faut considérer cette bifurcation comme un cas
limite du phénomène de saut, et notamment, comme un saut de longueur nulle.

Une telle interprétation du problème Euler a été illustrée [5] grâce à une
analyse des états primaires et secondaires d'équilibre d'une barre comprimée et
fléchie par une charge appliquée à ses extrémités avec des excentricités égales.
La transition limite vers une compression simple a mis en lumière une corrélation
mentionnée ci-dessus entre le phénomène de bifurcation et celui de saut. Avec cela,il faut considérer la force critique eulérienne comme une limite inférieure de la
force transcritique réalisable au fur et à mesure de la réduction de l'excentricité
au zéro.
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Quelques résultats de l'étude [5] ont été reproduits dans l'exposé de
T. Renzulli [21], deux années plus tard.

2. BARRE COMPRIMEE ET FLECHIE CHARGEE AUX EXTREMITES
AVEC DES EXCENTRICITESINEGALES

Nous allons étudier des déplacements de flexion dans le plan des forces appliquées

à une barre initialement rectiligne (fig. 1) tout en négligeant des déformations

de compression axiale. On désigne par :

x - l'abscisse d'un point situé sur la ligne élastique de la barre et mesurée à par¬
tir de son appui gauche fixe,

y - l'ordonnée d'un point situé sur la ligne élastique de la barre et mesurée à par¬
tir de l'axe initial rectiligne,
une direction de la flèche vers le bas est estimée comme positive,

s - la longueur de l'arc de la ligne élastique de la barre mesurée à partir de l'ap¬
pui gauche,

6- L'angle de rotation de la section autour de l'appui gauche, la rotation au sens
des aiguilles de montre est estimée comme positive,

1 - la longueur de la barre,

x^- la distance entre les extrémités de la barre déformée,

El- la rigidité de la barre lorsque celle-ci fléchit dans le plan de l'application
des forces,

N - la force normale de compression,

H - la réaction d'appui perpendiculaire à l'axe non-déformé de la barre,

a - l'excentricité de la force de compression appliquée à l'appui gauche,

xa- l'excentricité de la force de compression appliquée à l'appui droit (-1

Cette équation comprend une expression de courbure proposée par F.S. Iassinski

L'équation différentielle de flexion de la barre est du type suivant :

[11]

En posant (2)
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on peut écrire la solution de l'équation (1) sous la forme paramétrique

X 2Kß (cas (p - casipj +

+ f ' -** sin y
J sin'f

!/=¥ bf>casip + j3X-a

f r
J V-k'sin'tp

(3)

y.

où :
ÊP est une variable auxiliaire (paramètre) et est une amplitude (la

valeur de cette variable pour x 0, s 0 et le module k(|k|<1 jouent le rôle de
constantes d'intégration).

Il est possible de transformer des intégrales elliptiques définies par la
solution (3) en une forme normale de Legendre en se basant sur les relations :

f. f- ff. ^ r~F (*>*)>f ii-K'sLn't dt -E (f,k)
{ \) /- k Sin t a

ftT^HbT <lt=SE(9,k)-F(<f.k)

(4)

On peut écrire l'équation des tangentes des angles de rotation :

d{/ *- (5)

ß+<p
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où

<p=
/ s > -

1 lk - k stn <p (6)
k Sin pù-kesin'p

l'angle de rotation de la section autour de l'appui gauche est déterminé par :

(äx) - a _ HJl
[d*'o f (V)

où la valeur est obtenue à l'aide de la substitution de fc par lf dans
l'expression (6)

Lorsque le total de moments de toutes les forces appliquées à l'extrémité
droite de la barre est égal à zéro, on obtient :

ßxt-a (/-*)
A partir des conditions limites :

y=0 pour S'D p=yo

g*a pour x=X, s«/, £
et de la relation (8) on peut trouver :

cos%= "" ' r0Sy>' ^

C8)

(9)

(10)

La distance entre les extrémités de la barre déformée est égale à :

kß(co$fg -easy) -£UXi ~ ^(itjsyi'
La longueur de la barre est présentée par une relation ci-après :

(11)

i- 2T
*) '/y (12)

Pour les intégrales elliptiques dont les valeurs de % et if servant de
limite, on a admis des notations suivantes :

cl<pL f «V
â J il 1-k*sin*

& ,/ e <?

77- ± '3 ~ k sin tpu~ e J J~~7T—à—
<?„ I i-k stn. y

dy

(13)
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En éliminant la valeur X, 3 des équations (8) et (11) on a :

n _ f-%) k COS Va (14)j 2U
Si nous introduisons un paramètre sans dimension :

a i N/ET /, (15)

nous obtiendrons une expression pour la force de compression :

L'expression (14) donne :

N= UA- (16)

^ l ai 1 '/y 17uyy
Les relations (10) et (12) mènent au système des équations de calcul :

COS Xcos yo

k cos y j- j===.7° £ (7*ß•

(18)

3. ETATS PRIMAIRES ET SECONDAIRES

D'EQUILIBRE D'UNE BARRE

Puisque les fonctions trigonométriques inverses sont multiformes, le système
d'équations (18) a un nombre infini de solutions. Nous ne considérons ici que des
solutions pour lesquelles u<2 m et, par conséquent la force de compression N est
inférieure à la deuxième valeur critique.

Si une valeur de l'excentricité et celle de U sont constantes, les trois
valeurs K, yet î/!( satisfaisant aux équations (18) détermineront un certain état
d'équilibre de la barre. Les trois valeurs en question forment la solution du système
(20).

Dans le plan des coordonnées k, y chacune de ces solutions est présentée
par deux points (fig. 2). Un ensemble de solutions du système (18) présenté sur la
figure 2 à l'aide de deux courbes

y» ^ XJ {Informe une série de solutions.

Pour U.S 27cle système (18) n'aura que deux séries de solutions. La première
série correspondant à un rapport des amplitudes arc cos {Y C0S Va) détermine
des états primaires d'équilibre qui surgissent au cours d'une croissance naturelle
de la force de compression N à partir de sa valeur initiale, nulle. Le symbole arc
cos correspond ici à la valeur principale de la fonction trigonométrique inverse.

La deuxième série de solutions satisfaisant à la relation t
2JL. arc cos

Y COS ya) interprète des états secondaires d'équilibre qui ne peuvent pas être
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réalisés au cours de cette croissance naturelle de la force de compression N. Il
n'est possible de "jeter" une barre en un état secondaire d'équilibre que par un
moyen artificiel.

Si les trois valeurs présentent une solution du système (18), les
valeurs

-7T (19)

correspondant à leur tour aux équations du système (18) et refléteront le même

état d'équilibre de la barre.

L'algorithme, forme commode pour réaliser un calcul à l'ordinateur, suppose
une recherche des radicaux du système d'équations, une détermination des paramètres
de l'état d'équilibre de la barre et un traçage de son axe courbe. On a pour points
de départ des valeurs telles que a/1, Y» Les valeurs de p sont calculées
d'après la formule :

° 1

(f j arc cos (jfcos y>gJ -<pj (20)

avec tfi 0 pour la première (deuxième) série de solutions ; une
valeur du module U correspondant à la deuxième équation du système (18) est basée
sur un procédé itératif. Ces valeurs une fois définies, on passe à la détermination
du paramètre de charge z égal au rapport de la force de compression A/ à sa valeur
eulérienne ^ El/

-Z-/L - (U\c- 4 T~t tfF~ (Tt } ~ 71' \fuj3*
(21)

L'angle de rotation autour de l'appui gauche Q est déterminé d'après l'équation
(7).

Pour tracer l'axe courbe de la barre on utilise des relations suivantes :

X_ w/iff)-W/VJ

* ai r KC0S¥+ßt;-Y
Une désignation admise ci-dessus :

(22)

(23)
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L'algorithme décrit est utilisé dans un programme pour ordinateur. Les
intégrales elliptiques sont calculées d'après la formule d'intégration numérique de
Simpson.

H. BARRES IDEALES ET NON-IDEALES

On a analysé, à l'aide d'un ordinateur, des états d'équilibre d'une barre
représentés par sept schémas qui existent pour des valeurs particulières a/1 et

Schéma a,Qf >0 V /(fig. 3a). Les excentricités aux extrémités de la barre
sont égales et diamétralement opposées.

Schéma b ,Q > Q,3^" 0,5"(fig. 3b). Les excentricités aux extrémités de la
barre ont une même direction et des valeurs absolues différentes.

Schéma c,Q >û, (fig. 3c). L'excentricité à l'extrémité droite de la
harre est égale à zero.

Schéma d ,Q D {fig. 3d). Les excentricités aux extrémités de la barre
ont des directions opposées et des valeurs différentes.

Schéma e,0 >û,jC=^o i95(fig. 3e). Les excentricités aux extrémités de la barre
ont des directions opposées tandis que leurs valeurs absolues sont presque voisines

Schéma f, Cl >-0 if — -»'1 (fig. 3f). Les excentricités aux extrémités de la
barre sont égales, mais diamétralement opposées (charge antisymétfique)

Schéma g, Çt Q (fig. 3g). Barre soumise à une compression simple.

Pour le calcul numérique se rapportant aux schémas a à f il est admis que
a 0,0lL,

La notion d'un schéma idéal suppose une forme géométrique parfaite (dans notre
cas il s'agit d'un axe rigoureusement rectiligne avant l'application d'une charge)
et une charge exactement centrée (une charge de compression appliquée strictement
suivant l'axe de la barre).

D'une façon plus générale, nous allons nommer idéale une barre dont la ligne
élastique dès le commencement de l'application d'une charge est orthogonale à sa
propre forme originale (à une courbe de flambement).

Les barres dont l'axe à un état non-troublé (avant-critique) ne correspond pas
a une condition d'orthogonalité stipulée ci-dessus sont nommées non-idéales.

Dans une barre biarticulée (dont l'axe initial est rectiligne la rigidité
longitudinale constante et sa propre forme originale symétrique par rapport à la
section moyenne de la barre) les schémas ci-après peuvent être rapportés aux Systèmes

idéaux :

Schéma f, - / (fig. 3f). L'axe courbe de la barre est antisymétrique
par rapport à la section moyenne de cette barre, dès le commencement de l'application
d'une charge.

Schéma g, a Q (fig. 3g). La forme rectiligne d'équilibre reste constante

pour n'importe quelle charge de compression dont la valeur est inférieure à
celle d'Euler.
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Dans tous les autres cas C? >» 0 k la barre est non-idéale.

5. ANALYSE DU COMPORTEMENT DES BARRES NON-IDEALES

En utilisant le programme d'ordinateur mentionné ci-dessus, nous avons obtenu
les résultats numériques pour un grand nombre de problèmes particuliers et tracé '
les courbes du comportement pour les sept schémas indiqués sur la figure 3. Les
figures 5 montrent les courbes de comportement pour les schémas a et e. Ces
courbes correspondent à une allure du paramètre de charge 2 N/iïe fonction du
déplacement caractéristique (angle de rotation autour de l'appui gauche).

La courbe OLM sur ces abaques se rapporte aux états primaires de l'équilibre
qui est stable pour <T fijgainsi que pour N > Ng-

Des états secondaires d'équilibre sont représentés par la courbe RTS, la branche
RT y correspondant à l'équilibre stable et la branche TS à l'équilibre instable

de la barre.

Le point T sert de limite entre des états secondaires de l'équilibre stable et
instable. Un® force de compression spécifique de cette limite est nommée transcritique

[5] :

La force transcritique est une valeur minima de la force de compression
rendant possible l'apparition des états secondaires d'équilibre, pour une valeur donnée
de l'excentricité a/1. Une étude théorique de cette force transcritique est basée
sur la condition de stabilité ci-après :

dN _n (25)
d$=0

Une interprétation développée de ce critère pour une barre à une extrémité
encastrée et une autre libre est donnée dans un autre exposé [5]

A chaque valeur de la force de compression N'Nt ne correspond qu'un seul état
d'équilibre de la barre, et notamment, l'état primaire, stable. A chaque valeur de
la force de compression fyc ^^correspondent trois états d'équilibre de la barre,
et notamment un état primaire, stable, et deux autres secondaires dont l'un est stable

(celui qui est caractérisé par des déplacements de valeur absolue plus grande) et
l'autre instable (celui qui est caractérisé par des déplacements de valeur absolue
plus petite).

La figure 6 représenta une allure de la force transcritique N. en fonction du
rapport des excentricités dont une (a/1) est fixée d'avance. Aux environs du point

-1 la force transcritique ^ est un peu inférieure à la valeur eulérienne /v
l'ordre de grandeur de la différence Ne - N 2(pour des élancements et des
excentricités ordinaires) ne dépassant que quelques centièmes du pour cent.

Sur la fig. 7 est rapporté un tracé de la force transcritique^ en fonction
de l'excentricité a/1 pour 3^ =1 (les excentricités aux extrémités de la barre sont
égales)
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6. ANALYSE DU COMPORTEMENT ET DE LA STABILITE
D'UNE BARRE CHARGEE ANTISYMETRIQUEMENT

Une barre comprimée et fléchie par une charge appliquée à ses extrémités avec
des excentricités égales et diamétralement opposées (schéma e, a>o, oC-- -1> fig-
3f) se rapporte aux barres idéales.

Il est assez difficile d'analyser ce cas, une interprétation contradictoire
de ce problème dans la littérature spéciale en étant la preuve. G. Bürgermeister et
H. Steup M auteurs d'une monographie volumineuse concernant la théorie de stabi-
lité, se réfèrent à une étude de W. Cornelius et estiment qu'une bifurcation d'équilibre

a lieu dès le commencement de l'application d'une charge, c'est-à-dire pour
une force nulle de compression. Le point de vue de G.O. Iarochévitch [lo] est tout à

fait contraire puisqu'il nie complètement la possibilité d'un flambement dans une
barre antisymétriquement chargée.

E.G. Kossykh dans son exposé [2] donnerait une solution véritable de ce phénomène

: il a constaté que la force critique devient inférieure à celle d'Euler.
E.G. Kossykh a passé sous silence les problèmes des états secondaires d'équilibre
et du mécanisme du flambement.

Sur la base du calcul sur ordinateur pourQt(?£on a établi un abaque de
comportement d'une barre chargée antisymétriquement (fig. 8) où le point /( correspond à
la force critique N* et la courbe OKS à des états non troublés de l'équilibre qui est
stable pour N<N* (branche OK) et instablepour A/ (branche KS).

Des états troublés d'équilibre de la barre représentés sur l'abaque en question
par la courbe RKM sont possibles pour et peuvent être considérés comme ceux
de l'équilibre stable. A chaque valeur de la force de compression N >N*correspond
un état non-troublé de l'équilibre instable et deux états non troublés de l'équilibre stable

pour lesquels une symétrie inverse de la ligne élastique initiale (sous la forme
de S) est transformée par la superposition d'une courbe de flambement symétrique
(par rapport à la section moyenne de la barre).

De petites courbes aux environs du point critique K (fig. 8) représentent des
états d'équilibre d'une barre non-idéale à paramètre3&~y + £où G est une quantité
infime. Il est à noter d'ailleurs, que la courbe inférieure correspond aux états
primaires et la courbe supérieure aux états secondaires d'équilibre.

Si on passe maintenant à une transition limite avec £ se visant au zéro, ces
deux courbes séparées se rapprocheront successivement et pour£ aQelles se rencontreront

au point K qui caractérise une bifurcation d'équilibre dans une barre idéale
chargée antisymétriquement.

En admettant que % -0 % =7r> (état critique) et en se référant à l'équation
(7) on peut déduire une relation précise :

tçQ, -fi -sa/x, (26)

Au moment du flambement les tangentes aux extrémités de l'axe courbe de la barre
deviennent parallèles à l'axe des excentricités, c'est-à-dire à une ligne reliant

les points d'application des forces de compression (fig. 9).

Ce critère géométrique du flambement d'une barre chargée antisymétriquement
peut être utilisé pour la solution de diverses problèmes. En particulier, E. Chwalla
l'avait introduit dans son'étude n'embrassant que de faibles déplacements de la barre
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En analysant la relation (17) pour^ - 57"on constate que la valeur
critique u est inférieure à ir, d'où :

0

A/ U*^ ^
c (J (27>

Cette constatation a un sens théorique plutôt que pratique, la diminution de
N# par rapport à Nt étant très faible. Le module K étant sensiblement inférieur à

l'unité, on obtient une relation approximative :

C

]-a,383 (f) (28

Le calcul d'après cette formule et l'étude de l'abaque à échelle réduite
(fig. 8) montrent qu'une réduction de la force critique pour a 0,011 n'atteint
même pas un centième de pour cent.

Une non-linéarité géométrique prise en compte, la valeur de la force critique
Peut être précisée tandis qu'un problème géométrique linéaire ne donne qu'une
valeur approximative de Nf Dans le cas considéré un état non-troublé (avant-
critique) de la barre est celui de déformation, c'est pourquoi une valeur réelle de
la force critique dépend de l'excentricité a/1. Afin que la valeur de la force
critique soit rigoureusement précisée, une analyse exacte de l'état avant-critique de
contrainte est aussi nécessaire.

Il est à noter que dans le cadre du problème envisagé la prise en compte d'une
non-linéarité géométrique est équivalente à une réduction de la rigidité de flexion
de la barre.

Une analyse de la transition limite à partir d'une barre non idéale à paramètre

X =-/*<£ pour £ o montre que la force critique % appliquée à une
barre chargée antisymétriquement présente une valeur limite de la force transcriti-
que N* : // lim Nt

7. ANALYSE DU COMPORTEMENT ET DE LA STABILITE D'UNE
BARRE SOUMISE A UNE COMPRESSION SIMPLE

Une barre comprimée axialement est une barre idéale (schéma g, a=o, fig. 3g)
Les équations de calcul (18) deviennent du type :

*• E^a É (29)

yj -/£ -</?/, krostpo=0 (30)

La fig. 10 reflète un comportement de la barre suivant lequel pour la force
critique eulérienne Nf il existe une bifurcation (point K). Une analyse complète de
l'abaque analogue est donnée dans un autre exposé [5] de l'auteur.

Une confrontation avec les courbes de comportement d'une barre non-idéale
(schéma a,# > Q fig* *0 montre que la courbe 0KM de la fig. 10 n'est qu'une
position limite (au fur et à mesure de la réduction de l'excentricité a au zéro) de
la courbe OLM des états primaires d'équilibre tracée sur la figure i+. La courbe RKS
de la figure 10 présente une position limite de la courbe RTS des états secondaires
d'équilibre tracée sur le figure 4.

La configuration des courbes (fig. 10) aux environs du point K est poussée à
l'extrême pour montrer d'une façon plus nette la n'ature du point de bifurcation.
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L'excentricité a tendant vers zéro, le point T s'approche du point K (point de
bifurcation) et ils coïncident pour a 0. Il s'en suit que la force critique eulé-
rienne appliquée à une barre le long de son axe présente une limite inférieure de la
force transcritique :

A/ -iimN. (3D
E £-~0

Soit, à une valeur quelconque de la force de compression H correspondent
trois états d'équilibre d'une barre non-idéale désignés sur le figure 4- par des
caractères Kj_, 1<2, K3. Une barre se trouvant dans un état primaire d'équilibre K-|_ ne
peut être mise en état K2 puis en état Kg qu'à l'aide du saut, c'est-à-dire à

l'aide d'un procédé dynamique de transition à travers des états adjacents non
équilibrés

Ce phénomène de saut est représenté sur le figure 4 par un tracé discontinu.
La longueur de saut minima f/est égale à l'écart des points u K2. Au cours de la
transition limite à partir de la barre non-idéale (X >D) vers la barre idéale

a=o cette longueur de saut d décroît successivement et sa valeur limite devient
nulle :

iim dt=D (32)
e + o

Cette analyse montre qu'une bifurcation d'équilibre présente un cas limite
(dégradé) du phénomène de saut (saut à longueur nulle).

Pour rendre plus claires des particularités essentielles du comportement des
barres élastiques soumises à une compression simple et à une compression avec flexion
il est recommandé d'utiliser un prototype constitué d'un système à l'unique degré de
liberté.

En étudiant le comportement de ce prototype on constate que toutes les lois
établies sont inhérentes au problème en question, pour n'importe quel nombre de
degrés de liberté, et elles ne sont pas liées (comme on pouvait le supposer) au caractère

compliqué des fonctions transcendantes déterminant de grands déplacements de la
barre élastique.

Ce prototype est décrit dans une monographie de l'auteur [4] l'analyse de son
comportement étant donnée dans un autre article [5].

8. CONCLUSIONS

Les résultats obtenus servent à établir une corrélation entre le phénomène de
bifurcation et celui de saut ainsi qu'à mettre au jour la nature de la force critique
et le mécanisme du flambement dans le domaine élastique.

Les lois établies gardent leur importance pour une gamme assez large de problèmes
de stabilité élastique liés au phénomène de bifurcation.
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