Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 22 (1975)

Rubrik: Theme II: Fabrication and erection

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Vorfertigung und Bauausführung - Allgemeinbericht

Fabrication and Erection - General Report

Fabrication et montage - Rapport Général

Hans-Dieter GLAS Dipl.-Ing., Techn. Direktor VEB Metalleichtbaukombinat Leipzig/DDR

Bauen ist ein zutiefst gesellschaftliches Anliegen. "Nutzungsgerechtes Bauen " ist eine Aufgabe, der sich kein Bauschaffender mehr entziehen kann, wenn er seiner großen Verant-wortung der Gesellschaft gegenüber gerecht werden will.

27 Fachkollegen haben sich in Vorbereitung und im Verlaufe dieses Symposiums zum Thema II "Vorfertigung und Bauausführung" geäußert. Das ist ein ansprechendes Ergebnis. Gehen wir davon aus, daß es immer mehr Brauch wird, daß Referenten und Diskussionsredner nicht nur ihre Meinung, sondern die Meinung von Kollektiven, also Instituten, Betrieben u. ä., repräsentieren, so können wir sogar sagen, daß Hunderte, vielleicht sogar Tausende, mit uns und unter sich diskutiert haben. Es wurden wesentliche Aspekte des Einflusses der Vorfertigung und der Bauausführung auf das nutzungsgerechte Bauen in Stahl- und Stahlverbundbauweise diskutiert und dabei wertvolle Erfahrungen und Erkenntnisse vermittelt. Es wird nicht als Aufgabe dieses zusammenfassenden Berichtes angesehen, auf jeden einzelnen Diskussionsbeitrag noch einmal einzugehen. Vielmehr will der Berichterstatter einige durch die Diskussionsbeiträge angeregte Gedanken darlegen, ohne Anspruch darauf zu erheben, auch nur annähernd so etwas wie eine Gesamtwertung vorgenommen zu haben.

Als Ergänzung zu der auf dem Prager Symposium 1971 behandelten Abhängigkeit zwischen Konstruktionsform und Vorfertigungsaufwand unternimmt WOLKOW den interessanten Versuch, die bestehenden Wechselbeziehungen zwischen Arbeitsaufwand und Konstruktionsform in ein mathematisches Modell zu kleiden. Mit den Methoden der Regressionsanalyse wird es somit möglich, die bestehenden Gesetzmäßigkeiten für den Arbeitsaufwand bei der Herstellung einer Konstruktion in Abhängigkeit variierender Parameter zur Charakterisierung der Konstruktionsform, wie z. B. äußere und innere Geometrie, Konstruktionsmasse, Schweißnahtgesamtlänge, Anzahl der Einzelpositionen eines Bauteiles, Losgröße, Regel- und Nutzungsbelastung usw. darzustellen. Sicherlich erhebt

dieses Modell nicht Anspruch auf Vollständigkeit, stellt aber einen diskussionswürdigen Versuch dar, die Suche nach der "optimalen" technischen Lösung auf eine objektivere Grundlage zu stellen. In Weiterführung dieser Gedankengänge ergibt sich nunmehr die Fragestellung, welche Möglichkeiten zur Erweiterung dieses Modells bestehen, mit dem Ziel, einerseits Parameter zu definieren, die den Funktionswert eines Bauwerkes beschreiben, und andererseits diese Parameter in Wechselbeziehung zu den bereits bekannten Kennwerten des Wolkowschen Modells zu bringen.

Nutzungsgerechtes Bauen schließt selbstverständlich die ökonomische Lösung ein. Es soll deshalb nochmals und nachdrücklich darauf verwiesen werden - und das ist für den Komplex Vorfertigung und Bauausführung von ganz besonderer Bedeutung -, daß die Lösung nicht darin gesehen werden kann, vielleicht aufwendiger zu bauen. Das Gegenteil wird der Fall sein, wenn Vorfertigung und Bauausführung besser auf die Nutzung orientiert, also den Nutzungsanforderungen besser angepaßt werden, was auch den Grundsatz einschließt "nicht so gut wie möglich, sondern so gut wie nötig". Unter Beachtung dieser Gedanken wird man auch in den Erstinvestitionskosten nicht teurer werden müssen.

die Feststellung trifft, daß die Vorschrif-KOCH ten immer umrangreicher werden und immer mehr den Charakter von Lehr- und Konzeptbüchern annehmen, so muß uns das Anlaß zum Nachdenken sein. Wenn wir uns in den Projektierungs- und Konstruktionsbüros umschauen und dabei erkennen, daß die Ingenieure immer mehr rechnen und immer weniger konstruieren, ich meine fertigungs- und nutzungsgerecht entwerfen, dann ist das sicher ein ernsthaftes Signal. Keiner wird bestreiten wollen, daß leichtes und ökonomisches Bauen auch einen entsprechenden Rechenaufwand erfordert, man muß aber von den Spezialisten für die Gestaltung der Vorschriften und der Erarbeitung wirklichkeitsgetreuerer Berechnungsverfahren erwarten, daß sie so aufbereitete Ergebnisse für den in der Praxis tätigen Ingenieur bereitstellen, die ihm den Blick weiten und nicht, wie das leider manchmal der Fall ist, eher die Pupille trüben. Nicht nur Material ist teuer, nicht nur die Kraft der Arbeiter ist uns sehr wertvoll, auch mit dem Können unserer Ingenieure müssen wir wirtschaftlich umgehen.

Im Hinblick auf die Weiterentwicklung der ingenieurtheoretischen Methoden zur exakteren Darstellung der Zusammenhänge zwischen Geometrie- bzw. Strukturimperfektionen und Tragfähigkeit besitzen die aus den Herstellungsverfahren resultierenden Einflüsse besondere Bedeutung. HÄNSCH verweist in seinem Beitrag auf die Notwendigkeit, den Einfluß von Schweißverformungen und Schweißeigenspannungen auf die Sicherheitsreserven auch bei druckbeanspruchten Baugliedern in gebührendem Maße zu beachten. In Auswertung von Schadensfällen werden Vorschläge zur Vorausbestimmung der aus dem Schweißverfahren zu erwartenden Struktur- und Geometrieimperfektionen unterbreitet.

In Erweiterung dieser Gedanken berichtet NEUMANN über den Einfluß der Schweißeigenspannungen auf das Sprödbruchverhalten von geschweißten Stahlkonstruktionen. Sein Vorschlag zu dessen gleichwertiger Einbeziehung in den vom Projektbearbeiter zu führenden Gesamtsicherheitsnachweis unter Berücksichtigung der Schweißeignung und Schweißsicherheit von Stählen durch rechnerische Bestimmung von Teilsicherheiten gegen Sprödbruch bedarf si-

H. D. GLAS

cherlich einer eingehenden Prüfung. Für uns ist es in diesem Zusammenhang unter Beachtung wirtschaftlicher Aspekte vor allem wichtig, die Grenze zu ermitteln, bis zu der wir es uns leisten können, sowohl die Aufwendungen in der technischen Vorbereitung pro Tonne gefertigter Stahlkonstruktion durch verfeinerte Berechnungsverfahren zu erhöhen, als auch in unseren Werkstätten nach ökonomischen Bedingungen der Metallurgie weiterentwickelte Stähle mit immer spezifischeren Eigenschaften verarbeiten zu müssen.

Da, wie bereits dargelegt, das nutzungsgerechte Bauen auch die Wirtschaftlichkeit unserer Projektierungs- und Ausführungsbetriebe einschließt, muß z. B. auf der Grundlage des erkannten und dargestellten Einflusses von Schweißeigenspannungen auf das Sprödbruchverhalten auch die von uns im Einführungsbericht angedeutete Problematik diskutiert werden, welche Forderungen daraus rückwirkend an die technologischen Verfahren unter Berücksichtigung der Entwicklungstendenzen des Stahlbaues und der Metallurgie abzuleiten sind.

Interessant und richtungsweisend scheint uns auch die von STRELETZKY aufgeworfene Idee der Funktionsüberlagerung und der Nutzung der darin liegenden Möglichkeiten zu sein.
Dieser Gedanke deutet wohl in der gleichen Richtung, wie er im ersten Thema von. SAMMET mit der pfetten- und dampfsperrelosen Dachlösung vorgestellt wurde.

Die Anwendung von Stahl-Stahlbeton-Verbundkonstruktionen als materialökonomische Gestaltungsmöglichkeit ist bekannt. In einigen Beiträgen z. B. von BOUDA wurden interessante Möglichkeiten gezeigt, den erhöhten Aufwand, den solche Konstruktionen auf der Baustelle im allgemeinen mit sich bringen, zu vermeiden bzw. wenigstens in Grenzen zu halten. Auch in der DDR konnten gute Erfahrungen mit einer Verbunddeckenlösung gesammelt werden, die dergestalt im Fertigungswerk hergestellt wird, daß der Verbund zwischen Deckenträger und Betonplatte in der Fließfertigung erfolgt.

Zur Beurteilung der Einsatzmöglichkeiten von ungeschützten korrosionsträgen Stählen tragen die Untersuchungen von MÜLLER und RÜCKRIEM bei. Unter einer Beanspruchung mit erhöhtem Chlorionengehalt bilden korrosionsträge Stähle keine schützende Deckschicht und sind deshalb nicht ohne passiven Korrosionsschutz verwendbar. Ihre bevorzugten Einsatzgebiete bleiben somit die Funktionsbereiche, deren mikroklimatischen Beanspruchungen keinen zusätzlichen passiven Korrosionsschutz erfordern.

Für die Funktionstüchtigkeit bildet nach wie vor die Tragsicherheit bzw. die Versagenswahrscheinlichkeit das entscheidende Qualitätsmerkmal. Als eine Möglichkeit zur Kontrolle oder Überprüfung des Tragverhaltens gilt der Laborversuch. In Ergenzung der im Einführungsbericht diesbezüglich genannten spezifischen Probleme werden von LUTTEROTH und RIEDEBURG Beispiele für die experimentelle Tragsicherheitsprüfung vorgestellt und auf die dabei auftretenden Fragen der Festlegung des Sicherheitsabstandes zwischen zulässiger Gebrauchslast und Versagenslast hingewiesen.

Welche Bedeutung die experimentelle Tragsicherheitsprüfung

für die Reduzierung des Arbeits- und Materialaufwandes im Bauwesen besitzen kann, wird durch die Untersuchungen von JANSS und PIRAPREZ an geriffelten Obergurten mit erhöhter Beton-Stahl-Haftung an Stahlverbundträgern deutlich. Die Versuchsergebnisse bestätigen sowohl die Möglichkeit einer Reduzierung der Dübelanzahl für derartige Bauteile, als auch eine weitgehende Übereinstimmung zwischen Meß- und Rechenwerten.

Auf einige anstehende Fragen konnte das Symposim noch keine oder noch keine befriedigende Antwort geben. Die Feststellung Prof. COSANDEYS im Vorwort des Einführungsberichtes, "daß wir noch weit davon entfernt sind, die Grundregeln zu kennen, welche gleichermaßen zu wirtschaftlichen, rationellen, dauerhaften und der vorgegebenen Nutzung vollkommen angepaßten Lösungen führen" wird nicht zuletzt durch das Verhältnis der von den Berichterstattern zum Thema II "Vorfertigung und Bauausführung" vorgegebenen thematischen Zielstellungen und den demgegenüber stehenden gegenwärtig möglichen Aussagen der Beiträge des Vorberichtes belegt. Bedauerlich ist, daß nichts oder wenig zu so wichtigen Aspekten wie

- beschädigungsarmer Transport

- Erarbeitung von Qualitätsmerkmalen einschließlich Angabe von Möglichkeiten zu ihrer Überprüfung gesagt wurde.

Hier sehen wir das Ergebnis darin, daß vom Symposium und seinen Beiträgen wichtige Fragestellungen erarbeitet wurden, was man seiner Bedeutung nach nicht unterschätzen sollte. Wir rufen alle Ingenieure unseres und anderer Fachgebiete auf, an ihrer Lösung zu arbeiten. Es wäre wünschenswert, wenn die IVBH, besonders die Arbeitskommission II unter Leitung von Herrn Prof. Massounet, sich dieser Thematik in der Folgezeit auch weiter annehmen würde.

H. D. GLAS 81

ZUSAMMENF ASSUNG

Das Symposium vermittelte wertvolle Erfahrungen zu den Einflüssen der Vorfertigung und Bauausführung auf das nutzungsgerechte Bauen bzw. umgekehrt. Einige dem Berichterstatter besonders wichtige Aspekte werden genannt, ohne den Anspruch zu erheben, damit auch nur annähernd eine Gesamtwertung vorgenommen zu haben.

Einige wichtige Aspekte der Thematik, z.B. der beschädigungsarme Transport, wurden noch nicht oder noch nicht ausreichend diskutiert. Auf diesen Gebieten wurden durch das Symposium Fragestellungen aufgeworfen, deren Wert nicht zu unterschätzen ist.

SUMMARY

The Symposium has provided valuable experiences on the influence of fabrication and erection on "structures for user needs" and vice versa. The Reporter outlines some particular aspects of interest.

Some important aspects as e.g. protection during transportation have not or not sufficiently been discussed. The Symposium has raised important questions on these topics.

RESUME

Le colloque a présenté des expériences importantes sur les influences réciproques de la fabrication et du montage d'une part et de la structure conçue pour l'usage d'autre part. Le Rapporteur relève quelques aspects qui lui semblent importants bien que partiels.

Quelques aspects importants du thème, comme la manutention sans dommages, n'ont pas été ou pas suffisamment discutés. Dans ces domaines le colloque a soulevé des questions dont la valeur n'est pas à sous-estimer.

Leere Seite Blank page Page vide

11

Vorbeulungseinflüsse und Eigenspannungen in der Bewertung der nutzungsgerechten Stahlkonstruktionen

Buckling and Residual Stress in the Evalutation of Steel Structures for User Needs

Voilement et contraintes internes dans l'évalutation de structures en acier conçues pour l'usage

Herbert STEUP

a. o. Prof. Dr.-Ing. habil.
Technische Universität Dresden
Dresden/DDR

Der schon seit langer Zeit bekannte stabilitätsmindernde Einfluß von Imperfektionen hinsichtlich Geometrie und Eigenspannungen ist bislang nur für wenige Systeme einer vereinfachten Art in größerer Allgemeingültigkeit theoretisch untersucht worden. Mit den vermeintlich ausreichend hohen Sicherheitszahlen und der Vorgabe werkstattmäßiger Toleranzen schien dieser Problemkreis nur eine sekundäre Bedeutung zu besitzen. Die uns allen bekannten Schadensfälle insbesondere an stählernen Hohlkastenbrücken des In- und Auslandes, wie übrigens auch das derzeitige Verhalten einiger besonders schlanker Stahlbetonkonstruktionen, haben die Notwendigkeit deutlich vor Augen geführt, hier einen breiteren Erfahrungsschatz zu sammeln.

Unsere modernen Berechnungsmethoden, die unter Einsatz elektronischer Hilfsmittel in zunehmendem Maße auch geometrisch und physikalisch kompliziertere Strukturen zu berechnen gestatten, bieten insbesondere bei Stabwerken die Möglichkeit einer hinreichenden Erfassung von Vorkrümmungen der Stäbe, Abweichungen in der Konfiguration der Knotenpunkte u. dergl. Derartige Algorithmen oder gar aufbereitete Ergebnisse sind jedoch bei beulgefährdeten Flächentragwerken noch spärlich vorhanden, so daß die Entwurfs- sowie Standardisierungs-Praxis noch keine befriedigenden Bewertungsmaßstäbe für das imperfekte Verhalten besitzt. Diese Tatsache resultiert daraus, daß der kompliziertere Aufbau des Flächentragwerkes bei Berücksichtigung des elastisch-plastischen Materialverhaltens und einer geometrisch nichtlinearen Verzerrungs-Verschiebungsabhängigkeit eine theoretische Lösung sowohl vom Ansatz her als auch der algorithmischen Durcharbeitung erschwert. Wir können wohl auch nicht damit rechen, daß bei künftiger Bereitstellung eines getesteten Berechnungsprogramms, etwa auf der Methode der finiten Elemente aufbauend, die Bewertung des Imperfektionseinflusses für jeden praktisch auftretenden Konstruktionsfall mit vertretbarem Rechenaufwand erfolgen kann. Voraussichtlich dürfte hier die zuverlässige Stützung angenäherter Berechnungsformeln durch theoretisch und auch experimentell gesicherte Einzelfälle vorgenommen werden. Die Absicherung der Funktionsfähigkeit im Zusemmenspiel von Berechnung, Konstruktion, Werkstatt- und Baustellenfertigung muß durch ökonomisch ausgewogene Standardisierungsvorschreibungen erfolgen. Da die Fertigungsungenauigkeiten einen differenzierten Einfluß auf des Kurz- oder Langzeitverhalten der jeweiligen Konstruktion besitzen, müssen hier teils zu scharfe Forderungen gemildert werden. Während es beispielsweise erforderlich ist, bei gedrückten schlanken Zylinderschalen den Imperfektionseinfluß so weit als möglich zu reduzieren, erscheinen Lockerungen im Bereich der Biegezugzone bei Vollwandträgern u. ä. möglich.

In den Berechnungsvorschriften der DDR TGL 13 510, betreffend die Herstellung und Abnahme von Stahltragwerken, wird die Einhaltung einer Maximalvorbeulung von f = 4 mm bei unversteiften oder versteiften Blechen mit Beanspruchung in deren Ebene gefordert. Darüber hinaus sind mit Grenzwerten der Ausbeulungsimperfektion zur kleinsten Entfernung der Randfesthaltungen mit 1/f = 1000 bzw. 1/f = 250 bei Blechfeldern zwischen Gurtungen und Steifen zusätzliche Einengungen geschaffen.

Die Tafel veranschaulicht für einige der hauptsächlich interessierenden geometrischen Imperfektionen Gegenüberstellungen der Fertigungstoleranzen und Rechnungsannahmen nach unseren Standards sowie den MERRISON-Empfehlungen für die Hohlkastenbrücken. Die Unterschiede sind im Fertigungsbereich nicht wesentlich. Eine Differenzierung in den Rechnungsannahmen einschließlich der zu erfassenden Eigenspannungen ist bei uns weniger ausgeprägt. Dafür sind die Beulsicherheitszahlen für Gesemtfeldwie auch Einzelfeldbeulen höher angesetzt. Der Einfluß von seitlichen Verkrümmungen abstehender Steifenteile auf die Biegedrillknickung bleibt außer Ansatz. Eine Empfehlung wird dahingehend gegeben, die Flachstahlsteifen durch effektivere L-, T- oder Hohlprofile zu ersetzen.

Bei dem Bemühen, übermäßige Vorbeulungen der Bleche samt deren Versteifungen rückgängig zu machen, werden natürlich in das
Material teils zusätzliche und schwer kontrollierbare Zwängungsspennungen eingetragen. Vorbeulungen und Zwängungen beeinflussen
sich allerdings gegenseitig, wobei der größere Biegewiderstand gedrungenerer Bleche die Aufspeicherung von Restspannungen begünstigt. Unseres Erachtens wurde eine sehr differenzierte Einstufung von Vorbeulungs- und Eigenspannungseinflüssen auf des Formänderungs- und Grenztragfähigkeitsverhalten von unversteiften und
insbesondere versteiften beulgefährdeten Elementen im MERRISONReport gegeben.

Angesichts der eingangs erwähnten analytischen Schwierigkeiten einer exakteren Erfassung von Vordeformationen und Zwängungsspannungen, wie auch der Kompliziertheit einer Klassifikation unterschiedlicher Eigenspannungsverteilungen ist die Orientierung auf den unvermeidlich vorgekrümmten Druckstab samt mitwirkendem Plattenstreifen unter Einbezug von Vorbeulungen und
Zwängungsspannungen ein sicheres Vorgehen, welches im weiteren
noch Anpassungen an das zweidimensionale Tragverhalten ermöglicht. Mit Rücksicht auf eine solche Gesamttragwirkung erscheint
es ausreichend, die gegenüber den MERRISON-Empfehlungen etwas

SYSTEM	JN DER FERTIGUNG ZULÅSS TOLERANZ DDR MERRISON - EMPI	ZULÁSS TOLERANZ MERRISON - EMPE	JMPERFEKTION FÜR DDR	R BERECHNUNG MERRISON-EMPF.
S DE LA CONTRACTION DE LA CONT		δ _ξ NICHT U	NACH OMEGA-VERFAHREN δ = m· ξ²/maxe (= 17/F m = δ/ ξ = 0, ξ· λ / 100 BSP. δ = 2.8 mm α)	5 = 21600 85p. δ = 4,2 mm
S S S S S S S S S S S S S S S S S S S	STAHLBAU DRUCKGURTG. ALLGEMEIN >1 LÅNGSST. deul = 1/1000 deul = 1/300 4 mm <8 mm; a<99 8SP. deul = 25 mm	DSF. Ozul = 2.1 mm	# 5.0 mm # # # # # # # # # # # # # # # # # # #	δ = 21400 8sp. δ = 6,3 mm
	3 X 2 3	$\frac{\delta_{EM}}{300+} = \frac{\alpha^*}{300+} \left((1 + \frac{b_A}{500}) \right)$ NICHT UNTER 1 MM ERPORDERL. IN FLANSCHEN, QUERWÄNDEN UND UNVERTEIFTEN STEEBEICHEN 3 MM BSP. $\delta_{EM} = 4.9$ mm (3,0 mm)	JAPEREKTION DURCH HÖHERE BEULSICHERHEITS- ZAHL ABGEDECKT SOWIE BEI GURT FRULKNER-FORM.	$d = \frac{b_1}{420\xi} \left(4 + \frac{b_1}{500} \right)^{\frac{3}{4}} \frac{4}{n}$ BSP. $n = 6$ (GESAWTZAHL DER AUSSTEIFUNGEN) $d = 3,3 \text{ mm}$
	KEINE STANDARDISIERES. VORSCHREIBUNGEN - FESTLEGUNGEN IN SPEZ. WERKSTATTRICHTLINIEN	$\begin{aligned} \delta_{\text{Eul}} &= \frac{K_4}{b_c} \left(\frac{b_A}{k_b} \right)^2 b_{\text{Ew}} \cdot \frac{K_4}{b_c} \left(\frac{h_{\text{SE}}}{k_d} \right) \\ \text{NICHT UNITER 4,5 mm ERFORDER.} \\ \text{(weete NACH THBLE 23.1 MERR)} \\ & $	KEINE RECHNUNGSIMPER- FEKTION - BEULBERECHNUNG BEI SCHARNIERLAGERUNG UND FREIEM RAND	JAPERFEKTION KANN ZB UBER MITTRAGENDE BREITE BEI BEULLING MIT KRÄFTE- FREIEM RAND GREWEDDEN
P	Ssp. of 24 mm	$\delta_{\text{Eul}} = 2 + \frac{t}{6} \; (mm)$ NICHT MEHR ALS ±13 ERFORD. SSP. $\delta_{\text{Eul}} = 4,0 \text{mm}$	JAPERFEKTION DURCH SCHWEISSYERZUG KANN IN HÖHERE BEULSICHERHEITS- YORBEULING MIT ABGEGO ZAHL ABGEDECKT SOWIE TEN WEDDEN (FORMEL WE BEI GURT FAULKNER-FORM, FALCONER U. CHAPMAN)	SCHWEISS VERZUG KANN IN YORBEULING MIT ABGEGOLTEN WEDDEN (FORMEL YON FALCONER U. CHAPMAN)
ABMESSUNGEN BEISPIELE	a) 440.12	c a = 250 cm i=3,59 cm t = 4,2 cm λ= 70 = Feff = 64,6 cm ² Jeff = 4053 cm ³	b) bc 75.15030	a = 250cm i = 4,35cm t = 4,2 cm x = 58 t = 4,2 cm x = 58 Teff = 4605cm ⁴

geringeren geometrischen Imperfektionen nach dem bei uns auf Spennungstheorie II. Ordnung aufbauenden Omega-Verfahren zugrundezulegen.

Die Berücksichtigung der Restdruckspannungen auf das Beulverhalten oder die mitwirkende Breite des anteiligen Plattenstreifens kann dabei zweckmäßigerweise über eine "effektive" Vorbeulung nach dem Vorschlag von FALCONER und CHAPMAN erfolgen.
Nachrechnungen an versteiften Druckgurtungen haben jedoch gezeigt, daß die gleichzeitige Berücksichtigung etwa den MERRISONEmpfehlungen entsprechender Imperfektionen mit Steifenvorkrümmung, Plattenvordeformation und Zwängungseinfluß zu relativ aufwendigen Dimensionierungen führt.

Eine Möglichkeit, die Druckstabanalogie in Richtung auf die von der Längs- und Quersteifigkeit abhängige Flächentragwirkung zu beziehen, bestünde darin, die Systeme des imperfektionsfreien isolierten Druckstabes mit zugehörigem Plattenanteil mit dem nicht vordeformierten zweischsig wirkenden Gesamtsystem (diskrete oder verschmierte Erfassung der Steifen) in Beziehung zu setzen. Die Imperfektionsempfindlichkeit des stellvertretenden Druckstabes kann dabei zum Maßstab der Tragfähigkeitsminderung des Gesamtsystems gemecht werden. Berücksichtigt man den Umstand, daß der in der Interaktionsbeziehung isoliert zu betrachtende Schubfall, speziell bei überkritischer Ausbildung eines Zugfeldes weniger imperfektionsgefährdet ist, so könnte im ökonomischen Sinne hier noch eine Wichtung der Einflüsse vorgenommen werden.

Es eröffnet sich auch die Möglichkeit, die Druckstabanalogie für anderweitige Belastungskombinationen im Sinne der MERRI-SON-Empfehlungen nutzbar zu machen, wobei eine Koppelung der Randspannung des vorgekrümmten Druckstabes mit der ertragbaren Vergleichsspannung des jeweils maximal beanspruchten imperfektionsbehafteten Nachbarfeldes erfolgt.

Bei den Vertikelversteifungen insbesondere der mehrfach versteiften Stegbleche sind bislang u.W. keinerlei Imperfektionen in die Berechnung eingeflossen. Hier werden wohl erstmals im MER-RISON-Report auf Grund des Gedenkens von RYCHMOND die abtriebswirksamen Komponenten der Druck-, Biege- und Schubbelastung an einem sin-förmig vorgekrümmten und gegebenenfalls axielkraftbeanspruchten Stab mit b/800 für einen mathematisch zwar einfachen, in der ingenieurmäßigen Interpretation jedoch etwas undurchsichtigen Spannungs-Verformungszustand betrachtet. Sofern vergleichende Beuluntersuchungen, zunächst zugeschnitten auf die Lösung des Eigenwertproblems mit Hilfe moderner diskontinuierlicher Verfahren bei Einbezug MASSONNET scher Multiplikatoren zur erhöhten Funktionssicherung der Vertikalsteife, hier auf ökonomisch vertretbare Bemessungsforderungen führen, wäre es wünschenswert, euch die Vertikalsteifen imperfektionsbehaftet mit einer Näherungsberechnung zu dimensionieren.

Bei der zunehmenden Orientierung auf die Bemessung nach Traglasten wird der Imperfektionseinfluß auch für die Gurtungen der Vollwandträger von Bedeutung sein. Überkritische Tragfähigkeitsreserven können sich nur denn wirksam entfalten, wenn der gedrückte Gurt eine genügende Steifigkeit aufweist. Zur Erfassung des Eigenspannungseinflusses wird hier in den Berechnungsmethoden der USA die Proportionalitätsgrenze in der Knick- oder H. STEUP

Kipp-Spennungslinie der Gurtung bzw. des gesamten Vollwendträgers nach der sicheren Seite hin verschoben. Bei dem Vorgehen nach DDR-Standard-Entwurf werden die Imperfektionen der Gurtung wiederum gemäß den Voraussetzungen des Omega-Verfahrens bei der Gruppe der eigenspennungsbehafteten Druckstäbe mit etwas vergrößerten Vorkrümmungen zugrundegelegt.

Schließlich gilt es bei den von der Fertigung angestrebten Trägern ohne Zwischenqueraussteifungen die Formtreue in erhöhtem Maße zu sichern, wobei auch der die Kippbelastung abmindernde Effekt der Querschnittsuntreue durch wesentliche Vordeformationen nicht begünstigt werden derf.

Die Untersuchung des Imperfektionseinflusses insbesondere bei den Problemen der Biegedrillknickung und Kippung mit standardisierungsgerechten Vorgaben der Toleranzen und Berechnungsennahmen bietet noch ein breites Feld, und die Bewältigung dieser Aufgaben wird wohl die Durchführung umfangreicherer Versuchsreihen erfordern. Mit einem in der DDR aufgestellten Berechnungsprogramm für die Ermittlung des Spannungs- und Verschiebungszustandes räumlich gekrümmter Stäbe nach Theorie II. Ordnung werden solche Untersuchungen eine analytische Abstützung erfahren.

Leere Seite Blank page Page vide

Reliability in Welded Joints through Ultrasonic Inspection

Contrôle de qualité des soudures à l'aide d'essais ultrasoniques

Zuverlässigkeit von Schweißungen durch Ultraschall-Untersuchung

Ben KATO
Professor
University of Tokyo
Tokyo/Japan

1. INTRODUCTION

In recent years ultrasonics has been applied to a greater extent for weld inspection. It can locate cracks with relative ease and the equipment is low in cost. Especially it is quite suitable for field use as the equipment is portable.

To make a satisfactory evaluation of a weld flaw, it is important not only that it be detected, but that it be characterized as fully as possible. If the size of a defect is underestimated, resisting capacity of a joint and thus serviceable life of the structure may be overestimated resulting in the increase of user's risk. In opposite case, it imposes unnecessary repair works of weldments, and it will impose the excessive expense on the owner or the producer. On the basis of this view point, this paper will discuss the reliability of ultrasonic inspection. In Section 2, flaw lengths indicated by ultrasonic inspection and radiographic inspection are compared with actual flaw length, and the accuracy of each prediction is examined. In Section 3, the strength of the weld is correlated against the flaw as measured on a ultrasonic.

2. ACCURACY OF FLAW LENGTH DETECTED BY ULTRASONIC AND RADIOGRAPHIC INSPECTION

Case 1. On 116 test pieces in which different types and sizes of defects were included artificially in weldments, ultrasonic and radiographic inspection were applied to detect the flaw length. The results of tension tests carried out subsequently gave information on the breaking strength of welded joints and actual size of defects.

Case 2. Field ultrasonic inspection on two buildings were carried out. Among a number of test records,57 samples in A-building and 54 samples in B-building were refered here, defects of which were estimated to be serious and these weldments were gouged

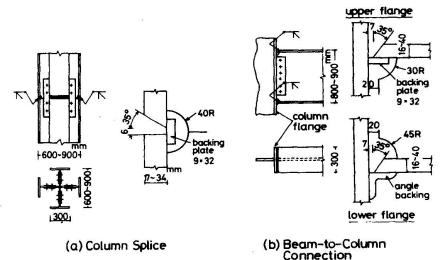
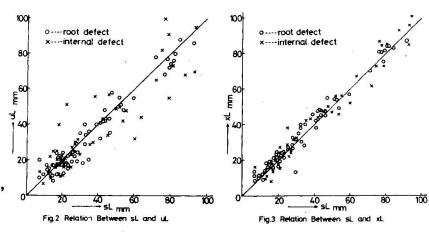


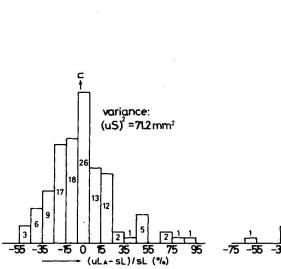
Fig.1 Details of Welded Joints

to check the actual defect sizes and then rewelded. The details of welded joints which were the subject of inspection are shown in Fig.1.

Relationship between the indicated flaw length by ultrasonic inspection(uL) and actual flaw length(sL) measured in Case 1(Laboratory test) is shown in Fig.2, and that between the indicated flaw length by radiographic inspection(xL) and actual flaw length is shown in Fig.3.

Frequency distributions of estimation errors made by ultrasonic and radiographic inspection are shown in Figs.4 and 5 respectively. Obviously radiographic inspection is more reliable than ultrasonics.


Relationship between the flaw length as measured on a ultrasonic and actual flaw length is shown in Fig.6 for the case of field inspection of A-building, and that for B-building is shown in Fig.7(Case 2).


Variance in ultrasonic inspection for Case 1. is 71.2 mm² and that for Abuilding(Case 2) is 197.5 mm², direct comparison of these is impossible since the number of samples are different each other. However, the test of significance had shown that the laboratory test(Case 1) is more accurate than the field test(Case 2).

3. CORRELATION BETWEEN THE INDICATED FLAW LENGTH AND THE STRENGTH OF WELD

The strength of the weld is correlated against the flaw length as measured on ultrasonics using 116 samples as mentioned in Case 1 of previous section.

The relationship between the judgement done

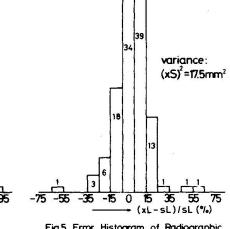
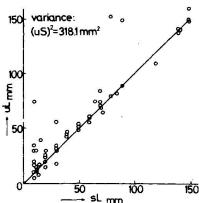
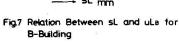




Fig.4 Error Histogram of Ultrasonic Evaluation

Fig.5 Error Histogram of Radiographic Evaluation

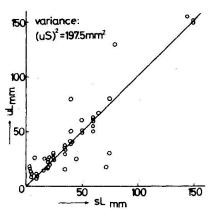


Fig.6 Relation Between sL and uLA for A-Building

B. KATO 91

according to the acceptance criterion specified by the Architectural Institute of Japan(A.I.J. see Appendix) and the strength of the welded joints is shown in Table 1,where samples are subdivided into two groups according to the criterion that whether a test piece is broken in base metal or in weldment. If joints marked 4 points shall be rejectable, the result becomes as shown in Table 1a, and if joints marked 3 or 4 points shall be rejectable, the result becomes as shown in Table 1b. In this table, (1) is a contingency table in which test data are classified according to breaking strengths on the one hand and evaluation marks on the other, (2) is the result of "test of independence" on the basis of χ^2 -distribution, user's risk and producer's risk brought from the judgement are shown in (3). The results of χ^2 -tests with a level of significance of 5% had shown that, for both cases, there is some association between the evaluation mark and the strength of weld. If one adopts the acceptance criterion shown in Table 1a, the user's risk becomes larger, on the contrary if one adopts that shown in Table 1b, the producer's risk becomes larger.

Table 1. Correlation of Tensile Strength With Reference Flaws by AIJ Standard

la) Marked 4,rejectable				1b) Marked 3,4, rejectable					
(1) Continge			ID) Markett 3,4, Tejectable						
Broken at → Mark ↓	Base metal	Weld	Totals	Broken at→ Mark ↓	Base metal	Weld	Totals		
1.2.3	27	36	63	1.2	19	23	42		
4	2	51	53	3,4	10	64	74		
Totals	29	87	116	Totals	29	87	116		
	Independence $\chi_j^2(0.05)$; not ind		χ^2 =14.38> χ_1^2 (0.05); not independent						
(3) Producer's risk(α) = 6.9% User's risk(β) = 41.4%			Producer's risk(α) = 34.5% User's risk(β) = 26.4%						

Table 2. shows the result of similar analysis, where only the indicated flaw lengths are adopted as a parameter neglecting the effect of echo height on the cathode ray tube. The acceptance criterion is that when a flaw length exceeds 5/8 times the thickness of base metal, the sample shall be rejectable (5/8 t is the mean value of indicated flaw lengths M_1 and M_2 specified by AIJ Standard, see Appendix).

Table 2. Correlation of Tensile Strength With Flaw Length

2a) Based on Indicated Flaw Length 2b) Based on Actual Flaw Length									
(1) Contingency Table									
Broken at →	Base metal	Weld	Totals	Broken at→ xL ↓	Base metal	Weld	Totals		
≤ 5/8 t	23	18	41	≤ 5/8 t	24	13	37		
> 5/8 t	6	69	75	> 5/8 t	5	74	79		
Totals	29	116	Totals	29	87	116			
(2) Testing Independence									
$\chi^2=32.71>\chi_1^2(0.05);$ $\chi^2=46.05>\chi_1^2(0.05);$									
not independent			not independent						
(3) Producer's risk(α) =20.7% User's risk(β) =20.9%			Producer's risk(α) =17.2% User's risk(β) =14.9%						
υσει σ 11σκ(β) -20.7% υσει σ 11σκ(β) -14.7%									

Flaw lengths as measured on the ultrasonics are used in Table 2a,and actual flaw lengths are used in Table 2b. In both cases,the results of χ^2 -tests had shown that there is some association between the flaw length and the strength of weld. User's risk and producer's risk are better balanced than in the case of Table 1. The ratio of miss-judgements to total samples is 24/116 when reference flaw lengths are used(Table 2a),and is 18/116 when actual flaw lengths are used(Table 2b),and it might appear at first glance that the judgement based on actual flaw length is more reliable. However,the result of "tests of significance" had shown that this difference is not significant.

4. CONCLUSIONS

- 1) The accuracy of flaw evaluation by ultrasonic inspection is a little bit inferior than that by radiographic inspection. However, taking account of other advantages, ultrasonic inspection is practically useful.
- 2) An acceptance standard for ultrasonics is well related to the strength of welded joints. The acceptance level should be set to obtain the better balance between the user's risk and the producer's risk.
- 3) The further research needed are;
 - i) Development of improved methods to classify flaw types(cracks,incomplete fusion,inclusions etc.,) and to evaluate flaw heights.
 - ii) Correlation of flaw types and sizes with the reduction of strength and ductility of welded joints.

Appendix-Standard for Ultrasonic Testing of Steel Structure Groove Welds.

Architectural Institute of Japan(AIJ), 1973

Evaluation of Flaw

Flaw shall be evaluated in accordance with the indicated defect length discriminated by values of S,M1,M2 and L in Table Al relative to the thickness of base metal to be welded together, and Table A2 depending on the region to which the maximum echo height belongs.

Table Al. Classification of Indicated Defect Lengths

Indicated flaw length(mm) →					
Thickness of base metal(mm)+	S	$\mathtt{M_1}$	M ₂	L	
From 9 to 20	5	10	15	20	
Over 20 to 48	t/4	t/2	3t/4	t	
Over 48	12	24	36	48	

Table A2. Evaluation Marks of Flaws

Indicated flaw length → Max. echo height ↓	≤s	$>$ s to M_1	$>$ M_1 to M_2	>M ₂ to L	>L	
Region II	0	1	2	3	4	
Region III	1	2	3	4	4	

Judgement for Acceptance or Rejection

In conformity to the criteria given above, those marked 4 points shall be judged rejectable. Provided however that in case there are two or more flaws including a flaw of 3 points, a portion of 300 mm containing such flaws shall be considered, and it shall be judged rejectable if the total points within this range are equal to or exceed 6 points.

B. KATO 93

SUMMARY

The usefulness of ultrasonics for weld inspection was investigated using data on laboratory test and field inspection. It has been shown that;
1) ultrasonics can estimate the flaw length with practically reasonable accuracy,
2) an acceptance standard for ultrasonics is well related to the strength of welded joints. The acceptance level should be set to obtain the better balance between the user's risk and the producer's risk.

RESUME

L'utilité d'un examen ultrasonique des soudures a été étudiée sur la base de résultats d'essais de laboratoire et de chantier. Il a été démontré que:
1) l'examen ultrasonique permet de détecter la longueur des fissures avec bonne précision, 2) une norme de qualité pour l'examen ultrasonique est bien en relation avec la résistance des soudures. Des normes devraient être établies en tenant compte d'un meilleur équilibre entre les risques de l'utilisateur et du constructeur.

ZUSAMMENFASSUNG

Der Nutzen des Ultraschalls bei Schweissprüfungen wurde unter Auswertung von Laborversuchen und an der Baustelle untersucht. Es zeigt sich, dass:
1) Ultraschall die Länge von Rissen mit praktisch hinreichender Genauigkeit abschätzen lässt, 2) eine Standardisierung für Ultraschallprüfungen mit der Festigkeit von Schweissungen in guter Beziehung steht. Der Zuverlässigkeitsgrad sollte einen besseren Ausgleich zwischen dem Risiko des Benützers und dem Risiko des Herstellers gewährleisten.

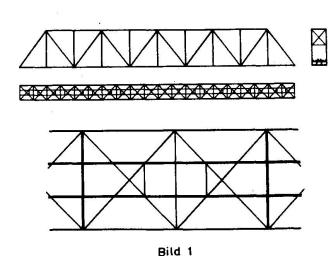
Leere Seite Blank page Page vide

11

Gemeinsamkeit der Arbeit und Überlagerung von Funktionen verschiedener Teile eines Brückenbaus vom Standpunkt der Betriebsanforderungen

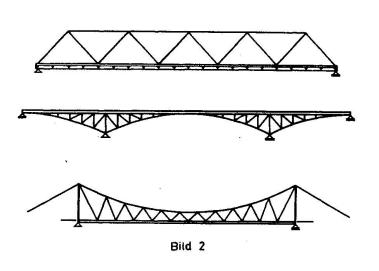
Service Conditions for Different Bridge Elements

Conditions de service pour différentes parties de ponts


N. N. STRELETSKY

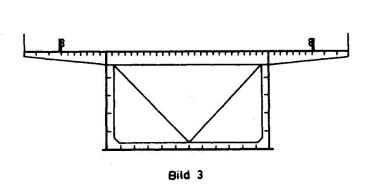
Dr. d. techn. Wissenschaften ZNI Iprojektstal'konstrukcija Moskau/UdSSR

Eine Reihe der für den Betrieb wichtigen Festlegungen kann hervorgehoben und verallgemeinert werden, indem man sich vom Prinzip der Funktionsüberlagerung verschiedener Konstruktionsteile aus der gegenwärtigen sowjetischen Konstruktionsschule leiten läßt.

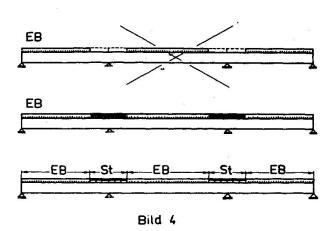

Dieses Prinzip gilt der Verbesserung der Betriebseigenschaften bei gleichzeitiger Materialeinsparung. Letzteres wurde nur unter Ausnutzung neuer Berechnungsmethoden möglich, die auf der Grundlage der Errungenschaften der Baumechanik, der elektronischen Rechentechnik und der Methode der Grenzzustände geschaffen wurden.

Eines der letzten Beispiele für die Realisierung dieses Prinzips der Funktionsüberlagerung sind die neuen sowjetischen Typen von Eisenbahnbrücken der Vereinigung "Giprotransmost" mit einer Verbundwirkung der Längsbalken der Fahrbahn und der Hauptbinder (Bild 1).

Einige Plattenbauelemente der üblichen kreuzförmigen Längsverbände verwandelte man durch den Einbau zusätzlicher Abstandhalter in unveränderliche Horizontalaussteifungen, die die Längsbalken in die Verbundwirkung mit den Gurten der Binder einbeziehen. Die Entlastung der entsprechenden Untergurte durch die Längsbalken beträgt 25 bis 35 %.


Damit erreicht man bei langfristigem Betrieb und niedrigen Temperaturen eine Verminderung von gefährlichen Überbeanspruchungen durch horizontale Biegung der Querbalken, eine Vereinfachung der Konstruktionen sowie der laufenden Instandhaltung, eine Reduzierung des Materialverbrauches, eine gewisse Erhöhung der vertikalen Steifigkeit und letztlich einen Verzicht auf zeitweilige Verstärkung der Untergurte bei einer Montage im Freivorbau.

Ein weiteres Beispiel für die Realisierung des Prinzips der Funktionsüberlagerung im sowjetischen Brückenbau sind kombinierte Fachwerke, das heißt eine vollkommene Vereinigung der Längsbalken der Brückenfahrbahnen mit den in Höhe der Fahrbahn angeordneten Gurten der Hauptbinder. Die kombinierten Fachwerke finden in der UdSSR, besonders bei der Errichtung von Autobahn- und Rohrleitungsbrücken, breite An-wendung (Bild 2).


Durch die Verwendung kombinierter Fachwerkkonstruktionen in Brückentragwerken ist der Widerspruch zwischen optimalen Plattenlängen der Fahrbahn und Hauptbinder beseitigt worden, was zu einer beträchtlichen Materialeinsparung führen kann.

Am vollkommensten ist das Prinzip der Funktionsüberlagerung in Hohlkastenüberbauten mit orthotropen Platten verwirklicht (Bild 3).

In der oberen orthotropen Platte vereinigen sich die Funktionen der Fahrbahn, der oberen Gurte der Hauptträger sowie der oberen Verbände, in der unteren Platte die Funktionen der unteren Gurte der Hauptträger und der unteren Verbände. Bei derartigen Bauwerken werden in hohem Maße die Gewichtsund Betriebskennziffern im Vergleich zu analogen älteren Konstruktionsformen verbessert.

Ein Beispiel für die erfolgreiche Anwendung des Prinzips der Funktionsüberlagerung sind auch Verbundüberbauten. In vielen Ländern wird dieses Prinzip noch nicht voll angewendet. Die Betonplatte wird in die gemeinsame Tragwirkung mit dem stählernen Hauptträger nur in den Bereichen herangezogen, in denen sie eine Druckbeanspruchung erhält. In den Zugbereichen werden sogenannte "organisierte" Fugen angeordnet, oder man toleriert eine Ungewißheit in der Arbeit der Stahlbetonplatte. In der Sowjetunion wird die bei solchen Entscheidungen unvermeidliche Komplizierung der laufenden Instandhaltung dieser Überbauten oder eine Verringerung ihrer Lebensdauer nicht zugelassen. Man schließt die Platte in

die Verbundwirkung mit den Trägern auf der ganzen Länge ein, indem man eine künstliche Pressung oder eine verstärkte Bewehrung der Stahlbetonplatte in den Zugzonen verwendet. Eine weitere Möglichkeit besteht im Einsatz von Stahlbeton ausschließlich in den Druckzonen, während in den Zugzonen eine orthotrope Stahlplatte vorgesehen wird (Bild 4).

Die Verbundwirkung führt in jedem Element zur Entstehung einer gro-

Ben Anzahl von Kräftefaktoren, wie zum Beispiel Axialkräfte, Querkräfte, Biegungs- und Drehmomente, die in verschiedenen Richtungen wirken. Der Spannungszustand ist dabei äußerst ungleichmäßig, die größten Spannungen entstehen nur an einzelnen Punkten der Elementequerschnitte. Die Werte dieser Spannungen sind jedoch vergrößert. Wenn man in den Festigkeitsberechnungen diese maximalen Punktspannungen mit den herkömmlichen berechneten Werten unter Verwendung der Widerstandswerte des Stahles vergleicht, so kann im Ergebnis der Ausnutzung der Verbundwirkung anstelle einer Erleichterung sogar ein Erschwernis für die Konstruktion eintreten.

Die Spannungen in den einzelnen Punkten bestimmen aber nicht den Grenzzustand einer Konstruktion, das heißt den Zustand, bei dem sie nicht mehr den Betriebsanforderungen gerecht wird. Dementsprechend werden in der UdSSR Untersuchungen zur Feststellung des Deformationskriteriums für den Grenzzustand der Festigkeit durchgeführt. Der Grenzzustand der Festigkeit wird dabei mit einer bestimmten Entwicklung der relativen plastischen Verformungen in Verbindung gebracht. Für Stahlbetonbrücken ist die Grenzverformung unter Druckbeanspruchung bei einer Stahlbetonplatte nach unserem Vorschlag bereits lange mit E Grenze = 0,0016 genormt. Für Stahlbrückenkonstruktionen beträgt EGrenze = 0,0020 bis 0,0025. Die Berechnung der plastischen Deformation kann in herkömmlicher Weise mit der Kontrolle von Spannungen durchgeführt werden, die in Annahme eines elastischen Verhaltens berechnet wurden, aber unter Verwendung von Korrekturkoeffizienten, die größer als 1 sind.

Mit diesen Darstellungen soll verdeutlicht werden, wie die ökonomische Effektivität unter Ausnutzung der Verbundwirkung der Teile eines Überbaus steigt. Das erreicht man bei voller Gewährleistung der Sicherheit und anderer Betriebsanforderungen.

Leere Seite Blank page Page vide

11

Zur Frage der Sicherheit stählerner Tragwerke

Safety of Steel Structures

Sécurité des structures métalliques

Manfred KOCH

Dr.-Ing.
VEB Metalleichtbaukombinat, Forschungsinstitut
Leipzig/DDR

Bei der Errichtung und Nutzung stählerner Tragwerke treten immer wieder Schadensfälle auf. Wenn diese Versagenszustände auch relativ selten vorkommen, so sind sie doch häufig mit großen wirtschaftlichen Schäden und sogar mit dem Verlust von Menschenleben verbunden.

Deshalb ist die Frage zu stellen, ob die gültigen Berechnungs- und Bauvorschriften zu ausreichend sicheren Tragwerken führen oder welche Ursachen des Versagens sonst vorliegen. Hierbei ist es unwesentlich, ob die Bemessung der Tragwerke nach klassischen Gesichtspunkten im Sinne einer determinierten Sicherheitsuntersuchung oder nach modernen Gesichtspunkten im Sinne einer Zuverlässigkeitsuntersuchung erfolgt.

Eine Analyse der wesentlichen Versagensursachen führt zu folgendem Ergebnis:

Die Tragfähigkeitsnachweise bei richtiger Anwendung der vorliegenden Berechnungs- und Bauvorschriften sind offenbar ausreichend.

Es lassen sich zwei Gruppen von Versagensursachen herausstellen:

- Falsche Anwendung der Berechnungs- und Bauvorschriften - Mangelhafte Kontrolle von der Projektierung bis zur Nutzung
- Im allgemeinen ist das Zusammentreffen mehrerer ungünstiger Einflüsse Ursache für das Versagen eines Tragwerkes.

Im Folgenden soll nur auf das Problem der mangelhaften oder falschen Anwendung der Berechnungs- und Bauvorschriften eingegangen werden.

Mit Hilfe von Berechnungs- und Bauvorschriften soll erreicht werden, daß ausreichend sichere Tragwerke errichtet werden. Der Gesetzgeber beabsichtigt damit, seine Bürger und die Volkswirtschaft vor unzumutbarer Gefährdung zu sichern. In der DDR haben die Vorschriften gesetzliche Verbindlichkeit. In anderen Ländern liegen gleich oder ähnlich hohe Verbindlichkeiten vor. Prinzipiell würde es genügen, wenn die Vorschriften nur Aussagen über Mindestforderungen enthielten.

Praktisch ist es heute nicht mehr möglich, daß einzelne Fachingenieure alle Fragen, die mit der Errichtung von Tragwerken auftreten, selbst beantworten können. Deshalb enthalten die Vorschriften neben den Belastungsannahmen auch Festlegungen über zulässige oder ertragbare Beanspruchungen. Da diese Festlegungen immer nur unter besonderen Bedingungen gültig sind, müssen weitere Angaben dazu gemacht werden. Das können Angaben zum Berechnungsverfahren, zu den Einsatzbedingungen, der konstruktiven Gestaltung u. ä. sein. Für komplizierte Nachweise, z. B. auf dem Gebiet der Stabilität müssen präzise Angaben über die zu verwendenden Berechnungsverfahren gemacht werden. Alle diese Festlegungen gelten unter bestimmten Voraussetzungen und Vereinfachungen.

In der Entwicklung und Anwendung der Vorschriften zeigt sich folgende Tendenz: Die Vorschriften werden immer umfangreicher und nehmen immer mehr den Charakter von Lehr- oder Rezeptbüchern an. Andererseits wird immer stärker auf die buchstabengetreue Einhaltung der Vorschriften geachtet.

Die Unmöglichkeit, die Anwendungsgrenzen bestimmter, in den Vorschriften gegebener Verfahren sicher angeben zu können und formales Anwenden der Verfahren führen dann leicht zu fehlerhaften Anwendungen.

Beispiele hierfür sind: Die zulässigen Dauerfestigkeitswerte der Stahlbauvorschriften gelten nicht für Bauteile, die mit vollen Amplituden mehr als 2 · 106 beansprucht werden - wie Maschinenfundamente, sondern für im Stahlbau normalerweise stochastisch auftretende Belastungen.

Die geringen Beulsicherheiten von Stegblechen älterer Stabilitätsvorschriften sind wegen der dort vorhandenen überkritischen Reserven nicht auf Druckgurte anwendbar.

Die Forderungen des ökonomischen leichten Bauens und der Übergang von der Einzel- zur Serienfertigung führt schneller zu neuen Konstruktionsformen, als das in den Vorschriften durch Überarbeitungen berücksichtigt werden kann. Deshalb sind bei solchen Neuentwicklungen die Anwendungsmöglichkeiten und Anwendungsgrenzen der Vorschriften kritisch zu überprüfen.

Beispiele hierfür sind die Empfindlichkeit leichter Dachkonstruktionen gegen relativ geringe Belastungsüberschreitungen oder das Tragverhalten ausgesteifter Druckgurte oder Stegbleche im Druckbereich.

In der Bemessungspraxis werden zahlreiche zweckmäßige Vereinfachungen angewendet, die zwar nicht in den Vorschriften geregelt sind, aber durch die Erfahrung abgesichert sind. Die Anwendbarkeit solcher Vereinfachungen bedarf ebenfalls einer ständigen kritischen Prüfung. Fälle, bei denen solche Vereinfachungen nicht mehr zulässig sind, sind z. B. Vernachlässigung von Nebenspannungen in Fachwerken oder in mehrgliedrigen Stäben im Anschlußbereich, wenn diese auf Ermüdung beansprucht werden.

M/ KOCH 101

Bei statischer Belastung bauen sich örtliche Fließgrenzenüberschreitungen wegen des plastischen Verhaltens der Stähle ab, bei Ermüdungsbeanspruchung können solche Spannungsspitzen zu erheblicher Reduzierung der Lebensdauer führen.

Zusammenfassend ist festzustellen: Die Berechnungs- und Bauvorschriften sollten nur Festlegungen enthalten, die für die Sicherheit und Funktion der Tragwerke unbedingt erforderlich sind. Die Grundlagen der Vorschriften sollten ausreichend kommentiert werden.

Die Vorschriften ersetzen keine ausreichenden fachlichen Qualifikationen der Ausführenden. Deshalb sollten zur Konstruktion, Berechnung und Ausführung von Tragkonstruktionen nur Personen und Betriebe zugelassen und beauftragt werden, die über ausreichende Ausbildung, Erfahrungen und Ausrüstungen verfügen, solche Tragwerke herzustellen.

Zusätzlich dazu ist für ausreichende Informationsmöglichkeiten zu sorgen, wobei besonderer Wert auf eine systematische Auswertung eingetretener Schadensfälle gelegt werden sollte.

ZUSAMMENFASSUNG

Aufgetretene Schadensfälle an stählernen Tragwerken sind nicht auf die vorliegenden Berechnungs- und Bauvorschriften zurückzuführen. Ursachen für das Versagen sind falsche Anwendung der Berechnungs- und Bauvorschriften und mangelhafte Kontrolle von der Projektierung bis zur Nutzung. Fehlerhafte Anwendung der Berechnungs- und Bauvorschriften ist vermeidbar durch Beachtung der Anwendungsgrenzen der Vorschriften.

SUMMARY

Damages on steel structures are not caused by existing standards for design and construction, but by a bad use of the said standards or an unsufficient control from design until using. The limits of application of standards should be observed.

RESUME

Les dommages causés aux structures métalliques ne sont pas dus aux prescriptions existantes sur le calcul et la construction, mais à une mauvaise utilisation de ces prescriptions ou à un contrôle insuffisant depuis le projet jusqu'à la mise en service. Il faut tenir compte des limites d'utilisation des prescriptions.

Leere Seite Blank page Page vide

11

Progressive Verbundkonstruktionen in der CSSR

Composite Structures in Czekoslovakia

Constructions mixtes en Tchécoslovaquie

Milos BOUDA

Dipl.-Ing., Kand. d. techn. Wissenschaften Forschungsinstitut für Hochbau Prag/CSSR

1. Einleitung

Das Forschungsinstitut für Hochbau, Prag (Výzkumný ústav pozemních staveb, Praha - VÚPS) ist der Hauptarbeitsplatz in der ČSSR, wo die Stahlbetonverbundkonstruktionen erforscht werden. Die theoretisch - experimentelle Forschung ist durch die Erfordernisse der Benützer und Realisierer koordiniert, die eine schnelle Aplikation der Forschungsergebnisse anstreben.

In der Nachkriegsjahren, als es in der ČSSR zu einem ungewöhnlichen Aufschwung des Investitionsaufbaues kam, zeigte sich auch die Notwendigkeit progressiver Universalskelette für mehrstöckige Gesellschafts- und Industriebauten. Eine der Lösungen haben die Stahlskelette geboten, wenn auch ökonomisch nicht ganz zufriedenstellend. Skelette mit traditionellen Verbunddecken forderten verhältnismässig grossen Arbeitsaufwand und im grösseren Masstab haben sie sich nicht durchgesetzt.

Erst mit der Anwendung der modernen Herstellungstechnologie von Verbundkonstruktionen mit Hilfe automatisch verschweisster Kopfbolzendübel in Europa, kam es auch in der ČSSR zu schrittweiser Renaissance auf dem Gebiet der Verbundkonstruktionen.

2. Hauptgebiete der Forschung

Eine intensive Erforschung der Verbundkonstruktionen wurde im Forschungsinstitut für Hochbau in Prag ungefähr vor zehn Jahren in Angriff genommen.

Die erste Etappe wurde durch den gesamten Trend der Vorfertigung von Stahlbetonkonstruktionen beeinflusst. Die Aufgabe lautete, ein Universalstahlskelett mit Verbunddecken für Industriegebäude zu entwickeln.

Entworfen wurde ein Stahlskelett mit Decken aus industriell hergestellten (vorgefertigten) Stahlbetonplatten in Verbund mit Stahlunterzügen. Dieses Universalskelett ermöglicht die Gestaltung von Deckenfeldern bis zu Abmessungen von 7,20 x 15,00 m bei Verkehrslast bis 2000 kp/m2. Die Verbundbauweise der Fertigteile mit Stahlunterzügen musste entworfen und experimentell bewiesen werden.

Die weitere Entwicklungsetappe der Verbundkonstruktionenerforschung ist umgekehrt durch die Zurückkehr zum Ortbeton
charakterisiert /3/. Diese Tendenz ergibt sich aus der Tatsache,
dass in der CSSR die Grossproduktion der dünnwandigen Stahlzellenbleche eingeführt wurde und dass sich in der gegenwärtigen
Zeit sehr progressive Möglichkeiten der Herstellung, des Transportes und Bearbeitung der Betonmischung anbieten. Stahlskelette
mit Verbunddecken aus Blechpaneelen, die nur die Schalung der
Deckenplatte bilden oder die mit der Betonplatte statisch zusammenwirken, können in der gegenwärtigen Zeit für sehr progressiv vom Gesichtspunkt der Ökonomie, der Universalität und Variabilität der Abmessungs- und Belastungsparameter angesehen verden.

Diese neue Art der Verbundkonstruktionen brachte mit sich auch eine ganze Reihe von Forschungsproblemen und zwar nicht nur vom Gesichtspunkt der Herstellungstechnologie, sondern auch vom Gesichtspunkt der Entwurfstheorie, der Bestimmungen und Normalisierung.

2.1. Stahlträger in Verbund mit Fertigbetonplatten

Decken des Universalskeletts für Industriegebäude sind aus Rippendecken oder aus komerziellen vorgefertigten Hohldecken zusammengestellt, die mittels Bolzen und Betonverguss mit geschweissten Stahlträgern im statischen Verbund sind /l/. Die Stirnseiten der Rippenplatten sind mit flachen oder tiefen Verzahnungen versehen, die Hohlplattenstirnseiten benötigen aber diese besondere Anordnung nicht.

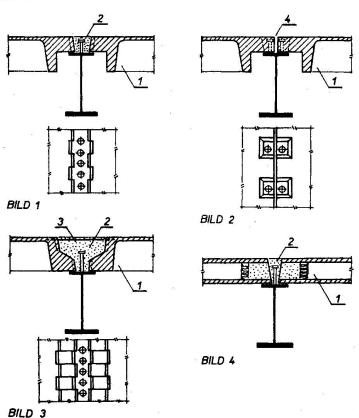


Bild 1. - 4. Stahlträger in Verbund mit Fertigbetondeckenplatten (1-Fertigbetondeckenplatten, 2-Betonverguss, 3-verschweisste Bewehrung, 4-Fuge)

M. BOUDA 105

Auf den Bildern 1 bis 4 sind Varianten der Verbundträger, die experimentell überprüft wurden, dargestellt. Die Varianten nach Bild 1 und 2 haben halbversetzte Rippenplatten, die als einfache Träger aufgelagert sind. Die Variante nach Bild 3 hat unversetzte Platten mit verschweisster Bewehrung die nach Zusammenfügen mit Betonverguss eine durchlaufende Deckenplatte bilden. Auf Bild 4 ist die Variante mit einer Hohldeckenplatte dargestellt. Die Lösung nach Bild 3 nähert sich am meisten einer Ortbetondeckenplatte die für dynamisch belastete Decken empfohlen werden kann. Vom Gesichtspunkt der Ausführung und auch der Tragfähigkeit hat sich am meisten die Deckenvariante nach Bild 2 bewährt. Die Platten haben eine tiefe konische Verzahnung und der Verguss ist durch eine Fuge geteilt.

Die Tragfähigkeitsversuche wurden an Verbundträgermodellen mit Spannweite von 4,50 m und an Versuchsträgern mit Spannweite von 12,00 m ausgeführt /2/. Voraussetzung für die richtige Auswertung der Prüfungen war eine treue Nachahmung der tatsächlichen Belastung und des Verhaltens des Trägers beim Betrieb. Ideal wäre es, wenn gleichzeitig wenigstens zwei ganze Felder belastet wären. Das war aber nicht reell, denn die Abmessung der zwei Felder war 12 x 12 m. Deshalb wurde eine neue Prüftechnik angewendet /4/. Als Erfordernis galt, die Auflagerverdrehung der Betonplatten von der eigenen Durchbiegung nachzuahmen.

a) Prüfungen mit Trägerspannweite 4,50 m

Bei reduzierten Balkenmodellen wurden die verkürzten Stahlbetonfertigteile auf zwei längere, schwächere Hilfsträger frei gelagert und zwar paralell mit Versuchsbalken, wie das Bild 5 schematisch zeigt. Die Spannweite (¿) und Steifheit der Hilfsträger, ihre Entfernung vom Versuchsträger (d), sowie die Laststellung musste so angeordnet werden, dass bei Belastung im elastischen Zustand die Biegelinien des Versuchs- und des Hilfsbalkens paralell waren - verschoben um den Wert (z), durch welchen auch der Winkel cer Auflagerverdrehung (Endverdrehung) des Fertigteiles deffiniert war.

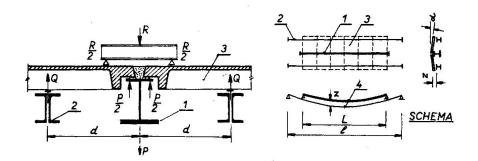


Bild 5. Prüfungen mit Trägerspannweite 4,50 m (1-Versuchsträger, 2-Hilfsträger, 3-Stahlbetonfertigteile, 4-Biegelinien)

Die tatsächliche Belastung des Versuchsträgers wurde mit Hilfe von Dynamometer an den Auflagern und der Durchbiegungen der Hilfsträger kontrolliert.

b) Prüfungen mit Trägerspannweite 12,00 m

Bei den Versuchsträgern, Spannweite 12 m, wurden die verkürzten Stahlbetonfertigteile auf elastische Hilfsquerbalken aufgehängt /4/. Das statische Schema der Hilfskonstruktion ist auf Bild 6 dargestellt.

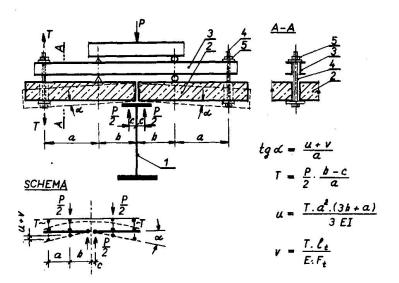


Bild 6. Prüfungen mit Trägerspannweite 12,00 m (1-Versuchsträger, 2-Stahlbetonfertigteile, 3-Hilfsquerbalken, 4-Zugstangen, 5-Rektifikationsschraube)

Der Auflagerverdrehungswinkel der Deckenplatten & hängt von der Zugstangenverlängerung (v), dem lotrechten Vorschub (Durchbiegung) der Hilfsquerbalkenende (u), der Auflageranordnung und Biegesteifheit des Querbalkens ab. Diese Hilfskonstruktion kann der geforderten Plattenverdrehung & angepasst werden.

Beim Balken nach Bild 3 wurde durch diese Hilfskonstruktion gleichzeitig ein Auflagermoment in der durchlaufenden Betondecke hervorgerufen.

Bei den Prüfungen wurde die Durchbiegung, die Krümmung, die Stahl- und Betonverformung, die Fugenstauchung zwischen den Platten, die Verschiebungen zwischen den Stahlträger und der Betonplatte, sowie zwischen den Betonplatten und dem Betonverguss gemessen.

2.2. Ortbetonverbunddecken

Im Forschungsinstitut für Hochbau Prag (VÚPS, Praha) wurde ein offenes universelles Baukastensystem VIP für mehrstöckige Geselschafts- und Industriebauten ausgearbeitet /3/. Die Tragkonstruktion bildet ein Stahlskelett mit einer auf Stahl-

M. BOUDA 107

zellenpaneelen (Produkt der VSŽ - Ostslowakische Eisenhütten) aufbetonierten Verbunddecke.

Die Tragkonstruktion des Systems VIP ist sehr ausführlich in Form eines Katalogs bis zu den Säulendimensionen, Windverbänden und Deckenteilen einschl. der Verbundelemente für Spannweiten bis 7,20 x 12,60 m bei Nutzlast 200 bis 2000 kp/m2 ausgearbeitet.

Ein charakteristisches Detail der Deckenkonstruktion ist aus dem Bild 7 ersichtlich.

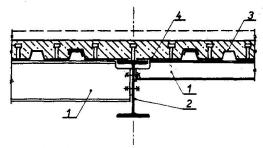


Bild 7. Ortbetonverbunddecken des Baukastensystems VIP (1-Deckenträger, 2-Unterzug, 3-Stahlzellenpaneele, 4-Blechelmente)

Die Stahlzellenpaneele werden senkrecht zu den Deckenträgern verlegt. Auf die Unterzüge werden Blechelemente aufgesetzt, die die Schalung für eine Betonrippe bilden /5/. Durch diese Rippe vergrössert sich die zusammenwirkende Betonfläche des Unterzugverbundquerschnittes.

Die Verbundwirkung ist durch Kopfbolzendübel gewährleistet, die gleichzeitig durch die Blechpaneele durchgeschweisst sind. Die Baufirmen, welche dieses progressive System ausführen, sind mit Nelsondurchschweissaggregaten ausgestattet.

Der Realisierung dieses Systems ging eine umfangreiche theoretisch-experimentelle Forschung voraus. Gegenstand der Forschung war die Tragfähigkeit der durch das verzinkte Blech verschweissten Bolzen, die Tragfähigkeit der Bolzen in der Betonrippenplatte, der Einfluss der geometrischen Form der Plattenrippe auf die Tragfähigkeit der Bolzen, die Fragen der Verbundwirkung mit den Blechpaneelen in der Verbunddeckenkonstruktion, die Art der Betondeckenbewehrung u.dgl.

Die Forschungsergebnisse wurden nach der Theorie der Grenzzustände in "Richtlinien für Entwurf und Ausführung für Stahlbetonkonstruktionen" (Smernice pro navrhovéní a provádění ocelobetonových konstrukcí) bearbeitet und wurden im vollen Umfange bei der Ausarbeitung des Katalogs für das Konstruktionssystem VIP zur Geltung gebracht.

In den Decken des VIP Systems wird eine Einsparung des Konstruktionsstahles im Verhältnis zu den ohne Verbund wirkenden Decken von 25 - 30% erzielt.

In der gegenwärtigen Zeit wird das Konstruktionssystem VIP auf einer Reihe bedeutender Bauten realisiert und das Interesse um seine Durchsetzung ist im ständigen Wachsen.

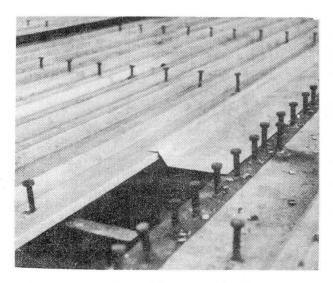


Bild 8. Detail der Verbunddecke des VIP Systems

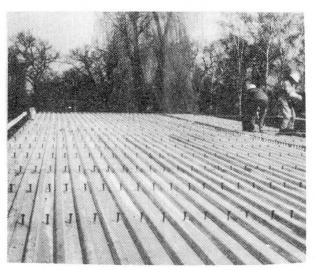


Bild 9. Deckenkonstruktion des VIP Systems mit verschweissten Kopfbolzendübeln

Literaturverzeichnis:

- /l/ Bouda M.: Stahlskelette für Industriebauten mit vorgefertigten Verbunddecken. Stavební výzkum, 4/1969, Praha.
- /2/ Bouda M.: Versuche von Deckenträgern in Verbund mit vorgefertigter Stahlbetonplatte. Sammelbuch von Vorträgen aus der IX. ganzstaatlichen Konferenz "Stahl im Gesellschaftsbau", III. Teil, Bratislava, 1971.
- /3/ Bouda M. und Kolektiv: Experimentalbau des Systems VUPS mit Verbunddecken. Pozemní stavby, 11/1973, Praha.
- /4/ Bouda M.: Patent Nr. 148297 ČSSR.
- /5/ Bouda M.: Erfindungsanmeldung PV 2876/74 CSSR.
- /6/ Žofka K.: Theorie der Tragfähigkeit von Platten, die auf Blechpaneelen der Ostslowakischen Stahlwerke betoniert sind. Pozemní stavby, 2/1975.

ZUSAMMENFASSUNG

Der Beitrag informiert über neue Technik der Tragfähigkeitsprüfungen von Stahlträgern in Verbund mit vorgefertigten Stahlbetonplatten, sowis über das in der CSSR für mehrstöckige Gebäude entwickelte Konstruktionssystem VIP, bestehend aus Blechbetonplatten in Verbund mit Stahlträgern.

SUMMARY

The paper is concerned with a new method of bearing capacity testing of steel beams in composite action with prefabricated reinforced concrete slabs, as well as with the VIP Building System recently developed in Czechoslovakia, which enables rapid construction of multistorey buildings with composite decks consisting of steel beams and a reinforced concrete layer on profiled sheet.

RESUME

L'article présente une nouvelle technique d'exécution d'essais de charge pour des poutres mixtes, acier et dalle préfabriquée et pour un nouveau système de construction de structures à plusieurs étages développé en Tchécoslovaquie dénommé VIP et consistant en une dalle mixte, tôle profilée/béton, solidaire de poutres métalliques.

11

Über ein komplexes Verfahren zur Projektierung von Brücken

Method in Bridge Design

Méthode de calcul de ponts

A. A. POTAPKIN

Kandidat der technischen Wissenschaften Allunionsinstitut des Ministeriums für Verkehrsbau Moskau/UdSSR

Herr Präsident! Herr Vorsitzender! Verehrte Kollegen!

In Ergänzung zu dem im Vorbericht des Symposiums veröffentlichten Beitrag möchte ich einige allgemeine Gedanken über die
Wechselbeziehung zwischen den konstruktiven Formen von Brücken
und der Technologie der Werkstattsfertigung, der Montage sowie
den Betriebsanforderungen vortragen.
Obwohl ich mich hauptsächlich mit theoretischen Problemen der
Berechnung von Brücken befasse, halte ich ein komplexes Verfahren bei der Projektierung von Brücken für erforderlich. Ich
konnte keine direkte Beziehung zwischen der Berechnungstheorie
und den Betriebsanforderungen feststellen, ausgeschlossen mögliche Fehler in Berechnung und Theorie. Es gibt nur eine indirekte Verbindung über die Zuverlässigkeit, die unter anderem
auch durch die Berechnungen gewährleistet wird.

Hinsichtlich der Berechnungsmethoden, die heute hier diskutiert wurden, möchte ich darauf verweisen, daß in der UdSSR universelle Methoden der räumlichen Berechnung von Mehrträgerbrücken entwickelt wurden, die eine Ermittlung des Spannungszustandes gleichzeitig in den Hauptträgern (Fachwerke), den Fahrbahnplat en, Schotten und Verbänden ermöglichen. Wir analysieren die Methode Guyon-Massonnet und gelangten zu der Auffassung, daß dieses Verfahren gut geeignet ist, doch nur für einfache Brückenkonstruktionen.
Eine Erfüllung der oben erwähnten Forderungen kann am Beispiel von Konstruktionen verstrebter Eisenbahnbrückentragwerke (Fachwerkträger) gezeigt werden. Diese Konstruktionen haben sowohl als durchlaufende (frei gelagert) als auch als nichtdurchlaufende Brücken eine Feldlänge von 55 bis 154 m. Der Fahrverkehr erfolgt in der oberen oder unteren Hauptträgerebene. In diesen Konstruktionen, die auf Elektronenrechnern nach einer Methodik und einem Programm des Autors berechnet wurden, ist die Fahr-

bahn (Längsträger) mit den Gurten der Hauptträger durch spezielle Horizontalaussteifungen verbunden.

Unter Beachtung der auf dem Symposium untersuchten Aspekte besitzen die Konstruktionsdaten folgende Besonderheiten:

- 1. Die Elemente der Hauptträger mit H- und Kastenprofil ohne Innenaussteifungen sind gut geeignet für eine Herstellung auf Montagelehren (Schablonen). Das Verschweißen erfolgt im Werk mit Automaten.
- 2. Beim Freivorbau der vorliegenden Brückentragwerke werden die Längsträger in das Zusammenwirken mit den Gurten der Hauptträger durch Horizontalaussteifungen einbezogen. Dadurch kann die Verstärkung einer Reihe von Trägerelementen bei der Montage entfallen, so daß eine Stahleinsparung möglich ist. Alle Montageverbindungen werden mit HV-Schrauben ausgeführt.
- 3. Die Betriebseigenschaften der untersuchten Brückentragwerke sind im Vergleich mit den traditionellen Konstruktionen auf Grund des Wegfalls von Unterbrechungen (oder Fugen) in den Längsträgern günstiger. Dabei ist es möglich, die Stahlbetonplatten auf den Längsträgern zu verlegen, wodurch auf diesen der Transport erfolgen kann, was eine laufende Instandhaltung erleichtert. Eine Überbeanspruchung der Querträger erfolgt hier nicht, obwohl nach den errechneten (maximalen) Lasten die Entstehung begrenzter plastischer Verformungen bis 0,25 % möglich ist. Das Kriterium der begrenzten plastischen Verformung wurde der vom Autor in der UdSSR entwickelten Berechnungstheorie für Stahlbrücken im elastisch-plastischen Stadium zugrundegelegt.
- 4. Die Verwendung hermetisch geschlossener Kastenelemente für die Streben und Trägergurte erleichtert ebenfalls die laufende Instandhaltung, da der Anstrich der Innenoberflächen entfällt.
- 5. Die Sprödbruchsicherheit bei niedrigen Temperaturen wird durch die Einhaltung folgender Forderungen gewährleistet:
 - Einsatz von niedriglegiertem Stahl mit einer vorgegebenen Kerbschlagzähigkeit bei -70°C;
 - Ansatz abgeminderter rechnerischer Festigkeiten (zulässiger Spannungen);
 - Einhaltung spezieller konstruktiver Forderungen bei niedrigen Temperaturen;
 - Ultraschallqualitätsprüfung der Schweißnähte und entsprechende Schweißtechnologie (Schweißverfahren, Schweißmaterial).

Alle oben angeführten Prinzipien werden gegenwärtig in der Praxis realisiert.

Ich danke für die Aufmerksamkeit.

11

Zu einigen Details der Bahnsteighalle Karl-Marx-Stadt Hbf

Details on the Central Railway Station, at Karl-Marx-Stadt

Détails de la gare centrale de Karl-Marx-Stadt

Dieter HAENEL Dr.-Ing. Ministerium für Verkehrswesen der DDR, Prüfamt Dresden/DDR

Als Ergänzung der Gesamtdarstellung \mathcal{L} 1 \mathcal{J} sollen im folgenden einige Ausführungen zur konstruktiven Gestaltung unter dem Leitgedanken dieser Tagung – Nutzungsgerechtes Bauen – gemacht werden.

1. Gesamtlösung

Das großzügige Rastermaß von 72 bzw. 66 m senkrecht zur Gleisrichtung und 20 m parallel zur Gleisrichtung bringt für den Bauzustand betriebliche und bauliche Vorteile und erlaubt für die Zukunft eine gewisse Freizügigkeit bei eventueller Umgestaltung der Gleisanlagen.

2. Konstruktiver Korrosionsschutz

Die aus verschiedenen Varianten zur Ausführung gewählte Lösung der trapezförmigen Vollwandbinder enthielt zunächst eine Dachausbildung nach Bild 1, d.h. als Zwischentragglieder Pfetten senkrecht zur Binderspannrichtung, die ihre Lasten über einen Längsträger in die Binder leiten. Unter Berücksichtigung der teilweise vorhandenen Dampf- bzw. Dieseltraktion wäre so eine "Rauchglocke" von 50 cm Höhe entstanden, die bei der vorhandenen Hallenhöhe von rd. 12 m erhöhten Korrosionsangriff befürchten ließ.

Zur Vermeidung dieses Nachteils wurde daher im Ausführungsprojekt eine langsorientierte Lösung nach Bild 2
verwirklicht: Die Pfettenspannrichtung wurde parallel zum
Hauptträger gewählt und ein Dachlängsträger als Tragglied
zwischen Hauptträger und Pfetten angeordnet. Damit können
die Rauchgase unbehindert abziehen, zumal auch die Stirnseiten der die Dachhaut tragenden Stahltrapezbleche am
Knickpunkt der Dachfläche offen sind.

Durch die konische Form der Schrägstäbe des Dachlängsträgers erhält die Konstruktion damit gleichzeitig ein leichtes, nahezu schwingenähnliches Aussehen.

Im übrigen wurde das Korrosionsschutzsystem auf die zu erwartende Lebensdauer der als Dach- und Wandelemente verwendeten oberflächenbeschichteten Tranpezbleche abgestimmt.

3. Montage der Hauptträger und Stoßausbildung

Das charakteristische Tragelement der Halle, der einen trapezförmigen Kastenquerschnitt aufweisende Hauptträger, stellte auf Grund seiner Abmessungen erhebliche Anforderungen an den Fertig ungsbetrieb. Besondere Berücksichtigung der bestehenden Transportmöglichkeiten, möglichst geringe Beeinflussung des Eisenbahnbetriebes auf dem Hbf Karl-Marx-Stadt durch die Montage selbst und das Streben nach einer Stoßanordnung in geringer beanspruchten Querschnitten führten schließlich zu folgender Lösung (s. Bild 3):

- Fertigung der Hauptträger in vier Segmenten

- Straßentransport zum Vormontageplatz Karl-Marx-Stadt-Borna
- Zusammenfügen der beiden mittleren kurzen Hauptträgerteile mittels Montageschweißstoß
- Teilkonservierung
- Eisenbahntransport zum Hbf Karl-Marx-Stadt
- Einkranmontage EDK 1000 drei Teile je Hauptträger (s. Bild 4).

Die sieben Hauptträger der sog. "Grundhalle" wurden in vier Montagezyklen montiert (dreimal je zwei, einmal ein Binder). Die Stöße I und II sind als HV-Verbindungen ausgebildet, wobei entsprechend der Reibflächenvorbehandlung mittels Flammstrahlen nach Versuchsergebnissen ein Reibbeiwert von AL = 0,45 angesetzt wurde.

Bemerkenswert ist noch die Tatsaché, daß zunächst geplant war, die Stoßquerschnitte im Stegbereich "weich" auszubilden, um eventuelle Anpaßarbeiten einfacher durchführen zu können. Kontrollen zeigten jedoch, daß eine starrere Stoßausbildung – die hinsichtlich geometrischer Imperfektionen ein günstigeres Verhalten aufweist – realisiert werden konnte; die zusätzlichen Querstreifen im Stoßbereich sind in Bild 5 erkennbar.

4. Qualitätskontrolle am fertigen Bauwerk

4.1. Geometriekontrollen der Hauptträger

Im einzelnen wurden folgende Werte kontrolliert:

- Längenmaße
- Lotrechte Durchbiegungen bzw. Überhöhungen (s. Bild 6)
- Gegenseitige Höhenlage der Obergurte
- Flucht der Obergurte
- Vorverformungen der Stegbleche

Die Toleranzen in Längsrichtung konnten bei den Hauptträgern durch entsprechende Blechzugaben zum Ausgleich der Schweißnahtschrumpfungen in sehr geringen Grenzen gehalten werden. Die bei der Montage auftretenden Differenzen von einigen Millimetern in horizontaler Richtung zwischen Längsrahmen- und Hauptträgerlager wurden relativ leicht durch geringfügige Korrektur der Längsrahmenobergurte - in horizontaler Richtung sind die Längsrahmen sehr weich - ausgeglichen.

Insgesamt ist festzustellen, daß die Dachkonstruktion eine hohe Paßgenauigkeit aufwies, wobei zu berücksichtigen ist, daß die Fertigung aus technologischen Gründen in zwei Werken erfolgte.

4.2. Imperfektionen der Stegbleche

Ein besonderes Problem bereitete jedoch die Einhaltung der zulässigen Vorverformungen bei den Stegblechen der Hauptträger. Hier konnten – auch nach Richtarbeiten üblichen Umfangs – die nach /2 7 zulässigen Werte von 4 mm nicht eingehalten werden. Daraufhin wurden von seiten der Staatlichen Bauaufsicht unter Berücksichtigung der tatsächlichen Beanspruchung in weiten Bereichen Vorbeulen von 8 mm zugelassen. Sofern diese Grenzen dann in Einzelfällen überschritten waren, wurde konstruktiv innen eine zusätzliche Quersteife aufgesetzt und damit der Torsionswiderstand der Längssteife erhöht bzw. die "Knicklänge" der Steife verkürzt (s. Bild 7).

Richtarbeiten erhöhten Umfangs wurden mit Rücksicht auf die Einleitung zusätzlicher Spannungen nicht als zweckmäß g erachtet.

Insgesamt bestätigten die durchgeführten Messungen die Angaben von Herzog /3 7 bezüglich der hohen Wahrscheinlichkeit des Auftretens von Vorbeulen in der Größe der Blechdicke. Daher sollten zukünftig bei der Festsetzung zulässiger Toleranzen der Maß- und Lageabweichungen - unter Einhaltung erforderlicher Sicherheitswerte - neben den durch die Rechenverfahren erfaßbaren Abweichungen die technisch-ökonomischen Möglichkeiten der Ausführungsbetriebe besonders berücksichtigt werden; ggf. könnte hierbei auch die Beanspruchung einer Konstruktion eingehen (Zug-, Druckbereich). Bei der vorliegenden Problematik wird der Zusammenhang zwischen Rechnung, Fertigung und Montage besonders anschaulich.

ZUSAMMENFASSUNG

Aus den dargelegten Beispielen ergibt sich die Bedeutung der konstruktiven und schweissgerechten Gestaltung für die qualitätsgerechte Erstellung und die spätere Nutzung eines Bauwerkes.

SUMMARY

The stated examples show the importance of a concept of construction and welding for a correct assembly and proper use of a structure.

RESUME

Les exemples exposés font ressortir l'importance de la conception constructive et de soudure pour une construction de montage et d'usage aisés.

Literatur:

/ 1 / Kluge, W.: Das Stahltragwerk der Bahnsteighalle Karl-Marx-Stadt Hbf. IVBH Mitt. 31, 1975, S. 30

/ 2 / TGL 13510: Stahltragwerke, Herstellung und Abnahme Ausg. 12.62 bzw. Ausführung von Stahltragwerken Entwurf März 74

/ 3 / Herzog, M.: Die Traglast versteifter, dünnwändiger Blechträger unter reiner Biegung nach Versuchen Der Bauingenieur 1973, S. 317

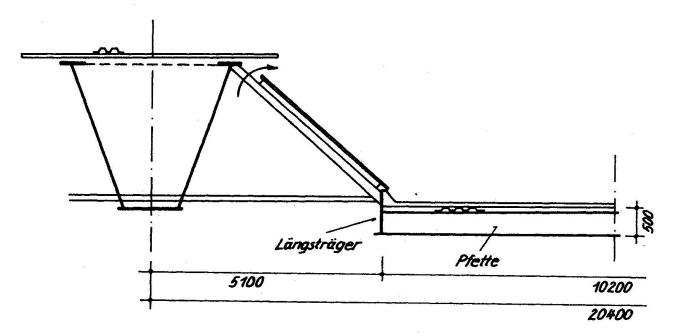


Bild 1: Ursprüngliche Lösung

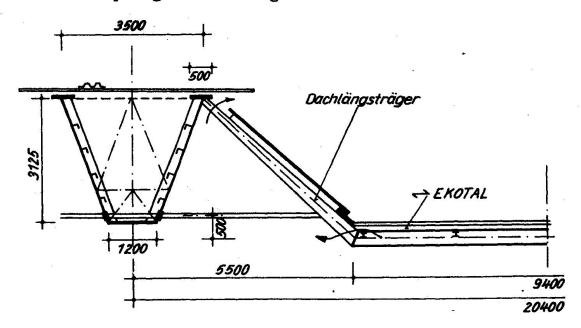


Bild 2: Endgültige Lösung

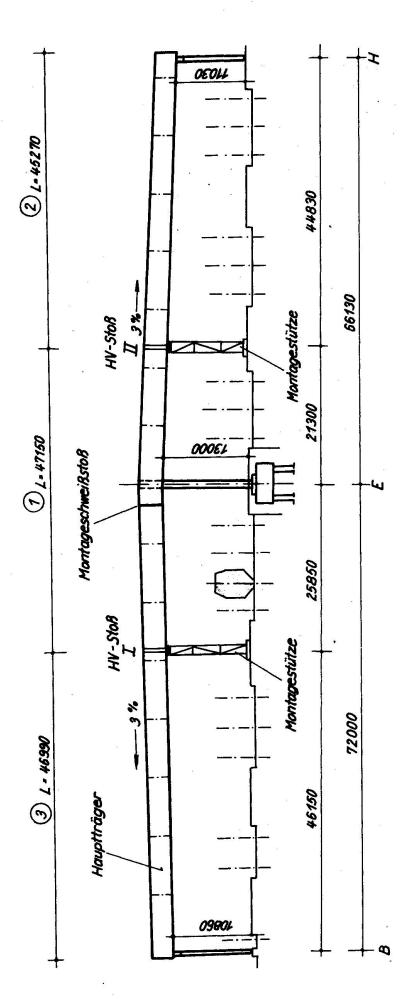


Bild 3: Hauptträgermontage

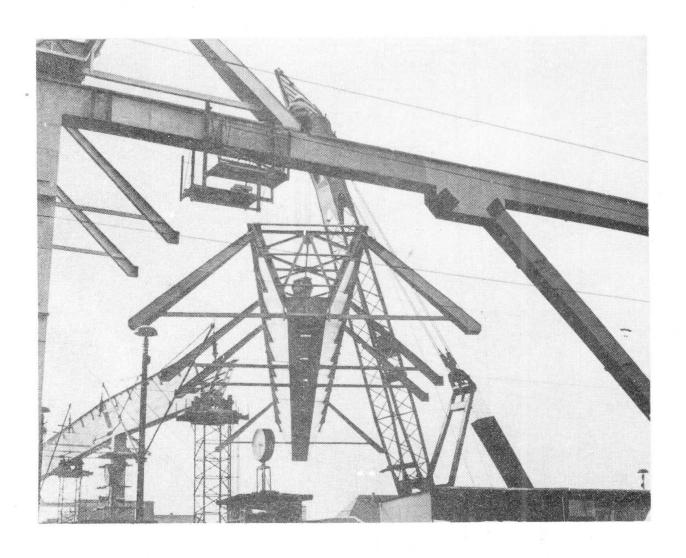


Bild 4: Montage mit Eisenbahndrehkran EDK 1000

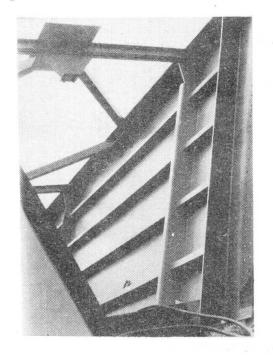


Bild 5: Detail des HV-Stoßes

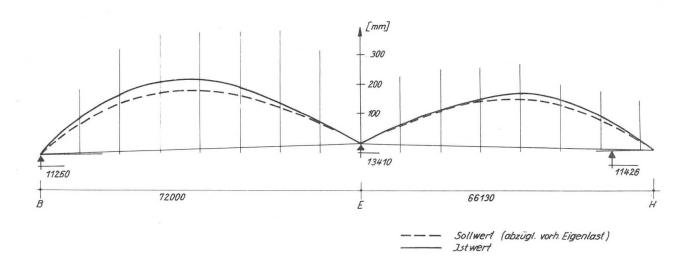


Bild 6: Ueberhöhungsverlauf (Beispiel Hauptträger 9)

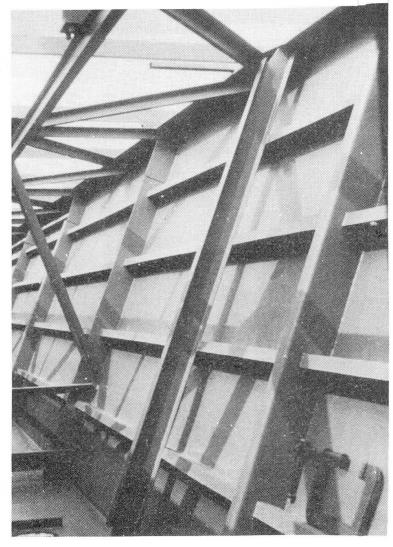


Bild 7:
Zusatzsteife I-Profil

Leere Seite Blank page Page vide