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Schwerkraft- Bogen-Staudaemmen aus Beton

Angelo BERIO, Professor at University of Cagliari, Italy
Carlo VIVANET, Associate Professor at University of Cagliari, Italy

1. INTRODUCTION

In conventional design, the safety of concrete dams is
usually measured in terms of deterministic safety factors [1,
2, 3, 4, 5].

Nevarthgless, because of various design uncertainties (such
as ones, for example, on the strength and deformation of rock
foundations, on the true distribution of uplift, on the tempe-
rature variations,......) and also because of the fact that
concrete exhibits quite often a considerable degree of space-
wise randomness in its mechanical properties (elastic moduli
and local yield strength), a probabilistic quantity, such as
the probability of failure, seems to be an alternative pre-
ferable measure (or more precisely countermeasure) of the dam
safety [6, 7].

In the present study, aa a preliminary approach to the
question concerning the randommness of concrete properties, an
attempt is made to apply to arch-~gravity dams recent concepts
of probabilistic safety analysis and stochastic continuum
mechanics.

The study consists of two main parts :

1. Evaluation of the probability of functional dam failure
corresponding to a conventional limit state of serviceability,
in which elastically constrained plastic deformations arise in
some selected pointa of the structure. As it will be explained

in that follows, the main idea developed in this part lies in



the interpretation that, as well as the concrete local yield
strength [B, 9] y 8lso the three~dimensional elastic stresses
in the dam are random functions of space variables.

2. Description of a method for obtaining & lower bound, as
large as possible, of the probability of structural dam fai-
lure, corresponding to a limit state of collapse in which the
maximum load that the dam can carry is reached. This method
constitutes a probabilistic modified version, adapted for the
case of arch-gravity dams, of a previous deterministic one,
established in [10] for the case of pure arch dams with one or
double curvature.

2. PROBABILISTIC MODEL FOR YIELD STRENGTH OF DAM CONCRETE

It is assumed herein that a thick arch-gravity concrete dam
can be regarded as a8 three~dimensional random continuum, whose
elastic modull and local yleld strength have to be described
by means of stochastic functions of space coordinates.

_ Being unnecessary, in view of the purpose of the following
analysis, a specific probabllistic characterization of elastic
moduli (whose random effects on the stress state will be im-
plicitly taken into account by later assumptions concerning
the stochastic distribution of elastic stresses), we now deal
with the only probabilistic specification of the concrete
yield strength.

Pollowing earlier works [8, 9, 11, 12] , in that follows we
assune the compreasive local yield strength Y of dam concre-
te to be a homogeneous Gaussian process of the spatial cylin-
drical coordinastes r , 6 , z , with meen value my , standard
deviation DY , and normalized auto-correlation function

2 2
Py = exp(- 47/ 4, ) (2.1)
2 2 2 2

In (2.1), a&° =r°=2r r'cos(0-0') + r'"+ (z-2')" 1e the
square of the distance between two typical points P and P'
of the dam (having coordinates r , 06 , z and r', 9, 2',
respectively), and d; is a resl constant. As it is shown in
Pig.2.1, Py becomes negligible when a4 > 2 do o

Thue, denoting by y and y' <the permissible values of Y
at the pointe P and P' , respectively, the two-dimensional
probability demsity of the concrete yield strength can be ex-
pressed in the form :
—--l-—g' exp(- p°/2 ¢° Ds )
2 ntq DY

pxy.(y.y') = (2.2)

2 2 . . 2 2
Ihfrgg ? = (y-mY) -2 pY(y-mY)(y -mY) + (y —mY) , and gq



With regaxrd to the expression
(2.2), firstly it has to be ob-
served that both By and
are supposed herein to be inde-
pendent of epace variables.

Secondly, 1t has to be noted
that DY must be sufficiently
small by comparison with my 3
this is a necessary condition to
avoid inaccuracies once the nor-
mal probability density for the
compressive (non-negative) yield
strength has been introduced. As
it is clear, being Dy = 0.2
a reasonable value for the stan-
dard deviation of concrete yielad
strength [9, 13] , such a condi-
tion can be considered herein as
sufficiently satisfied.

In that follows, it will be usefull to remember that, as it
is easy to deduce from (2.2), the one-dimensional probability
density of Y is

Fig.2.1

00 2 2
exp ‘("'x) /2 D
pY(y) =‘[ pr.(y,y') ay' = [ VE7?-D .Y] .(2'3)
0 Y

3. ASSUMPTIONS ON THE PROBABILISTIC DISTRIBUTION OF PRINCIPAL
STRESSES

As a consequence of the randomness of the mechanical pro-
perties characteriging either elastic or inelastic response of
dam concrete, also the stress state really exhibits in the dam
a peculiar stochastic nature. Thus, also its components have
to be described as random functions of spatial coordinates.

In the present analysis, it is assumed that, as a general
congequence of all possible causes of material randommess, the
principal stresses X4 (i = 1,2,3) can be considered as un-
correlated normally distributed random functions with mean
values mgii and standard deviations Doy -

el

Then, r joint probability demsity can be expressed as
212223(0 2,03) = pzl(cl) pze(oz) p23(03) (3.1)
where [ ) ]
exp |-(o 2/2 D
p_ (o) = i (3.2)
21 2

01



is the marginal probability density of Zi y and oy is its
permissible value.

In view of the purpose of defining an adequate probabili-
stic criterion for the local failure of concrete, it is now
convenient to introduce the three so-called cylindrical stress
inveriants 11 » Xo 13 » Whose permissible values X7 » X

x3 can be expressed in terms of principal stresses as

As it is well known,
such invariants are the
cylindrical coordinates of
the point having, in the
stress space (Pig.3.l),

Pig.3.1 the principal stresses as
Cartesian ones.
It has been indicated previously [11, 127 that, by assuming

for the sake of simplicity D01 - D02 - D03 = D and setting

1
{2 Y . =n )2]2 (3.3)
ml [3 i>) 010 ‘
m, = arc tan V3 (moz-mo3)(2 n01-m02-m03)-1 (3.4)
m, = (m01+ B+ m03) /3 " (3.5)

the joint probability density of the cylindrical invariants
can be written as :

p111213(11’12’13) = pxlxa(xl,xz) px3(13) (3.6)
where " \ ( ) 5
X, - X cos (X, -m. )+
Py g (X%, = — e,p(_ o ke St - 11_) (3.7)
L.I.x2 ‘ 2n D2 2D

1 —a 3
py (x,) = —=— exp|- v
X, 3 V2m D ( 2 p°

(x,-m e
) (3.8)



With regard to eguations from (3.2) to (3.8), it has to be
pointed out that, in the general cese, n and DOi s 88
well as m and D , are functions depenging on the coordina-
tes of space points and also on time (or on a load parameter
depending on time).

Furthermore, it is interesting to note that, as it is easy
to deduce (1), the marginal probability demsity of 11 can be
rigorously expressed in the form :

2n 2 2

x X+ x
Px (xl) BJ[ Pr x (xl,xz) d12 = _% exp(— . :1 I0 121)
1 0 172 D 2D D
where 2n eee (3.9)
o p cos |
I(p) = —2,[/ e ap
0
is the modified Bessel function of order zero.
In order to express the probability density of in a

simplified manner, more suitable for further elaboratiocns, we
now observe that, if D 1is sufficiently small by comparison

with m; (and this is that we suppose in the present case),

then we can approximately write (ii) :

21™Ye» D !
I°(n2)';/e‘n—qq“"( =

Consequently, from (3.9) it is easy to deduce :

- 1 ("1""1)2
pll(xl) = Vxl/ml E—l; exp(— ——2—]')5- = Vx,/m, &(x,,m,,D)

where g(x,,m.,D) is a Gaussian curve. -+ (3.10)

Therefo e,lbecause of the factor Vxl/ml , the approximate
expression (3.10) of the probability density of xl differs
from a Gaussian curve in such a way that, as shown in Pig.3.2,
we have Px (xl) s g(xl,ml,D) in accordance with the value of
Xy S my . 1

In %his connection, it has to be pointed out that, in the
range Xy >> Iy (which is the most interesting from the point
of view of the safety analysis), the effect produced by the
factor V|x /ml is similar to that caused by an increase of
the standard deviation of g(xl,ml,D).

(1) See, for instance, A. Papoulis, "Probability, Random Va-
riables, and Stochastic Processes", MacGraw-Hill Book Company,
New York, 1965, pp.195-196.

(1) see, for instance, . Boll, "Tables numériques universel-
les", Dunod, Paris, 1957, p.739.



Thus, taking into
account the conside- A
rable uncertainty of
the true value of D
and in view of seve-
ral practical advan-
tages, it seems rea-
sonable to adopt, as
a possible alterna-
tive approximate ex-
pression of the pro-

bability demsity of -~~~ Vx;/m; e(x,,m,,D)
X; , the Gaussian
form : Pig.3.2
2
(x,~m_)
| e
Py (x,) = —— exp(— ——-—) (3.11)
LY o= D, 2 Di

in which a conveniently selected value D1 > D 1is introduced
for the standard deviation,

4. PROBABILITY OF PUNCTIONAL DAM FAILURE

Por simplicity, as failure surface for plain concrete under
complex states of stress, we adopt in the present note a cir-
cular cone having the axis coinciding, in the space of princi-
pal stresses, with the xj-axis (Fig.4.1). Then, such a failure
surface can be expressed by the relation

L+V2(1-0)X,=V23aY (4.1)

in which a 1is a deterministic constant coefficient depending
upon the material.

In connection with (4.1), it is convenient to observe that
such an equation can be regarded e¢ither as & particular case
(in probabilistic version) of the more general (deterministic)
¥ield surface described in [14, 15] or as a consistent genera=-
lization of the well known experimental formule (obtained b
Richart, Brantzaeg and Brown, and recently discussed in [16 )
for predicting ultimate load capacity of triaxially loaded
concrete

o' = my + 4.1 o® (4.2)

in which o' 1is the axiasl (compressive) stress at failure and
o" the lateral pressure.

In order to obtain that (4.1) can coincide with (4.2) for
the case of the triaxial state of stress, it is easy to deduce
that o must be approximately equal to 1/2 .



Let us now denote by B = By u By the union of the region
B, of the stress space, containing all the points with coor-
dinates Xy 0 X5 9 1:3 such that

x1+|/§(1-u)x3<}/2/3 ay and 0=x,=2nx ’
with the set By containing all permissible values O =y =
of Y.

Therefore, the
probability Pp
of the elastic dam
survival, without
reaching in any
material point the
conventional limit
state (4.1) of
functional (or lo-
cal) failure, is
evidently the pro-
bability of the e-
vent that the ran-
dom point with co-
ordinates X,, 12,
X, and Y occurs
in the set B . As
well kmown, Py
can be then ex-
pressed as the 11):-
tegral of the joint probability density (X, X, 0X.,Y
of X, 12 ¥ 13 y Y taken over B : lex2x3r 172"y

Fig.4.1

PE = Pr [(xl,xz,x3,r) € B] = [ pxlxszY d11512d13dy (4.3)
B

and the functional failure probadbility P_ = 1 - P, can be

explicitly written as ¥ E
© h,y 2 h(x3,y)
PF =1 - f dy f dx3 f dxzj pxlx?x:’Y dxl (4.4)
0 -00 0 0

where = a/}3(1-a) and h(x3,y) = V2/3 ay - V2(1-0a) xq .
Agssuning for simplicity the stress state to be stochasii-
cally independent of the local yield strength Y (an analogous
hypothesis, even if somewhat debatable, is habitually employed

in structural safety analysis), namely
P (x,9%,%.,¥) = P (x,,x,,x,) p.(y) , (4.5)
1112131' 172773 x1x2x3 1°72773° Y

and taking into account e-uations (3.6) and (3.9), it is easy



to recognize inat expression (4.4) can be rewritten as

Po=1 —f py(y) dyf Py (13) dx3f pxl(xl) ax,  (4.6)
0 ~C0 3 0

Equation (4.4) unrestrictedly, and equation (4.6) subordi-
nately to assumption (4.5), provide a rigorous expression of
the functional failure probability P, .

In order to obtain an alternative simplified expression of
such a probability, more suitable for rapid calculations, we
now congider a new random variable Z dJdefined as

Z=X + V2(1 - a) X3 - V§7§ aY (4.7)

Assuming as probability densities of X, , x3 and Y the
Gaussian ones expressed by relations (3.11%, (3,8) and (2.3),
respectively, and supposing such relations tc be valid for e-
very value of X3 » X3 and y ineluded between -00 and +oo
(this requires, to avoid inaccuracies, D <<m and D,<<my ,
being Xy and Y both essentially non-negative), also the
probability density of Z is Gaussian @

2
(z-m, )
p,(2) = —l— exp|- ——-—g——
ye n Dz 2 Dz
Moreover, the mean value m and dispersion Dg of 2
can be expressed, respectively, in terms of m o, m3 ’ nY and

ZI):|.,1203==2IL),DY as

(4.8)

m, = m + 1/5(1 -a) n, - V273 o my (4.9)
2 2 2 . 2 2 2 2
D; = Dl + 2(1 -a) D3 + 3« Dy (4.10)
Being in virtue of (4.1) and (4.7) o
PE=1—PP=PI‘(Z<O)=J pz(z)dl i
-0

it is then immediate to deduce @
1 1
P, =3 - ¢ (m,/D,) Pp=5+ ®(m,/D,) (4.11)

where p 3
o(p) = 1 f e~ ¥ /2 dpu
R

is a well Xnown error-type function, for which exhaustive nu-
merical tables are savailable,

5. APPLICATION TO A DAX WITH A SCHEMATIC STRESS DISTRIBUTION

Por the purpose of exemplification, let us consider a typi-



cal cylindrical arch-gravity dam, having a cross-section such
as that shown in Fig.5.1.

Denoting by H the height of the dam and by R the radius
of its upstream face, the vertical variation of the thickness
t , which has been considered herein, is such that

+ z
R = l1-|/1-2=a (5.1)

& H
T T where a = (2 - to/R)to/R
and ¢ is the thickness
at z=H (Pig.5.1).

It has to be pointed
H out that if, as this is
R frequently the case, ty/R
is small enough by compa~
rison with the unit, then
(5.1) can be linearized
¥ and ¢ can be approxima-
tely expressed as

—t — z 4 t‘é’toﬁ-=bz (5.2)
For the simplicity of
Pig.5.1 exemplification, we assu-

me in this section that

in the deterministic ave-
rage elastic case (i.e., in the case in which the elastic mo-
duli of dam concrete are defined as the average values of the
actual ones) the elastic three-dimensional stress state of the
dam can be schematically represented by means of a stress ten-
sor having the following non-zero physical components

l1-=-¢ z
°> "% Ta ~“°»®E
09 --o, 1 +9
2 (5.3)
c = o (E—Q\P)b—z-c (E"'W)
z B H c H
T, = O© £
Tz B b
in which we have introduced the notations
G'A=YWH(1-0)) i GB=ywHu) P GC=YCH
¢ = (1-az/M®ERMZ, v = (R-r1)/t

where Y is the specific weight of the water, vy is the one
of the concrete, and ® is a repartition coefficient for the
load taken by the arch action and by the cantilever one.

It is worthwhile to mention, in connection with (5.3), that
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the case ® = Yo = 0 (for which we have Cp =Yg H and og =
Uc = 0 ) corresponds to an exact three-dimensional axially
symmetric solution, obtained in a previous paper [17] , for a
eylindrical tank having thickness variation similar t¢ one ex-
pressed by (5.1) and subjected to only hydrostatic pressure.

On the contrary, the case ® = 1 (which corresponds to
Oy, =0 , Op= YyH and G = Yo H ) represents the well
known Ldvy's solution for gravity dams, having thickness va-
riation similar to one expressed by (5.2) and subjected both
to hydrostatic pressure and to dead load.

Moreover, it has to be observed that, as it is well known,
the Lévy's solution for dead load can be regarded as an almost
exact solution also for a cylindrical arch-gravity dam, in
consequence of the fact that such a dam is normally built of
blocks separated by vertical joints, which are usually open
during the course of construction,

Por the purpose of demonstration, and in order to avoid
further complications, we suppose at this point that, in eva-
luating m; and m; by means of {(3.,3) and (3.5), respective-~
ly, the mean values myy , Mgp and myy can be calculated as
principal values of the stresses (5.3) :

[ n
a. -1 1 2 12

2
01" 2 (Gr’ cz) * 2 {56r7 cz) 40

' .2 1a1/2
re

1 |, 2
(Gr"' c’z) =2 L(cr- Uz) +4

) [

mo3

Then, if, in view of simplifying numerical computations, we
assume a =b =1/2 and yg /Yy = 2.4 , from equations (5.3),
(5.4), (3.3) and (3.5) we can deduce what follows,

1. At upstream face (for which we have r =R , ¢o=1 - a %
and ¥ = 0 ), the mean values m, and m, are
| 211/2
m = V273 vy B[Oy + 0y(s/) + c,(2/m)?] 559

- V73 vy E [0y + o (z/m)]

where 3 2
co =16 (1 - ©) § 01 ==-2.4(1-0)(9-100) ,
62 = 0,12 (73 - 205 0 + 175 w?) ’
03 =4 (1 -0) " 04 = 2.4 - 30

2. At downstream face (for which we have r=R -t , ¢o=1
and y = z/H ), n, and m, can be written as

m = VE7§ Ty B [DO + Dl(q/H) ¥ Dz(z/H)z] 1/2
m,=- 131, 8 [n3 + D4(z/H)]

(5.6)
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-200(1 - ) , D2= 25m2 ’

=
l

2

If, in addition, we suppose for simplicity a = 1/2 and
B = ml/D1 = m3/D3 = my/Dy , then, taking into account rela-

tions (5.5), (5.6), (4.9) and (4.10) and setting n = yyH/my ,
we can write the failure probability Pp , previously express-
ed by the second of relations (4.11), in the form :

p=1-¢(sl-"‘2'-“) ) (5.7)

F 2
V1 s n2(4 ¥ ¥2)
where, in the case of the upstream face, one must assume

=)
]

2 2
M = CO + C1 z/H + ca(z/H) and N = 03 + 04 z/H ’
while, in the case of the downstream one, it has t0 be assumed
2 2
¥ = D, + D1 z/H + Dz(z/H) and N = D3 + D4 z/H .

In Pig.5.2, t0 illustrate the foregoing results, curves
Pp = Pp(2/H) , deduced by (5.7) for f =4 and n = 1/40 ,
are plotted for r =R (upstream face) and for w=0, 1/4 ,
/2, 3/4 , 1.

In Pig.5.3, analogous curves are plotted for the case of
the downstream face.

0 4 6 8 10 2
\ /” M/ 10° P,
w=
0.25 / é
7
\ w=1
0.75 v
UPSTREAN PACE
B4
1.00 n = 1/40
v

Fig.5.2 '
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0 2 %0 12 -
©=1/4 | 10° P
w=3/4
0.25
0.50 \
. N /// ‘\\\\‘Eli\i\
0.75 /

DOWNSTREANM FACE

1.00 | \ - ;/40

& z/H

Pig.5.3

6. FPROBABILISTIC FORMULATION OF A METHOD FOR OBTAINING A LOWER
BOUND POR THE DAM COLLAPSE LOAD

As it has already been discussed in several previous pa-
pers, lower and upper bounds for the average value and disper-
sion of ultimate load [18, 19, 20] of a structure with random
yield strength, as well as for the probability of its collapse
failure [21, 22, 23, 24, 25, 26] , can be found by employing
the fundamental theorems of the limit analysis theory.

In the present section, defering to a later paper the study
concerning the upper bound (it has to be noted that a research
on such a bound, from the deterministic point of view, has al-
ready been developed in [27] for the c¢ase of arch dams), we
deal only with a probabilistic formulation of a method for e-
valuating a lower bound, as large as possible, of the maximum
hydrostatic~type load that an arch-gravity dam can sustain.

Such a method, whose deterministic formulation has previou-
sly been established in [10] with regard to the case of pure
arch dams, is founded on the limit analysis theorem which sta-
tes that a statically admissible field of stresses and forces
in equilibrium defines a lower bound for the ultimate load
that a structure can carry.

From the mathematical point of view, as it will be explai-
ned in what follows, a stochastic linear programming problem
(with deterministic objective function and random constraints)
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arigses from this procedure.

For the solution of such a problem, appropriate computa-
tions by means of a recent technique of digital simulation
(with random generation of normal variables) are now in pro-
gress and will be presented as soon as possible.

Discretization of the structure. Let us consider the typi-
cal dam portion included between diametral planes 6 = 0 and
0= 92 , shown in Pig.6.1l. Any horizontal cross-section of
such a portion (cantilever) exhibits, at the upstream side,
constant breadth

(6.1)

r <« o — 0=R(92—91)
As indicated in
2 Pig.6.1, let us divide
i-1 z the whole cantilever
1 into n finite ele-
Iy T+ H ments having the same

h] | height h = H/n , and

denote by z; =i h
! (1 = 1,2,..,n) the va-
: lue of the coordinate
7 = z at elevation i .

| R | Thus, the element 1
" is included between
| : z y the horizontal cross-

|
: " | sections 2z = Z;1
(] --‘—-.,_ and z = zi . - }
¢ 2_ _.—-—;ﬁ}51 If the upstream fa-
-\ - | ce of the dam is sub-
91 _- jected in every point
to the hydrostatic

pressure y z , the ho-
rizontal force applied

it

Pig.6.1 on the i-th element is
then the following
(92-91)/2
Ti = 2 J Y(zi- h/2) h Rcosp dp
0

N

and, if the angle 6, - 91 is assumed to be small enough, we
can suppose approximately
w h e
I'i = Y (2 zi- h) ""2— (6.2)

Disregarding for simplicity torsional action of the dam, we
now denote by py the part of Iy +taken by arch action, and
by q the one taken by cantilever action. As a consequence
of this, we can rewrite (6.2) as
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Y(2 2,= 1) h/2 2 (pi+ qi)
V= he(2 z,- h)
\' \ \' ¥ j ./ / Taking into aciount the

M fact that, for each possible

value of i , we have

pi+ qi _ pn+ qn (6 3)
2 z,- h " 2z-h * :
I n
2 1 we can express y also in
2 the form
Pig.6.2 n p.+q
2 i i
7=hcnz 2 z.-h (6.4)
i=1 i

Ultimate load capacity of arches. Indicating by t; the
thickness of the dam wgll at horigontal section i and by

A = (ti_1 + ti) h/2
the area of the cross-section of the i-th arch, we now assume

that i-th arch failure occurs when in the whole area A the
mean nominal stress %o reaches the yield value (of random

nature) :
1
Pig.6.3 By l ri Ty = A ]; T aa, (6.5)
' i
KReglecting, for the sake
of simplicity, the tensile
strength of dgn concrete and
///” denoting by p, the maximum
9 9 part of I3 wﬁich can be
- carried by the i-th arch, we
2 2 can write -
where (Pig.6.3) :
- . w
Py =2 ¥ Ay sin (92- 91)/2 =Y, A ¢/R (6.7)

Ultimate bending capacity of cantilevers. Indicating by a!
i
the depth and by
* - ] - ]
A! = af (R t o+ ai/é) c/R

the area of the compressive zone at the downstream side of the
i-th horizontal section (Fig.6.4), it is assumed that the can-
tilever failure at section i , due to the positive limit ben-
ding moment Q! , occurs when in all point of the area A!

the mean nominal stress S,3 reaches the random yield value

1
L S '
Yi = 3 o Y dAi (6.8)

1
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In a perfectly analogous way, denoting by a' and

A} = af (R - a”/2) ¢/R

the depth and the area, respectively, of the compressive zone
at the upstream side of the same section i (Fig.6.5), it is
also assumed that the cantilever fajilure, due to the negative
limit moment Q; » occurs when in all points of the area A"
the mean nominal stress o reaches the yield value

=i
" = - Y daA” (6.9)
Pig.6.4 i A; A,' i °
i

If we now denote by

Pi = Y{ Ai = Y; A; (6.10)

the (deterministic) vertical

Torce applied on the section

i (due to dead weight), by
f1 = ti/3

its distance from the up-

stream face, and by

al al
=50 Ty ar/z)
Q i i
a' a?
e = __(1 - l __*_.Eﬁ___
i 6 R - a"/2

the distances of the forces
Y! A! and YY" A" from down-
stream and upstream face,

" respectively, it is easy to
Fig.6.5 8y obtain, from figures 6.4 and

6.5, the expressions :
2 2, 1
Q= P, (ti- f,- fi) = P ( 3 t- 3 ai) (6.11)
w 1 1
Q; s - ri (ri- r;) = - ri ( 3 ti— a;) (6.12)

in which Q' and QT , as a consequence of the randomness of
a] and a} produces by (6.10), are also random guantities.
In view to determine the maximum part q' and the minimum
one q; of I, which can be carried by the cantilever, it is
now convenient to remember that the bending moment Q, appli-
ed on the i-th horizontal section can be expressed in the form

Q = E (=~ z g+ h/2) ay (6.13)
J=1
Consequently, denoting by {Qi} and {qj} two columm vectors
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having as components the bending moments Q. and the cantile-

ver loads gq4 , respectively, and by [Q..] the low triangularxr
matrix whose elements are 1

(v if i b

Qi "<zi- 24 B/2  if 1= ]

it is easy to recognize that (6.13) can be rewritten in matrix
notation as

{og} =[] {ay} (628

b AR % or also in the alternative
form

-1
{ag}=1D00 7 {o} (625
in which [0, .] -1 jndica-

1)
tes the inverse of [Qijj .
—————— - If, in addition, we deno-~

te by {Qi} and {Q;} the

\ column vectors of the limit
I bending moments, we have

Pig.6.6 for}={o} = {oy} (6.18)

or also

Cog,0 74 {3} = {o;} = [0, ™ {03} (6.17)

By setting for the sake of convenience -

{33} - [oy4] = {o5} mma {7} = - [o;,] =1 {5}

inequality (6.17) can be apparently rewritten as

v A

- aq" o'
qi = qi < qi (6.18)
Lower bound of dam collapse load. In virtue of foregoing
considerations, the problem of finding a lower bound for the

dam collapse load can be reduced to determining the vectors

{r} ana {a;}

which maximize the specific weight y , expressed by the (de-
terministic) objective function (6.4), subjected to the random
constraints (6.6) and (6.18), and to the additional (determi-
nistic) restriction (6.3).

It has to be noted that, in order to obtain that all the
variables are positive, it is evidently suffisient to assume,
instead of q. , the new variable aq; = q, + qf and to re-

. i i i i
write (6.18) as ] - -

Y ' n
0=aq3 a5 +aj

1A
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Mean value and dispersion of Yi . Because of space limita-
tions, which preclude adequate discussion upon the random
Yield resistances Yy , Yi » Y; previously introduced, we are
now concerned with only two short considerations on the arch
resistances Y. , and we defer to a later work a more extensi-
ve treatment of the matter.

In connection with Y s it has firstly to be pointed out
that, being by assuuption :In independent of space coordina-
tes, it is immediate to obt (by commutating the operations
of mathematical expectation and integration) that

insg[_%;]AiYui]=+ifAiB[Y]dAi=nY

Namely, the mean value of Y; is independent of Ay .
Secondly, remembering that, as well as By , also devia-
tion Dy is independent of space points, we observe that the

dispersion of Y; can be written in the form :

2
1)1,i ( )][ Py dA; dA, (6.19)

in which, by virtue of (2.1), the normalized auto-correlation
function Py can be expressed (being 0 = 0' for all points

of A, ) as
i 2 2
Py = exp(— (r=-r') +2(z == ) (6.20)
do‘ ‘
Inserting (6.20) into (6.19) leads to

D 2 rz 3 2
2 Y i i (z—-2')
D = f—— xp (- K(z,d ) dz dz°
By (‘1)]: L ) ( a2 ) g ’

i-1 i-1 0
where R R (r-r')e
K(z,do) = f exp|- ~——— |dr dr?’
R-bz / R-bz do

can be easlily expressed in terms of the error function.
7. CONCLUSIONS

Probability of local dam failure was rigorously investiga-
ted in the general case. An approximate formula for determi-
ning such a probability was obtained and numerically applied
to0 the particular case of a typical arch-gravity dam with a
schematic three-dimensional stress distribution.

In connection with the structural dam failure, a probabili-
stic formulation of a previous deterministic method for ob-
taining a lower bound of the ultimate load that the dam can
carry was presented.
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ZUSAMMENFASSUNG

Man hat versucht die klirzlich erreichten Begriffe der Wahrscheinlich-
keitsanalyse flir die Sicherheit einer Struktur bei einer GewBlbe-Gewicht-
sperre aus Beton anzuwenden, idem die Vermutung gemacht wurde, dass
diese als "Random''-Mittel betrachtet werden knnte, dessen mechanische
Eingenschaften (elastische Module und Btliche Elastizititsgrenze) als sto-
kastische Funktionen der Raumkoordinaten beschrieben werden kfnnen.

Insbesonders wurde die Yrtliche Bruchwahrscheinlikeit des Staudammes
berechnet und, angesichts der Wahrscheinlichkeit, wurde eine massgebende
Methode, die schon frliher fllr die Bewertung einer Mindesgrenze der Bruch-
belastung eines Staudammes gebraucht, neu formuliert und flir den Fall der
Gewllbe-Gewichtsperren angeeignet.

SUMMARY

Assuming that an arch-gravity concrete dam can be regarded
as a random medium, whose mechanical properties (elastic modu-
1i and local yield strength) can be described as stochastic
functions of space coordinates, an attempt is made to apply
recent concepts of probabilistic safety analysis to such a
structure. '

In particular, the probability of local dam failure is eva-
luated, and a previous deterministic method for obtaining a
lower bound for the collapse load of pure arch dams is refor-
milated from the probabilistic point of view, and adapted to
arch—-gravity ones.

RESUME

En 1l'hypothise de considérer un barrage poids-volite comme
un milieu random dont les proprietés mécaniques (module et
limite locale d'élasticité) peuvent se considérer comme fon-
ctions stochastiaues des coordonnées spatiales, on a essayé
1'application & une structure de telle sorte de ouelqgues
récents concepts de l'analyse probabilistique de la sécurité.

En particulier, on a calculé la probabilité de rupture
locale du barrage, et on a modifié, en l'adaptant & la consi-
dération des barrages poids-volte sous le point de vue proba-
bilistique, une méthode déterministe déja formulée pour
1'evaluation d'une limite inférieure de la charge de ruine
d'un barrage-voliite.
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