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1. INTRODUCTION

In conventional design, the safety of concrete dams is
usually measured in terms of deterministic safety factors fl,
2, 3, 4, 5].

Nevertheless, because of various design uncertainties (such
as ones, for example, on the strength and deformation of rock
foundations, on the true distribution of uplift, on the
temperature variations, and also because of the fact that
concrete exhibits quite often a considerable degree of space-
wise randomness in its mechanical properties (elastic moduli
and local yield strength), a probabilistic quantity, such as
the probability of failure, seems to be an alternative
preferable measure (or more precisely countermeasure) of the dam

safety £6, 7^«
In the present study, as a preliminary approach to the

question concerning the randomness of concrete properties, an
attempt is made to apply to arch-gravity dams recent concepts
of probabilistic safety analysis and stochastic continuum
mechanics.

The study consists of two main parts :
1. Evaluation of the probability of functional dam failure

corresponding to a conventional limit state of serviceability,
in which elastically constrained plastic deformations arise in
some selected points of the structure. As it will be explained
in that follows, the main idea developed in this part lies in
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the interpretation that, as well as the concrete local yield
strength []8, 9] also the three-dimensional elastic stresses
in the dam are random functions of space variables.

2. Description of a method for obtaining a lower bound, as
large as possible, of the probability of structural dam

failure, corresponding to a limit state of collapse in which the
maximum load that the dam can carry is reached. This method
constitutes a probabilistic modified version, adapted for the
case of arch-gravity dams, of a previous deterministic one,
established in £lo] for the case of pure arch dams with one or
double curvature.

2. PROBABILISTIC MODEL FOR YIELD STRENGTH OP DAM CONCRETE

It is assumed herein that a thick arch-gravity concrete dam

can be regarded as a three-dimensional random continuum, whose
elastic moduli and local yield strength have to be described
by means of stochastic functions of space coordinates.

Being unnecessary, in view of the purpose of the following
analysis, a specific probabilistic characterization of elastic
moduli (whose random effects on the stress state will be
implicitly taken into account by later assumptions concerning
the stochastic distribution of elastic stresses), we now deal
with the only probabilistic specification of the concrete
yield strength.

Following earlier works £8, 9, 11, 12] in that follows we
assume the compressive local yield strength Y of dam concrete

to be a homogeneous Gaussian process of the spatial cylindrical

coordinates r 9 z with mean value my standard
deviation By and normalized auto-correlation function

PY exp(- d2/ d2 (2.1)

In (2.1), d2 « r2- 2 r r'coe(0 -9' + r,2+ (z-z')2 is the
square of the distance between two typical points P and P1

of the dam (having coordinates r 0 z and r', 0', z',
respectively), and dQ is a real constant. As it is shown in
Fig.2.1, Py becomes negligible when d > 2 dQ

Thus, denoting by y and y' the permissible values of Y

at the points P and P' respectively, the two-dimensional
probability density of the concrete yield strength can be
expressed in the form :

Pyv.fr.y') l—r exP<- *2/2 ^ A (2-2)
11 2 « q dy
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* P-

1.0

0.5

With regard to the expression
(2.2), firstly it has to be
observed that both my and By-

are supposed herein to be
independent of space variables.

Secondly, it has to be noted
that By must be sufficiently
small by comparison with my ;
this is a necessary condition to
avoid inaccuracies once the normal

probability density for the
compressive (non-negative) yield
strength has been introduced. As

it is clear, being By s 0.2 my
a reasonable value for the standard

deviation of concrete yield
strength Q9, 13] such a condition

can be considered herein as
sufficiently satisfied.

In that follows, it will be usefull to remember that, as it
is easy to deduce from (2.2), the one-dimensional probability
density of

Pig.2.1

Y is
oo

Py(y) Pyy.fyty') ay'
-oo

exp[-(y-«y)2/2 B2]

j/iT By
(2.3)

3. ASSUMPTIONS ON THE PROBABILISTIC BISTRIBUTIŒ» OP PRINCIPAL
STRESSES

As a consequence of the randomness of the mechanical
properties characterizing either elastic or inelastic response of
dam concrete, also the stress state really exhibits in the dam

a peculiar stochastic nature. Thus, also its components have
to be described as random functions of spatial coordinates.

In the present analysis, it is assumed that, as a general
consequence of all possible causes of material randomness, the
principal stresses I y (i 1,2,3) can be considered as un-
correlated normally distributed random functions with mean
values niQ, and standard deviations Bq^

Then, their joint probability density can be expressed as

P^ „ „ (o ,a ,o p (o p (a p (a (3.1)
Z1Z2Z3 123 ly 1 Z2 23 3

where
""[-'"r'oi'2/2 "ml

yF7 B,Oi

(3.2)
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is the marginal probability density of I and a is its
permissible value.

In view of the purpose of defining an adequate probabilistic
criterion for the local failure of concrete, it is now

convenient to introduce the three so-called cylindrical stress
invariants X2 » *3 » ^ose permissible values x-^ x2
x, can be expressed in terms of principal stresses as

>-[* A'vvT
ß (o - a

X. arc tan ^—
2 2a,- art- a,

*3 ^3

Pig.3.1

As it is well known,
such invariants are the
cylindrical coordinates of
the point having, in the
stress space (Fig.3.1),
the principal stresses as
Cartesian ones.

It has been Indicated previously £ll, 12] that, by assuming
for the sake of simplicity 03

D and setting

(3.3)

arc tan ß ®01-®02-®03)
-1

m3 " ("01+ "02+ m03) / ^
(3.4)

(3.5)

the joint probability density of the cylindrical invariants
can be written as

PI1I2I3(X1'X2'I3) " PI1I2(X1'X2) PI3(x3)

where

PV2 (x^,x »
1

p
expl-

A 2 n D \
x]L- 2 x]Lm1cos(x2-m2)+

2 D

ß~n D
expm

(3.6)

(3.7)

(3.8)
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With regard to equations from (3.2) to (3.8), it has to he
pointed out that, in the general case, diqj and D0^ as
well as m^ and D are functions depending on the coordinates

of space points and also on time (or on a load parameter
depending on time).

Furthermore, it is interesting to note that, as it is easy
to deduce (*)> the marginal probability density of X, can be
rigorously expressed in the form :

2 7t _ / _2 _2

iu1> ^ «4 44) 441)
where 2n (3«9)

t r \ 1 P cos |iUp) « ap*

px

koVK' 2 n
'

o

is the modified Bessel function of order zero.
In order to express the probability density of X. in a

simplified manner, more suitable for further elaborations, we
now observe that, if D is sufficiently small by comparison
with m^ (and this is that we suppose in the present case),
then we can approximately write (**•) :

r p
0(d2) \D2)

cimi
Consequently, from (3.9) it is easy to deduce :

^ e,p(- ^ «(»i.-i.1»

where g(xn,m ,D) is a Gaussian curve. "** ^*10)
Therefore,Hjecause of the factor |/x1/m1 the approximate

expression (3.10) of the probability density of X^ differs
from a Gaussian curve in such a way that, as shown in Fig.3«2,
we have p^ (x^) 5 ^(x^»111^»®) accordance with the value of
Xl * «1 • 1

In this connection, it has to be pointed out that, in the
range x^ >> m-^ (which is the most interesting from the point
of view of the safety analysis), the effect produced by the
factor is similar to that caused by an increase of
the standard deviation of g(x^,m^,D).

(i) See, for instance, A. Papoulis, "Probability, Random
Variables, and Stochastic Processes", MacGraw-Hill Book Company,
New York, 1965, pp.195-196.
(ü) See, for instance, M. Boll, "Tables numériques universelles",

Bunod, Paris, 1957, p.739.
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Thus, taking into
account the considerable

uncertainty of
the true value of 1)

and in view of several
practical advantages,

it seems
reasonable to adopt, as
a possible alternative

approximate
expression of the
probability density of
Xl the Gaussian
form :

g(xl»«l»Di)

in which a conveniently selected value
for the standard deviation.

(3.11)

S is introduced

4. PROBABILITY OF FUNCTIONAL BAM FAILURE

For simplicity, as failure surface for plain concrete under
complex states of stress, we adopt in the present note a
circular cone having the axis coinciding, in the space of principal

stresses, with the x^-axis (Fig.4.1). Then, such a failure
surface can be expressed by the relation

^ + Ü (1 - a X3 i2/ï a Y (4.1)
in which a is a deterministic constant coefficient depending
upon the material.

In connection with (4.1), it is convenient to observe that
such an equation can be regarded either as a particular case
(in probabilistic version) of the more general (deterministic)
yield surface described in £l4, 15^ or as a consistent
generalisation of the well known experimental formula (obtained bv
Riohart, Brantzaeg and Brown, and recently discussed in £l6J
for predicting ultimate load capacity of triaxially loaded
concrete

a* my + 4.1 o" (4.2)

in which a' is the "ini (compressive) stress at failure and
a" the lateral pressure.

In order to obtain that (4.1) can coincide with (4.2) for
the case of the triaxial state of stress, it is easy to deduce
that a must be approximately equal to 1/2
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Let us now denote by B Bx u By. the union of the region
Bx of the stress space, containing all the points with
coordinates x^ x2 x^ such that

x1 + |/2(1 - a x^ < ^2/3 a y and 0 S i2 s 2n

with the set Bv containing all permissible values 0 s ysoo
of Y

Therefore, the
probability Pg
of the elastic dam

survival, without
reaching in any
material point the
conventional limit
state (4.1) of
functional (or
local) failure, is
evidently the
probability of the e-
vent that the random

point with
coordinates X^, x2,
Xj and Y occurs
in the set B As
well known, Pg
can be then
expressed as the

integral of the joint probability density p_ _ _ „(x1,x.,x,,y)
of X1 X2 X3 Y taken over B s 123

pb - » 6 B] - / »xlV3iW <4-3>

6
and the functional failure probability Pp » 1 - Pg can be
explicitly written as

,oo h0y 2n Mxy7)
PP * 1 ~ J djl dx3 J to2 J PX-X X,Y dxl *4,4*

0 -oo 0 0 ± * J

where hç a/j/3(l-a) and h(xj,y) ^2/3 ay - V^(l-a) x^
Assuming for simplicity the stress state to be stochastically

independent of the local yield strength Y (an analogous
hypothesis, even if somewhat debatable, is habitually employed
in structural safety analysis}, namely

PX]LX2X3Y*Xl,X2,X3,y* PX1X2X3X1'X2,X3) PY(y) » *4,5)

and taking into account equations (3.6) and (3.9), it is easy

J

Pig.4.1
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to recognize tnat expression (4.4) can be rewritten as
00 ,h0y h(Xyj)

Pp 1 - J py(y) dyj px (x3) dx^ J p^ (Xy) dXy (4.6)
0 -oo

3
0

1

Equation (4.4) unrestrictedly, and equation (4.6) subordinated

to assumption (4.5), provide a rigorous expression of
the functional failure probability Pp

In order to obtain an alternative simplified expression of
such a probability, more suitable for rapid calculations, we
now consider a new random variable Z defined as

Z Xy + V2(l - a) X3 - iz/î a Y (4.7)
Assuming as probability densities of X^ X^ and Y the

Gaussian ones expressed by relations (3.1lT, (3.8) and (2.3),
respectively, and supposing such relations to be valid for e-
very value of x^ x^ and y included between -00 and +00
(this requires, to avoid inaccuracies, Dy«my and Dy«my
being Xy and Y both essentially non-negative), also the
probability density of Z is Gaussian :

/ (z-mz>2\
P7(z) expj- ?— (4.8)z ^ d \ 2 4 ;

2
Moreover, the mean value m^ and dispersion of Z

can be expressed, respectively, in terms of my m, m_. and

Dy D3 - D Dy as

mz my + j/2(l - a m3 - ^2/3 a my (4.9)
D2 D2 + 2(1 - a)2 D2 + -y-

a2 D2 (4.10)
Being in virtue of (4.1) and (4.7) Q

PE 1 - Pp Pr (Z < 0) - J pz(z) dz

—00it is then immediate to deduce :

where P
2

0(p) « —-— J e
~ M ^2

dp

is a well known error-type function, for which exhaustive
numerical tables are available.

5. APPLICATION TO A DAM WITH A SCHEMATIC STRESS DISTRIBUTION

For the purpose of exemplification, let us consider a typi-
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cal cylindrical arch-gravity dam, having a cross-section such
as that shown in Fig.5.1.

Denoting by H the height of the dam and by R the radius
of its upstream face, the vertical variation of the thickness
t which has been considered herein, is such that

<
r

R

*0
k z

R=1"|/1-aH ^5,:L^

where a (2 - to/R)to/R
and tQ is the thickness
at z H (Pig.5.1).

It has to be pointed
out that if, as this is
frequently the case, t^/R
is small enough by comparison

with the unit, then
(5.1) can be linearized
and t can be approximately

expressed as

t - t —
OH b z (5.2)

For the simplicity of
Fig.5.1 exemplification, we assu¬

me in this section that
in the deterministic average

elastic case (i.e., in the case in which the elastic
moduli of dam concrete are defined as the average values of the
actual ones) the elastic three-dimensional stress state of the
dam can be schematically represented by means of a stress tensor

having the following non-zero physical components

_ 1 - <P _ zC — <7 — — <7 —r A a B H

°0 ~

rz

1 + <P

/ z A \ _ "~2 / z *

aB jf- 2v) b - ac - -V)
V

aB b

(5.3)

in which we have introduced the notations

YW » a)

(R - r)/t0

aA Yw H (1 - (o) °B ~ *C H

<p (1 - a z/H)(R/r)' V

where Yff is the specific weight of the water, y is the one
of the concrete, and u is a repartition coefficient for the
load taken by the arch action and by the cantilever one.

It is worthwhile to mention, in connection with (5.3), that
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the case co Yc 0 (for which we have <?A yff H and c*B
Oq 0 corresponds to an exact three-dimensional axially
symmetric solution, obtained in a previous paper []17] for a
cylindrical tank having thickness variation similar to one
expressed by (5.1) and subjected to only hydrostatic pressure.

On the contrary, the case co l (which corresponds to
ctA=0 YWH and CTo Yc H represents the well
known Lfevy's solution for gravity dams, having thickness
variation similar to one expressed by (5.2) and subjected both
to hydrostatic pressure and to dead load.

Moreover, it has to be observed that, as it is well known,
the Lèvy's solution for dead load can be regarded as an almost
exact solution also for a cylindrical arch-gravity dam, in
consequence of the fact that such a dam is normally built of
blocks separated by vertical joints, which are usually open
during the course of construction.

For the purpose of demonstration, and in order to avoid
further complications, we suppose at this point that, in
evaluating and m^ by means of (3.3) and (3.5), respectively,

the mean values m^ m^g and m^ can be calculated as
principal values of the stresses (5.3) :

1 i )* + 4t» "IVs
2 [_ r z rzj»01 - Ö (° + O +

^°2 s

~
2 V °z) " \ [(V Gz)2 + 4 Trz] 1/2

(5.4)

03

Then, if, in view of simplifying numerical computations, we

assume a b 3/2 and yc /yw 2.4 from equations (5.3),
(5.4), (3.3) and (3.5) we can deduce what follows.

1. At upstream face (for which we have r R <p 1 - a -
and v 0 the mean values m^ and m^ are

m1 Vi/J Yw H [c0 + C-Jz/H) + C^z/H)2] 1/2

m3 - Yw H [03 + C4(z/H)]

0
16(1-w)2 Cx - 2.4 (1 - u)(9 - 10 ca)

(5.5)

where
C,

C2 0.12 (73 - 205 w + 175 co2)

4 (1 - co « 2.4 - 3 to

2. At downstream face (for which we have r R- t,cp=l
and y z/H m^ and m^ can be written as

m. it/I Y_ H l"Dft + D.(z/H) + D_(z/H)21 1/2
"I W L 0 1 2 J (5>6)
m3 - 1/373 Yw H [D3 + D4(z/H)J
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D0 16 (1 -co)2 C0 D1 — 20(o(l-u) D2 25 u2

D3 4 (1 - <o) C3 D4 5 co

If, in addition, we suppose for simplicity a 1/2 and
ß m^/D^ m3/D3 my/Dy then, taking into account relations

(5.5), (5.6), (4.9) and (4.10) and setting p y^H/my
we can write the failure probability Pp previously expressed

by the second of relations (4.11), in the form :

V VI + Tf(4 M +• N I
where, in the case of the upstream face, one must assume

M2 Cn + C, z/H + C_(z/H)2 and H C, + C, z/ft
U 1 2 3 4

while, in the case of the downstream one, it has to be assumed
M2 Drt + D, z/H + D0(z/H)2 and H D, + D, z/H

ü 1 2 3 4
In Fig.5»2, to illustrate the foregoing results, curves

Pp Pp(z/H) deduced by (5.7) for ß « 4 and n 1/40
are plotted for r R (upstream face) and for co 0 V4
1/2,3/4,1.

In Pig.5.3, analogous curves are plotted for the case of
the downstream face.
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6. PROBABILISTIC FORMULATION OF A METHOB FOR OBTAINING A LOWER
BOUND FOR THE BAM COLLAPSE LOAD

As it has already been discussed in several previous
papers, lower and upper bounds for the average value and dispersion

of ultimate load £l8, 19, 20] of a structure with random
yield strength, as well as for the probability of its collapse
failure £21, 22, 23, 24, 25, 26] can be found by employing
the fundamental theorems of the limit analysis theory.

In the present section, defering to a later paper the study
concerning the upper bound (it has to be noted that a research
on such a bound, from the deterministic point of view, has
already been developed in £27] for the case of arch dams), we
deal only with a probabilistic formulation of a method for e-
valuating a lower bound, as large as possible, of the maximum
hydrostatic-type load that an arch-gravity dam can sustain.

Such a method, whose deterministic formulation has previously
been established in £l0] with regard to the case of pure

arch dams, is founded on the limit analysis theorem which states

that a statically admissible field of stresses and forces
in equilibrium defines a lower bound for the ultimate load
that a structure can carry.

From the mathematical point of view, as it will be explained
in what follows, a stochastic linear programming problem

(with deterministic objective function and random constraints)
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arises from this procedure.
For the solution of such a problem, appropriate computations

by means of a recent technique of digital simulation
(with random generation of normal variables) are now in
progress and will be presented as soon as possible.

Discretization of the structure, let us consider the typical
dam portion included between diametral planes 9 0 ^ and

6 @2 » shown in Fig.6.1. Any horizontal cross-section of
such a portion (cantilever) exhibits, at the upstream side,

constant breadth
c R (02 - 0!) (6.1)

As indicated in
Fig.6.1, let us divide
the whole cantilever
into n finite
elements having the same
height h H/n and
denote by z^ i h
(i l,2,..,n) the value

of the coordinate
z at elevation i

Thus, the element i
is included between
the horizontal cross-
sections z
and z z^

If the upstream face
of the dam is

subjected in every point
to the hydrostatic
pressure y z the
horizontal force applied
on the i-th element is
then the following
(Fig.6.2) :

T. s 2 I y (Zj- h/2) h R cos p dp
0

and, if the angle 02 - 0^ is assumed to be small enough, we
can suppose approximately

r± Y (2 zr h) ^ (6.2)
Disregarding for simplicity torsional action of the dam, we

now denote by p^ the part of 1"^ taken by arch action, and
by q^ the one taken by cantilever action. As a consequence
of this, we can rewrite (6.2) as

Fig.6.1

(02—0^/2
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y(2 z±- h) h/2

\MlJ
(V V

h c(2

Pig.6.2

Zj- h)
Taking into account the

fact that, for each possible
alue of i we have
pi+

Zj- h
V

z - hn
we can express
the form

n
2 £

- (6.3)

also in

Y
Pi+

hen 2 z. - hl
(6.4)

ti the
and by

Ultimate load capacity of arches. Indicating by
thickness of the dam wall at horizontal section i

Ai (ti_i + ti) k/2
the area of the cross-section of the i-th arch, we now assume
that i-th arch failure occurs when in the whole area the
mean nominal stress a., reaches the yield value (of random

nature)

\L T dA, (6.5)

Neglecting, for the sake
of simplicity, the tensile
strength of dam concrete and
denoting by p. the maximum
part of which can be
carried by the i-th arch, we
can write

pi â pi

2 Yj

where (Pig.6.3)
A± sin (02- 01)/2 Y± A± c/R

(6.6)

(6.7)
a:l

pi ~ " "i
Ultimate bending capacity of cantilevers. Indicating by

the depth and by
A* a* (R - t± + a'/2) c/R

the area of the compressive zone at the downstream side of the
i-th horizontal section (Pig.6.4), it is assumed that the
cantilever failure at section i due to the positive limit
bending moment Q£ occurs »dien in all point of the area A!
the mean nominal stress o_. reaches the random yield valuezi

r^L Y dA] (6.8)
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In a perfectly analogous way, denoting by
A"i a? (R - aj/2) c/R

a?
x

and

i v V
the depth and the area, respectively, of the compressive zone
at the upstream side of the same section i (Pig.6.5), it is
also assumed that the cantilever failure, due to the negative
limit moment QÏ occurs «dien in all points of the area
the mean nominal stress o^ reaches the yield value

A?l

Pig.6.4

Qi

Qi

t; kL Y dA?l (6.9)

If we now denote by
Ti A' Y"i 1

(6.10)
the (deterministic) vertical
force applied on the section
i (due to dead weight), by

fi - V3
its distance from the
upstream face, and by

fi - F(1 +
ai

fî
*i +

2fl i ai
2 U ~ 6 R - a£/2

i'/2'

Pig.6.5

the distances of the forces
YÎ A* and Y? AJ from
downstream and upstream face,
respectively, it is easy to
obtain, from figures 6.4 and
6.5, the expressions :

QI

in which Q

- Pi
and

<v
(fi-

V fi>
2 t-i* 3 i 2

*V - P., 7 V I aî>

(6.11)

(6.12)

as a consequence of the randomness of'ilXV* 11 (UIU y. f SAO CA VVllDOl{ UOUV9 VI ttUO IflUlUVlUllOOO A

and aj produced by (6.10), are also random quantities.
* — - determine the maximum part q and the minimumIn_view to determine the maximum part q£

one q£ of H which can be carried by the cantilever, it is
now convenient to remember that the bending moment applied

on the i-th horizontal section can be expressed in the form
(Pig.6.6)

Qi S (*i- *i+ h/2) (6.13)

Consequently, denoting by and {q^ j two column vectors
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having as components the bending moments and the cantilever
loads qj respectively, and by the low triangular

matrix whose elements are
Q=/® ifi<ij \ z. — z .+ h/2 if i ^i 3

it iB easy to recognize that (6.13) can be rewritten in matrix
notation as

K) c=i.,] W (6-i4)
or also in the alternative
form

NI-CVT1 {Qj> (6-15)
-1

Lj-'
tes the inverse of C^ijD *

If, in addition, we denote

by
column vectors of the limit
bending moments, we have

(6-16>

or also

in which indica-

and {«;} the

Pig.6.6

pij "l Cj} ' {'ils ^_1 {«;}-l
ijJ I J/ \"i/ L ijJ I'd

By setting for the sake of convenience

{5j} - Cij]_1 {«;} d {s;} - -
inequality (6.17) can be apparently rewritten as

(6.17)

-1 {«i)

- a" <<i =* Mi =* qi {6,18)
Lower bound of dam collapse load. In virtue of foregoing

considerations, the problem of finding a lower bound for the
dam collapse load can be reduced to determining the vectors

{pj and-fqj
which maximize the specific weight y » expressed by the
(deterministic) objective function (6.4), subjected to the random
constraints (6.6) and (6.18), and to the additional (deterministic)

restriction (6.3).
It has to be noted that, in order to obtain that all the

variables are positive, it is evidently sufficient to assume,
instead of q. the new variable q* d, + q? and to
rewrite (6.18) as

qi+ qV

qi q! + qVl l
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Mean value and dispersion of Y. Because of space limitations,
which preclude adequate discussion upon the random

yield resistances Y^ Yj YJ previously introduced, we are
now concerned with only two short considerations on the arch
resistances Y. and we defer to a later work a more extensive

treatment or the matter.
In connection with Y^ it has firstly to.be pointed out

that, being by assumption m_ independent of space coordinates,

it is immediate to obtain (by commutating the operations
of mathematical expectation and integration) that

Namely, the mean value of Y^ is independent of
Secondly, remembering that, as well as my also deviation

Dy is independent of space points, we observe that the
dispersion of Y^ can be written in the form :

^°( hf Lt Lt <6-i9>

in which, by virtue of (2.1), the normalised auto-correlation
function Pj can be expressed (being 0=0' for all points
of A. as

PT exp(-''>Z) <6-20>

*0
Inserting (6.20) into (6*19) leads to

D_ \2 tz. ts. / .»2
4

where
t =("^) /-LJ-LH a* az'

dr dr'
0

can be easily expressed in terms of the error function.
7. CONCLUSIONS

Probability of local dam failure was rigorously investigated
in the general case. An approximate forsula for determining

such a probability was obtained and numerically applied
to the particular case of a typical arch-gravity dam with a
schematic three-dimensional stress distribution.

In connection with the structural dam failure, a probabilistic
formulation of a previous deterministic method for

obtaining a lower bound of the ultimate load that the dam can
carry was presented.
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ZUSAMMENFASSUNG

Man hat versucht die kürzlich erreichten Begriffe der Wahrscheinlichkeitsanalyse

für die Sicherheit einer Struktur bei einer Gewölbe-Gewicht -
sperre aus Beton anzuwenden, idem die Vermutung gemacht wurde, dass
diese als "Random"-Mittel betrachtet werden könnte, dessen mechanische
Eingenschaften (elastische Module und ötliche Elastizitätsgrenze) als sto-
kastische Funktionen der Raumkoordinaten beschrieben werden können.

Insbesondere wurde die örtliche Bruchwahrscheinlikeit des Staudammes
berechnet und, angesichts der Wahrscheinlichkeit, wurde eine massgebende
Methode, die schon früher für die Bewertung einer Mindesgrenze der
Bruchbelastung eines Staudammes gebraucht, neu formuliert und für den Fall der
Gewölbe - Gewichtsperren angeeignet.

SUMMARY

Asstuiiing that an arch-gravity concrete dam can he regarded
as a random medium, whose mechanical properties (elastic moduli

and local yield strength) can be described as stochastic
functions of space coordinates, an attempt is made to apply
recent concepts of probabilistic safety analysis to such a
structure.

In particular, the probability of local dam failure is
evaluated, and a previous deterministic method for obtaining a
lower bound for the collapse load of pure arch dams is
reformulated from the probabilistic point of view, and adapted to
arch-gravity ones.

RESUME

En l'hypothèse de considérer un barrage poids-voûte comme

un milieu random dont les propriétés mécaniques (module et
limite locale d'élasticité) peuvent se considérer comme
fonctions stochastiaues des coordonnées spatiales, on a essayé
l'application à une structure de telle sorte de ouelques
récents concepts de l'analyse probabilistique de la sécurité.

En particulier, on a calculé la probabilité de rupture
locale du barrage, et on a modifié, en l'adaptant à la
considération des barrages poids-voûte sous le point de vue
probabilistique, une méthode déterministe déjà formulée pour
l'évaluation d'une limite inférieure de la charge de ruine
d'un barrage-voûte.
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