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IABSE SEMINAR on:

AIPC «CONCRETE STRUCTURES SUBJECTED TO TRIAXIAL STRESSES»
IVBH 17th-19th MAY, 1974 - ISMES - BERGAMO (ITALY)

IvV-6

Beitrag zur Statischen Berechnung von Gewdlbesperren
nach dem Lastaufteilungsverfahren

Contribution to the load distribution method for the
static analysis of arch dams

Contribution sur la méthode de distribution des
charges pour le calcul des barrages-voiltes

R. KETTNER
Dipl. Ing. Dr. nat. techn.
Siemens ag Usterreich, Ve 7 - Bautechnik - A-4020 Linz

1. Einleitung

Zu statischen Berechnungen von Gevdlbesperren werden in der Praxis
am hdufigsten zwei Berechnungsmethoden verwendet: .

Das Versuchslast= [1] bzw. Lastaufteilungsverfahren [2-5] und die
Methode der finiten Elemente [6,7] « Obwohl letzteres Verfahren

in relativ kurzer Zeit eine rasante Entwicklung durchgemacht und
bereits einen hohen Entwicklungsstand erreicht hat, diirfte die An-
wendung des Versuchslast= bzw. Lastaufteilungsverfahrens noch iiber-
wiegen. Es erscheint daher gerechtfertigt, iiber eine Verfeinerung
des Lastaufteilungsverfahrens nachfolgend zu berichten. Diese Ver-
feinerung wurde in einem Rechenprogramm aufgenommen, das von der
Abteilung Bautechnik der Siemens AG Osterreich in Linz vor etwa
zehn Jahren entwickelt und wiederholt erfolgreich eingesetzt wurde.

Bekanntlich basiert das Lastaufteilungsverfahren auf folgenden
Grundgedanken: Die GewOlbesperre wird durch horizontale und vertikale
Schnitte in Bogen= und Kragtridgerlamellen unterteilt, die das gesamte
Bauwerk lickenlos ausfiillen. Von diesen Lamellen wird eine begrenzte
Anzahl ausgewihlt, so daB sie ein Rostsystem bilden. Die &uBeren
Lasten werden auf die Bogen oder Kragtrédger angesetzt. Mit Hilfe



von sogenannten Ubertragungsgrofen werden die Verriickungen (Ver-
schiebungen und Verdrehungen) der Bogen und Kragtriger in deren
Kreuzungspunkten durch Lésen eines Gleichuﬁgssystems in Koinzidenz
gebracht (ausgeglichen). Von den sechs modglichen Knotenverriickungen
werden Jje nach Erfordernis hinsichtlich des gewlinschten Genauigkeits-
grades der Untersuchung zumeist nur ein bis drei ausgeglichen; z.B.
Radialausgleich (h#ufig als einfacher Ausgleich bezeichnet) oder
Radial-Tangential- und Torsionsausgleich (bzw. dreifacher Ausgleich).
Die Grofle des zu losenden Gleichungssystems steigt mit der Anzahl
der Ausgleiche linear, die Anzahl der zu ermittelnden Koeffizienten
quadratisch und der Aufwand fir das Losen der Gleichungen etwa mit
der dritten Potenz.

Das in die Rerechnungen eingehende Rostsystem stellt nicht einen
Trdgerrost im iiblichen Sinn dar, denn es wird auch der Zusammenhang
und die Mitwirkung der nicht in den Rost aufgenommenen Lamellen be-
riicksichtigt, somit die Flichentragwirkung der Sperre erfaBt. Dies
wird dadurch erreicht, indem die statisch unbestimmten Ubetragungs-
groBen nicht als Einzellasten in den Knotenpunkten, sondern als
Streckenlasten auf die einzelnen Lamellen des Rostsystems aufgebracht
werden. Dies hat zur Folge, daB die Matrix des linearen Gleichungs-
systems der Ubertragungsgréfien zur Hauptdiagonale nicht symmetrisch
ist.

Die Koeffizienten des genannten Gleichungssystems konnen als Ein-
fluBwerte der Kragtradger und Bogen aufgefaBt werden. Sie stellen
Verschiebungen und Verdrehungen in den Knoten des Rostes zufolge
sogenannter Einheitslasten dar. Zumeist werden dreieckformige Ein-
heitslasten mit linearem Verlauf zwischen den Knotenpunkten ver-
wendet (siehe Fig.1). Daraus resultiert ein polygonaler Verlauf der
Lastaufteilung zwischen den Bogen und Kragtrigern mit Knicken in
den Kreuzungspunkten, wie in Fig.2 schematisch dargestellt. In
Wirklichkeit ist Jjedoch die Lastfunktion stetig in ihrem Verlauf.
Durch eine entsprechend enge Netzteilung des Rostsystems konnten
die Unstetigkeiten wohl gemildert werden (im Extremfall einer
theoretisch unendlich feinen Netzteilung sogar ausgeschaltet werden),
jedoch ist damit eine wesentliche Erhochung der Knotenzahl, somit
auch des Gleichungssystems verbunden, was zu rechentechnischen
Schwierigkeiten fiihrt.

Die Verfeinerung des Berechnungsverfahrens besteht nun darin, daB
an Stelle der Dreiecklasten stetige Funktionen in Form von
Lagrange-Polynomen eingefiihrt werden. Sie erstrecken sich liber die



Gesamtlidnge jedes einzelnen Pogens und Kragtrégers und sind in die-
sen Bereichen stetig wie auch mehrfach differenzierbar (siehe Fig.3).
Wie bei den Dreiecklasten konnen auch die Einheitslastpolynome nach
Vervielfachung mit den aus dem Gleichungssystem erhaltenen Uber-
tragungsgroBen iUberlagert werden, wodurch sich fiir die Lastaufteilung
wieder ein Lagrange-Polynom ergibt und ein stetiger Funktionsver-
lauf erreicht ist (siehe Fig.4). Dadurch wird es nicht erforderlich,
das Rostsystem engmaschiger zu widhlen, im Gegenteil ein grobes Netz
ergibt auch noch hinreichend genaue Ergebnisse, wie das Zahlenbei-
spiel am Ende des Berichtes zeigt. '

2. Finheitslastpolynome

Wie im vorangegangenen Abschnitt dargelegt, werden fiir die Einheits-
lasten (und auch punktweise gegebene Funktionen) Lagrange-Polynome
eingefiihrt.

Sind in n Stiitzstellen x; die Funktionswerte fi gegeben, wobei

i=1,2,...,n0 und 53 paarweise verschieden d.h. xi#xk fir ik, so
lautet das Lagrange'sche Interpolationspolynom

. n
P(x) = 2 fi.L(x) . (1)
k=1
Darin sind die Lk(x) Polynome mit folgenden Eigenschaften:
1 fir i=k
I’k(xi)'sik“{o "oik (2)

worin sik das bekannte Kroneckersche Symbol mit i, k=1,2,...,n;

sie konnen durch das Produkt

n
X-X.
Iy (x) = l I ;—:%—— (3)
1,‘}‘{ k "1
1=

ausgedriickt werden und sind vom Grade m=n-1, wie man nach
Ausmultiplikation und Ordnen erhdlt

m
Be(x) = ap ., + apgx + ak2x2 + eee + akmxm = g y akvxv . (4)



Diese Polynome nach Gl.(4) konnen nun zur Darstellung der Einheits-
lasten herangezogen werden, da sie den gewﬁnschten Forderungen ent-
sprechen, namlich in i=k den Funktionswert bzw. die Lastordinate
Lk(xk) = 1 und in den iibrigen Stiitzstellen (= Knotenpunkten) den
Wert Null anzunehmen (siehe Fig.3). Wie schliefBlich aus Gl.(1) zu
erkennen ist, ergibt sich das Lagrange-Polynom P(x) durch Uber-
lagerung der Polynome Lk(x) nach Vervielfachung mit gegebenen Stiitz-

werten fk. Damit ist ein kontinuierlicher Funktionsverlauf sicher-
gestellt (siehe Fig.4).

In Matrizenform kann P(x) geschrieben werden:
— — / \
840 849 84p +++ Bqp 1
820 821 8pp -+ 8o x,
P(x) = {%1f2f3...f€} 830 831 832 *c+ 83p | (XY o (5)
a: . . a: im
n0 %n1 Z%n2 *°* %um | "

- {fk}'l‘ [akv] {xv} y (k=1,2,e0eyn} V=0,140..,m; m=n-1)

wenn mit { } Spaltenvektoren, mit [j] rechteckige bzw. quadratische
Matrizen und mit dem hochgestellten T Transposition bezeichnet
werden.

Die Elemente 8y konnen aus den Punktionswerten in den Stiitz-
punkten x; (i=1,2,...,n) berechnet werden. Da gemaB Gl.(4)

{s} - o] {)

ist, folgt mit den Funktionswerten Lk(xi) gemdB Gl.(2)
e - praset - P -
a,‘o a11 s ee a1m 1 1 L LR J 1 1 0 0 LR g O
85 Bpq eee 8o :3 X5 eee x5 010 ... 0
330 a51 see aam 1 xs LI xn = O 0 1 sse 0

m m m »

a a L N J a x x L 2R J x O 0 O LN B ] 1
[ "no "n nm | | ™ 2 n| [ ]

bzw. in gekiirzter Schreibweise

)] -

mit £ = Einheitsmatrix.

(6)



Durch Rechtsmultiplikation der beiden Seiten von Gl.(6)
mit der Inversen [%vé]—q erhilt man die Ldsung

—
[ak‘Zl = [ij] ( 7 )
Mit Hilfe von Gl.(5) ist es somit auch mdglich, nur punktweise
durch Werte fk gegebene Funktionen darzustellen, wovon in der

Sperrenberechnung Gebrauch genommen wird, wie im folgenden
Abschnitt gezeigt wird.

3. Anwendung in den Berechnungen der Kragtridger= und Bogenlamellen

Die nachfolgenden Ausfiihrungen beziehen sich auf Sperrenberechnungen
mit dreifachem Ausgleich. Beim dreifachen Ausgleich werden in
Horizontalebenen die radialen und tangentialen Verschiebungen sowie
die Verdrehungen um vertikale Achsen der Kragtrédger und Bogen in
Koinzidenz gebracht.

Die einzelnen Formulierungen konnen ohne Schwierigkeiten z.B.

nur auf den Ausgleich der Radialverschiebungen reduziert oder auch
durch Beriicksichtigung weiterer Verschiebungskomponenten (z.B. Ver-
tikalverschiebungen) entsprechend erweitert werden.

Zur Festlegung der Sperrengeometrie wird ein globales rechtwinke-
liges Koordinatensystem als Linkssystem so festgelegt, dafl mit dem
Ursprung in Kronenhohe die positive x-Achse zum rechten Talhang,
die positive y-~Achse fluBabwdrts und die positive z-Achse vertikal
zur Talsohle gerichtet ist. Die vertikale y-z~Ebene x=0 liege in
der Sperrenachse (siehe Fig.5).

Im weiteren kann aus Platzmangel nur der Berechnungsweg aus

den wichtigsten Ansdtzen aufgezeigt werden, soweit die Verwendung
von Polynomen damit verbunden ist, d.i. im wesentlichen die Er~
mittlung der SchnittgroBen und Verschiebungen zufolge der Einheits-
lasten.

3.1 Kragtricer

Da beim dreifachen Ausgleich die Vertikalverschiebungen unberlick-
- sichtigt bleiben, werden nur radiale, tangentiale und um vertikale
Achsen drehende Einheitslasten P§» Py bzw. Py, bendtigt, die am
Kragtriger die SchnittgroBen M, Q, T und D verursachen (Bedeutung
und positive Richtungen siehe Fig.6). '



In den Berechnungen der Schnittgrofien ist im allgemeinsten Fall
einer doppelt gekrimmten Gewdlbesperre (Gleichwinkelsperren)
neben den liber die Kragtrédgerhdhe variablen trapezfdrmicen Quer-
schnitten auch die Wendelung der Kragtriger zu erfgssen.

Unter Berilicksichtigung der mittleren, iiber die Hohe z variablen
Kragtrédgerbreite ¢ (z) gilt fiir die differentiale Einheitsbelastung
dp (siehe Fig.?7)

dp = ¢ (2).p(z).dz (8)

und unter Beachtung der Kragtrigerwendelung ap gilt mit den Be-
zeichnungen der Fig. 8 fiir die differentialen SchnittgroéBen im
Kreuzungspunkt i zufolge radialer Einheitslast P

dM; = -dp.cos Ap.(zi-z)

dQ; = -dp.cos Ap

dT; = ¢&p.sin ap _

dD; = -dp.sin ap.8; = =dTj .3 (9

zufolge tangentialer Einheitslast Py

dMy = -dp.sin Ap.(zi-z)
dTy = -dp.cos A¢ = dQ; (10)
dD, = dp.cos &p. [Ei-a(zﬂ

zufolge drehender Einheitslast Py

M, = dQ, = 4T, = O

dp, = -dp (11)
Die SchnittgréBen (M,Q,T,D)i folgen dann aus der Integration iiber

den Bereich z = O bis zZ5 -

Der Berechnungsweg wird fir das Biegemoment MiSk (im Horizont i
zufolge der radialen Polynom-Einheitsbelastung mit der Lastordinate 1
in i=k) ndher ausgefiihrt.

Mit Gl.(8) ergibt sich aus Gl.(9)

z
Miax =-jrcosof.(zi-z).c(z).pk(z).dz
und mit LP=p;~9 ° (s.Fig.B) folgt nach einigen Umformungen

Z
Migx = —Zi-C0Sp4 87~°(z)'°°SE'Pk(Z)'dZ -
-zi.sin?i j]é(z).sinp.pk(z).dz +

(12)
o



Z
+COSp; ]‘z.c(z).cosp:pk(z).dz + (12)

z3

(o]

+sin?i ‘z.c(z).sin?:pk(z).dz
o
Nachdem die geometrischen Werte eines Kragtragers in allen Horizonten
i=1,2,...,n vorweg ermittelt werden konnen, ist es auch moglich,
diese durch Polynome gemdB Abschnitt 2 als geschlossene Funktionen
iiber die gesamte Kragtrigerhohe darzustellen. Damit lassen sich

die einzelnen Integrale einfach 1Gsen.

Die in Gl.(12) durch Unterstreichung markierten Produkte unter
den vier Integralen werden durch Polynome, die mit P1 bis P4
bezeichnet seien, ausgedrickt. Sie haben die Form

P'j = 2 Ajv.zv mit j=1,2’-ot’q’ (13)
v=0

Die Koeffizienten Ajv lassen sich mit Hilfe der bereits ermittelten

Matrix [ékv] der Einheitslastpolynome aus der Matrizenmultiplikation

o~ [ 2] “a®

leicht berechnen. Darin sind die Elemente fjkdie Funktiopsverte
der vorgenannten Produkte in den Horizonten k=1,2,...,n.

Die Integrale der Gl1.(12) erhalten mit den Polynomen Gl.(13)
und den Einheitslastpolynomen Gl.(4) die Form

Jy = ’ Sm A, .z’ E a, .z .d (15)
d jv. L] kv' * z
v=0 v=0
0
Das Produkt der beiden Polynome unter dem Integral liefert
das Polynom
2m m m
E : v E : v E : v
bjkv.z = Ajvlz . akv.Z 3 (16)
v=0 v=0 v=0

somit folgt fiir die Integrale Gl1.(15) die einfache Losung

2m b,
k 1
Iy = E :—-iu!-.z?+ - E Bjkv.z;’+1 (17

veo VvV * 1 i e



SchlieBlich kann fiir das gesuchte Biegemoment geschrieben werden
. SR L
Min = {}zicospi -zj8inp; cosp; 51npi} J2 - (18)

I3
Iy

Eine Vereinfachung kann dadurch erreicht werden, wenn nidherungs-
weise die gesamten Ausdriicke unter den Integralen G1{12) zu je-
weils einem Polynom nach Gl.{(15) zusammengefaBt werden. Damit ent-
fdl1lt die Berechnung des Polynomprodukfes nach Gl.(16).

In &hnlicher Weise wie oben ergeben sich die iibrigen Schnittgrélen
aus den Ansdtzen der Gln.(9) - (11), die zum Teil einfachere Aus-
driicke aufweisen. Wird eine vorhandene Wendelung der Kragtricer-
achse vernachldssigt, indem die Winkeldifferenzen sp null gesetzt
werden, so kdnnen wesentliche Einsparungen im Rechenaufwand erzielt
werden. In den Gl.(9) bzw. (10) werden (T,D)s = 0 bzw. (M,Q)& = 03
auBerdem verringert sich die Anzahl der Integrale.

Die in den Berechnungen der Verschiebungen und Verdrehungen aus den
Einheitslasten auftretenden Integrale konnen ebenfalls mittels
Polynome einer einfachen Losung zugefihrt werden. Die einzelnen
Integranden setzen sich aus den zuvor berechneten SchnittgroBen 1)
(M,53,7,D0) zufolge einer am Ort und in Richtung der gesuchten Ver-
schiebung angreifenden Einzellast, ferner aus Querschnittswerten
(Trégheitsmoment bzw. Flidche) und Materialdaten (Elastizitdtsmodul
bzw. Schubmodul) zusammen. Da die Integranden in allen Knoten-
punkten wertmdBig bestimmt werden kénnen, ldBt sich ihr Funktions-
verlauf iiber die Kragtrédgerhdohe wieder durch Lagrange-Polynome

nach Gl.(5) festlegen. Die Integrationen sind hier iiber den Bereich
z; (Ort der gesuchten Verschiebung) bis zn(Kragtrégerfquunkt)

zu erstrecken, so daB allgemein folgt

Z

m m

¢

v E : kv v+1 v+1

I = Zo -ckv.z «dz = m— Zn - Zi )
A V= v=0

m v+l _ v '
=§ Ckv. (zn z5 ) . (1)
V=
Die Formeln fiir die Verschiebungen und Verdrehungen sind &hnlich

wie GL(18) aufgebaut.

Der gleiche Weg kann amch in den entsprechenden Berechnungen
der #uBeren Belastungen eingeschlagen werden.

1) ee.(M,Q,T,D) der Einheitslasten sowie aus SchnittgroBen...



3.2 Bogen:

Es ist beim Rostverfahren allgemein iiblich, die Bogenlamellen

durch Horizontalschnitte festzulegen, so daB deren Achsen nicht
rédumlich gekriimmt sind, sondern in einer Ebene liegen. Dadurch er-
geben sich im Vergleich zu den Kragtrigerberechnungen gewisse Ver-
einfachungen, auf die im Zusammenhang mit der Kragtragerwendelung

bei doppelt gekriimmten Sperren im vorigen Abschnitt hingewiesen wurde.

Auch fiir die Bogenlamellen werden vorteilhaft Einheitslastpolynome
nach Gl.(4) eingefihrt, die sich iliber die gesamte Bogenlinge von
Kéampfer zu Kidmpfer erstrecken.

Sie erfiillen vornehmlich den selben Zweck wie bei den Kragtridgern,
namlich einen stetigen Funktionsverlauf, der den wirklichen Ver-
haltnissen besser entspricht, wiederzugeben. Auf die mathematischen
Formulierungen sel hier nicht ndher eingegangen, da sie wegen ihres
Umfanges den Rahmen der Abhandlung sprengen wiirden.

4, Zahlenbeispiel

Imn Zuge der Entwurfsarbeiten einer rd. 180 m hohen symmetrischen
GewOlbesperre wurde eine Sperrenvariante nach dem vorhin kurz be-
schriebenen Verfahren sowohl mit einer feinen wie auch mit einer
groben Netzteilung berechnet. Da es sich um Variantenstudien handelté,
wurden die Untersuchungen auf Radialausgleiche beschrinkt.

In Fig.9a ist der Berechnungsrost mit enger Teilung dargestellt;
Fig.9b zeigt das grobmaschige Rostsystem, das sich durch Weglassung
der Bogen i = % und 5 und der Kragtrager j = 2 und 4 aus dem engen
Rost ergibt. Die Berechnungen der beiden Rostsysteme bezogen sich
auf den Lastfall Vollstau bis zur Sperrenkrone bei sommerlich
erwidrmtem Mauerkorper.

In den Tabellen 1 und 2 sind die Ergebnisse der beiden Berechnungen
gegeniibergestellt u.zw. die Randnormalspannungen der vier vergleich-
baren Kragtridger und Bogen. Die Lastaufteilung ergab sich in beiden
Fédllen nahezu gleich, was auch in der guten Ubereinstimmung der
Spannungen zum Ausdruck kommt. Die maximale Abweichung betrigt

2,4 kp/cm2 bei den Kragtridgern bzw. 5,2 kp/cm2 bei den Bogen, d.s.
rd. 3,1% bzw. 6,7% bezogen auf die groBte Spannung von 78,0 kp/cme.

Aus diesen Ergebnissen kann gefolgert werden, daB die Anwendung des
Lastaufteilungsverfahrens mit Polynomfunktionen auch eine grobe
Netzteilung des Berechnungsrostes zulidBt.



Tab. 1 Kragtréager - randparallele Normalspannungen 6; kp/cm2
i j=1 j=2 (3) 3=3 (5) j=4 (6)
ﬁw 6L GW 6L 6w GL Gw -GL
::::i::::::::::::::::: F3-E-E 33 F 133 F 3 X3 81-F &5 F -5 0 L F 0 -SR] —R SRRt
1 0 0 0 0 0 0 (0] 0]
2 6, 2,7 74,9 2,0 12,6 -1,2 13,6 -C,8
(818) (Oa5) (9'1) (1y0) (1102) (001) (15'1) (-015)
3 -9,0 39,6 12,9 20,1 14,0 24,1
4 -6,9 | 61,0 2,0 59,8
(6) (—5,1) (6534) (1a4) (6015)
2 -3,8 77,2
(7 (-4,3) | (78,0)
Tab, 2 Bogen - randparallele Normalspannungen 6& kp/cm2
g j =1 =2 (3) i=3 (5) =4 (6)
Oy 5L Sy By, S| S S| 1
=== SErocooes=Seoas==oy ========f=======ﬁ£===============‘.==‘==== ESE==E
40, 63,1 50,0 53,9 61,8 42,0 47.5 i 56,4
1 (35,7) | (67,6){(849,2) | (54,0) | (62,8) | (40,3) | (46,9) | (56,4)
> 36,1 65,1 | #1 29,4 64,8 36,0 45,5 92,7
(36,0) | (66,5)|(u5,4) | (56,9) | (65,1) | (36,9) | (45,4) | (57,1)
3 15,0 73,3 59,0 35,4 21,7 43,1
(4) (15,3) | (73,1) | (59,0) | (35,5) | (50,9) | (44,0}
4 5.2 44 .6 40,7 8,9
(6) ( 5,1) | (#4,3) | (40,8) | (8,4)

Die Klammerwerte beziehen sich auf die Ergebnisse der

feinen Netzteilung (Fig.9a)

Values in brackets refer to results of the fine grid (Fig.%9a)

Les valeurs en parenthéses se reférent aux resultats du
partage étroit de grille (Fig.9a)

W = Wasserseite

Water face

Amont

L =

Luftseite
Air face
Aval

+

= Druck

Compression
Compression

Zug

Tension
Traction
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5. Schlullbemerkungen

Hier konnte nur in kurzen Zigen die Verwendung von Polynomen im
Lastaufteilungsverfahren aufgezeigt werden. Auf eine mogliche
Anderung sei jedoch abschlieflend noch hingewiesen. Als Stiitz-
stellen der Polynome wurden die Knotenpunkte des Rostsystems
gewdahlt. Diese liegen zumeist, im besonderen entlang der Bogen-
lamellen,nicht in gleichen Abstidnden. Werden sie ungeachtet der
Lage derKreuzungspunkte Zquidistant angeordnet, dann brauchen die
Koeffizienten der Einheitslastpolynome nicht fir jeden Berechnungs-
fall neu ermittelt werden. Sie konnen vorweg fiir eine im gebrduch-
lichen Bereich variierende Anzahl Stiitzstellen ein fiir allemal
bestimmt werden. '

Dieser Gedankengang bedarf aber noch entsprechender Untersuchungen.
¥benso wdre eine eventuelle Anwendung von Splinefunktionen an
Stelle der gewdhlten Lagrange-Polynome noch zu priifen.
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Zusammenfassung

Der vorliegende Bericht befaflt sich mit einer Verfeinerung der
Belastungsverteilung, die der Versuchslastmethode bzw. dem Last-
aufteilungsverfahren zugrunde liegt. Diese beiden Berechnungs-
methoden sind dem Verfahren nach identisch; sie unterscheiden sich
nur dadurch, daB die Lastaufteilung zwischen Bogen und Kragtrigern,
in die das Tragwerk unterteilt gedacht wird, bei ersterem durch
Probieren, also versuchsmidBig, und bei letzterem durch Aufldsen
eines Gleichungssystems ermittelt wird. Es ist allgemein iiblich,
die Belastungen der einzelnen Traglamellen polygonal durch Uber-
lagerung linearer Dreiecklasten anzusetzen. Eine Verfeinerung

wird durch die Wahl stetiger Funktionen und zwar von Lagrange-
~Polynomen erreicht. Dies ermoglicht eine Reduzierung der Netz-
teilung, d.h. man kann mit einer geringeren Anzahl Bogen und
Kragtrégern das Auslangen finden, ohne das Ergebnis zu schmdlern,
wie in einem Zahlenbeispiel gezeigt wird. Mit einer verringerten
Anzahl von Netzpunkten ist auch ein kleineres Gleichungssystem
verbunden, was im besonderen bei mehrfachen Ausgleichen zur
Herabsetzung numerischer Ungenauigkeiten wie auch zur Verminderung
des Rechenaufwandes angestrebt wird.

Ferner kann man in der Berechnung der Kragtrdger, deren geometri-
sche Eigenschaften fast durchwegs nicht explizit darstellbar
sind, ebenfalls Lagrange~Polynome vorteilhaft verwenden, so daf
die geometrischen Werte und Materialdaten nur in den Kreuzungs-
punkten gegeben sein miissen.

Summary

The paper deals with a refinement of the load distribution upon
which the Trial Load Method and the Load Distribution Method

are based. Both methods of analysis are identical with respect

to the procedure, they only differ in that the distribution of
loadé between arches and cantilevers will be found by trial with
the first method and by solving a system of linear equations with
the latter. Generally the loads of the various elements are
approximated polygonally by the superposition of linear triangular
loads. A refinement is achieved by the use of continuous and smooth
functions of Lagrangian polynomials. This allows a reduction of the
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grid, thus a decreased number of arches and cantilevers suffices
without impairing the final results as is shown in a numerical
example. A reduced number of nodes also yields a smaller system
of equations particulary endeavoured in multiple adjustments for
a reduction of both numerical inaccuracies and computation time.
Furthermore Lagrangian polynomials are advantageously applied in
determining functions for geometrical properties which in most
cases for cantilevers cannot be established explicitly so that
geometric and material data only need be given at points of
intersection of arches and cantilevers.

Résumé

Ce rapport s'occupe d'un raffinement de la distribution de charges,
basé sur le Trial Load Method et la méthode de distribution des
charges. Ces deux méthodes de calculer sont identiques & 1'égard

de procédure. Elles ne se dinstinguent que par la fagon de trouver
la distribution de charges entre les arcs et les consoles. Selon la
premidre méthode on trouve la distribution par essai et selon la
seconde par résolution d'équations linéaires. Usuellement on fait

la disposition des charges d'arcs et des consoles polygonales par
superposition des charges triangulaires linéaires. Un raffinement
est obtenu par le choix des fonctions continus, c'est & dire des
polyndmes Lagrange. Ga donne la possibilité de réduire le partage

de grille, c'est 4 dire une plus petite nombre d'arcs et de consoles
sera suffisante, sans amoindrir le résultat comme le montre un
exemple exposé. Avec un nombre rédiut de noeuds le systéme d'équation
devient plus simple comme souhaité dans les multiples ajustements
pour diminuer des inexactitudes numeriques et de la durée de
calculation. En outre, pour la présentation fonctionelle des

valeurs géometriques, lesquelles ne sont pas présentables
spécialement pour les consoles d'une maniére explicite, on utilise
avec avantage les polyndmes Lagrange,pour que les valeurs géometriques
et les indications de materiaux ne sont demandé que dans les noeuds.
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