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Beitrag zur Statischen Berechnung von Gewölbesperren
nach dem Lastaufteilungsverfahren

Contribution to the load distribution method for the

static analysis of arch dams

Contribution sur la méthode de distribution des

charges pour le calcul des barrages-voûtes

R. KETTNER
Dipl. Ing. Dr. nat. techn.

Siemens ag Österreich, Ve 7 - Bautechnik - A-4020 Linz

1. Einleitung
Zu statischen Berechnungen von Gewölbesperren werden in der Praxis
am häufigsten zwei Berechnungsmethoden verwendet:
Das Versuchslast= [l] bzw. Lastaufteilungsverfahren £2-5] und die
Methode der finiten Elemente £6,7] • Obwohl letzteres Verfahren
in relativ kurzer Zeit eine rasante Entwicklung durchgemacht und
bereits einen hohen Entwicklungsstand erreicht hat, dürfte die
Anwendung des Versuchslast= bzw. Lastaufteilungsverfahrens noch
überwiegen. Es erscheint daher gerechtfertigt, über eine Verfeinerung
des Lastaufteilungsverfahrens nachfolgend zu berichten. Diese
Verfeinerung wurde in einem Rechenprogramm aufgenommen, das von der
Abteilung Bautechnik der Siemens AG Österreich in Linz vor etwa
zehn Jahren entwickelt und wiederholt erfolgreich eingesetzt wurde.

Bekanntlich basiert das Lastaufteilungsverfahren auf folgenden
Grundgedanken: Die Gewölbesperre wird durch horizontale und vertikale
Schnitte in Bogen= und Kragträgerlamellen unterteilt, die das gesamte
Bauwerk lückenlos ausfüllen. Von diesen Lamellen wird eine begrenzte
Anzahl ausgewählt, so daß sie ein Rostsystem bilden. Die äußeren
Lasten werden auf die Bogen oder Kragträger angesetzt. Mit Hilfe



2.

von sogenannten Ubertragungsgrößen werden die Verrückungen
(Verschiebungen und Verdrehungen) der Bogen und Kragträger in deren
Kreuzungspunkten durch Lösen eines Gleichungssystems in Koinzidenz
gebracht (ausgeglichen). Von den sechs möglichen Knotenverrückungen
werden je nach Erfordernis hinsichtlich des gewünschten Genauigkeitsgrades

der Untersuchung zumeist nur ein bis drei ausgeglichen; z.B.
Radialausgleich (häufig als einfacher Ausgleich bezeichnet) oder
Radial-Tangential- und Torsionsausgleich (bzw. dreifacher Ausgleich).
Die Größe des zu lösenden Gleichungssystems steigt mit der Anzahl
der Ausgleiche linear, die Anzahl der zu ermittelnden Koeffizienten
quadratisch und der Aufwand für das Lösen der Gleichungen etwa mit
der dritten Potenz.

Das in die Berechnungen eingehende Rostsystem stellt nicht einen
Trägerrost im üblichen Sinn dar, denn es wird auch der Zusammenhang
und die Mitwirkung der nicht in den Rost aufgenommenen Lamellen
berücksichtigt, somit die Flächentragwirkung der Sperre erfaßt. Dies
wird dadurch erreicht, indem die statisch unbestimmten Ubetragungs-
größen nicht als Einzellasten in den Knotenpunkten, sondern als
Streckenlasten auf die einzelnen Lamellen des Rostsystems aufgebracht
werden. Dies hat zur Folge, daß die Matrix des linearen Gleichungs-
eystems der Ubertragungsgrößen zur Hauptdiagonale nicht symmetrisch
ist.
Die Koeffizienten des genannten Gleichungssystems können als
Einflußwerte der Kragträger und Bogen aufgefaßt werden. Sie stellen
Verschiebungen und Verdrehungen in den Knoten des Rostes zufolge
sogenannter Einheitslasten dar. Zumeist werden dreieckförmige Ein-
heitslasten mit linearem Verlauf zwischen den Knotenpunkten
verwendet (siehe Fig.1). Daraus resultiert ein polygonaler Verlauf der
Lastaufteilung zwischen den Bogen und Kragträgern mit Knicken in
den Kreuzungspunkten, wie in Fig.2 schematisch dargestellt. In
Wirklichkeit ist jedoch die Lastfunktion stetig in ihrem Verlauf.
Durch eine entsprechend enge Netzteilung des Rostsystems könnten
die .Unstetigkeiten wohl gemildert werden (im Extremfall einer
theoretisch unendlich feinen Netzteilung sogar ausgeschaltet werden),
jedoch ist damit eine wesentliche Erhöhung der Knotenzahl, somit
auch des Gleichungssystems verbunden, was zu rechentechnischen
Schwierigkeiten führt.
Die Verfeinerung des Berechnungsverfahrens besteht nun darin, daß

an Stelle der Dreiecklasten stetige Funktionen in Form von
Lagrange-Polynomen eingeführt werden. Sie erstrecken sich über die



3.

Gesaratlänge jedes einzelnen Bogens und Kragträgers und sind in diesen

Bereichen stetig wie auch mehrfach differenzierbar (siehe Fig.5)-
Wie bei den Dreiecklasten können auch die Einheitslastpolynome nach

Vervielfachung mit den aus dem Gleichungssystem erhaltenen Uber-
tragungsgrößen überlagert werden, wodurch sich für die Lastaufteilung
wieder ein Lagrange-Polynom ergibt und ein stetiger Funktionsverlauf

erreicht ist (siehe Fig.')-). Dadurch wird es nicht erforderlich,
das Rostsystem engmaschiger zu wählen, im Gegenteil ein grobes Netz

ergibt auch noch hinreichend genaue Ergebnisse, wie das Zahlenbeispiel

am Ende des Berichtes zeigt.

Wie im vorangegangenen Abschnitt dargelegt, werden für die Einheitslasten

(und auch punktweise gegebene Funktionen) Lagrange-Polynome
eingeführt.
Sind in n Stützstellen die Funktionswerte f^ gegeben, wobei

i=1,2,...,n und x^ paarweise verschieden d.h. x^xk für i^k, so

lautet das Lagrange'sehe Interpolationspolynom

2. Einheitslastpolynome

P(x) ZU! fk.L,(x)
k=1 K K (1)

Darin sind die ^(x) Polynome mit folgenden Eigenschaften:

(2)

worin $^k das bekannte Kroneckersche Symbol mit i,k=1,2,...,n;

sie können durch das Produkt
n

(3)

i=1

ausgedrückt werden und sind vom Grade m=n-1, wie man nach
Ausmultiplikation und Ordnen erhält

m

Lfc(x) ako + ak1x + ak2x2 + + a^x £2 •
v=o

x + ak2x 00
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Diese Polynome nach Gl.(4) können nun zur Darstellung der Einheitslasten

herangezogen werden, da sie den gewünschten Forderungen
entsprechen, nämlich in i=k den Funktionswert bzw. die Lastordinate

1 und in den übrigen Stützstellen Knotenpunkten) den
Wert Null anzunehmen (siehe Fig.5). Wie schließlich aus Gl.(1) zu
erkennen ist, ergibt sich das Lagrange-Polynom P(x) durch
Überlagerung der Polynome L^(x) nach Vervielfachung mit gegebenen Stütz-
werten f^. Damit ist ein kontinuierlicher Funktionsverlauf
sichergestellt (siehe Fig.4).
In Matrizenform kann P(x) geschrieben werden:

P(X) ^fgfj»..^

W M

a10 a11 a12 * * a1m 1

a20 a21 a22 * * a2m X

a50 a31 a32 * • a3m <
X

jn

(5)

anO Vi an2 **• anm

(k=1,2,...,n; v=0,1,...,m; m=n-1)

wenn mit Spaltenvektoren, mit £ ]] rechteckige bzw. quadratische
Matrizen und mit dem hochgestellten T Transposition bezeichnet
werden.

Die Elemente a^v können aus den Funktionswerten in den
Stützpunkten (i=1,2,...,n) berechnet werden. Da gemäß Gl.(4)

M • M {*»}
folgt mit den Funktionswerten Lk(Xi) gemäß Gl.(2)

a10 a11 • '• a1m 1 1 1 1 0 0 0

a20 a21 * * a2m x2 • " X§
'* xn

•

0 1 0 • • • 0

a30 a31 *

•
" a3m

•

À X«5 •

•

— 0 0

•

1 0

• •

ano V '
•

• unm

•
m

xi
•
m

•
m" xn

• •

0 0

k •

0 ..." 1

bzw. in gekürzter Schreibweise

[akv] [xvi] E

mit E Einheitsmatrix.

(6)
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Durch Rechtsmultiplikation der beiden Seiten von Gl.(6)
1

mit der Inversen erhalt man die Losung

M • M1 (7)

Mit Hilfe von Gl.(5) ist es somit auch möglich, nur punktweise
durch Werte f^ gegebene Funktionen darzustellen, wovon in der
Sperrenberechnung Gebrauch genommen wird, wie im folgenden
Abschnitt gezeigt wird.

3. Anwendung in den Berechnungen der Kragträger= und Bogenlamellen

Die nachfolgenden Ausführungen beziehen sich auf Sperrenberechnungen
mit dreifachem Ausgleich. Beim dreifachen Ausgleich werden in
Horizontalebenen die radialen und tangentialen Verschiebungen sowie
die Verdrehungen um vertikale Achsen der Kragträger und Bogen in
Koinzidenz gebracht.

Die einzelnen Formulierungen können ohne Schwierigkeiten z.B.
nur auf den Ausgleich der Radialverschiebungen reduziert oder auch
durch Berücksichtigung weiterer Verschiebungskomponenten (z.B.
Vertikalverschiebungen) entsprechend erweitert werden.

Zur Festlegung der Sperrengeometrie wird ein globales rechtwinkeliges

Koordinatensystem als Linkssystem so festgelegt, daß mit dem

Ursprung in Kronenhöhe die positive x-Achse zum rechten Talhang,
die positive y-Achse flußabwärts und die positive z-Achse vertikal
zur Talsohle gerichtet ist. Die vertikale y-z-Ebene x=0 liege in
der Sperrenachse (siehe Fig.5).
Im weiteren kann aus Platzmangel nur der Berechnungsweg aus
den wichtigsten Ansätzen aufgezeigt werden, soweit die Verwendung
von Polynomen damit verbunden ist, d.i. im wesentlichen die
Ermittlung der Schnittgrößen und Verschiebungen zufolge der Einheitslasten.

3.1 Kragträger
Da beim dreifachen Ausgleich die Vertikalverschiebungen unberücksichtigt

bleiben, werden nur radiale, tangentiale und um vertikale
Achsen drehende Einheitslasten p§, p^, bzw. pw benötigt, die am

Kragträger die Schnittgrößen M, Q, T und D verursachen (Bedeutung
und positive Richtungen siehe Fig.6).
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In den Berechnungen der Schnittgrößen ist im allgemeinsten Fall
einer doppelt gekrümmten Gewölbesperre (Gleichwinkelsperren)
neben den über die Kragträgerhöhe variablen trapezförmigen
Querschnitten auch die Wendelung der Kragträger zu erfassen.

Unter Berücksichtigung der mittleren, über die Höhe z variablen
Kragträgerbreite c (z) gilt für die differentiale Einheitsbelastung
dp (siehe Fig.7)

dp c (z).p(z).dz (8)

und unter Beachtung der Kragträgerwendelung &<p gilt mit den

Bezeichnungen der Fig. 8 für die differentialen Schnittgrößen im

Kreuzungspunkt i zufolge radialer Einheitslast pj
dMj —dp.cos Ap.(z^-z)
dQj -dp.cos Ap
dTf dp.sin Ap

dDj -dp.sin Ap.ä^ -dTf .a^ (9)

zufolge tangentialer Einheitslast p^,

dM^ -dp.sin Ap.(z^-z)
dQ^. -dp.sin Af -dTf
dT^. -dp.cos Ap dQj (10)
dDj. dp. cos Af. ^ä^-a(z)]

zufolge drehender Einheitslast pw

dIV dQw dTw 0

dDw -dp (11)

Die Schnittgrößen (MjQ^.D)^ folgen dann aus der Integration über
den Bereich z 0 bis z^.
Der Berechnungsweg wird für das Biegemoment M^gk (im Horizont i
zufolge der radialen Polynom-Einheitsbelastung mit der Lastordinate 1

in i=k) näher ausgeführt.

Mit Gl.(8) ergibt sich aus Gl.(9)
zift

Migk - / cosû^.(zi-z).c(z).pk(z).dz
und mit a° (s.Fig.8) folgt nach einigen Umformungen

ZY
M.;ßk -zi.cos^i J c(z).cosp.pk(z).dz -

-zi.sin^i J c(z).siny>.pk(z).dz +
^
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+003^ J z.c(z) .cosy>.pk(.z) .dz + ("12)
o

zy>

+sin^ J z.c(z).sinp.p^z) .dz
o

Nachdem die geometrischen Werte eines Kragträgers in allen Horizonten
i=1,2,...,n vorweg ermittelt werden können, ist es auch möglich,
diese durch Polynome gemäß Abschnitt 2 als geschlossene Funktionen
über die gesamte Kragträgerhöhe darzustellen. Damit lassen sich
die einzelnen Integrale einfach lösen.

Die in Gl.(12) durch Unterstreichung markierten Produkte unter
den vier Integralen werden durch Polynome, die mit P^ bis P^
bezeichnet seien, ausgedrückt. Sie haben die Form

Pj ÊZ V.zv mit j=1,2,...,4 (13)
v=0

Die Koeffizienten lassen sich mit Hilfe der bereits ermittelten
Matrix der Einheitslastpolynome aus der Matrizenmultiplikation

W- M M (14)

leicht berechnen. Darin sind die Elemente f^die Funktionswerte
der vorgenannten Produkte in den Horizonten k=1,2,...,n.
Die Integrale der Gl.(12) erhalten mit den Polynomen Gl.(13)
vind den Einheitslastpolynomen Gl.(4) die Form

Jd ry *. Ajv*zv* akv«zv*dz os)
«/ v=0 v«0

Das Produkt der beiden Polynome unter dem Integral liefert
das Polynom

2m m m

bikv-zV =^~!Aiv-zV- Z2 akVzV • (16)
v=0 v=0 v=0

somit folgt für die Integrale Gl.(15) die einfache Lösung

J
-~I?- bjkv v+1 -r^i ^ _v+1j-ZZVrr-v W)
v=0 1 v=0
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Schließlich kann für das gesuchte Biegemoment geschrieben werden

Mißk ^HC0SH "zisinfi cos?i sin?i} J1
2

J3
J4

(18)

Eine Vereinfachung kann dadurch erreicht werden, wenn näherungsweise

die gesamten Ausdrücke unter den Integralen GL(12) zu
jeweils einem Polynom nach Gl.(13) zusammengefaßt werden. Damit
entfällt die Berechnung des Polynomproduktes nach Gl.(16).
In ähnlicher V/eise wie oben ergeben sich die übrigen Schnittgrößen
aus den Ansätzen der Gin.(9) - (11), die zum Teil einfachere
Ausdrücke aufweisen. Wird eine vorhandene Wendelung der Kragträgerachse

vernachlässigt, indem die Winkeldifferenzen Ay> null gesetzt
werden, so können wesentliche Einsparungen im Rechenaufwand' erzielt
werden. In den Gl.(9) bzw. (10) werden (T,D)g 0 bzw. (M,Q)_j, 0;
außerdem verringert sich die Anzahl der Integrale.
Die in den Berechnungen der Verschiebungen und Verdrehungen aus den

Einheitslasten auftretenden Integrale können ebenfalls mittels
Polynome einer einfachen Lösung zugeführt werden. Die einzelnen
Integranden setzen sich aus den zuvor berechneten Schnittgrößen t)
(R,Q,T,B) zufolge einer am Ort und in Richtung der gesuchten
Verschiebung angreifenden Einzellast, ferner aus Querschnittswerten
(Trägheitsmoment bzw. Fläche) und Materialdaten (Elastizitätsmodul
bzw. Schubmodul) zusammen. Da die Integranden in allen
Knotenpunkten wertmäßig bestimmt werden können, läßt sich ihr Funktionsverlauf

über die Kragträgerhöhe wieder durch Lagrange-Polynome
nach Gl.(5) festlegen. Die Integrationen sind hier über den Bereich

(Ort der gesuchten Verschiebung) bis zn(Kragträgerfußpunkt)
zu erstrecken, so daß allgemein folgt

c

(r1-*r1) • o»
J v=0 v=0
zi

m r- ZZ kv'
v«0

Die Formeln für die Verschiebungen und Verdrehungen sind ähnlich
wie GL(18) aufgebaut.

Der gleiche Weg kann auch in den entsprechenden Berechnungen
der äußeren Belastungen eingeschlagen werden.

t) ...(M,Q,T,D) der Einheitslasten sowie aus Schnittgrößen.
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3.2 Bogen:

Es ist beim Rostverfahren allgemein üblich, die Bogenlamellen
durch Horizontalschnitte festzulegen, so daß deren Achsen nicht
räumlich gekrümmt sind, sondern in einer Ebene liegen. Dadurch
ergeben sich im Vergleich zu den Kragträgerberechnungen gewisse
Vereinfachungen, auf die im Zusammenhang mit der Kragträgerwendelung
bei doppelt gekrümmten Sperren im vorigen Abschnitt hingewiesen wurde.

Auch für die Bogenlamellen werden vorteilhaft Einheitslastpolynome
nach Gl.(4-) eingeführt, die sich über die gesamte Bogenlänge von
Kämpfer zu Kämpfer erstrecken.

Sie erfüllen vornehmlich den selben Zweck wie bei den Kragträgern,
nämlich einen stetigen Funktionsverlauf, der den wirklichen
Verhältnissen besser entspricht, wiederzugeben. Auf die mathematischen
Formulierungen sei hier nicht näher eingegangen, da sie wegen ihres
Umfanges den Rahmen der Abhandlung sprengen würden.

4-, Zahlenbeispiel

Im Zuge der Entwurfsarbeiten einer rd. 180 m hohen symmetrischen
Gewölbesperre wurde eine Sperrenvariante nach dem vorhin kurz
beschriebenen Verfahren sowohl mit einer feinen wie auch mit einer
groben Netzteilung berechnet. Da es sich um Variantenstudien handelte,
wurden die Untersuchungen auf Radialausgleiche beschränkt.

In Fig.9a ist der Berechnungsrost mit enger Teilung dargestellt;
Fig.9b zeigt das grobmaschige Rostsystem, das sich durch Weglassung
der Bogen i 3 und 5 und der Kragträger j 2 und 4 aus dem engen
Rost ergibt. Die Berechnungen der beiden Rostsysteme bezogen sich
auf den Lastfall Vollstau bis zur Sperrenkrone bei sommerlich
erwärmtem Mauerkörper.

In den Tabellen 1 und 2 sind die Ergebnisse der beiden Berechnungen
gegenübergestellt u.zw. die Randnormalspannungen der vier vergleichbaren

Kragträger und Bogen. Die Lastaufteilung ergab sich in beiden
Fällen nahezu gleich, was auch in der guten Ubereinstimmung der
Spannungen zum Ausdruck kommt. Die maximale Abweichung beträgt

2 22,4 kp/cm bei den Kragträgern bzw. 5,2 kp/cm bei den Bogen, d.s.
prd. 3,1# bzw. 6,7# bezogen auf die größte Spannung von 78,0 kp/cm

Aus diesen Ergebnissen kann gefolgert werden, daß die Anwendung des

Lastaufteilungsverfahrens mit Polynomfunktionen auch eine grobe
Netzteilung des Berechnungsrostes zuläßt.
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2Tab. 1 Kragträger - randparallele Normalspannungen &z kp/cm

•t I 0 1 <1-2 (3) 0=3 (5) 0=4 (6)
&w 6W CL 6W 6L 6W 6L

1 0 0 0 0 0 0 0 0

2 6,7
(8,8)

2,7
(0,5)

7,9
(9,1)

2,0
(1,0)

12,6
(11,2)

-1,2
(0,1)

13,6
(13,1)

-0,8
(-0,3)

3
(4)

-9,0
(-7,4)

39,6
(40,0)

12,9
(12,5)

20,1
(20,5)

14,0
(16,2)

24,1
(21,9)

4
(6)

-6,9
(-5,1)

61,0
(63,4)

2,0
(1,4)

59,8
(60,5)

5
(7)

-3,8
(-4,3)

77,2
(78,0)

Tab.
2

2 Bogen - randparallele Normalspannungen 6"x kp/cm

i d 1 =2 (3) 0=3 (5) j=4 (6)
6W ®L 6w 6L 6W 6L 6W 6L

"56^4"
(56,4)1

40,9n
(35,7)

63,1
(67,6)

50,0
(49,2)

53,9
(54,0)

61,8
(62,8)

• 42,0
(40,3)

47,5
(46,9)

2 36,1
(36,0)

65,1
(66,5)

41,7
(45,4)

59,4
(56,9)

64,8
(65,1)

36,0
(36,9)

45,5
(45,4)

55,7
(57,1)

3
00

15,0
(15,3)

73,3
(73,1)

59,0
(59,0)

35,4
(35,5)

51,7
(50,9)

43,1
(44,0)

4
(6)

5,2
5,D

44,6
(44,3)

40,7
(40,8)

8,9
(8,4)

Die Klammerwerte beziehen sich auf die Ergebnisse der
feinen Netzteilung (Fig.9a)
Values' in brackets refer to results of the fine grid (Fig.9a)
Les valeurs en parenthèses se réfèrent aux résultats du
partage étroit de grille (Fig.9a)
W Wasserseite L Luftseite + Druck — Zug

Water face Air face Compression Tension
Amont Aval Compression Traction
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5. Schlußbemerkungen

Hier konnte nur in kurzen Zügen die Verwendung von Polynomen im

Lastaufteilungsverfahren aufgezeigt werden. Auf eine mögliche
Änderung sei jedoch abschließend noch hingewiesen. Als
Stützstellen der Polynome wurden die Knotenpunkte des Rostsystems
gewählt. Diese liegen zumeist, im besonderen entlang der Bogen-
lamellen,nicht in gleichen Abständen. Werden sie ungeachtet der
Lage derlfceuzungspunkte äquidistant angeordnet, dann brauchen die
Koeffizienten der Einheitslastpolynome nicht für jeden Berechnungsfall

neu ermittelt werden. Sie können vorweg für eine im gebräuchlichen

Bereich variierende Anzahl Stützstellen ein für allemal
bestimmt werden.

Dieser Gedankengang bedarf aber noch entsprechender Untersuchungen.
Ebenso wäre eine eventuelle Anwendung von Splinefunktionen an

Stelle der gewählten Lagrange-Polynome noch zu prüfen.
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Zusammenfassung

Der vorliegende Bericht befaßt sich mit einer Verfeinerung der
Belastungsverteilung, die der Versuchslastmethode bzw. dem

Lastaufteilungsverfahren zugrunde liegt. Diese beiden Berechnungsmethoden

sind dem Verfahren nach identisch; sie unterscheiden sich
nur dadurch, daß die Lastaufteilung zwischen Bogen und Kragträgern,
in die das Tragwerk unterteilt gedacht wird, bei ersterem durch
Probieren, also versuchsmäßig, und bei letzterem durch Auflösen
eines Gleichungssystems ermittelt wird. Es ist allgemein üblich,
die Belastungen der einzelnen Traglamellen polygonal durch
Überlagerung linearer Dreiecklasten anzusetzen. Eine Verfeinerung
wird durch die Wahl stetiger Funktionen und zwar von Lagrange-
Polynomen erreicht. Dies ermöglicht eine Reduzierung der
Netzteilung, d.h. man kann mit einer geringeren Anzahl Bogen und

Kragträgern das Auslangen finden, ohne das Ergebnis zu schmälern,
wie in einem Zahlenbeispiel gezeigt wird. Mit einer verringerten
Anzahl von Netzpunkten ist auch ein kleineres Gleichungssystem
verbunden, was im besonderen bei mehrfachen Ausgleichen zur
Herabsetzung numerischer Ungenauigkeiten wie auch zur Verminderung
des Rechenaufwandes angestrebt wird.

Ferner kann man in der Berechnung der Kragträger, deren geometrische

Eigenschaften fast durchwegs nicht explizit darstellbar
sind, ebenfalls Lagrange-Polynome vorteilhaft verwenden, so daß

die geometrischen Werte und Materialdaten nur in den Kreuzungspunkten

gegeben sein müssen.

Summary

The paper deals with a refinement of the load distribution upon
which the Trial Load Method and the Load Distribution Method

are based. Both methods of analysis are identical with respect
to the procedure, they only differ in that the distribution of
loads between arches and cantilevers will be found by trial with
the first method and by solving a system of linear equations with
the latter. Generally the loads of the various elements are
approximated polygonally by the superposition of linear triangular
loads. A refinement is achieved by the use of continuous and smooth

functions of Lagrangian polynomials. This allows a reduction of the
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grid, thus a decreased number of arches and cantilevers suffices
without impairing the final results as is shown in a numerical
example. A reduced number of nodes also yields a smaller system
of equations particulary endeavoured in multiple adjustments for
a reduction of both numerical inaccuracies and computation time.
Furthermore Lagrangian polynomials are advantageously applied in
determining functions for geometrical properties which in most
cases for cantilevers cannot be established explicitly so that
geometric and material data only need be given at points of
intersection of arches and cantilevers.

Résumé

Ce rapport s'occupe d'un raffinement de la distribution de charges,
basé sur le Trial Load Method et la méthode de distribution des

charges. Ces deux méthodes de calculer sont identiques à l'égard
de procédure. Elles ne se dinstinguent que par la façon de trouver
la distribution de charges entre les arcs et les consoles. Selon la
première méthode on trouve la distribution par essai et selon la
seconde par résolution d'équations linéaires. Usuellement on fait
la disposition des charges d'arcs et des consoles polygonales par
superposition des charges triangulaires linéaires. Un raffinement
est obtenu par le choix des fonctions continus, c'est à dire des
polynômes Lagrange. Ça donne la possibilité de réduire le partage
de grille, c'est à dire une plus petite nombre d'arcs et de consoles
sera suffisante, sans amoindrir le résultat comme le montre un
exemple exposé. Avec un nombre rédiut de noeuds le système d'équation
devient plus simple comme souhaité dans les multiples ajustements
pour diminuer des inexactitudes numériques et de la durée de

calculation. En outre, pour la présentation fonctionelle des
valeurs géométriques, lesquelles ne sont pas présentables
spécialement pour les consoles d'une manière explicite, on utilise
avec avantage les polynômes Lagrange,pour que les valeurs géométriques
et les indications de matériaux ne sont demandé que dans les noeuds.
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Fig. 1.
Dreieckförmige Kragträger-
Einheitslast
Triangular unit cantilever load
Charge unitaire triangulaire
de console

Fj-K-

Typische Kragträgerbelastung,
polygonal verteilt

Typical cantilever load
polygonally distributed

Charge typique le long de la console
distribution polygonale

I
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Einheitslastpolynom
Unit load polynomial
Polynome de charge unitaire

Fig. 4.
Glatte Funktion der Lastauf-

teilung
Smooth function of load

distribution
Le cours continuelle de la

distribution de charge

Kartesisches Koordinatensystem Positive Schnittgrößen
Cartesian co-ordinate system Positive forces and moments

Système coordonnée perpendiculaire Directions positives des
forçes et des couples



Fig- 7.
Einheitslastpolynom
Unit load polynomial
Polynome de charge unitaire

FiK- 8.
Kragträger-Horizontalschnitte
positive Lasten und Schnittgrößen
Horizontal cantilever sections,
positive unit loads, forces and
moments

Sections de console horizontales,
directions positives des
charges unitaires et valeurs
de sections
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Symmetr. Parabelsperre, Betechnungsrost, a) feines und b) großes Netz
Symmetrical parabolic arch dam, a) fine and b) coarse grid system
Barrage symmetrique parabolique, svstème de grille avec partage

a) étroit et b) étendue
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