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Constitutive Model for the Triaxial Behaviour of Concrete
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SUMMARY

This paper describes different models for the failure surface and the constitutive behaviour
of concrete under triaxial conditions. The study serves two objectives, the working stress
design and the ultimate load analysis of three-dimensional concrete components.

In the first part a three parametey failure surface is developed for concrete subjected to
triaxial loading in the tension and low compression regime . This model is subsequently refined by
adding two additional parameters for describing curved meridians, thus extending the range of appli-
cation to the high compression zone.

In the second part two constitutive models are formulated for elastic perfectly plastic be-
haviour in compression and elastic perfectly brittle behaviour in tension. Based on the normality
principle, explicit expressions are developed for the inelastic deformation rate and the correspon-
ding incremental stress=strain relation . Thus these models can be readily applied to uvitimate load
analysis using the initial load technique or the tangential stiffness method.

Dedicated to the 60th birthday of Professor Dr. Drs.h.c. J.H. Argyris.



1. INTRODUCTION

Over the lost two decades a profound change has taken place with the appearance of digital
computers and recent advances in structural analysis [1], [2], [3]. The close symbiosis between
computers and structural theories was instrumental for the development of large scale finite element
software packages [4] which found a wide range of application in many fields of engineering
sciences. _

The high degree of sophistication in structural analysis has clearly left behind many other
disciplines,one of them being the field of material science. The proper description of the relevant
constitutive phenomena has posed a major limitation on the analysis when applied to complex ope-
rating conditions.

In the following a constitutive model is presented for the over load and ultimate load ana-
lysis of three~dimensional concrete structures, e.g. Prestressed Concrete Reactor Vessels and Con-
crete Dams. Considering the size of finite elements in a typical idealization one is clearly dealing
with material behaviour on the continuum level, in which the micro structure of plain and rein=-
forced concrete components can be neglected. This scale effect of the analysis allows a macro-
scopic point of view according to which material phenomena such as cracking can be simulated by
the behaviour of an equivalent continuum,

The objective of this study is twofold: First a mathematical model is developed for the
description of initial concrete failure under triaxial conditions. Subsequently, this formulation is
applied to construct a constitutive model for the over load and ultimate load analysis of three-
dimensional concrete structures. Alternatively, the failure surface can be applied to working stress
design using relevant safety philosophies.

In the first part a three parameter model is developed which defines a conical failure sur-
face with non~-circular base section in the principal stress space, thus the strength depends on the
hydrostatic as well as deviatoric stress state. The proposed failure surface is convex, continuous
and has continuous gradient directions furnishing a ciose fit of test data in the low compression range.
In the tension regime the model may be augmented by a tension cut-off criterion. This basic formu-
lation is refined in Appendix il by a five parameter model with curved meridians which provides a
close fit of test data also in the high compression regime.

Subsequently, a material model is constructed based on an elastic perfectly plastic formu-
lation which is augmented by a brittle failure condition in the tensile regime. In this context
equivalent constitutive constraint conditions are developed, based on the “normality” principle,
which can be readily applied to the finite element analysis via the concept of initial loads.

In the past considerable experimental evidence has been gathered which could be used for
the construction of a triaxicl failure envelope of concrete. However, most of the data were ob -
tained from tests with proportional loading and uniform stress or strain conditions which were distorted
by unknown boundary layer effects. For the ultimate load analysis via finite elements these two
assumptions are clearly invalid. The non-linearity is responsible for local unloading even if the
structure is subjected to monotonically increasing stresses. Moreover, the action of a curved thick-
walled structure is controlled by non-uniform stress distributions, even if global bending effects and
local stress concentrations are neglected for the time being. However, for obvious reasons it is
customary to assume that test results from uniform stress~ or strain experiments can be used to predict
the failure behaviour of structural components subjected to non-uniform stress or strain conditions.
One should be aware that this fundamental hypothesis has little justification, except that it is at
present the only realistic approach for constructing a phenomenological constitutive law. The
actual mechanism of crack initiation and crack propagation could in fact differ fundamentally
between uniform and non-uniform stress distributions.

Considerable test data has accumulated on the multiaxial failure behaviour of mortar and
concrete specimens subjected to short term loads. The experimental results can be classified into
tests in which either two or three stress components are varied independently. To the first category
belong the classical triaxial compression tests on cylindrical specimens (triaxial cell experiments)
[5 ], [6 ], [7 1 [8], [9] and the biaxial tension-compression tests on hollow cylinders [10],



11]. In addition, there is the class of biaxial compression and tension—compression tests on slabs
[12], [13], [v4], [35], [16], [17], [18], [19]. The second category contains experi-
ments in which cubic specimens are subjected to arbitrary load combinations [20], [2]] . Some
of these types of tests are presently still being processed [22] , [23]. [24] "

So far few attempts have been made to utilize this experimental evidence for constructing
a mathematical model of the triaxial failure behaviour of concrete. A comprehensive study of this
problem was undertaken in [25], for which similar conclusions were reached in [26], [27] .
All three models fall into the class of pyramidal failure envelopes which have been examined
extensively within the context of brittle material models as generalizations of the Mohr-Coulomb
criterion {28]. In the same publication different modifications of the Griffith criterion are
discussed, which have also been applied in [20] to model the failue surface of cubic mortar
specimens in the tension-compression regime.

None of these previous studies on failure envelopes was directed towards the non-linear
analysis of concrete structures. _To this end a number of rather simple material formulations were
reviewed in [29] ; [30] i [31] and applied to the ultimate load analysis of different concrete
structures.,

2, TRIAXIAL FAILURE SURFACE

In the following a mathematical model is developed for the triaxial failure surface of con-
crete type materials. Assuming isotropic behaviour the initial failure envelope is fully described
in the principal stress space.

Figure 1 shows the triaxial envelope of concrete type materials. The failure surface is
basically a cone with curved meridians and a non-circular base section. The limited tension
capacity is responsible for the tetrahedral shape in the tensile regime, while in compression a
cylindrical form is ultimately reached.

For the mathematical model only a sextant of the principal stress space has to be considered,
if the stress components are ordered according to 6,> ©, » 6, . The surface is conveniently
represented by hydrostatic and deviatoric sections where the first one forms a meridianal plane
which contains the equisectrix ©,= 6, » 6, as an axis of revolution . The deviatoric section lies in
a plane normal to the equisectrix, the deviatoric trace being described by the polar coordinates

r, @ , see Fig. 2.
Basically, there are four aspects to the mathematical model of the failure surface:

1. Close fit of experimental data in the operating range.
. Simple identification of model parameters from standard test data.

. Smoothness - continuous surface with continuously varying tangent planes.

oW N

. Convexity - monotonically curved surface without inflection points.

Close approximation of concrete data is reached if the failure surface depends on the
hydrostatic as well as the deviatoric state, whereby the latter should distinguish different strength
values according to the direction of deviatoric stress. Therefore, the failure envelope must be
basically a conical surface with curved meridians and a non-circular base section. In addition,
in the tensile regime the failure suface could be augmented by a tension cut-off criterion in the
form of a pyramid with triangulor section in the deviatoric plane.

Simple identification means that the mothematical model of the failure surface is defined
by a very small number of parameters which can be determined from standard test data, e.g.
uniaxial tension, uniaxial compression, biaxial compression tests, etc. The description of the
failure surface should also encompass simple failure envelopes for specific model parameters. In
other words, the cylindrical von Mises and the conical Drucker-Prager model should be special
cases of the sophisticated failure formulation.




Continuity is an important property for two reasons: From a computational point of view,
it is very convenient if a single description of the failure surface is valid within the stress space
under consideration, From the theoretical point of view the proposed failure surface should have
a unique gradient for defining the direction of the inelastic deformations according to the
'normality principle'. The actual nature of concrete failure mechanisms also supports the concept
of a gradual change of strength for small variations in loading.

Geometrically, the smoothness condition implies that the failure surface is continuous and
has continuous derivatives .Therefore, the deviatoric trace of the failure surface must pass through
r and r, with the tangents ¢, and t, at 8- 0° and 8- ¢0°, see Fig. 2. Recall that
for isotropic conditions only a sextant of the stress space has to be considered, 0<©% 60°.

Convexity is an important property since it assures stable material behaviour according to
the postulate of Drucker [32], if the "normality" principle determi- s the direction of inelastic
deformations. Stability infers positive dissipation of inelastic work d.-ing a loading cycle
according to the concepts of thermodynamics . Figure 3 indicates thai convexity of the overall
deviatoric trace can be assured only if there are no inflection points and if the position vector
satisfies the basic convexity condition

. where L= r (0= -°,120°240)

T. - r(0=€9,180",300) ()

Continuity infers compatibility of the position vectors and the slopes ¢t 8=0" and 0- 60"
Consequently, there are at least four conditions for curve-fitting the deviatoric trace within

0°< 84 60° In addition, the convexity condition implies that the curve should have no inflection
points in this interval, thus the approximation can not be based on trizonometric functions [30] or
Hermitian interpolation. If the curve should also degenerate to a circle for 1, =1, , thenan
elliptic approximation has to be used for the functional variation of the deviatoric trace. The
ellipsoidal surface assures smoothness and convexity for all position vectors r  satisfying

Ll-r,,sr<r,. (2)

The geometric construction of the ellipse is shown in Fig. 4, the detxils of the derivation are given
in the Appendix |. The half axes of the ellipse a, b are defined in terms of the pasition vectors
r,t by

2Rt S

*  r(n-2n)

a
Br, - 41, (3)
[ § L
b = 2-". -5!‘.!‘._ *Lr._
4r -8n

The elliptic trace is expressed in terms of the polar coordinates r,© by

1 'y jé'
an (r- 1) cos 0+ n(zr-r)[4(i-r)cod® 4 Bri-4n] (4a)

8- 4(Rt- 1) cos® + (r.-2v)"

with the angle of similarity ©

G, + G, ~26; (4b)
iz [(G’;G,_Yu (6.-G) (Gs—Fj])i-

cos® =



In the following the deviatoric trace is used as base section of a conical failure surface
with the equisectrix as axis of revolution. A linear variation with hydrostatic stress generates a
cone with straight line meridians. In this case the failure surface is defined in principal stress
space by a homogeneous expansion in the "average™ stress components 6, , Ta and the
angle of similarity & .

RS Ak ®

The average stress components ©a, ta represent the mean distribution of normal and shear
stresses on an infinitesimal spherical surface. These values are normalized in the failure condition
eq. (5) by the wuniaxial compressive strength £, . The stress components are defined in terms of
principal stresses by

6“_ = -Is_ (El + sl." 55)

(6)
L
ta T [(c.-sS‘+ (5-6D) + (B3-S ]

These scalar representations of the state of stress at a point are related to the stress components on
the "octahedrol" plane 6, , t. by

s Bo (7o)

Ta= Tg To

The average stress components also correspond to the first principal stress invariant T, and the
second deviatoric stress invariant Iu according to

B'¢= -;_ I|

K L
ta= |2 1p, - ]—E (rtar Y

(7b)

For material failure, $(® )=0 , the following constraint condition must hold between
the average normal stress and the average shear stress

"E’ . r(O)[l-'%;—:; (8

The free parameters of the failure surface model £ , n  and I, are identified below from

typical concrete test data, such as the uniaxial tension test §¢ , the uniaxial compression test
feo and the biaxial compression test §, . Introducing the strength ratios «y .

a = $¢/ 8o (©)
Ay = 'fcb/{w

the three tests are characterized by
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Substituting these strength values into the failure condition eq. 8, the model parameters
are readily obtained
zZ = oy Mg
oy — Ay (] ])
R e[ Y%
' E 2oy +0ip
r = o O3
* E S0ty g + iy~ g
The apex of the conical surface lies on the equisectrix at
G
The opening angle ¢ of the cone varies between
+ , = - L t &= O° |
and 3 z . (13)
fan G = -% at 6:c0°

The proposed three parameter model is illustrated in Fig. 5 for the strength ratios &g=1.3
and &3=01 . The hydrostatic ond deviatoric sections indicate the convexity and smoothness of the

failure envelope. The proposed foilure surface degenerates to the Drucker=Prager model of a
circular cone if

or heh-r (14)
Xu
“2 " Feau-Z
In this case the conical failure surface is described by the two parameters £ and T,
| ©a _ | Ta (15)

P ——e——
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The single parameter von Mises mode! is obtained, if in addition



2 = oD
or (16)
oy =1

In this case the Drucker-Prager cone degenerates into a circular cylinder whose radius is defined
by

U

Fo feo (17)
with the strength ratios

Ko = g =1 (18)

Figure 6 shows a comparison between the failure surface and experimental data reported in
[2]] . Close agreement can be observed in the low pressure regime for the strength ratios ag=1.2
and «,+0.15 . In the high compression regime there is considerable disagreement mainly along the
compressive branch. Therefore, the three parameter model is refined in the Appendix |l by two
additional parameters, extending the range of application to the high compression regime. This
five parameter model establiishes a failure surface with curved meridians in which the generators are
approximated by second order parabolas along 8= 0" and 8+ ¢O" with a common apex at the
equisectrix, see also Fig. 11.

Figure 7 shows the biaxial failure envelope of the three parameter model for three different
strength ratios ®y=13, wp=0l ; &,=10, &z=00R and AL=13, xgza OIS
A comparison with test data from [fB],[ZI] indicates that the shear strength is overestimated consi-
derably because of the acute intersection with the biaxial stress plane. However, if we consider
the dominant influence of the post-failure behaviour on the structural response [30], there is little
reason for further refinements of the initial failure surface model.

3. CONSTITUTIVE MODEL

In the following the previous model of the failure envelope is utilized for the development
of an elastic perfectly plastic material formulation in compression. The constitutive model is sub-
sequently augmented by a tension cut-off criterion to account for cracking in the tension regime.
In both cases it is assumed that the normality principle determines the direction of the inelastic
deformation rates for ductile as well as brittle post failure behaviour.

3.1 Elastic Plastic Formulation

Inviscid plasticity is the classical approach for describing inelastic behaviour via incremen-
tal stress—strain relations. The constitutive model is based on two fundamental assumptions, an
appropriate description of the material failure envelope and the definition of inelastic deformation
rates e.g. via the normality principle.

a. Yield Condition

The yield surface serves two objectives, it distinguishes linear from non-linear and
elastic from inelastic deformations. The failure envelope is defined by a scalar function of stress,
£(® -0, indicating plastic flow if the stress path intersects the yield surface. For concrete
type of materials the yield condition can be approximated by the three parameter model shown
in Fig. 5 or more accurately by the five parameter model developed in the Appendix IlI.

b. Flow Rule

For perfectly plastic behaviour the yield surface does not change its configuration
during plastic flow, hence the stress path describes a trajectory on the initial yield surface, while



the inelastic strains increase continuously. In this case the inelastic deformations do not contri-
bute to the elastic strain energy, thus the inner product of plastic strain and elastic stress

rates must be zero
+ £ -

s -° (19)*

In other words, the plastic strain rate must be perpendicular to the yield surface

=N A (20)

where the normal n s the unit gradient vector of the yield surface

2¢/€ 1)
" Tag/aw®]

Explicit expressions of /o8t  are developed in Appendix lll for different yield surfaces.

The normal defines the direction of the plastic strain rate, the length of which determines the
loading parameter X . The normality condition follows from Drucker's stability postulate which
assures non=-negative work dissipation during a loading cycle, also inferring convexity of the yield
surface. For perfectly plastic behaviour the material stability is "indifferent" in the small,
corresponding to the "neutral" loading condition for which initial yield and subsequent flow is
governed by

$#@ -0 and $(€y-0 (22)
The consistency condition implies that

. a . ’

pwy - 2% €. 0 (23)

This statement is clearly equivalent to the normality principle stated in eq. (19).

c. Incremental Stress=Strain Relations

In the following an elastic perfectly plastic consitutive model is derived using the
previous statements and the kinematic decomposition of the total deformations

¥-eq, o §-éne (24)
The linear elastic material behaviour is given by the rote formulation of generalized Hooke's law

- Ei- E(3-v) 29
Substituting the stress rate into the consistency condition, eq. (23), we obtain

a d t ..

Zes-nE(z-w (26)
This expression yields for the undetermined loading parameter

n E(3-nX)-o @

and hereby ) | tE .
= —_ N
A nNEn L) (28)

x The dot indicates the rate of change.



The plastic strain rate follows from eq. (20)
o . _ \ + . (29)
'lp—l'I}\- ntEn nnEr
The incremental stress=strain relations are obtained by substituting 1'1, into the expression of
the stress rate, eq. (25)

. } t *

&-E(I.-wEn "NE)Y o
Note the linear relationship between the stress and deformation rates in eq. (30)

€-Fy (31

The tangential material law ¥ s defined by

¥- E(I.- wen nn E) (32)

For perfectly plastic behaviour, ¥ depends only on the elastic properties and the instantaneous
stress state via M . The second term of eq. (32) represents the degradation of the material
constitution due to plastic flow.

3.2  Elastic Cracking Formulation

Small tensile strength is the predominant feature of concrete-type materials. In the
following a simple constitutive model is developed for perfectly brittle behaviour in the tensile
regime. In analogy to the elastic plastic formulation the elastic cracking model is based on two
fundamental assumptions, a tension cut-off criterion for the prediction of cracking and an appro-
priate description of inelastic deformation rates e.g. via the normality principle.

a. Crack Condition

The tension cut~off criterion distinguishes elastic behaviour from brittle fracture, i.e.
separation of the material constituents due to excess tension. To this end it is assumed that the
scale of observation justifies a continuum approach. For concrete-type materials cracking may be
predicted by the single one parameter model based on the major principal stress

.F(c) = §,-5g with 626,36, (33)

where ©; corresponds in general to the uniaxial tensile strength §, . The failure surface is
shown in Fig. 8, which indicates the pyramidal shape and the triangular base section in the
deviatoric plane. Alternatively, the tension cut-off condition could also be expressed in terms of
the three parameter model of the previous section or the five parameter model developed in

the Appendix Il.

b. Fracture Rule

For ductile behaviour in the post failure range the inelastic deformation rate -due to
cracking is derived exactly along the formulation of an elastic plastic solid. The ductile
post failure behaviour forms an upper bound of the actual softening behaviour [30] , which may
develop in concrete components due to reinforcements, dowel action and aggregate interlock.

In the following the case of perfectly brittle post-failure behaviour is discussed, since it
requires slight modifications of the previous constitutive model for an elastic perfectly plaostic solid.
In analogy to elasto-plasticity the inelastic deformations due to cracking %) do not contribute to
the elastic strain energy

ot s
n.§ =20 124\
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This normality principle corresponds to the flow rule of plasticity stating that the inelastic strain
rate due to cracking is perpendicular to the plane of fracture

.-n (35)

For the maximum stress tension cut-off criterion the normal vector fy s defined by the direction
of the major principal stress; thus in the principal stress space

_ o$/08€* 36
N = seoe € =4

where @, is the unit vector
@ = |1,0,0,0,0,0} (37)
For perfectly brittle behaviour the loading parameter 5\ is determined from the softening condition
$(®)=-0 " ond 5}(83=-va¢ (38)
In this case the consistency condition infers that

TS = (29)

¢. Inelastic Strain Increments

In the following an expression is derived for the inelastic deformation rates due to
cracking. Substituting the stress rate expression eq. (25) into the consistency condition eq. (39)

A&-a E(Fe)) (40)

we obtain an expression for the undetermined loading parameter A

+ :
-8 \) =-% , 41)
and hereby € E(U‘ e, ) ¢

L] t Ad
A = ?%E_e. (e.E T‘"Wa) (42)

Note the equivalence to the elastic plastic formulation in eq. (28) except for the release of &,
due to brittle softening. The resulting inelastic fracture strain rate follows from eq. (35)

‘hc_’ n)ﬁe\).\ (43)

. t .
.- erEe, (e @ Eyres

The first portion of this expression can be used to construct incremental stress-strain rela-
tions in analogy to the elastic plastic formulation, see eq. (30). This part would correspond
exactly to a ductile cracking model in which the major principal stress is kept constant at the
tensile strength G,=%e . The corresponding tangential material law would become tronsversely
isotropic with zero stiffness along the major principal axis. Additional cracking in other directions
can be considered accordingly.

The second portion of eq. {43) represents the sudden stress release due to brittle fracture ,5; ,
which'is projected onto the structural level by a single initial load step in the analysis.
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3.3  Tronsition Problem

The previous rate formulation for elastic plastic and brittle behaviour is valid in a diffe-
rential sense only. In a numerical environment clearly finite increments prevail during numerical
integration of the rate equations L33J, [34]. This approximation problem is magnified by the
sudden transition from elastic to plastic or elastic to brittle behaviour. In the latter case the dis-
continuity of the process is further increased due to the immediate stress release if the failure
condition has been reached. Clearly, the success of the numerical technique depends primarily on
the proper treatment of the transition problem for finite increments.

Consider the most general case of a finite load step shown in Fig. 9. At the outset we
assume that the stress path has reached point A for which $(8®,)< O indicates an elastic state.
Due to the finite lood increment a fully elastic stress path would reach point B penetrating the
yield surface at C for proportional loading. The condition (%) >Oviolates the constitutive
constraint condition

-?(‘ Y €0 (45)

and suggests two strategies for numerical implementation.

a. Proportional Penetration Method

Assuming proportional loading the load increment is subdivided into two parts, an
elastic portion for the poth A ~C and an inelastic portion governing the behaviour after the
failure surface has been reached at C. The evaluation of the penetration point C reduces to the
geometric problem of intersecting a surface with a line, a task which is non-linear for curved
failure envelopes. The computation of the stress trajectory on the yield surface involves the
numerical integration of

T=
G -] ®dg (46)

since the tangential material law varies with the current state of stress. In addition we have to
assume that the inelastic strains increase proportionally from ¥:to ¥a. In numerical calculations
additional corrections are required at each iteration step to place the stress path back onto the
yield surface [37] .

b. Normal Penetration Method

In this scheme we assume that the elastic path reaches the yield surface at the inter=-
section with the normal M, . The evaluation of the foot point D reduces to the geometric: prob-
lem of minimizing the distance between B and the failure envelope, see Fig. 9

d - (‘,;' s,,f (5; 533 - Minimum (47)

The extremum condition is used to determine the components of &, by solving the linear system
of equations,

3d
5%, © (48)

subjected to the constraint condition
2(8,) =0 #9)

Note that the loading parameter A is proportional to the distance d, thus the length of the
inelastic deformation increment is determined from

- d
A WER =0
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where the normal is defined by the stress at point D

2%/2€,

- (C3)
[9§/3%,1

n

In principle both methods are feasible, yielding stress values which satisfy the constitutive
constraint condition. Both formulations distort the actual path of evolution, an effect which is
reduced primarily by using smaller load increments. From the standpoint of computer application
the normal penetration approach is more efficient than the proportional penetration method, since
the integration of eq. (46) is avoided.

4, CONCLUDING REMARKS

Two topics were discussed, an appropriate model for concrete failure under triaxial con-
ditions and the ensuing constitutive law for elastic perfectly plastic behaviour in compression and
elastic perfectly brittle behaviour in tension.

First o three parameter failure surface was developed providing a close fit of concrete data
in the low compression regime. The mathematical model establishes a convex failure envelope
which is continuous with continuous first derivatives. For application in the high compression
regime the formulation was extended to a five parameter model introducing curved meridians at the
hydrostatic sections €=0° and ©:60°.

Subsequently, those failure concepts were applied to construct a constitutive model for
elastic perfectly plastic behaviour in the compression regime. An analogous formulation was
developed for the elastic perfectly brittle behaviour in tension using a strain softening plasticity
formulation. Both constitutive models were based on appropriate failure descriptions and the
normality principle determining the direction of the inelastic deformation rates. For numerical
implementation the transition problem was studied in the light of finite load increments. Two
penetration methods were explored for decomposing the total deformation rate into elastic and
inelastic components. The normal penetration scheme offers computational advantages, in which
case the transition point is determined by the intersection of the normal with the yield surface.

Some of the aspects above have been examined numerically in {30]. The unified consti-
tutive model is presently incorporated in the finite element software system SBB which is developed
at the ISD for the analysis of prestressed concrete reactor vessels | 35].

At the present state there is little need for further refinements of the failure surface model.
Future research should be rather directed towords the development of more sophisticated theories to
trace the actual fracture mechanism under non-uniform stress conditions, Clearly, the two extreme
concepts of brittle fracture and ductile yielding provide nothing but lower and upper bounds of the
real behaviour in the post-failure regime and lead to a wide variation of the structural response
[30]. The failure condition (% )=0 alone is insufficient, since the mechanism of crack propa-
gation depends strongly on the distribution of stresses.

In addition, the normality principle should be revised since considerable dilatancy effects
are introduced by the proposed model which were observed experimentally only in the vicinity of
failure [24]. To this end the inelastic volumetric response could be controlled by an elliptical
cap of the failure surface under hydrostatic compression [36] .
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Al. ELLIPTIC TRACE OF FAILURE SURFACE

In the following, the curve fitting of an ellipse is briefly summarized in the devia-
toric section of the failure surface. The derivation involves considerable algebra, thus only
the very essential steps are indicated.

Fig. 10 shows the geometric relationships of the ellipse with x.y as principal axes.
The continuity conditions of Fig. 2 imply that the minor y = axis must coincide with the
position vector 1; , and the ellipse must pass through the point T_(w,w) with the normal
n(R/z, 12} . The half axes a.b>  are determined below in terms of the position vectors

v.,r, - The standard form of an ellipse is

L4 1 8
X L (.n

Sampling this equation at the point T, (m, n) yields

m o n . {1.2)

Ny = ?-t —|2- - V\xl nl yL
a with E"&(E*:‘E) {1.3)
z \

Ny - —bri' £

fI'm [i
- B (1.4)
2n A
[N z

These two relations form a condition for a.b

T m Lt

"= Ea (1.5)

The coordinates of the point Y, are readily expressed by the position vectors 1, r, and
the half axis b

p|w

m= r;_

(1.6)

n = L"‘ &"l -z v‘l.)
The half axes a, b are determined if we substitute eqs. (1.6) and (1.5) into eq. (1.2)

"g r;(r.-zv.)‘
@ Sv,- kv, (1.7)

T
Zr.l- g'n o + Zv'-

b = Av,- Sy
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In the following the cortesian description of the ellipse is transformed into the polar coordi-
nates v, &  with the centroid at O. To this end we recall the polar equation of an ellipse
where the pole is ot the centre ' , see Fig. 10

1 T
Lo a b (1.8)
§ T
@ sy * 9% )
The transformation of the 3, { -coordinates into v, & follows from trigonometric relations
and properties of the triangle <, <. P

% r  _ f-b
e - AL T KR (uﬁ-@) (1.9)
Ord 5;1 e \’l + (‘.""33‘- ‘LV (Vl-bj CO'lse (]']0)
Using the trigonometric relation for sums of angles, we obtain from eq. (1.9)
oD = |'L>
cwag = resk - -by (1.11)

§

Substitution into eq. (1.8) yields for the position vector §
I3 v -\:-L—C;L T i % _ L B —jl
I~ Ly cos r.-b) (1.12)

Equating eq. (1.10) with eq. (1.12) establishes the ellipse in terms of the polar coordinates
r,& where 048

al

L T ¢
g}(v.-b)cps% + ab Qlc,cag + 2bvV, 3in S - Y.Low}e

(1.13)

r(e) =

atcost R +» Haw B

Substitution of the half axes a,b into eq. (1.13) yields the finol form of r(B} in terms of
the parameters r,, r,_

v (Ve - 05 ) cos® vy (2v- 1) ‘4('3- K )eos 6+ Bvi- hyyi (1.14)
Alrn-vy") 0t 8+ (h-2v)!

r(e) =

Note that the ellipse degenerates into a circle for  ¥,=V¥. or equivalently a=b.
At the meridians -0 and ©= G the position vector r{@)} turns into r,and v, .
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A ll. FIVE PARAMETER MODEL WITH CURVED MERIDIANS

In the following the three parameter model of Section 2 is refined by adding two
additional degrees of freedom for describing curved meridians. In this way, the failure
surface model can be applied to low as well as high compression regimes .

In contrast to eq. (5) the linear relationship of the average stress components
is replaced by the more general failure condition

3(€) = $(5a,%a,©) = vrrpy T = 2.1)

In this case the constraint condition of material failure, $(® Y-o, infers that the average
shear stress is restricted to

3 = Te) (2.2)

Note that Ta is now a single function of & , 8 instead of being the product of two dis-
joint functions in G4 and © , see eq. (8). As consequence, the proposed five parameter
model removes the affinity of deviatoric sections which was built into the previous three
parameter model.

The failure surface model is constructed by approximating the meridians at 8= 0°
and 8= 60° by two second order parabolas which are connected by an ellipsoidal surface,
the trace of which is shown in Fig. 4, The surface is defined by an extension of eq. {4a) to
incorporate the dependence on the average normal stress G, .

e (1 -1 )eor© + v (Lv.-v) ‘ ACrt-vH) ot O +Sv= iy, ‘
A- ('t"t) Coc 9 * L'g'l“b"

¥ (%, ) = (2.3)

The position vectors v,, v, descrfbe the meridians ot =0 and 8= 60° as functions of
the average stress w,

1

O A~ o 8 o
r.(5a) = L°+L.§g*\hi{; ot ©- 06

The six degrees of freedom Qo,Q,,a4,bs, b, b, are identified below from experimental

data. To this end, the uniaxial tension test §, , the uniaxial compression test §xu and the
biaxial compression test $cu are used in addition to two strength values in the high

compression regime

- ol 8.0
for -2 ¥ R ° (2.5)
‘?c“ S’t= _{% Q,L 0- P

Moreover, the two parabolas have to pass through a common apex e at the equisectrix,
thus imposing an additional constraint condition

Lo 'jo = -_?fu r.(jh - vtcx.\ =0 (2.6)
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The stress states of the five tests are summarized below together with the constraint con-
dition of the common apex.

TEST Ba/fev | Ta/feo & v (%a.9)
%, ¥ s (E x o (B
R P & «u o’ N
-5 g o (s | (2.7)
5= Yo -+ H-—;s 6o’ LACAN
- ou co’ v ()
jo o 6o v, (Ba)

For 8=0° and 8= 60° the transcendental expression of eq. (2.3) reduces to 1 (5a), h(&).
Therefore, only test results along these meridians are used for the identification of the six
parameters oo, a, q,, b, &, by , which involves the solution of a linear problem.

Substituting the first three strength values of eq. (2.7) into the failure condition eq. (2.2)
establishes the parameters a.,, @,, a, at the "tensile" meridian 8= 0°

, t iz
uo = %ku a, - % ¥y ¢ +\l—‘5 oy
) (2.8)
e L (2u - ,,F Ka—Ky
@2 g L -ki)og+ D 2q0+ %s

B §lae-w)- T xam v §0 (2ewroa)

(Zao + K‘.ﬁ (gt— ‘%‘(’u i “ Jiﬁ(ti" %"(!— Mu)

The apex of the failure surface follows from the condition 1, (%a) =0 , hence

(S ¥R 3‘:"' Quic + Qo =©C

-0, - i ﬂut- Lﬂoal (2'9)
i"" = FA-CR

Substituting the second three strength values of eq. (2.7) into the failure condition eq (2.2)
establishes the parameters b, b,, b, at the "compressive" meridian &= 60°
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|=°=—3.,L‘—‘"3be

£ -3
L i U
l:b\= ki“&)hl 35_|
T (< . (2.10
g i 3) - Fe (5 P )
(}+ 5 (- 5 v 5
The proposed five parameter model features a smooth surface since the continuity conditions

of Section 2 are incorporated in the formulation of the position vector, eq. (2.3). The sur-
face is also convex if the model parameters satisfy the following constraints,

b, =

Qe 2O GM Q. .o . a, cC o
L. >0 L, ¢co b. < (2.11)
and in addition » by &O
AN
r(sa) % (2.12)

The five parameter model is illustrated in Fig. 11 where it is compared with experimental data
reported in [21] . Close agreement can be observed for hydrostatic as well as for deviatoric
sections. In the low compression regime the surface strongly resembles a tetrahedron, the planes
of which bulge with increasing hydrostatic compression approximating asymptotically a circular
cone.

in summary, the preposed five parameter model reproduces the principal features of the triaxial
failure surface of concrete: It consists of a conical shape with curved meridians and non~
circular base sections as well as non-affine sections in the deviatoric plane. The five para-
meter model is readily adjusted to fit a variety of simpler failure conditions:

The von Mises model is obtained if

Q.o-t)o Ql’d a.*l:.=a,_=l>-,_=0

(2.13)
The Drucker-Prager model is obtained if
a":L"’ and a.=b, = O (2.]4)
a, = Bl
The three parameter model of Section 2 is obtained if
Lo, S o= b, =
oo ™ oy apd @ © (2.15)
A corresponding four parameter model is obtained if
K- PR - ST Affinity Condition (2.16)
o b b2

Keeping the objective of the failure model in mind local deviations from test results appear
rather meaningless. The main goal of the analysis is a sufficient level of confidence with
regard to serviceability and limit load. The fluctuations of experimental measure -

ments make it desirable that the failure model provides primarily conservative estimates of the
actual strength values.
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Alll.  GRADIENTS OF DIFFERENT FAILURE MODELS

In Section 3 the normality principle is used to establish the direction of the inelastic
deformation rate. To this end explicit expressions are developed below for the gradient
directions of different classes of failure conditions.

a. Tension Cut-off Model

The tension cut-off condition of eq. (33) is the simplest form of a fracture criterion for
brittle materials. It predicts failure if the major principal stress reaches a limiting value

%(G’.) = §5,-5, (3-])

Normally 6, corresponds to the uniaxial tensile strength, £+ . In the case of the
maximum stress criterion the gradient direction is collinear with the unit vector @, ,

ar af o,
E.-2 P - -]1,0,0,0,0,0}% (3.2)

b. Von Mises Model

The von Mises criterion is applied extensively as yield condition for metals. It predicts
plastic flow if the average shear stress Ta , eq. (6), reaches a limiting value ®y

2(ta) = To~ Gy (3.3)

Normally By corresponds to the uniaxial strength &y = r. fcu , eq. 17, or an equivalent
shear strength value . The gradient is in this case collinear with the direction of the devia-
toric stress

3 o Ota _ ! '
S~ or. 56 " Br, o 34

which is defined by

Bn = ‘_3 1.7'75"5"53; ZGL-E"_GI) LES-S'~G-$’O'O ! 011 (3'5)

¢. Drucker=Prager Model

The Drucker-Prager criterion is often applied as yield condition for rocks and soils. It pre=
dicts failure if the average stresses &4, T, satisfy the constraint condition eq. (15)

¥(Gu,'tqj=‘lt_%+‘:.—°£g—‘ (3.6)

<V

The gradient has in this case hydrostatic as well as deviatoric components. From the
chainrule of differentiation we obtain

5 20 e B Dta
_Last - %W+ A= (3.7)

The hydrostatic contribution follows from the first term

5. 08% ~ 3fw 3 ©: (3.9
with . '
e, - L" by ¥, 0»0)01
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The deviatoric contribution follows from the second term

8 9% _ ! I
. o - I ot °° (A
The deviatoric stress &5, is defined in eq. (3.5).

d. Three Parameter Model

The three parameter model of Section 2 applies to concrete type materials. It predicts failure
if the averoge stresses 6., ta and the angle of similarity € satisfy the constraint condition
eq. (5)

$(a,%a, ©) = & 7 ¢ 5 —;—‘j— - (3.10)

The position vector r(B) is given in eq. (4a), thus the gradient direction has three contri-
butions according to the chainrule of differentiation

56 - 3T ¢ B T T B e B

The hydrostatic component corresponds to that of the Drucker-Prager model
M \ i 3,12
%;La ’Jl"* - 2 ¥cu 3 e 3 ( )
The second term is equivalent to the deviatoric component of the Drucker-Prager model
. . N S W ‘ 3.13
o 28t ~ (@) §w 10T S .13

Another contribution in the deviatoric section follows from the third term of eq. (3.11) which
expands into

) 3 ov 90 :
-9%_ 2@t © 3%" o OFt (3.14)
The first term of eq. (3.14) follows from eq. (3.10)
T i
;‘ir_ i ) (3.15)

The second term of eq. (3.14) involves considerable manipulations because of the complex
structure of r(9), eq. (4a)

re) = 2 (3.16)
where L \

O N (A X R A (A T Ak O By, -y,
and (3.17)

v = 4GS Ywie « (w-2n)

Differentiation of eq. (3.16) yields
Au d"b
¢ . P “HEE (3.18)
P »t
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4 (2v~ V.) (_V:- v.) >ur© 20

da [ &
where 30 A [0 - ) cof O+ 5= huve A
and R G L T (3.19)
The third term in eq. (3.14) involves the differentiation of the angle of similarity @ ,
eq. {(4.b)

ces 9 = ‘% ' (3.20)
where

P= B+%-25; and q= E—O o (3.21)

Differentiation with respect to stress leads to

20 (ot
% - St 3 o 3.22)
\ L8 — P 5%‘
siu @ T
The direction of this component is defined by

%%t= it, i, -2, ©, O, OQS (3.23)
=]

and \

e 3 = >
The three contributions of the gradient 3§/58* can now be assembled from eq. (3.12), eq.
(3.13) and eq. (3.14) , the terms of which are defined in eqs. 3.15), (3.18) and (3.22),

e. Five Parameter Model

In Appendix Il a highly sophisticated model of the triaxial concrete failure surface was
developed based on five parameters. This general formulation encompasses the other surface
formulations for special values of the degrees of freedom. The five parameter model predicts
failure if the state of stress satisfies the constraint condition, eq. (2.1)

. 1 L ™ _
?(F“. Tu_‘ G) = F?E:e_) -?cu | (3.24)

The chainrule of differentiation yields again three contributions which determine the hydro-
static and the deviatoric components of the gradient 9§/9%*

2 dr  9Ba v 0 Gf 9t
%r-'aif’wa'grt* o DB TR U8 (3.25)

The first term represents the hydrostatic component, the individual contributions of which are
expanded below

2 e 1 (3.26)
°r fev  vi(5..6)

: t
(5. 0) = 22

In contrast to eq. (3.17) s, t and~ are now functions of 8 as well as S, . From eq. (2.3)

with




o

it follows that

5 (5,6) = 2 (- wr)es®

£ (5e,0) = (2wvre- ) [A (-0 ) coi0 + Byt - Lv.v._‘_\v" (3.27)
and ©(5a,0) = 4 (W -¢") cod @+ (w-20)"

Eq. (2.4) defines the dependence of the position vectors r, , r, on the average normal
stress S, .

O ul%;‘-t (3.28)
R(E) = bee b3+ b S

Differentiation of v(%a,6) involves considerable algebra.

o at M
v _ D (m * ﬁ» - (Si—t) P& (3 29)
ET L °
The partial derivatives with respect to the average normal stress are given by
s : |
—-SE“ = 2 CO!.Q I(S":‘-V-l)dn— Zv. U‘ AVJ
T 1
%“ - [t"t. Av‘ + ?—('-"t)d't W+ T‘-W (l V. Vo= h\[(‘gh COXGflOU.-llv,)c‘v, +
+ (Bricaa©- lu)ch.]
w = [4(n-v)el0+Sr= Lv.t.—‘\y" (3.30)
and 5 "
-a—'-} = (8%, an'® - Arydr, + (8,020 +2v, - (v)dv,
[+ %
The rate of change of the position vectors v, ,v. follows from
dh = _Ch_ + Lo, Eq‘
Jeo T Ao (3.31)

- i -+ __%’

d LI _?‘o -fcu"
The direction of the hydrostatic contribution is obtained in analogy to the Drucker-Prager
mode| from eq. (3.8)

abBa '
3E - —'3— e, (3.32)
The second and third terms of eq. (3.25) define the deviatoric component of the gradient
direction. These expressions correspond to the formulas derived previously for the three
parameter model, eq. (3.13) ond eq. (3.14), the individual contributions of which are
defined in eq. (3.15), eq. (3.18) ond eq. (3.22).

In conclusion, the normal i is readily determined from the gradient of the failure surface
model

3 /58" |
n - g/ 58 i (3.33)
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In the case of the five parameter mode! the normal is uniquely defined in terms of the
current state of stress 64 ,tq and O in addition to the six degrees of freedom a., a,, ¢,
bo, b, , by . The expressions for the gradient are rother elaborate, but for repeated com-
puter applications "generality" should be the guiding axiom. To this end, the formulation
of the normal for the five parameter model degenerates to the special cases of the von Mises
model, the Drucker=Prager model and the three parameter model.

ZUSAMMENFASSUNG

Die vorliegende Untersuchung behandelt verschiedene dreiachsiale Modelle fur die Ver-
sagensflache und das Stoffverhalten von Beton. Zielsetzung ist die Gebrauchslast- und Grenzlast-
analyse von drei-dimensionalen Betontragwerken.

Im ersten Teil wird ein drei Parametermodell entwickelt fur die dreiachsiale 'Versagens-
flache von Beton im Zug- und niedrigen Druckbereich. Fur Anwendungen im hohen Druck-
bereich wird dieses Modell durch zwei zusitzliche Parameter erweitert, um die- Krummung
in der Meridianrichtung zu erfassen.

Der zweite Teil behandelt zwei Stoffmodelle fur ideal plastisches Verhalten im
Druckbereich und ideal sprdes Verhalten im Zugbereich. Basierend auf dem Normalitutsprinzip
werden Ausdricke fur die nicht-elastischen Verformungsinderungen und die entsprechenden inkre-
mentellen Spannungs-Dehnungsgesetze aufbereitet, die zur Grenzlastberechnung nach dem Ver-
fahren der Anfangslasten oder der tangentialen Steifigkeit Verwendung finden.

RESUME

Il s'agit d'étudier différents modeles triaxiaux pour la surface de rupture et le comporte-
ment du béton. On cherche & analyser la charge de service et la charge limite de structures en
béton 3 trois dimensions.

Dans la premizre partie, on développe un modele & 3 parametres pour la surface de rupture
du béton soumis & des charges triaxiales dans le domaine de traction et de faible compression. Ce
modele est ensuite amélioré par Fintroduction de deux nouveaux parametres pour &tendre le domaine
d'application au cas de la haute compression (on tient ainsi compte de la courbure de la surface de
rupture en direction du méridien).

Dans la seconde partie, on développe deux modéles de comportement pour le cas de com-
portement &lastoplastique parfait en compression et &lastique fragile parfait en traction. D'apres
le principe de normalité, on &tablit des expressions explicites pour les taux de déformation inélas-
tique et pour les lois extensions- contraintes incrémentales correspondantes, qui peuvent étre
facilement appliquées au calcul de la charge limite en faisant appel & la technique de la charge
initiale ou & la méthode de la rigidité tangentielle.
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CAPTIONS OF FIGURES

Fig. 1 Initia: Failure Surface of Plain Concrete under Triaxial Conditions.
Versagensfliche von Beton unter dreiachsialer Belastung .
Surface de rupture initiale du bé&ton soumis & des charges triaxiales.

Fig. 2 Continvity of the Failure Surface.
Vertriglichkeit der Versagensfliche .
Continvité de lo surface de rupture.

Fig. 3 Convexity of the Failure Surface.
Konvexittt der Versagensfltiche .
Convexité de la surface de rupture.

Fig. 4 Elliptic Trace of Deviatoric Section for Mo=1l, &= aut
Elliptischer Schnitt in der Deviatorebene fUr 4, . 1.3, aq =0t
Trace elliptique dans le plan du déviateur pour @, = 1.1, s> ©il

Fig. 5 Three Parameter Model for My= LY, &y = O
' Drei Parametermodell fur o= k1, &y = 0.
Modgle & trois paramétres pour  y, = 1.3, wq= OU

Fig. 6 Fitting of Triaxial Test Data for Low Compression Regime.
Vergleich mit dreiachsialen Versuchsergebnissen im niederen Druckbereich.
Comparaison avec les résultats d'essais triaxioux dans le domaine des faibles
compressions.,

Fig. 7 Fitting of Biaxial Test Data for Different Strength Ratios.
Vergleich mit zweiachsialen Versuchsergebnissen fur verschiedene Festigkeitswerte.
Compcraison avec les résultats d* essais biaxiaux pour différentes valeurs de résistance.

Fig. 8 Maximum Tensile Stress Cut-Off Criterion.
Moximales Zugspannungskriterium,
Critére de traction maximale.

Fig. 9 Transition from Elastic into Inelastic Regime.
Ubergang vom elastischen in den unelastischen Bereich.
Transition du domaine élastique au domaine inélastigue.

Fig. 10 Geometric Relations of Ellipse.
Geometrische Verhiltnisse der Ellipse.
Conditions géometriques def'ellipse.

Fig. 11 Five Parameter Model for Wu> L&, Ky =OI5
funf Parametermodell fur Ky= 18 , g = OIE
Modéle b cinq paramétrespour ., - 1.8 , x4 = 046
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Fig.1 Initial Faiture Surface

Fig.2 Continuity of the Failure Surface
Plain Concrete under Triaxial Conditions

Deviatoric Section

Fig.3 Convexity of the Failure Surface
Deviatoric Section

Fig.4 Elliptic Trace of the Failure Surface
Deviatoric Section for «,= 1.3 , a, = 01
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Hydrostatic Section (6 = 0°) Deviatoric Section (g, = -057, )

Fig.5 Three Parameter Model
Strength Ratios a, = 1.3 , a, = 0

X Experiment {(Launay et al)
e Three Parameter Model
a, =18, a =015

Hydrostatic Section (6 =0} Deviatoric Sections (& = 1,3,5,7 )

Fig.6 Fitting of Triaxial Test Data
Low Compression Regime
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