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Analysis of Podded Boiler Type PCPV with Reference to the

Analysis of Solid of Revolution

Analyse d'un caisson en béton précontraint du type «Podded Boiler»
avec référence à l'analyse d'un solide de révolution

Die Berechnung eines «Podded Boiler Type PCPV» als Umdrehungs Körper

S. KAWAMATA
Associate Professor, Institute of Industrial Science

University of Tokyo, Tokyo, Japan

SUMMARY

Simplified finite element three-dimensional elastic analysis of
the podded boiler type PCPV is discussed.

The first part deals with consistent method of assessing the
effective rigidity of standpipe zone, where finite element analyses
of the unit area of regular hole pattern are utilized.

In the second part "method of sliced substructures", a new method
of simplified three-dimensional analysis of PCPV is proposed. The
stiffness of PCPV is evaluated as the combination of stiffness matrix
of modified axi-symmetric problems and two-dimensional stiffness
matrices of horizontally sliced substructures. This method enables us
to analyze the three-dimensional problems of PCPV allowing for the
effect of boiler pods within the same degrees of freedom as the axi-
symmetric analysis.

The validity of the new method is shown by numerical examples.



1. INTRODUCTION

The finite element method has been widely accepted in the
structural analysis for the design of PCPV because of its efficiency,
accuracy and adaptability to the general purpose programs. Starting
from elastic analysis, the scope of the finite element analysis in the
PCPV design has been broadened to wider fields of heat conduction
problem, time dependent creep problem, tracing of cracking and failure
process, etc.

For the design of PCPV of the gas-cooled reactors and the advanced
gas-cooled reactors, the finite element analysis in the form of axi-
symmetric problems of body of revolution was efficiently adapted,
resulting high accuracy with small degrees of two-dimensional freedom.

However, as discussed in the review by Argyris et.al.fl], having
various kinds of openings such as standpipe zone in the top slab and
coolant circulator deposits, stress in PCPV has some discrepancies
from the axi-symmetric condition.

The effect of the multiple perforations of standpipe zone has been
taken into account by simply reducing the elastic constant within the
framework of the axi-symmetric analysis [2,3,4], But the consideration
of the stress disturbance induced by major openings gives rise to
necessity of three-dimensional analysis [5],

In the early stage, the three-dimensional finite element analysis,
having very large degrees of freedom and band width of the system
stiffness matrices, required huge amount of memory, computing time,
labour for input data preparation and consequently high cost of analysis
The development of the iso-parametric element technique [6] put the
cost of the three-dimensional elastic analysis of PCPV in the range of
reasonable investment for the design purpose [1,7].

The geometry of the podded boiler type PCPV recently developed for
AGR and HTGR, having vertical cavities within the thickness of vessel
wall, leads to the indispensable practice of the three-dimensional
analysis for each phase of design, i.e. elastic, time-dependent and
failure analyses. Even the most efficient program of three-dimensional
elastic analysis seems to require more than ten times of computation
time compared with the corresponding axi-symmetric analysis of the same

accuracy. Even if this situation is acceptable for the elastic analysis
the cost of three-dimensional creep and failure analyses, which involve
numerous repetition of stress redistribution process, will amount to
unrealistic one as a tool for the structural design. Lewis et.al.[4]
discussed this problem and suggested the use of simply rough mesh of
element idealization, But rather poor representation of strain
distribution shown in his example cautions us to the possibility of
getting inaccurate results which will be caused by the errors
accumulated in the course of repeated steps.

Thus, when considering the step analyses for the long-term and
failure situation, the type of finite element three-dimensional
treatment must be determined on the balance between the cost and
labour of computation and the accuracy of the results obtainable at
these expense. In this sense, more efficient scheme of the three-
dimensional finite element elastic analysis of PCPV, which can provide
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the acceptable accuracy within computing time not much exceeding the
one required for the axi-symmetric problems, is worth searching.

The object of this paper is to present a new scheme of simplified
finite element three-dimensional elastic analysis of the podded boiler
type PCPV, in which a modified axi-symmetric treatment of solids of
revolution combined with condensed stiffness matrices of two-dimensional
"sliced substructures" is utilized.

The first part of the paper describes the transformation of the
standpipe zone of top slab into an equivalent homogeneous transversely
isotropic medium which enables more consistent treatment of axi-
symmetric analysis than in the case of simple reduction of Young's
modulus done in the previous practices [4], By the two-dimensional
finite element analyses of the unit area formed by the regular patterns
of perforations, each of the elastic constants of the equivalent
transversely isotropic body is assessed. The same type of the unit zone
analysis was done by Meijers [8,9], The present method has been
developed by the author with collaborators since 1967 [10]. It includes
the evaluation of the equivalent transverse shear modulus and constitutes

an important part of the new method of modified axi-symmetric
analysis.

The latter half of the paper devoted to the description of "method
of sliced substructures". In the method of sliced substructures, the
three-dimensional portion to be analysed is divided into a number of
horizontally sliced layers which have the shape of partial rings having
a circular opening of the boiler pod in them.

A dual system of assumed displacement field is adopted. For the
system of the structural resistance in the direction of the vertical
z-axis and the shearing, resistance of the vertical r-z plane, the well
known displacement mode of axi-symmetric problems is assumed, i.e. two-
dimensional displacements u and w which are constant along the
circumference are taken. Similarly to the axi-symmetric case, the stiffness
based on this system of resistance is evaluated with regard to the
nodal points in the vertical plane of symmetry with regard to the
specified resistance.

On the other hand, the resistance formed by the strain in horizontal
plane is evaluated separately for each layer of the horizontal

slices; each slice is devided into a two-dimensional finite element
mesh in r-0 plane and the stiffness matrix for the total slice area is
formed as the ordinary plane stress problem. Then the unknown
displacements of the interior part of the slice are eliminated by the
static condensation, only the nodal displacements in the radial direction

u on the plane of symmetry being retained as unknowns. The
displacement assumed for this system of horizontal resistance has two-
dimensional freedom in r-0 plane but is constant within the thickness
of the slice.

Both stiffness matrices, one representing axial and shearing
resistance and the other the resistance in the horizontal plane, are
combined on the vertical section of symmetry, taking the nodal
displacements u in the both system as the same unknown. This means
the final system equation has the same degrees of freedom as the
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axi-symmetric problems, i.e. twice the number of nodes In the vertical
section of symmetry.

In this scheme, dual mode of the displacement Is assumed, namely
different assumptions of displacements are adopted for the two groups
of stresses.

Therefore, the present method can be Interpreted as a kind of the
method of partial approximation, which has lately been investigated
by Kikuchi In the field of finite element shell analysis [11-13].
The assumed horizontal displacement fields in the sliced substructures
contain incompatibility in the boundary surfaces between upper and
lower layers, and the convergence criteria is not yet clear for the
present scheme of approximation. Therefore, the validity and the
efficiency of the method must be investigated by numerical experiments
on the actual problems of podded boiler PCPV.

2, EFFECTIVE ELASTIC COEFFICIENTS OF STANDPIPE ZOHE

A method of evaluating the effective elastic constants of the
homogeneous medium equivalent to the standpipe zone of triangular hole
pattern is described here. Because of the regular pattern of hole
arrangement the effective rigidity in respective directions can be
assessed by finite element two-dimensional analysis of the constituent
unit area of the zone.

Transformed homogeneous body is in general anisotropic. As the
cylindrical openings have the axis in the vertical z-direction, it is
clear that the equivalent continuum has the different elastic coefficients

in z-direction and in r-6 plane. In the r-0 plane, it will" have
anisotropy of different kind according to the hole pattern. When

applying the three-dimensional finite elements for this zone in the
analysis of the total vessel, any kind of orthotropy can be assigned
to this part. But in order to apply the axi-symnetric analysis for the
vessel, transformation into an equivalent transversely isotropic body
is required and the averaging of the coefficients is neccessary, when
they have different values in different directions.

Fortunately, a triangular hole pattern, having three equiangular
lines of symmetry, necessarily leads to isotropy in the horizontal
plane, resulting the unique solution of equivalence for the transformed
transversely isotropic body. This condition of the triangular pattern
allows us to obtain all the elastic coefficients by analyzing the
single unit area.

The elastic coefficients for the transversely isotropic body
contain 5 parameters and can be given in the following form [14-16].

dl Ex

°y d 2 di symmetry
<Jz \ _

dä d3 di. '
£z

Tyz / ~
d5 "Yyz

Txz els 7xz

Txy (di-d2)/2 *lfey
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In contrast, In the case of Isotropy, we haye
as

"-parameter coerricients

3c dî £x

°y dî df symmetry Ey

/°z dl df dî Ez

Tyz f (dî-dî)/2 \ yyz
Txz (dî-di)/2 Yxz

Txy (dî-d!)/2 Yxy

(2-a)

where

dî (1-V) E

(1+v)(l-2v)
d?

V E

(1+v)(l-2v) (2-b)

Let the perforated zone of top slab shown in Fig.1 Ca) be considered.
The hole pattern shown in Fig,1(b) is assumed to be infinitively spread
in the x-y plane and the shaded unit area is to be analyzed. The depth
of the slab is assumed also to be infinitive in z-direction.

In order to give the infinitive medium the unit strain in the sense
of mean value, relative displacements are subjected between a paticular
pair of opposite edges of the unit area, while the boundary faces being
kept plane because of the conditions of symmetry. The mean stress
evaluated from the boundary face reactions yields the neccesary effective
coefficients of elasticity.
1) di, : Effective Elastic Coefficient for Normal Stress in z-direction

The effective coefficient di, for 02 can be evaluated, in principle,
from the resultant reaction which is caused by prescribing vertical
displacement <5Z =di to the top surface as shown in Fig.2(a).

O o o o o
o o o o o o

o ooo o o co o o_o_o — ~

%

(a)

f

1 L;
Wm -X

Lx
(b)

Fig.l Standpipe Zone and its Hole Pattern
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While, this state of stress can be realized also by giving the
same displacement to the body, in which the surfaces of the cylindrical
holes are constained by rollers, the constraint forces subsequently
being released as shown in Fig.2(b). The latter release of constraint
will not cause any significant reaction in z-direction when the hole is
not very large. Therefore the effective coefficient can be approximately

represented by

di, a dî (3-a)
where d° : coefficient for isotropic case given in Eq.(2-b)

a A/Ac : (3-b)
ratio of perforated to unperforated areas shown in Fig.2(c)

2) di, d2, d3, : Effictive Elastic Coefficient Derived from Strain in
the Plane of Slab

When we put 1 in Eq.(l), we have

0x d i
ay d2

az d 3

(4)

Therefore, prescribing displacement 6X L as shown in Fig.3, these
coefficients can be determined as the mean intensities of the reactions
in three directions, i.e.

dj 0X Rx/Lyh

d2 0y Ry/Ljçh

d 3 Oz VLfcLy

(5)

Rz

î. ± ±- -L -Î-
Z-JL—3

,T«z=h

jL |el » x

(c)

Fig.2 Assessment of Diagonal Coefficient for z-Direction
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Besides this, giving

Ey 1 in the same

manner, we have another
relation as

ax ] à

ay | Jd
az J d

(6)

t t T î Î
T

Ly

1

- i

s
' i\\A:\\\N\>1

s\\\\
» *

M

Rx

Lx

«z 6x Lx
-Ml

"I
t îi 1 ± 1 X Î.

But the coefficients
become equal to the ones
obtained by the above
analysis as the result
of the reciprocal
theorem.

3) ds : Coefficient for
Transverse Shear

In the infinitive
perforated body, an
uniform_(mean) shearing
strain Yxz is to be
prescribed as indicated
by Fig.4(a). In order to
realize this state, we
prescribe ôz= *1^/2 at the both ends of the solid unit as shown in Fig.4
(b) and (c)

1 r f ^1 V Ï Y

A uL tL L 1i 1L ^

Fig.3 Assessment of Elastic Coefficients
di, d2 and d3

iff V V -7 Vj:
Ti'S "S—A A

(c) Z Î

T
lb

I
=-Lv/2

lb ;K.
|b^ __,ü

a V2
<r

>x
Rxz

<31

Fig.4 Assessment of Transverse Siiear Coefficient, d5
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The resultant vertical force divided gross area of the vertical
end face corresponds to the mean shearing stress t > leading to the
following result :

Kxz
Y ,-Ii d5 (7)TXZ Lyh

5

Though the actual analysis of the solid unit must be carried out by
the use of three-dimensional elements, there is no variation of variables

in the direction of z-axis from the condition of uniform strain.
Thus, applying the condition of

u u(x,y), v v(x,y), w w(x,y) W
to the three dimensional nodal displacements, the problem is reduced to
two-dimensional one with the stiffness matrix being condensed.

Example of Analysis of Effective Elastic Coefficients
As an example, the effective coefficients for standpipe zone of

triangular pattern having the dimensions of

** 83cm, Ly 48cm t
D 60cm (diameter of holes) }

were analysed. The original moduli of elasticity of the concrete were
assumed as

E 3.52 X 106kg/cm2F v 0.17 (10)

The ratio of perforated to unperforated areas for this example Is

a A/Ao VLjcLy 0.645 (11)

From Eqs.(3) and (11) we obtain

d. a dî 0.645 (1~v) E
(12)

(1+v)(l-2v)
For obtaining the coefficients di, d2, and d$, the finite element model
shown in Fig.5(a) was analyzed in plane strain state. Prescribed
displacements of 6X caused the boundary reactions shown in Figs.5(b)
and (c). Vertical reaction resultant ^ was obtained from 0Z in each
element using the ralation of

°z " V Ox + Oy

in the plane strain problem. The final results were calculated as
follows :

d| 7'23 X 106k? 1.50 x 105kg/cm2 (14_a)
Ly h 48.0cm x lcm



9.

d, 3.65 x in kg 0>440 x io5kg/cm* (l=-b)
Lj h 83.0cm x 1cm

Rz 131.2 x 10 6kg
c

d3 0.329 x 10 kg/cm (14-c)
LjjLy 48.0cm x 83.0cm

The reduction of the elastic coefficient from the original solid caused
by the perforations can be represented by the following relations :

dx 0.396 x dî 0.396 (1-v) E

(1+v)(l-2v)

d2 0.568 x d? 0.568 * — > (15)

d3 0.579 x d? 0.579

(1+v)(l-2v)
VE

(1+v)(l-2v)
The equivalent Young's modulas and Poisson's ratio in x-y plane are
correlated to those of the original solid as

E, 0.37 E 1
1

\ (16)
Vl 1.34 v J

For the analysis of the transverse shear coefficient ds, a finite
element mesh shown in Fig.6(a) was used, where the iso-parametric solid
elements of 20 nodes were incorpotated. Prescribing 6^ ±l/2cm on
both end faces, the nodal vertical reactions shown in Fig.6(d) were
obtained. From the resultant of these reactions, the shear
coefficient was obtained as

3 —
R*z

_
^y11 x _ 22.63 x 106kg/cm x 83.0cm

Ly h Ly h 48.0cm x 564cm

0.0694 x 106kg/cm2 (17)
The reduction of the shear coefficient is indicated by the relation

d 5 0.461 G (18)

G E/2 (1+v) dî - d? )/2 :

shear modulas of the unperforated solid
The distribution of the vertical displacement is shown in Fig.6

(b). Fig.6(c) shows the resultant vectors of shear stress component
Txz and TyZ together with its intensity represented by the factor

to the mean shearing stress TxZ

where



E 3.52x10 5kg/cm2

v 0.17

48cm

108 elements

73 nodes

for tot. area

(a) Mesh Division (Plain Strain Probien)

m in CMl CM rH rH

it o o co mf cm m i
I ^ H I I ' i Ry 36.5xl05kg

t M J I Rx=72.3xlOskg

(b) Reactions for Prescribed Displacement 6 83cm

(c) Stress Resultants in z-Direction

Fig.5 Plain Strain Analysis of Unit Area for dJf d2 and d3



F 3.52x1° 5ka/
v 0.17

(a) Prescribed Displacements and
Idealization by Iso-Parametric Flements

KX2 011

-0.2 0.2
'0.2

2.4 1,9

2.5
2.8 —

SL3.

\^.3^ \l.4 \\ V
1A \

V 'X
~ 2.8 —\ \ "-Ox

1.3 \ 2.0 2.5 *~

1 0.9 1.4 1 .q 2.4

(b) Distribution of
Vertical Displacement

(c) Resultant of x and xxz vz
figures : ratio to mean

stress xxz
0.174 0.443 0.414 0.156
A 1.712 1 2.101 1.33718

1.562 3.661 3.387 1.343

E[ 1,712 2.101 1 1.337

0.174 0.443 0.414 0,156

(d) Vertical Nodal Reactions, xio6kg

Fig. 6 Shearing Sires'- Analysis of Unit Solid for d5
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As indicated in this example, the finite element analysis of the
unit area enables consistent assessment of the equivalent elastic
coefficients for the perforated solids with regular hole pattern. It
must be also noted as one of the advantages of this method that it
provides the factors of stress concentration relative to the mean
stress intensity which will be obtained from the analysis of the
transformed homogeneous field. The effect of the steel liner or
reinforcement arround the holes to the effective stiffness can be allowed
for by incorporating the corresponding elements in the finite element
analysis.

3. METHOD OF SLICED SUBSTRUCTURES

In this section "the method of sliced substructures", a new method
of simplified three-dimensional elastic analysis for podded boiler
type PCPV, is proposed.

Main Section

(a) Finite Element Mesh for Main Section

3»x(u)

(b) Finite Element Mesh for Sliced Substructure

Fig. 7 Dual System of Idealization



13.

1) Dual System of Finite Element Idealization
Let the vertical plane of symmetry located between two boiler pods

be called the main section.
Let us idealize the solid portion to be analysed as the combination

of two different kinds of finite element mesh.
The one system of the idealization is to divide the main section

into a rectangular lattice pattern as shown in Fig.7(a), and to assign
two-dimensional degrees of freedom, and to each nodes. This
is the same practice as in the axi-symmetric analysis and the solid is
represented as an assemblies of ring elements. It must be noted that
the arc length of some ring elements is reduced from normal arc length
by the existence of the opening for boiler.

As another system of the idealization, the solid is divided into
layers of horizontal slices. As shown in Fig.7(a), the boundaries of
the sliced layers are situated at the middle height of each lattice of
the mesh for the main section. Therefore the thickness of the felice
becomes h=(a+b)/2 where a and b represent the height of the upper
and the lower lattice, respectively. The reference surface of the
sliced layer is the horizontal plane on the end of which the nodes of
the main section are resting.

Each sliced layer is now subdivided into a two dimensional mesh
in the horizontal plane as shown in Fig.7(b). To each node of this
mesh freedom of displacements uj and Vj > in x- and y-direction
respectively, is assigned. It must be noted that displacement of
the node on one edge of the slice, which is the only component of
displacement as the result of the condition of symmetry, is identical
with the displacement assigned for the node of the main section.

2) Stiffness Matrix for Axial and Shearing Resistances

For the evaluation of the
element stiffness based on the
normal resistance in z-direction
and the shearing resistance in r-z
plane, we assume the displacement
of axi-symmetric distribution

ü ü (r, z)

v v (r, z)
(19)

Fig.8 Distribution of Axi-symretric
Displacement and Strain

which is shown in Fig.8. From
this displacement field, the axi-
symmetric distribution of strain

is resulted as shown in
Fig.8.

The important point is that, in evaluating the element stiffness,
stress components aT and ag caused by £r and e0 are not taken into
account, because these components of resistance are supplemented later
in the form of the stiffness of the sliced layers.
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Thus, the element stiffness matrix Is obtained by the formula

[Ke] \ [B]T [d,] [B] dV (20)
Jvol

where [B] is strain matrix, [Dj] is modified elasticity matrix, both
for the axi-symmetric problem.

This formulation is basically the same to the element stiffness
matrix of the axi-symmetric problem excepting the following two points.

i) In order to exclude the contribution of the resistance in r-0
plane, we use the elasticity matrix [Dj] of the following form:

O} [ D i ] {5} (21-a)

/ ^ \
CTr 0 0 dis 0

00 0 0 d23 0
—

az d3i d32 d33 0

*rz
» J

0 0 0 difi|

(21-b)

Eq.(21-b) means that we suppress the four coefficients in the
ordinary [D] matrix for the axi-symmetric problem, and

ii) For the ring elements which cross the opening for boiler, the
integration is carried out with regard to the actual volume
reduced by the opening.

3) Stiffness Matrix for Sliced Substructures
The sliced layers are a kind of substructures which represents

the partial components of the structural resistance, i.e. the resistance
in the horizontal plane. The resistance of these substructures is to
be combined with the axial and shearing resistances to form a total
stiffness written in terms of the nodal freedom of the main section.

To each sliced substructure, two-dimensional degrees of freedom
were assigned, that is we assumed the distribution of u
and w which is constant within the thickness of the slice as shown in
Fig.9. This means that the assumed distribution for the sliced
substructures contains discontinuity in the boundaries of layers.

For each sliced substructure, the following stiffness ralation
is formulated:

[K] {d} {fs} (22)

where {d} : two-dimensional nodal displacements for the whole area
of a sliced substructure

(fs) : external forces in x and y directions applied to the
nodes in a sliced substructure

[K] • system stiffness matrix for plane stress problem of a
sliced substructure
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It must be noted that the
stiffness matrix [R] in Eq.(22)
is not the one for plane strain
but that of plane stress. The
reason can be explained by the
fact that the constraint forces
existing in plane strain state
was already taken into account
in the stiffness of the axi-
symmetric resistance by taking
the coefficients di3, d23, d3i
and d32 in Eq.(21-b), and
stiffness based on the plane
stress state is to be
superimposed

Now, let us divide the
nodal degrees of freedom of
sliced substructure into two
groups as shown in Fig.10,
namely {ûj} a group of the
radial displacements of the
nodes resting on the main section and {dj
components of all the other nodes.

In order to eliminate the freedom {§
into the following form:

Main Section
<r 0

Substr. a {

substr-b i WB
Substr. c

Substr. d {
y(v)

Li

Fig. 9 Assumed Distribution of Displacement
for Sliced Substructures

} a group of displacement

g} Eq.(22) is rearranged

Kn K12

K2 1 K2 2

where

üx fsx'
— - - - - —

di. fSI
(23)

ux : radial displacement of the
nodes on the main section

: all the other nodal degrees
of freedom

fsl : external force of the nodes
on the main section

fSI : external force of the other
nodes

The well-known procedure of
the static condensation leads to
the stiffness relation with
regard to the retained freedom
{ûx} as follows:

[Kjiu,} ={fT} (24-a)

K—a - A—A {üij

Fig.' 10 Retained and Eliminated
Displacements in Static Condensation
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where [K^ [K„]-[K12] [Kzzf'lKzj] (24-b)

: condensed stiffness matrix for {Uï}

{fI}={fT}-[K12][K22]"1{fn} (24_C)

: reduced external force corresponding to {uj}
The dimension of [KjJ matrix is (m x m), where m is twice the

number of nodes contained in one horizontal line of the mesh of the
main section.

4) Final Equation of Equilibrium
Basing on the fact that the retained degrees of freedom {ut} of

each sliced substructure are identical with the radial components of
the nodal displacements {3} of the main section, the final equilibrium

equation with regard to the nodes in the main section can be
composed by the superposition of the both stiffness relation derived
in the above.

The composition of the final equation can be indicated by the
following form:

{f}

{[K] + [K]}{d}={f}+{f> <25)

where {3} : two-dimensional nodal degrees of freedom of the main
section

{f} : nodal external force in z-direction evaluated for the
total arc length of the ring element
nodal external force in r-direction reduced from
distributed external force on sliced substructure ,c.f.
Eq. (24-c)

[K] : stiffness matrix representing the axi-symmetric system
of resistance

[KI : stiffness matrix representing the resistance in the
horizontal plane derived from sliced substructures

In the final equation, the system stiffness matrix [k] composed from
the element stiffness matrix given in Eq.(20) has the same dimension
and band structure as in the ordinary axi-symmetric problem of the
given idealization of the main section. While, matrix [k] of the
system stiffness matrix is composed of the condensed stiffness matrices

[ÏCJ given in Eq.(24-b) for each substructure by placing them
diagonally.

The composition of [K] matrix can be illustrated with respect to
a simple layout of the main section and the slices shown in Fig.11. Fot-

this model, when we put vector as
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{d} ={Uj W! u2 w2 u3 (26)

matrix and load vectors take the following form.

3i~i, 35~8 3s~l 2

K3

Kb

where

Ùl wi[ U2 w2] U3 W3 Ùit Wi(

* o i * o * o * 0

o o 1 o o o o 0 0

* o 1* oi* o * 0

o o ; o o ; o o 0 0

* o;* o ; * o * 0

0 0 ' 0 0 • 0 0 0 0

* * o T* o * 0
oOOooo 0 0

* : non-zero element

and

f {o fzi o fz2io fZ3i |0 fzi2>

f (f? 0|ff fa

f* oi f 6 0: •if 8 Oi ft o; • 1

M2 0} (29)

Fig. 11 Example of Layout of Main
Section and Substructures
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5) Evaluation of Stresses
Thé nodal displacements of the main section {d} being

{uj} in Eq.(23), yields the nodal displacement
In evaluating the stress in the elements of

substituted back into
of the substructures.
each slice, the effect of Pisson's ratio i.e. 0X and Oy caused by

Èz must be superimposed to the plane stress. Thus the final form
of the stress of the slices is given as follows:

{oe} {ô(Èz) }+{Ö} (30-a)

where {"} {5X öy Txy} : (30-b)

stress of an element of sliced substructure obtained by
using stress matrix for plane stress problem

'Sx El 3

{5 (ez)} sy II E23

0 0
_

(3h-c)

stress induced by èz of the ring elements

It must be noted that, in Eqs.(30), {5} is calculated with
respect to the each element of the substructures while {of(ez)} is
calculated with respect to the each ring element of the main section,
both being to be superimposed according to the geometrical co-relation.

4. EXAMPLES OF ANALYSIS BY THE METHOD OF SLICED SUBSTRUCTURES

In order to illustrate the application of the method of sliced
substructures and to show its validity and efficiency, the following
two simple problems were analysed.

Example 1: Analysis of a Thick-Walled Cylinder without Hole

Thick-walled cylinder partially subjected to inner pressure,
shown in Fig.12(a), was analyzed using both of the ordinaly axi-
symmetric and sliced substructure methods. As the problem is purely
axi-symmetric the method of sliced substructure must lead to the same
result to that of the axi-symmetric analysis. Finite element idealization

shown in Fig.12(b) was used.
Figs.12(c) and (d) shows the comparison of the both analyses

with regard to displacement and stress distribution, respectively, of
the main section. It can be seen that almost identical results were
obtained from both method.

Table I indicates the comparison of computing time for axi-
symmetric and sliced substructure analyses.
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Axi-Symmetric Sliced Substructures

Data Input and
Stiffness Matrix 3.3 sec 38.4 sec.

Solving Eq.

Back Substitution
and Out Put 1.5

2.3

4.6

4.0

Total 7.1 sec. 47.0 sec.
* including 24.0 sec. of matrix inversion for a substructure

Table I Computing Time for Example 1, IH4 360/195

Example 2: Analysis of a Thick-Walled Cylinder with Holes

A thick-walled cylinder of the same dimensions and loading as
Example 1 but having vertical holes like boiler pods was analyzed. The
problem is three-dimensional in this case and the solution obtained bythe method of sliced substructures was compared with that of the
ordinary three-dimensional analysis by the use of iso-parametric elements.

Fig.13(a) shows the definition of the problem. The finite element
idealization used in both method is shown in Fig.13(b).

The comparison between the results from both method is presented in
Figs.13(c) and (d).

CONCLUSIONS

In this paper a simplified method of elastic analysis for podded
boiler type PCPV was presented.

A finite element analyses of the unit area of the hole pattern
enable consistent method of evaluating the coefficients of elasticity of
the transversely isotropic body equivalent to the stand pipe zone of top
slab.
Also, a newly developed "method of sliced substructures" enables us to
analyze the three-dimensional problems of PCPV within the same degrees
of freedom as the axi—symmetric problems, where the disturbance of stress
by the boiler pods is fully allowed for.

For the problems of the same scale experienced in the examples, the
ratio of necessary computing time of axi—symmetric / sliced substructures/
was 7/47respectively. The computing time for the method of substructure can be

further reduced by introducing the iso-parametric two-dimensional
elements in the idealization of the sliced substructures, because a large
part of the total computing time was occupied by the matrix inversion
contained in the static condensation of the substructures.

ACKNOWLEDGEMENTS

The sincere appreciation is expressed to Dr. Y, Hangai, University
of Tokyo; Mr. S. Shioya, Nihon University; Mr. Y. Isobata, Mr. N. Tanaka
and Mr. H. Akiyama, Shimizu Construction Co. Ltd, to whom the author
greatly indepted for their collaboration in all phases of this research.



B/4

ifi
H/4:

H/2

B/2

Ro 15.0m, R^= 6.0m

H= 60.0m

p 45kg/cm2

E= 3.0xl05kg/cm2

v= 0.17

(a) Analyzed Model

Ïtttï
—n —i — —: —i —! —, — -

Main Section

ff)

tt
lLL

^AA

tb
m

tt'L

tt
t/H-
ffl

ïttttL

ff
ttfJtfJJ-

ÏLL
fJt

tfj-fj- ff fjj-fj-
S

ff f ff
WE

Lett

r-~\

Sliced
Substructures

Sliced Substructure

Main Section : 480 elements

273 nodes

21 slices
Each Slice : 144 elements

91 nodes

(b) Finite Element Idealization

AAA

Fig. 12 Analysis of a Thick-Walled Cylinder Partially Loaded by Inner Pressure



0 o.l 0.2
* 1 I

scale

(c) Displacement

Dtcn I 111

TTTttttttd

'ÎTTTTTrrm

kg/cm2

r 100

50

L 0

scale

e»rl I I I I l-r

•Milium-1

kg/cm2
- 10

5

0

scale

(d) Stresses

Fig 12 Analysis of a Thick-Walled Cylinder Partially Loaded by Inner Pressure
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Fig.13 Analysis of Thick-Walled Cylinder with Holes
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Fig. 13 Analysis of Thick-Walled Cylinder with Holes
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Result by Three Dimensional Analysis

(d) Principal Stress Distribution
Fig. 13 Analysis of Thick-Walled Cylinder with Holes
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RESUME

On discute une méthode simplifiée pour 1' analyse élastique
tridimensionnelle par éléments finis d' un caisson en béton précontraint
du type "Podded Boiler".

La première partie traite une méthode pour 1' évaluation de la
rigidité efficace de la zone avec pénétrations, où 1' on utilise des ana
lyses tridimensionnelles par éléments finis de la surface unitaire de

un système régulier de trous.
Dans la deuxième partie on propose la nouvelle méthode des

sous-structures coupées pour 1' analyse tridimensionnelle simplifiée
des caissons.

La rigidité du caisson vient déterminée comme combinaison de
la matrice de problèmes axial-simmétriqués modifiés et des matrices

de rigidité bidimensionnelles de sous-structures coupées horizon
talement. La méthode permet 1' analyse tridimensionnelle des problè
mes de caissons en tenant compte de 1' effet des "Boiler Pods", et en
maintenant les mêmes degrés de liberté que dans 1' analyse axial-sim
métrique.

La validité de la méthode est prouvée par des exemples numériques.

ZUSAMMENFASSUNG

Im ersten Teil wird ein Verfahren beschrieben, das es erlaubt
die effektive Festigkeit von perforierten Zonen zu bewerten mit Hilfe
von Analysen mit endlichen Elementen einer Einheitsflache von
regelmassigen Perforationssystemen.

Im zweiten Teil wird eine neue vereinfachte Methode für tridi-
mensionale Analysen von Spannbeton-Druckbehaltern, die sogenannte
"Sliced-Structures Method" erklärt. Die Steifigkeitsberechnung für
diese Behälter ist eine Kombination der Festigkeitsmatrix von modifi
zierten axialsymmetrischen Problemen und der zweidimensionalen
Festigkeitsmatrix von Querschnitten von Unterkonstruktionen; bei der
Berücksichtigung des "Boiler Pod" Effekts ist der selbe Grad von
Freiheit gestattet wie bei der axialsymmetrischen Analyse. Die
Gültigkeit der neuen Methode wird mit einigen Zahlenbeispielen belegt.
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