Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 17 (1974)

Artikel: Stabilität zweiachsig ausmittig beanspruchter Stahlbeton-Druckglieder

Autor: Buck, P. / Benkert, K.-H. / Schröder, S. DOI: https://doi.org/10.5169/seals-16494

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Stabilität zweiachsig ausmittig beanspruchter Stahlbeton-Druckglieder

Stability of Reinforced Concrete Compression Members subjected to Biaxial Eccentric Loads

Stabilité des éléments comprimés en béton armé chargés excentriquement par rapport à deux axes

P. BUCK K.-H. BENKERT
Prof. Dipl.-Ing. Dr.-Ing.
Bauakademie der DDR, Berlin
Berlin, DDR

S. SCHRÖDER E. REIS
Prof. Dr.-Ing Dipl.-Ing.
Technische Universität Dresden
Sektion Bauingenieurwesen

1. Einleitung

Zur Untersuchung des Stabilitätsverhaltens zweiachsig ausmittig beanspruchter Druckglieder aus Stahlbeton stehen der Praxis nur in unzureichendem Maße Hilfsmittel zur Verfügung. Die in den verschiedenen Ländern geltenden Stahlbetonbestimmungen enthalten deshalb nur unvollständige Angaben für die Berechnung dieser Bauteile oder schreiben die Einhaltung von auf der sicheren Seite liegenden Forderungen vor.

Um diese in der Literatur vorhandene Lücke zu füllen, wurde in Zusammenarbeit zwischen der Bauakademie der DDR, Zentralinstitut Einheitssystem Bau und der Technischen Universität Dresden, Sektion Bauingenieurwesen, eine umfangreiche Forschungsarbeit abgeschlossen. Auf der Grundlage der für die Erfassung des Stabilitätsverhaltens einachsig ausmittig beanspruchter Druckglieder bewährten Voraussetzungen und Annahmen wurden theoretische Entwicklungen zur vorliegenden Problematik durchgeführt. Die dabei gewonnenen theoretischen Ergebnisse wurden experimentell überprüft und zu Ausweichzahlen für die praktische Anwendung aufbereitet. Außerdem konnte zur Erleichterung der praktischen Handhabung ein Näherungsverfahren entwickelt werden, das in die in der DDR geltenden Stahlbetonbestimmungen TGL 0-1045, Ausgabe 1973, aufgenommen wurde.

2. Durchgeführte Untersuchungen

Für die theoretischen Untersuchungen wurden die bereits teilweise in der Literatur begründeten Annahmen eingeführt

- die Aufrißprojektionen der Biegelinie verlaufen sinusförmig
- die Grundrißprojektion der Biegelinie verläuft linear

- die Bruchstauchung des Betons beträgt = 2 0/00
- die Grenzdehnung des Stahles beträgt = 5 0/00
- die Querschnitte bleiben eben
- das Spannungs-Dehnungs-Diagramm des Betons verläuft nach einer quadratischen Parabel
- das Spannungs-Dehnungs-Diagramm des Stahls verläuft idealelastisch und ideal-plastisch
- das Moment 1. Ordnung ist längs der Stabachse konstant, die Differenz zum Moment 2. Ordnung verläuft affin zur Knickbiegelinie.

Die Annahmen über die Form der Biegelinie wurden durch die Untersuchung des Ausweichvorganges eines zweiachsig ausmittig belasteten Druckstabes aus elastischem, homogenem Material überprüft. Die Auswertung der Ergebnisse zeigte, daß mit den getroffenen Annahmen die Verformung eines Druckstabes mit Ausbiegung in zwei Richtungen in guter Näherung beschrieben werden kann.

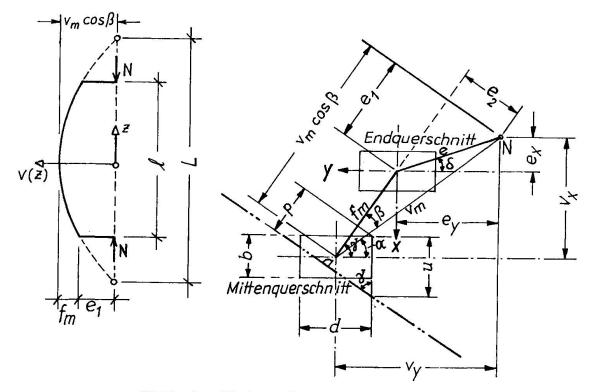


Bild 1: Stabverformungen

Durch Verknüpfung der Gleichgewichts- und Verformungsbedingungen für den Querschnitt in der Stabmitte wurden Beziehungen aufgestellt, mit deren Hilfe es möglich ist, für vorgegebene Querschnittswerte, Stabschlankheiten, Normalkräfte und Winkel der Lastangriffsebene die kritische Exzentrizität zu ermitteln.

Mit den angenommenen Arbeitslinien für Beton und Stahl können für den Querschnitt in der Mitte des Druckstabes drei Gleichge-wichtsbedingungen aufgestellt werden. Die Verformung des Mittenquerschnitts ist durch die angenommene Biegelinie sowie durch die Beanspruchung des Querschnitts bestimmt, womit sich die Größe der Krümmung und die Lage der Krümmungsebene dieses Querschnitts ergeben. Auf diese Weise erhält man 5 Gleichungen mit 6 Unbekannten. Die fehlende Gleichung ergibt sich aus der Bedingung, daß die kritische Last die maximale Last ist, bei der ein stabiler Gleichgewichtszustand gerade noch möglich ist.

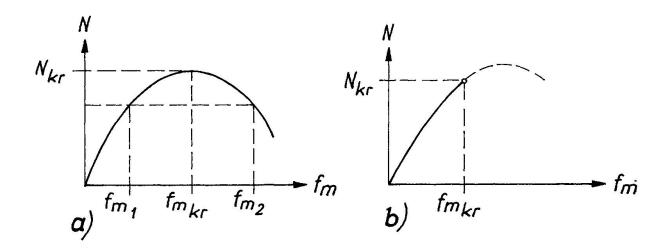
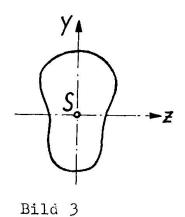


Bild 2: Last-Verformungs-Diagramm a) Stabilitätsproblem b) Spannungsproblem

Die Auswertung der Gleichungen erfolgte iterativ mit Hilfe eines elektronischen Rechners IBM 360 für die

 $\delta = \pi/8$; $\pi/4$; 3 $\pi/8$; $\pi/2$ Winkel der Lastangriffsebene Verhältnisse der Querschnittsseiten d/b = 1,0; 1,5; 2,0 Betonfestigkeiten

Bewehrungsprozentsätze


Stabschlankheiten

Die Berechnungen wurden für die Stahlgüte St A-I mit der Streck-grenze $\sigma_{\rm S} = 2400~{\rm kp/cm^2}$ durchgeführt. Da der Einfluß der Stahlgüte auf das Stabilitätsverhalten sehr gering ist, konnte auf eine Variation der Stahlgüte verzichtet werden. Für die genannten Neigungen der Anfangsausmitte, Seitenverhältnisse, Betongüten und Bewehrungsprozentsätze wurden im angegebenen Schlankheitsbereich zu einer Anzahl gewählter Knickspannungen die zugehörige Ausmitte e und die auf die Kernwerte k der kleineren Querschnitsseite b bezogene Ausmitte m_a = e/k bestimmt. Für alle untersuchten Fälle wurden durch grafische Interpolation die Knickspannungswerte für ausgewählte bezogene Ausmitten bestimmt und in Diagrammen zu Knickspannungslinien $m_a = f(\delta_{kr}/\delta_p; h)$ aufgetragen.

3. Aufbereitung für die praktische Nutzung

Für die praktische Nutzung wurden die Ergebnisse zu Knickzahlen (Ausweichzahlen) aufbereitet. Die Ausweichzahlen lassen sich unmittelbar aus den Knickspannungslinien ermitteln. Sie ergeben sich als Verhältnis der Spannung der Tragfähigkeit für die Schlankheit h = 0 zur kritischen Spannung h \neq 0 für konstante Ausmitten e, die als bezogene Ausmitten me eingeführt wurden. In [1] sind die so ermittlten Ausweichzahlen als Funktion der Schlankheit und der Ausmittigkeit in Abhängigkeit von der Betongüte, dem Bewehrungsprozentsatz, dem Seitenverhältnis und dem Winkel der Lastangriffsebene tabellarisch dargestellt. Mit die-sen Ausweichzahlen lassen sich die Tragkräfte des stabilitätsgefährdeten Druckgliedes bestimmen, indem die Tragkräfte des Querschnitts durch die Ausweichzahl dividiert werden.

Zur Erleichterung der praktischen Handhabung wurde ein Näherungsverfahren entwickelt, das in die in der DDR geltenden Stahlbetonbestimmungen TGL 0-1045, Ausgabe 1973, in folgender Form aufgenommen wurde:

"Weicht die Lage der Momentebene von der Hauptachse y des Querschnitts um den Winkel & ab, darf, wenn kein genauerer Nachweis erfolgt, als Ausweichzahl

$$\omega_z = \omega_z + \frac{4}{90}, \quad (\omega_y - \omega_z)$$

eingeführt werden. ω_z = Ausweichzahl für die Außermittigkeit rechtwinklig zur Hauptachse z des Querschnitts, ω_y = Ausweichzahl für die Außermittigkeit rechtwinklig zur Hauptachse y des Querschnitts." Der Vorschrift lie-

gen die Ausweichzahlen nach Jäger zugrunde.

Im Vergleich zur bisherigen Festlegung, wonach der ungünstigere Wert von ω_y und ω_z für die Bemessung maßgebend war, reduzieren sich nach dem Näherungsverfahren die Ausweichzahlen um durchschnittlich 11 %. Die Werte nach dem Näherungsverfahren liegen im Vergleich zu den theoretischen Werten für den praktisch interessierenden Bereich auf der sicheren Seite. Nur bei sehr kleinen Bewehrungsprozentsätzen, kleinen Ausmitten und großem Seitenverhältnis ergeben sich geringfügig auf der unsicheren Seite liegende Ausweichzahlen.

Die durchgeführten Untersuchungen gelten für Kurzzeitbelastung. In der TGL 0-1045, Ausgabe 1973 sind Beiwerte enthalten, womit sehr einfach der Einfluß von langzeitig wirkender Belastung, sowie der Betongüte und des Bewehrungsanteils auf die Ausweichzahlen berücksichtigt werden kann.

4. Experimentelle Untersuchungen

Die theoretischen Entwicklungen wurden experimentell an 20 Stützen aus Feinkornbeton mit den Abmessungen b = 10 cm, d = 15 cm und l = 310 cm überprüft. Die theoretischen Ergebnisse wurden als Mittelwert der experimentell gewonnenen Werte bestätigt. Tabelle I zeigt den Vergleich der theoretischen Ausweichzahlen mit den experimentell ermittelten Werten.

Versuch	Ausmitte e (cm)	m _a	ર્વ (°)	K _b	Auswe Versuch W v	ichzahl Theorie ω _{Th}	<u>ω_ν</u> ω _{τh}
I/1 2	10, 85	6,70	22,5	199 270	1,57 1,45	1,56 1,58	1,01 0,92
II/1 2	19,50	11,70	22,5	240 235	1,15 1,50	1,33 1,33	0,86 1,13
III/1 2	8,80	5,30	67,5	260 276	2,53 1,61	1,75 1,75	(1,44) 0,92
IV/1 2	3,90	2,34	22,5	290 286	1,78 2,02	2,08 2,08	0,86 0,97
V/1 2	3, 54	2,12	45,0	287 253	2,13 2,53	2,49 2,42	0,85 1,04
VI/1 2	10, 85	6,70	22,5	440 365	1,66 1,45	1,48 1,44	1,12 1,01
VII/1 2	1 9 , 50	11,70	22,5	275 330	1,33 1,39	1,20 1,25	1,11 1,11
VIII/1 2	8,80	5 , 30	67,5	320 265	1,92 1,72	1,57 1,55	1,22 1,11
IX/1 2	13,00	7,80	67,5	250 200	1,47 1,49	1,40 1,40	1,05 1,06
X/1 2	16,97	10,20	45,0	213 213	1,45 1,49	1,41 1,41	1,03 1,06

m_a - Auf Kernweite der kleineren Seite b bezogene Ausmitte

Literatur

P.Buck, K.-H. Benkert, S. Schröder und E.Reis: Stabilität zweiachsig ausmittig beanspruchter Stahlbeton-Druckglieder. Schriftenreihe der Bauforschung, Reihe Stahlbeton, Bauinformation der DDR, Berlin

ZUSAMMENFASSUNG

Das Tragverhalten zweiachsig ausmittig belasteter Druckstäbe aus Stahlbeton wurde untersucht. Als Ergebnisse wurden erzielt:

- Für Druckglieder mit Rechteckquerschnitt wurden in Abhängigkeit von der Betongüte, dem Bewehrungsanteil, dem Seitenverhältnis und dem Winkel der Lastangriffsebene die Ausweichzahlen als Funktion der Schlankheit und der Ausmittigkeit tabellarisch dargestellt.
- 2. Zur praktischen Untersuchung des vorliegenden Problems wurde eine leicht zu handhabende Näherungslösung in Abhängigkeit von getrennt wirkenden Bedingungen einachsig ausmittiger Druckbeanspruchung entwickelt.

^{6 -} Neigung der Lastebene

K_b -Primenfestigkeit, ermittelt an Druckprismen 15 x 15 x 60 cm³

SUMMARY

The behaviour of reinforced concrete compression members subjected to biaxial eccentric loads is investigated. The following results were found:

- For compression members with rectangular section tables show the buckling coefficients in function of the slenderness ratio and the eccentricity. These coefficients consider the quality of concrete, the percentage of reinforcement, the relation of the sides of the rectangle and the angle of the plane of application of the load.
- 2. A simple and easily applicable solution is shown, which bases on the uniaxial eccentric compressive load.

RESUME

Le comportement de pièces en béton armé comprimées excentriquement par rapport à deux axes est étudié. Les résultats sont les suivants:

- Pour des éléments d'une section rectangulaire les coefficients de flambage sont présentés dans des tableaux en fonction de l'élancement et de l'excentricité.
 Ces coefficients tiennent compte de la qualité du béton, du pourcentage d'armature, du rapport des côtés de la section et de l'axe d'application de la force.
- 2. Une solution simple et pratique est présentée, qui tient compte d'un effort de compression excentrique et uniaxiale.