
Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 16 (1974)

Rubrik: Theme I: Physical-mathematical models and theoretical considerations

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


I

On the Extreme Compressive Strain of Concrete for Calculating the Ultimate Strength
of Reinforced Concrete Section

Raccourcissement ultime du béton et calcul de la sollicitation ultime d'une section
en béton armé

Über den Grenzwert der Druckstauchung von Beton bei der Berechnung der Traglast
von Stahlbetonquerschnitten

Hiroshi MUGURUMA Shinzo TANAKA
Prof., Doctor of Engineering Graduate Student

Kyoto University
Kyoto, Japan

1. Introduction
The failure of reinforced concrete section subjected to the flexural

moment, axial load or combined flexural and axial loads is generally caused by
crushing of concrete at the compression zone. For the calculation of ultimate
strength it is necessary to assume the extreme compressive fiber strain of
concrete, ecu, induced in the section at the ultimate strength. Usually, the
values of ecu empirically or semi-empirically determined are adopted in the
calculation. 1) For instance, ecu 0.15 - 0.2% is assumed for pure axial loading

failure and ecu 0.25-0.35% for flexural failure under the action of pure
flexural load or combined flexural and axial loads.

However, the extreme compressive fiber strain of concrete, ecu, at the
ultimate strength is not always defined clearly from the theoretical view-point.
The value of ecu seems to be affected by many factors such as the combination
of applied axial and flexural forces, the characteristics of stress-strain
curve of concrete, especially the falling branch of it after compressive
strength, and the percentage of reinforcements etc. In this paper, numerical
estimations are made on the value of ecu for ultimate strength calculation by
using the typical stress-strain curves of concrete, and the effects of these
factors upon the value of ecu are discussed.

2. Definition of concrete fiber strain. ecu, at ultimate strength
The ultimate loading capacity of reinforced concrete section subjected to

combined axial and bending forces can be represented by the ultimate axial load-
moment interaction curve. This can be calculated from the equilibrium of forces
acting on the section under the consideration of stress and strain compatibility,
where the compressive fiber strain of concrete, ecu, at Ultimate strength should
be assumed. While the collapse of reinforced concrete section is generally
caused by crushing of concrete in compression zone, the applied load shows its'
maximum value before the crushing of concrete. Fig. 1 shows such phenomenon by
load-deflection curve of typical member. Thus, generally the maximum of applied
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load recorded until the collapse of section takes
place by crushing of concrete is so defined as
the ultimate loading capacity or the ultimate
strength,2)»3) And also the corresponding
compressive fiber strain of concrete, ecu» is defined
as the strain which should be used in the
calculation of ultimate strength.

3. Method of numerical estimation of ecu

The purpose of this study is to obtain
numerically the compressive fiber strain of

Deflection concrete, ecu, at maximum loading capacity of

Fig. 1
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Fig. 2 Stress and strain distributions
overall the rectangular column
section.

-cu>
reinforced concrete column section subjected to
various combinations of applied axial load and
flexural moment. To explain the procedure of
numerical estimation, the rectangular column
section shown in Fig. 2(a) is considered. The

stress and strain distributions
overall the section are shown in
Fig. 2(b) and 2(c), respectively,
in general form. The stress
distribution shown in Fig. 2(c)
is obtained in correspondence to
The strain distribution in Fig.
2(b) by using the stress-strain
relations of component materials.
The compressive fiber strain of
concrete, ec, and the distance
of neutral axis, x, from
compressive fiber of section are
determined so as to satisfy the
equilibrium equations for given
combined loads, P(ec) and M(ec).
That is, the applied combined
loads, P(ec) and M(ec), are

However, considering that loads,

u
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.3?
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<

Pu(Ecu)

generally expressed as the function of ec and x
P(ec) and M(ec), are so applied as the eccentricity,

e M(ec)/P(ec) (1),
becomes constant without regard to their magnitude, the distance of neutral axis,
x, can also be expressed as a function of ec, Thus, in other words, a set of
combined loads, P(ec) and M(ec), can be Obtained numerically for a given value
of ec under the consideration of constant eccentricity, e.

Fig. 3 shows ec - P(ec) or M(ec) relation
for various values of eccentricity, e ej, e2,
e3, where the concrete fiber strain,
ecu> corresponding to the peak value of P(ec)
coincides with that of M(ec) because of the
linear relation between P(ec) and M(ec). From
the definition of ultimate strength described
in 2 the peak values, Pu(ecu) and Mu(ecu), in
ec - P(ec) and ec " M(ec) curves are defined
as the maximum loading capacity for a given
loading condition, e M(ec)/P(ec)> and the
corresponding compressive fiber strain, ec ecu»
is the strain to be used in the theoretical
calculation of ultimate strength. In this paperEcu Strain Ec

Fig.3 ec-P(ec) or M(ec)relation
using ec P(ec) or ec - M(ec) relation as
shown in Fig. 3, the ultimate strengths, Pu(ecu)
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and Mu(ecu), as well as corresponding compressive fiber strain of concrete, ecu,
is estimated graphically for rectangular column section shown in Fig. 2(a).

Moreover, the ultimate strengths, Pu(ecu) and Mu(ecu), and corresponding
concrete fiber strain, eCu< can be obtained as the values satisfying following
mathematical conditions.3)

dP(ec)
de,-

0 dM(Eç)
der (2)

Of course, a set of values, eCU) Pu(ecu) and Mu(ecu), obtained from first
equation in Eq. (2) satisfys the second condition in Eq. (2) simultaneously.

Es=2,100,000kg/cm

£y=Fy/Es Strain

Fig. 4 Stress-strain curve of
rein fo rcemen t

4. Stress-strain curves of component materials for numerical calculation
For numerical calculation of compressive fiber strain of concrete, ecu, at

the ultimate strength of reinforced concrete column section, the stress-strain
curves of component materials should
be assumed. To simplifying the numerical

calculation, the ideal elastic-
plastic relation shown in Fig. 4 is
assumed for reinforcement, where the
elastic modulus of Es =2,100,000 kg/cm2
is taken without respect to the yield
strength of reinforcement.

Fig. 5 shows three different types
of typical stress-strain curve of plain
concrete obtained from compressive
tests on cylinder specimens of various
kinds of concrete.4)»5) The ordinate
in Fig. 5 is expressed as the ratio of
applied stress to the compressive
strength. Curve I represents the
stress-strain relation for ordinary
aggregate concrete having 28-day

compressive strength up to 350 kg/cm2. Curve II
is that of light-weight aggregate structural
concrete. The strain at the peak stress
(that is, at the compressive strength) as
well as the negative inclination of strain
softening region in Curve II is greater than
that in Curve I. Curve III in Fig. 5 is
identical one modified from Curve I for
investigating the effect of the negative
inclination of strain softening region upon the
compressive fiber strain of concrete, ecu,
at the ultimate strength. For convenience
of the numerical calculation of ecu, the area
surrounded by each stress-strain curve shown
in Fig. 5 and its' center of gravity were
calculated in correspondence to an arbitrary
strain. The results are also shown in Fig. 5

in the coefficients, k;[k3 and k2, versus
compressive strain, ec, relations, where
kik3 and k2 denote the ratio of average stress
of stress-strain curve until an arbitrary
strain, ec, to the compressive strength, Fc,
and the ratio of the location of center of

Typical stress-strain gravity of corresponding area from an arbitra-
curves of concrete and ry strain, ec, to the strain ec, respectively,
corresponding values of That is, coefficients, kjk3 and k2, can be
kik3, k2 and k2/kjk3 considered as the generalized stress block

«1.0 Curve I

Curve I/

01

02

° 0.3-
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05-
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Strain 7.
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Curve I
Curve I
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07-
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Fig. S
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coefficients of concrete in flexural compression zone of reinforced concrete
section.

5. Effects of the eccentricity of applied axial load and the percentage of
reinforcements upon ecu

The numerical calculations
of compressive fiber strain,

(Ecu - Pu (ecu relation)
1.5 T (Interaction Curve)

P=0,57.
e/D=0.05 P=1.07.

ecu> at ultimate strength were
performed on the percentage of
reinforcements, p =0.5% and
p l%, of rectangular column
section shown in Fig. 2. The
stress-strain relation of
concrete as well as the yield
strength of reinforcement
adopted in calculation are
Curve I in Fig. 5 and Fy=4000
kg/cm2, respectively. The
results are shown by ecu-Pu(tcu)
relation with Pu(ecu) - Mu(ecu)
interaction curve as in Fig. 6.

ecu_pu(ecu) relations
shown in Fig. 6 can be divided
into following four regions.

Region A : Range that
applied combined
loads reach at
their muximum
without yielding
of whole
reinforcements.

Range that applied combined loads reach at their maximum after
yielding of reinforcements in compression zone, where the stress
in reinforcements in tensile zone still remains in elastic range.
Range that applied combined loads reach at their maximum after
yielding of whole reinforcements.
Range that applied combined loads reach at their maximum after
yielding of reinforcements in tensile zone, where the stress in
reinforcements in compression zone still remains in elastic range.

In ecu - Pu(ecu) relation for the section of p =0.5%, Region C disappears
and is expressed border line between B and D.

It can be seen from Fig. 6 that the compressive fiber strain ecu is much
influenced by the combination of applied axial and flexural loads. In Fig. 6

the pure axial loading column section shows the minimum value of ecu. These are
listed in Table 1, which are a little larger than the strain, ecu=0.15%,
corresponding to the peak stress in concrete stress-strain curve. In Region A and B

in Fig. 6, the compressive fiber strain ecu increases gradually with increase
of the relative degree of applied moment M(ec) to applied axial force P(ec),
that is, with increase of the eccentricity e M(ec)/P(ec). On the lower bound
of Region B, the strain ecu reaches at a peak value, where the corresponding
ultimate flexural moment Mu(ecu) becomes maximum in the interaction curve. In
Table 1, the values of ecu on the lower bound of Region B are also listed. In
Region C and D, considerable increase of ecu is recognized after a little decrease
near the upper bound of Region C or D, and the maximum value of ecu is obtained at
the middle portion of these range. After that, the value of ecu decreases rapidly
to the value of about 0.21%, which corresponds to the value for pure flexure.
The maximum values of ecu are also summarized in Table 1.

From such observation, it can be stated that for the exact calculation

0.1 0.2
Mu(Ecu)/bD Fc

Fig. 6 ecu - Pu(ecu) - Mu(ecu) relations for
rectangular column section (Curve I
concrete stress-strain relation and
Fy =4000 kg/cm2 are used in
calculation)

Region B

Region C

Region D
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Table 1 The values of ecu for critical point in ecu - Pu(ecu)
relation (Curve I concrete stress-strain relation
and Fy 4000 kg/cm2 are used in the calculation)

Percentage of reinforcement P (%) 0.5 1

For pure axial loading
ecu W

pu(£cu)/bDFc
Mu( cu)/bD2Fc

0.152
1.125

0

0.180
1.250

0

On the lower bound of
Region A

ECU (%)

Pu(ecu)/bDFc
Mu(ecu)/bD2Fc

0.211
0.920
0.070

0.217
0.970
0.107

On the lower bound of
Region B

eCU (%)

Pu(ecu)/bDFc
Mu(ECu)/bD2Fc

0.267
0.370
0.171

0.281
0.390
0.233

At the peak value in
ecu "Pu(ecu) relation

ECU (%)

Pu(ecu)/bDFc
Mu(ecu)/bD2Fc

0.300
0.195
0.139

0.360
0.140
0.185

For pure flexure
ecu (%)

Pu(ecu)/bDFc
Mu(ecu)/bD2Fc

0.204
0

0.068

0.210
0

0.132

* Fc denotes the compressive strength of concrete.

i Region C
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—-—P= 1 0%
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e/D=Mu(£cu)/Pu( £cu)D

Fig. 7 e - ecu relations for rectangular
column section of p= 0.5% and 1%

(Curve I concrete stress-strain
relation and Fy 4000 kg/cm2
are used in calculation)

of maximum loading capacity,
especially that of corresponding
deflection of reinforced concrete
member the change of compressive
fiber strain, ecu, as shown in
Fig. 6 may be considered in
correspondence to the combination
of applied axial and flexural
loads.

The effects of the percentage
of reinforcement, p, upon

the compressive fiber strain, ecu,
can be observed from e - ecu
relations shown in Fig. 7, which
is rewritten from the results of
Fig. 6. It seems from Fig. 7

that the effects of p is so small
as negligible in Region A and B,
while much difference of ecu
between p= 0.5% and p= 1% is
observed in Region C and D.

6. Effects of the shape of stress-strain curve of concrete upon the compressive
fiber strain ecu

Using three different types of stress-strain curve of plain concrete shown in
Fig. 5, the compressive fiber strain, ecu, at ultimate strength was calculated
on the rectangular column section having p 0.5%. The yield strength of
reinforcement was assumed as 4000 kg/cm2 in the calculation. The results are
illustrated in Fig. 8. While three interaction curves are very closed with each
other, much difference can be seen in three results on ecu - Pu(ecu) relation.
Comparison between the results for concrete stress-strain Curve I and II shows
that the larger compressive strain at the peak stress in stress-strain curve of
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Table 2 Effects of the type of concrete stress-strain
curve upon ecu for pure axial loading section
of p 5% (Fy 4000 kg/cm2)

Type of stress-strain curve of
concrete used in calculation

Ultimate axial load
pu(ecu)/bDFc

The value of
ecu in %

Curve I 1.125 0.152
Curve II 1.160 0.208
Curve III 1.125 1.151

concrete results in the larger
values of ecu within Region A and
B in ecu - Pu(ecu) relation. The
difference between the compressive
fiber strains for Curve I and II
becomes maximum in the case of
pure axial loading. As a reference,

the values of ecu obtained
for pure axial loading are summarized

in Table 2. On the contrary
it appears from the comparison of
the results for concrete stress-
strain Curve III with that for
Curve I that the increase of
negative inclination in strain
softening region of concrete stress-
strain relation reduces the
compressive fiber strain at ultimate
strength of reinforced concrete
section, while no obvious effect
is recognized on the section
subjected to pure axial force.

7. Effects of the yield strength of reinforcement, Fy, upon ecu

Fig. 9 shows the results of numerical calculation on the ultimate strengths,
Pu(Ecu) anc* mu(£cu)j an£i corresponding compressive fiber strain, ecu, for rectangular

column section of p 0.5% having various yield strengths of reinforcement.
The stress-strain relation of concrete used in calculation is Curve I in Fig. 5.

Comparison between the results for Fy 4000 kg/cm2 and Fy 5000 kg/cm2
shows that Region A in ecu - Pu(ecu) relation becomes larger with increase of the
yield strength of reinforcement, which results in the considerable increase of
compressive fiber strain, £cu, in Region B. In Fig. 9, the strain ecu in Region
B for Fy 5000 kg/cm2 is about 0.05% larger than that for Fy 4000 kg/cm2.

The use of reinforcement having smaller yield strength provides the decrease
of Region A in ecu - Pu(ecu) curve. In Fig. 9, Region A disappears in ecu -Pu(ecu)
relation for Fy 2400 kg/cm2 because the yield strain of reinforcement is smaller
than the strain corresponding to the peak stress in stress-strain curve of
concrete. In such case, the strain ecu for pure axial loading just coincides
with the strain at peak stress in concrete stress-strain relation.

8. Conclusions

Based on the general concept that the ultimate loading capacity of reinforced
concrete section is defined as the loads satisfying the equation dP(ec)/dec 0

or dM(ec)/dec 0, corresponding compressive fiber strain of concrete, ecu, was
calculated numerically on the rectangular column section and the effects of the
combination of applied axial and flexural loads, the percentage of reinforcement,
the shape of stress-strain curve of concrete and the yield strength of reinforce-

Fig. 8 Effects of the type of concrete
stress-strain curve upon the
compressive fiber strain, ecu,
at ultimate strength (p 0.5%,
Fy 4000 kg/cm2)
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ment, etc. upon the compressive
fiber strain were investigated.
The following conclusions are
obtained from the results.
(1) The compressive fiber strain
ecu varies considerably with the
relative intensity of applied
flexural moment to axial load.
ecu " pu(ecu) relation obtained
in this paper can be divided into
four regions in corresponding to
the yielding of reinforcement.
The value of ecu becomes minimum
in the case of pure axial loading
and the increase of eccentricity
results in the gradual increase
of eCu- Also it decreases with
increase of eccentricity after
reaching the maximum value near
pure flexure.
(2) No obvious effects of the
percentage of reinforcement upon
the value of ecu are recognized
within Region A and B of ecu - Pu

(ecu) curve, where relative
intensity of applied axial load is larger in comparison with applied flexural
moment.
(3) The larger strain at peak stress in concrete stress-strain curve increases
the value of ecu within Region A and B of ecu-Pu(ecu) curve, especially the
maximum increase of ecu is obtained in case of pure axial force. Also, the
increase of negative slope of strain softening region in concrete stress-strain
curve reduces the value of ecu considerably. These factors have no obvious
effects on the ultimate axial load and flexural moment interaction curve of
section.
(4) The use of reinforcements having larger yield strength results in considerable

increase of ecu in region B of ecu - Pu(ecu) curve.
(5) The effects of the factors described in this paper upon the value of ecu
may be necessary to consider for the exact estimation of ultimate strength as
well as corresponding deformation of reinforced concrete member.
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SUMMARY

Numerical estimations were made on the value of extreme
compressive fiber strain of concrete at ultimate strength of
reinforced concrete column section subjected to various
combinations of axial and flexural loads. The results showed that
the extreme compressive fiber strain is much affected by many
factors such as the combinations of axial and flexural loads,
the caracteristics of stress-strain relation of concrete, the
yiald strength of reinforcement and the percentage of
reinforcements, etc.

RESUME

On a estimé la valeur de la tension de compression extrême
dans le béton d'une colonne en béton armé soumise à diverses
combinaisons de flexions et d'efforts axiaux. Les résultats
montrent que l'allongement spécifique dans le béton varie
considérablement en fonction de facteurs tels que les combinaisons de
flexions et d'efforts axiaux, les caractéristiqués de la courbe
tension-déformation du béton, la limite d'élasticité des
armatures, le pourcentage d'armature, etc.

ZUSAMMENFASSUNG

Zahlenmässige Schätzungen für den Wert der grössten Druckstauchung
von Beton bei der Bruchbeanspruchung von Stahlbeton-Stützenquerschnitten

unter Einwirkung verschiedener Kombinationen von Normalkraft
und Biegemomenten wurden vorgenommen. Die Ergebnisse zeigten,

dass die grösste Druckstauchung durch eine Reihe von Faktoren, wie
die Kombination von Normalkraft und Biegemoment, den Verlauf des
Spannungs-Dehnungs-Diagramms von Beton, die Streckgrenze der
Bewehrung, den Bewehrungsgehalt usw. beeinflusst wird.
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A Simplified Model for Nonlinearly Viscoelastic Columns

Un modèle simplifié pour le calcul visco-élastique non-linéaire des colonnes

Ein vereinfachtes Modell für nichtlineare viskoelastische Stützen

H. A. CERVERA G. J. CREUS
Assistant Professor Associate Professor
Institute of Applied Mechanics and Structures (I.M.A.E.)

Universidad Nacional de Rosario
Rosario, Argentina

1. INTRODUCTION

Adequate theories exist for the analysis of deformation and failure of
linearly viscoelastic columns. J.N. Distéfano, /1/, has studied the problem in
a series of papers of great generality, considering arbitrary and conditions,
lateral loads and initial imperfections, and the most general expression for
linear creep.

However, both instantaneous and time dependent deformations of concrete
are nonlinear, specially at high stresses. In fact, the behaviour of concrete
ranges from almost linear, bounded creep at low stresses to highly nonlinear,
unbounded creep at stresses near the compressive strength.

The effect of nonlinear behaviour on creep buckling is analyzed in this
paper. In Section 2 a nonlinear rheological model apt to describe the behaviour
of concrete for the whole range of stresses is introduced.

In Section 3, the creep buckling problem is studied for the above mentioned
rheological model, using a simplified model for the column.

In seccion 4, the model is refined by considering additional effects
present in real situations, as the influence of axial thrust on the bending
rigidity and the different behaviour of concrete in loading and unloading
processes /2/.

For the simpler situations, analytical solutions to the differential
equations are used. In the general case, a step by step numerical analysis is
necessary. The effect of ageing of concrete may be easily taken into account
by taking age dependent coefficients.

2. RHEOLOGICAL MODEL

The proposed model, shown in Fig.l is similar to the well known standard
solid. Its particular feature is the nonlinear stress-strain relation assumed

for the spring elements 1 and 2. We denote with£i(t) the strain due to the
deformation of spring element 1 and with £î(t) the strain corresponding to
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spring 2 and dashpot. The total strain is £(t)-£i(t)+£2(t)» where t denotes
the time.

For spring 1 we assume the stress-strain delation

cr= e,<(i-A£,) (1)

Yzfr

FIG. 1: RHEOLQGICAL MODEL

Ö" E2£2 (1-|32£2) ;

(T"= KU

Here ff(t) is the stress and E^^are
material constants. This equation defines
a maximum stress (^""kj^and a corresponding

deformation "f/zß,. Increasing deformations

from to 1/^ are possible for
decreasing stresses. No physical meaning
is attached to deformations larger than

The nonlinear Kelvin element constituted

by the spring 2 and the dashpot is
responsible for the time dependent
behaviour. The spring 2 and the dashpot are
defined by the relationships

04Ê24-T-
P2 (2)

where E {$> and K are material constants and the dot indicates differentiation
with respect to time. Being C=(J\(J" we obtain the equation for the nonlinear
Kelvin element

• P*E2 2 E2 _
<T

£î +7£2 -k (3)

which is a Riccati's first order nonlinear differential equation.
We shall consider now the case of a constant stress (J (t)« CE, applied at

time t«0 and mantained thereafter. Inversion of Eq.(l) provides the expression

(«)

for the instantaneous deformation. In order to determine the value of the
delayed deformations, we must replace the value (Jo into (3) and solve it (for more
details see Ref./3/). Adding instantaneous and time dependent deformations, the
final expressions are

l5)

f(t) -A-(t }/t 4^Û°) tf 1 + sin I2 ifFl •( - costV^T t
-tp\ V * J 2pA° S+2{H

(6)

for S<1 5=1 and Ï >1 respectively, being K 4ßA/ez <Jo/Gr* (e)
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The behaviour of the model under constant stress is indicated in Fig.2. We

FIG,2:CREEP CURVES FOR THE RHEOLOGICAL MODEL FIG.3îCOLUMN MODEL

may see that for 8>1 ,i.e. for (T0 > (J2rna* a condition similar to failure is
reached after a finite time. As is the strength under instantaneous
loading, Gz** may be interpreted as the strength under sustained load (static
fatigue). In Ref./3/ a comparison of this model behaviour with the experimental
results of Rüsch /4/ is given.

3. SIMPLIFIED COLUMN MODEL

Let us consider now the system in Fig.3. In this structure the deflexion of
the hinged bar due to the action of the force P is prevented by a viscoelastic
element which in turn reacts with a force S. This simple model contains many of
the more interesting features of considerably more complex systems. For small,
quasi-static deflexions, equilibrium provides the relation

S _ p "V+ Wo (9)

We are interested in the behaviour of this column model in the presence of
nonlinear creep. For the sake of clarity, we shall study first some simpler
situations.

3.1. Linear spring ßco; £2=0°) i The force in the spring is S-E-i w { from this
and (9) we obtain

F, ,y - p(w+w0) or w (10)
L 1

When P -» LE-i we have w ->co ;PB «(_£, may be considered the buckling load for this
case.

3.2. Linear Kelvin material p>2 o 5 E1=oo) • The force in the viscoelastic element

is S=E2 «d'Kw' ; the differential equation for equilibrium is

I Ez P \ PWo _ (n)^ + IK "° 1 '
It may be seen that the solution of (ll) shall be bounded for t-»œ whenever the
the coefficient of w is possitive; thus, the creepbuckling load in this case is
PK«LE2 while the instantaneous load is infinite.
3.3. Linear standard material (ßi=ß2 o ): Proceeding in a similar way, we find
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in this cae Pg»LE z ; PK °LE1 / (E1+E2 •

Both 3.2 and 3.3 are particular cases of the general linear viscoelastic
problem as studied by Distéfano/l/. The creep buckling load is given (as it
should) by the reduced modulus load. Physically, this may be interpreted
saying that, in order to obtain the load stable for t-»oo, only the spring
constants are significant,as the action of the dashpot vanishes for t—»oo(*).

3.4, Nonlinear spring (E2=ao)s The force in the spring is now S-E, w(l- ftw) ;
from this and (9) we have

(12)

Solving for w we find that for each pair of values (P,wQ) there exist two
equilibrium points, defined by

W =-_l (f., 1U1 (r.
2ft ILEa /" 2 V

(13)Pw/0

j*.-, -

and represented by points A and B in Fig.4. It is easy to see that A corresponds
to stable equilibrium and B to unstable
equilibrium. The maximum load that allows
stable equilibrium is obviously that
corresponding to point C and may be
obtained making the square root equal to
zero. We obtain

S P(w.+w)/L

Pe =LE,|(2Wo^l)-2Wop,f + ^5 }
(14)

Wer

FIG.4: NONLINEAR SPRING
Also from Fig.4 we may see that, in order
to reach the critical condition, one may
increase the load P to Pe or increase the

initial excentricity w0. Thus, a column whose material is characterized by a
nonlinear stress-strain relation for instantaneous loading has a critical
deflexion at which the applied load is the critical load. This fact is
specially important in the treatment of creep buckling problems.

3.5. Nonlinear Kelvin material Ei °o :In this case we have S»Ezw(l-f52w)+Kw;
From this and (9) we obtain

W _
Ezßi W

K \ LEzJ
Pv/Vo

O (15)
R K \ LE2y LK

Eq.(l5) is formally identical with (3). Following the same procedure we obtain
the corresponding solution for w(t), namely

(*) This is of course only true for materials with bounded deformations, i.e.
solids.
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(16)

(17)

(18)

for r<1 » V=\ and respectively, being

Thus, the critical load is given by

_Ü^ (19)

Pe LEi(l + 2(*Wo -V4fS>W0(^vV0+'\)) (20)

Comparing this with (14)^ we see that, as for the linear case, the load for
infinite stability corresponds to the instantaneous critical load of a similar
column where the Kelvin body has been replaced by the spring.

3.6, Nonlinear standard materialt In this case, a closed solution has not been

found. The problem has been solved numerically, using a step by step procedure.
The time interval of interest is divided into small (*) time intervals A t.

Then, at a time t, the force S(t) satisfies the equation

where w„ is the delayed deflexion for time t (of course, w„ =0 for t=Q), and wB

is the elastic deflexion. In the following time interval (t,t+&t) we consider
the spring 1 frozen, while the Kelvin element deforms under the action of force
S(t) assumed constant during the interval. The corresponding creep deformation
is

and the delayed deformation now amounts to wD(t+A t)=» wD(t)+A Wj, Then,Wj)(t+At)
is replaced into (21) and the process continues in the same fashion. The outlined
procedure is very easily programmed for a digital computer.

The analysis of the results may be better understood looking at Fig.5.
Line OA represents the t=0 isochronous curve for the material and corresponds
to the 0-fL relation for spring 1 in Fig.l. Line OFR corresponds to the t= oo
isochronous curve and represents the behaviour of springs 1 and 2 in series.

(*) Small when compared with the characteristic retardation time of the model.

S(t) Z.(vfo + W) £(>«.+%+=£(\No+W»(t) +
2 ßi J2|*i

(21)

Aw, SCt)-E»WPCt)(l-M»(t))
(22)

B 3 VB
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Different loads, applied with excentricity w0 are represented by straight lines
beggining at N. We observe that!

1)The instantaneous buckling load PE (line NA) depends only on the
characteristics of spring 1 and the Initial excentricity wQ.

2)The creep buckling load PK (line NF) depends on the characteristics of
springs 1 and 2 and the initial excentricity w0. More precisely, it may be

evaluated as the instantaneous buckling load of an ideal elastic nonlinear
column with a spring equivalent to springs 1 and 2 in series.

FIG.5s NONLINEAR STANDARD MATERIAL

This behaviour resembles in some ways the case of linear viscoelastic
columns (see Section 3.3) where a reduced modulus exists. Of course, being the
present problem nonlinear, a unique reduced modulus does not exists, and the
load PK depends on the initial excentricity.

3)A column loaded with P^< PK reaches a limit deflexion with a velocity
that depends on the value of K.

4)lf a load Pe > P$ > PK (represented by NC) is applied, an instantaneous
equilibrium position D is reached at t»0. As time goes on,successive equilibrium

positions D, ,DZ,.. .are reached.At some time tcr (which depends on the value
of K) the delayed deflexion Wj, reaches a value for which P^ is critical for
spring 1. At this time, the column fails suddently. Failure points lay along a
frontier indicated by AC.

The pattern of behaviour described closely resembles that observed
experimentally /5,6/.

4. A REFUSED MODEL

The model studied in Section 3 does not take into account:
a)the effect of axial thrust P (in the bending rigidity
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b) the different behaviour of concrète in loading and unloading processes.
In order to take account of this influences, a refined model may be used, as
indicated in Fig.6. Accordingly, the stress-strain relation for the springs in
the rheological model has been generalized, as indicated in Fig.7

Eî.p» S EiJ)i

FIG.6: REFINED COLUMN MODEL

Cf(+)

0 Ar
B\uf —

1 Gc-)

FIG.7:STRESS-STRAIN RELATION

Stresses and strains are now taken with their corresponding signs
(compression: positive; tension:negative). Then, the base curve OA in compression is
given by Eq.(l) with Ei and Pic >0 ; the base curve 08 in tension is given by
the same Eq.(l) with E< and ßn <O During unloading, the material behaves
along line CDE with origin in C and E^ p* ftt < O This curve contacts
the base curve 00 at point E smoothly (both curves have a common tangent at
point).

By putting together the equilibrium and compatibility equations for the
column model, and the constitutive relations of the springs, a system of
equations is obtained that allows the study of the stability of the model.
Comparing the critical loads obtained using this model (PcrZ } and the model in
Section 3 (Per 1 the effect of axial deformation may be evaluated,

,0 K ®
0.8

0.6

0.4 l ~w.=o.u „ 0_o1

021 " -T-tS
L/b

Per

w» 3.0
w. 1.0
w»=0.1,

- w* =3.0'
- w. =1.0
-. w. =0.1

-=30

0.1 1.25 2.5 ftic-'fiu

if) =0.1

0 10 20

FIG.8: COMPARISON BETWEEN COLUMN MODELS

30

In Fig.8-a we observe that the influence of axial deformation increases with
the nonlinearity coefficient yô,c • The influence of the initial excentricity w0
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and the slendemess ratio L/b is also shown. In Fig.a-b we may see how the
critical loads for both models depend on wQ and L/b.
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SUMMARY

The effect of nonlinear behaviour on creep buckling is analized,
using a nonlinear rheoiogical element to express material properties
and. simplified models for the column.

RESUME

On analyse l'influence du comportement non-linéaire sur le
flambement dû au fluage en utilisant un élément non-linéaire pour
exprimer les caractéristiques du matériau, ainsi que des modèles
simplifiés pur la colonne.

ZUSAMMENFASSUNG

Unter Verwendung eines nichtlinearen rheologischen Elementes
für die Beschreibung der Materialeigenschaften und eines
vereinfachten Modelles für die Stütze wird die Wirkung des nichtlinearen
Verhaltens auf das Kriechknicken untersucht.



I

Zur wirklichkeitsnahen numerischen Bestimmung der zeitabhängigen Krümmung
von Stahlbetonstützen

A Realistic Numerical Computation of the time dependent Curvature of Reinforced
Concrete Columns

Contribution à l'analyse numérique réaliste de la courbure de colonnes en béton
en fonction du temps

L SPAROWITZ
Dipl. Ing.

Institut fur Stahlbeton- und Massivbau
Technische Hochschule Graz

Graz, Oesterreich

1 EliMFUEHRUNG

Als grundlegende Voraussetzung für eine wirklichkeitsnahe
Traglastberechnung von Stahl- und Spannbetondruckstäben ist das zeitabhängige

Verformungsverhalten des Verbundquerschnittes anzusehen.
Die vorliegende Methode ist durch ihren sehr allgemeinen Aufbau vor
allem für vergleichende theoretische Untersuchungen geeignet. Sie
wird hier für beliebige einfach symmetrische Querschnittsform und
gerade Biegung dargestellt, lässt sich jedoch auch auf unsymmetrische

Querschnitte und zweiachsige Momentenbeanspruchung [schiefe
Biegung] erweitern. Das Bild 1 zeigt die zeitabhängige Spannungsum-
lagerung und die dadurch bedingte Aufteilung der Gesamtbetondehnungen

in Langzeit- und die schraffierten Kurzzeitanteile.

M 15 Mpm N -100 Mp
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2. GENERELLES VORGEHEN ZUR ERMITTLUNG DER KRUEFIFIUNG

Die iterative numerische Ermittlung der Krümmung K erfolgt
mittels einer "räumlichen Regula Falsi" [1]. In den Achsrichtungen der
Grundrissebene seien die beiden unbekannten Randdehnungen -Ei und
e2 »in der dritten Richtung die Differenz aus äusserem (aktivem) und
innerem (reaktivem) Biegemoment aufgetragen (Bild 2). Dadurch
entsteht eine räumliche Fläche, da jedem Wertepaar -Ei und £2 ein Wert
AFI Fla-Flr zugeordnet ist. Trägt man weiters an Stelle von AFI die
Differenz aus äusserer und innerer Normalkraft auf, so entsteht eine

zweite räumliche Fläche AN. Das Bild 4 zeigt eine
Schichtenliniendarstellung derartiger Raumflächen AN und AFI. Die Spuren dieser
Flächen in der Grundrissebene (£1 ,£2 schneiden sich in einem Punkt
A, dessen Koordinaten Ej und e2 die gesuchten Randdehnungen darstellen,

für die sowohl AFI=Fla-Flr=0 als auch AN Na-Nr=0 ist, für die also

Gleichgewicht zwischen inneren und äusseren Schnittlasten
besteht

Ausgehend von Näherungswerten für Ei und e2,erhält man durch
deren Variation je drei Punkte Pi, P2, P3 für AFI bzw. AN, durch die
je eine Ebene gelegt werden kann (Bild 3). Diese Ebenen ersetzen
näherungsweise Tangentialebenen an die beiden Raumflächen AFI und
AN. Jede der beiden Tangentialebenen schneidet die Grundrissebene
(ei,e2) in einer Geraden g. Der Schnittpunkt der beiden Geraden
liefert ein verbessertes Wertepaar Ei und e2. Dieses ersetzt die
Grundrisskoordinaten jenes Punktes P,für den die relative Abweichung
AFI/F)a oder AN/Na am grössten ist. Nun kann ein neues Tangentialebenenpaar

aufgespannt werden, das einen verbesserten Schnittpunkt A

in der. e j e2 )-Ebene liefert. Dieser Vorgang wird so lange wiederholt,

bis die absoluten Werte AFI und AN (innerhalb der Abbruchgenauigkeit)

genügend gegen Null gehen. Damit sind zu den vorgegebenen
Schnittlasten Fla und Na jene beiden Randdehnungen Ei und e2 gefunden,

für die sich innere und äussere Schnittkräfte im Gleichgewicht
befinden. Die gesuchte Querschnittskrümmung ergibt sich zu
K (Ei + £2 )/h.
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Bild 4

3. BERECHNUNG DER INNEREN SCHNITTLASTEN

Bei der Krümmungsberechnung nach Abschnitt 2 sind für ein
bestimmtes Wertepaar Ei und e2 die inneren Schnittgrössen Nr und Mr
erforderlich :

+h/2 +h/2
Nr / a -b'dy + ZA »CTg M / a *b*ydy + £As«as«y (1)

-h/2
C ' -h/2

Zur numerischen Berechnung der Integrale in (1) nach Simpson
wird der Betonquerschnitt diskretisiert (Bild 5a). Unter der Voraussetzung

eben bleibender Querschnitte setzt sich das Gesamtdehnungs-
bild aus Kurz- und Langzeitdehnungen (Bild 1, Bild 5b) zusammen.

Nur der elastische Anteil der Kurzzeitverformung liefert die
Betonspannungen in (1), wogegen für den Stahl selbstverständlich die
Gesamtdehnung massgebend ist. Die Berechnung der elastischen Kurzzeitdehnungen

durch Abziehen der plastischen Kurzzeitverformung und der
Langzeitverformungen vom Geamtdehnungsbild wird im Abschnitt 5 dar-
gestellt.
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4. DIE ZEITLICHE KRUEMMUNGSAENDERUNG

Das hier vorausgesetzte lineare Kriechen ist meist gegeben,
wenn die ständige Last höchstens den mit dem vorgesehenen
Sicherheitsfaktor reduzierten Kurzzeitlasten entspricht. Zur Ermittlung
der zeitabhängigen Querschnittskrümmung wird der zeitliche
Verformungsablauf diskretisiert. Innerhalb eines sog. "plastischen
Intervalles" wird die kriecherzeugende Spannung konstant gehalten. Durch
kriechbedingte Spannungsumlagerungen im Querschnitt vom Beton auf
den Stahl würden die Betonspannungen innerhalb eines Intervalles
abnehmen. Bei Stahlbetonstützen nehmen jedoch die Verformungsmomente
infolge Kriechen zu, wodurch gegenläufig Betonspannungen aufgebaut
werden. Dadurch liefert die Annahme konstanter Spannungen innerhalb
eines Intervalles bereits für eine geringe Anzahl von Kriechintervallen

gute Ergebnisse.
Nach jedem plastischen Intervall können die äusseren Schnittlasten

verändert werden (Theorie 2. Ordnung und/oder Relaxation).
Danach werden gemäss Abschnitt 2 die Randdehnungen Ej und e2 berechnet,

für die Gleichgewicht zwischen inneren und äusseren Schnittlasten

besteht. Aus den so erhaltenen elastischen Dehnungen kann
nach Abschnitt 5 die plastische Verformung am Ende des nächsten
Kriechintervalles bestimmt werden. Man berechnet also alternierend
aus elastischen Verformungen plastische und danach entsprechend
Theorie 2. Ordnung neue elastische Dehnungen.

Die Langzeitverformungen werden im sog. "Kriechvektor" gespeichert.

Befindet sich der Querschnitt im Zustand II,so erhält das
"Kriechpolygon" (Bild 5b) nach jedem plastischen Intervall einen
weiteren Knick. Dadurch ist auch der Verlauf der Kurzzeitdehnungen
im Bereich der zeitabhängigen Nullinienverschiebung nicht linear.
5. DIE BESTIMMUNG DER BETONSPANNUNGEN

5.1 Kurzzeitverformungen
Das Bild 6 stellt das a-e-Diagramm für eine mit aQ vorbelaste-»

te Querschnittsfaser dar. Der schraffierte Bereich entspricht den
plastischen Kurzzeitstauchungen. Eine Erhöhung der Spannung (Oi)
bewirkt ein Anwachsen des plastischen Verformungsanteiles, wogegen
dieser bei Abnahme der Spannung (cr2) unverändert bleibt. Es muss
daher stets in jeder betrachteten Querschnittsfaser der aus allen
Vorbelastungen resultierende maximale Wert °£pi0 bekannt sein. Er wird
in der numerischen Berechnung auf den "plastischen Kurzzeitvektor"
{EP0}m abgespeichert. Die plastische Kurzzeitverformung ist auch vom
Belastungsalter (Festigkeitszunahme und "Versprödung") und der
Belastungsgeschwindigkeit ("rasches Anfangskriechen") beeinflusst.
Dieser Tatsache kann man durch zeitabhängiges Verändern des a-e-
Diagrammes Rechnung tragen. Vereinfachend werden jedoch allgemein
in den Normen mittlere a-e-Diagramme für Kurzzeitbelastungen
angegeben
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5.2 Langzeitverformungen

Aus der Integralgleichung für stetige Belastungsänderungen [3]

ti-t 3Beel(ti3

Eges(tk)= ^K^r. [1^Ctk,t.)]-dti+esCtk)
ti=t2 1

erhält man durch Auswertung für mehrere konstante Belastungsstufen
den plastischen Anteil der Langzeitverformung

ti=tk-1
t£pl(tk)= A°eBlCti)^Ctk'ti)+eSCtk) (1)

Setzt man in [1) für A°e t. °e .(t.)-°e ,(t. so ergibt sicheil eil eli-1
ti=tk-1

te (tk)= Z 0eel(t.). [<t»(tk,t.)-<),(tk,ti + 1)]+es(tk) (2)

vs
In [3] wird die verzögert elastische Verformung in den Kriechzahlen
<j> berücksichtigt. Erfasst man sie jedoch getrennt [2], so ändern
sich die Kriechzahlen in (2).

Wle,(tj= Z °e .(t.).[0,4.$(t. ,-t. ] • [ 1 -$ t. -t. ] (3)ei k
^ eli l +1 l kii~ 1

Der jeweils erste Ausdruck in eckiger Klammer baut die verzögert
elastische Verformung auf, der zweite bewirkt die elastische Rück-
verformung. Die Gleichungen (2) und [3) lassen sich zusammenfassen:

ti=tk-1
^e(t) *"e (t )+^e t. I °e 1(t.)-A<}>(t.,tl)+£ Ct.) (4)

k el k pl k
_ el l l k s k

i 1
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[0,4-0(t.+1-t. )] • [ef>(tk,t. )-<(>( tR,t.+1 )] (5)

tk durchläuft die Werte t2 bis tn + -j, ti die Werte ti bis tn. Die
in (4) erforderlichen elastischen Kurzzeitdehnungen werden, für die
m-Querschnittsfasern (Bild 5a) angewendet, zur Matrix [EE0]mxn zu-
sammengefasst, während die Vektoren { A <J) t ^ } k- 1 für t 12 bis ^n + 1

eine rechte Dreiecksmatrix belegen. Der Vektor der Langzeitdehnungen
zur Zeit t^ ergibt sich zu:

{EL»m *

5.3 Die Betonspannung in einer Querschnittsfaser zur Zeit t^
Durch Abziehen der Langzeitdehnungen ^"e von der Gesamtdehnung

Eges erhält man die Kurzzeitdehnung °£ (Bild Z). Das a-e-Diagramm
fur Kurzzeitbelastung stellt den nichtlinearen Zusammenhang

a f(°e)
c [z.B. °e 0 £— *(2- —)]

So £0

dar, woraus sich die plastische Kurzzeitverformung °£
lässt Pl

(6)

errechnen

°r-£-0 /E z.B.pl c c

Durch Vergleich mit °e

a) 1°

b)

'e 1
>

pl 1 1 'plo

°e I< I °e
pl 1 1 plo

plo

'pi 2 £ß

erhält man folgende Fallunterscheidungen:

Spannungszunahme (Bild 7). Wenn gemäss
Abschnitt 2 Gleichgewicht gefunden ist,
wird {EPD} korrigiert.
Spannungsrelaxation (Bild 8). Die
Betonspannung ist neu zu berechnen:
a E (0 e - 0

e
c c plo

Bild 7 Bild 8
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5.4 Vereinfachungen

Gelingt es, die Zeitintervalle Ctj_ + i—t-j_ J für i 1,2,..n so zu
wählen, dass alle Elemente A<(> (t^ t^) ^0 gleich gross werden, so lässt
sich die Gleichung (4] wie folgt schreiben:
t t i t k~ 1

eCtk) A0. Z °Bel(t.) e8(tk]
ti-ti

In diesem Fall genügt zur Berechnung der Langzeitverformungen
der Vektor {EL}m {A<J> • Z 0e

^ t^ }m. Die Matrizen [EEG] mxn und
[Atf>]

nxn können entfallen.
Wird der Beton näherungsweise als nichtlinear elastisches

Material angesehen, so erhält man die Betonspannungen stets aus
Gleichung (6]. Alle weiteren Ueberlegungen im Abschnitt 5.3 und der
plastische Kurzzeitvektor {EPO} werden dann unnötig.

Bezeichnungen
Ma äusseres (aktives) Moment
Mr inneres (reaktives) Moment
Na äussere (aktive) Normalkraft
Nr innere (reaktive) Normalkraft
K Krümmung
°£ Kurzzeitverformung des Betons

e Langzeitverformung des Betons
°Eel(ti) elastische Kurzzeitdehnung zur Zeit t^
kEpl^ti) plastische Kurzzeitdehnung zur Zeit tj

E g1(12) elastische Langzeitdehnung zur Zeit tj^Epi(ti) plastische Langzeitdehnung zur Zeit t^° E p 1 o maximale Dehnung einer Faser aus allen Vorbelastungen
t wirksame Zeit
(j>(tk,ti) Kriechzahl für das Zeitinterval 1 t^ bis t^
$(tk"ti) Beiwert, der den zeitlichen Verlauf der verzögert

elastischen Verformung berücksichtigt (o<4><1 ist nur
von t^-ti abhängig)

es(tk) Schwinddehnung bis zur Zeit t^
Ei gesamte Dehnung am Druckrand
£2 gesamte Dehnung am Zugrand
£3 Dehnung der Druckbewehrung
Ei, Dehnung der Zugbewehrung
£^ Dehnung der Stegbewehrung
£v Vordehnung, falls es sich um Spannstahl handelt
ac Betonspannung
ö0 Betonspannung infolge der Vorbelastungen
ßc Prismenfestigkeit des Betons
£g absolut kleinste Betondehnung bei ßc
b Breite eines Rechteckquerschnittes
h Höhe eines Rechteckquerschnittes
M=Mr/ßc»b*h2 bezogenes Biegemoment (Rechteckquerschnitt)
N=Nr/ßc*b*h bezogene Normalkraft (Rechteckquerschnitt)
As Querschnittsfläche eines Bewehrungsstabes
m Anzahl der betrachteten Querschnittsfasern
n Anzahl der "Kriechintervalle"
Eges Gesamtdehnung zur Zeit t^
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ZUSAMMENFASSUNG

Es wird eine numerisch iterative Methode zur wirklichkeitsnahen
Bestimmung des zeitabhängigen Verformungsverhaltens von

Stahl- und Spannbetonquerschnitten dargestellt. Beliebige
elastische und plastische zeitabhängige Betoneigenschaften, eine
vorgegebene Belastungsgeschichte und verschiedene Stahltypen
können berücksichtigt werden. Während des zeitabhängigen
Verformungsvorganges kann der Querschnitt vom ungerissenen Zustand
in den gerissenen übergehen und umgekehrt.

SUMMARY

A numerical method by trial and error to compute the time
dependent deformation behavior of reinforced- and prestressed
concrete cross-sections is described. Arbitrary elastic and
plastic time dependent concrete properties, a given loading
history and different types of reinforcing steel can be
considered. During the time dependent deformation process the
cross-section can change from an uncracked state to a cracked
one and conversely.

RESUME

On présente une méthode numérique itérative qui approche
le comportement réel à la déformation en fonction du temps de
sections en béton armé ou précontraint. On peut introduire
dans le calcul toutes les caractéristiques élastiques et
plastiques du béton en fonction du temps, 1'"historique" de
la charge, ainsi que différents types d'acier. Au cours du
processus de déformation, la section peut passer de l'état
non fissuré à l'état fissuré et vice-versa.
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INTRODUCTION
This investigation was aimed at studying the "complete"

behaviour of short reinforced concrete pin-ended columns subjected
to biaxial bending moments as the applied compressive loads were
increased from zero until failure which was defined as the stage at
which spalling of concrete took place accompanied by buckling of the
steel reinforcing bars. This paper discusses briefly the mathematical

formulation leading to the computer program besides reviewing
the experimental procedure. The experimental and computed load-
deflection curves are compared for a symmetrically loaded column
subjected to biaxial bending.

THEORETICAL ANALYSIS
A numerical analysis was developed by the writers (Ref.1,2) to

determine strain and curvature distributions in any structural
concrete section subjected to biaxial bending moment and axial
compression. This analysis can account for any given section geometry

and material properties. Member cross-section is divided into
several small elements and the stress resultants P, M and M onx y
this section can be expressed as function of <j>x, <J>y and given by

the following equations (see Fig.l):
P P(c(>x,cf.y,ep) (la), Mx Mx(<|)x,<j>y,ep) (lb),

and My My(<px,<py,£p) (lc)
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where P - axial force
Mx " bending moment about the x-axis

My - bending moment about the y-axis
e - uniform direct strain due to an axial load P

P

<J>x the curvature produced by the bending moment component
Mx and is considered positive when it causes compressive

strains in the positive y-direction, and
(J) « the curvature produced by the bedding moment component

7 M and is considered positive when it causes compression

in the positive x-direction.

The strain across any element k can be assumed to be uniform
and since plane sections remain plane during bending

ek ep+ Vk +Vk (2)

where x^ and y^ are coordinates of the centroid of the element k.
Having established the strain distribution across the cross-

section, the axial force P and the bending moment components M and

My can be calculated using the following equations:

p(c) -^Vk <3a)' WJ^Vk'k (3b)> Vo-^kVk (3c)

Subscript (c) indicates values of P, Mx and M calculated in an
iteration cycle, and a^ is the area ofX&lemenï k. The values of P,
Mx and My can be estimated using the Taylor's theorem from the

values of P^cj>Mx(c)and My(c) fro® equations (3) as follows:

p - + 3P(c)frfe
x

+ 3P(0 Sè + 8P(c) 6e (4a)
vc; a<t> 34» y 3e p

* y P

Mx " Mx(c} + 3Mx(c)6<i>
v + 3Mx<c) 0<L + 3Mx(c)6e (4b)x x('c; 3d) 3d> y 3e p

x Yy p

Mv " Mv(c) + 8My(c)5(|)
x

+
8M

+ 3My(c)5eP <4c>
y ncJ 3<(.

x
3<f) 7 3e p

Yx T y p

The values 6d> ôé and 6e are increments in d> d) and eTx* Yy p Tx' ry p
required to produce changes ÔP, <5M and ÔM respectively. The par-

3P x y
tial derivatives (c) ...etc. are the rates of change of P, M

3<t>x
X

and My with <j>x, <t)y and ep.

These partial derivatives in equations (4) are replaced by the
corresponding difference quotients; and by suitably incrementing
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each deformation quantity at a time, the rates of change can be
evaluated and substituted in equations (4). The resulting simultaneous

equations (4) are solved for 5<J>x, 6$^ and ôe^ and these

increments are added to the initial deformations and the process is
repeated using the new deformation values until convergence is
obtained. For more details, the reader may refer to Reference 2 and
3.

The central deflections Ô2x and ô2y along x and y-directions
respectively (see Fig.2) were calculated using the following equation
derived from a suitable modification of the moment-area theorems to
account for behaviour non-linearities.
6, <|> l2 60 cj> l2

2x y „ 2y rx /r, N(5a) 3
—g- (5b)

The axial load Pg for each loading step was calculated using the
value of P computed and modified for the influence of mid-span
deflections using the following equations:
(a) Loading Condition 1 (see Fig.3a)

P(e 2+ e ^)^/^
P nex + y ; (6a)

[(e + <5, )2 + (e + 6, )2]1/2
x 2y' y 2x

(b) Loading Condition XI (see Fig.3b)
ppi Po'

p Y (6b) p _ _x (6c)
*3x 2(e^ + ô2x) 3y 2(e^ + «2y)

and P- P~ + Pq3 3x 3y (6d)

More details can be found in Reference 3.

EXPERIMENTAL PROCEDURE

The test specimens were designed as short, tied columns with a
square under-reinforced section (see Fig.4). Eleven specimens were
manufactured and tested to study the influence of the variation of
eccentricities e and e and the total longitudinal steel percen-x y
tage (p + p'). Details of the symmetrically loaded test specimen U-3
and the loading arrangement are shown in Fig.3(b) and 4. The stress-
strain curves for the concrete and the reinforcing steel wire D5 are
shown in Figs.5 and 6, respectively.

Hard rubber blocks were incorporated in the loading frame to
dissipate some of the energy of the loading system. Beyond the
ultimate load, this arrangement permitted the application of further
deformations which were accompanied with a decrease in the applied
loads measured using calibrated load cells.
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The average curvatures along the mid-span section of the column
were evaluated using two sets of experimental data - one from strain
gauges installed on the concrete and the reinforcing steel wire and
the other from the demec gauges suitably arranged near the section.
Deflections along the x- and y-axes were measured using dial gauges
with a least count of 0.001 in. Details of the test procedure,
material properties, etc. along with the experimental data can be
found in Reference 3.

CURVATURE EVALUATION

Experimental observation shows that the strain distributions
across the mid-span section along the x and y-direction are very
nearly linear, therefore curvature in either direction is given by

<p Ec + £s (7a)
d

where ec and eg are strains in the concrete and the reinforcing
steel respectively and d is the distance between the points where
£g (steel strain in tension reinforcement in x- or y- directions)
and e (the extreme concrete compressive strains in x- or y-
directions) are measured. After significant cracking, it was
observed from the strain gauges that the strain distribution in the
compression block became non-linear. Similarly demec gauge results
indicated a non-linear strain distribution across the entire
section. Average curvature can be approximated by the equation

^ (7b)

where kd is the distance between the point where e is measured

and the point of zero strain and in x- or y-directions.

COMPARISONS OF EXPERIMENTAL AND ANALYTICAL RESULTS
The cross section was idealized as shown in Fig.7. The

theoretical and experimental biaxial moment-curvature curves across
the mid-span sections for the symmetrically loaded specimen U-3
(Fig.4) are shown in Fig.8. (e' 17.78 cm. e' 17.78 cm.)

x y
The experimental moment-curvature relationships were obtained until
either strain gauges became damaged or demec points became
dislodged while the theoretical values were computed until the maximum
moment capacity. Fig.9 shows the axial load P^ - central deflection
relationship at mid-span of the column. The theoretical values were
computed up to the stage when the maximum moment capacity was
attained while the experimental values were measured up to the
collapse or buckling of the reinforcement. More test data on
symmetrically and unsymmetrically loaded specimens can be found in
Reference 13.
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CONCLUSIONS
The above theoretical analysis indicates that it is possible

to predict biaxial moment-curvature and load-deflection curves up
to the maximum moment capacity of the column specimen. Also the
use of hard rubber blocks in column compression tests makes it
possible to measure the complete biaxial moment-curvature and
load-deflection curves up to the failure stage as defined earlier.
The analysis in this paper has resulted in the evaluation of the
flexural rigidity coefficients for members of three-dimensional
structural concrete frames and can be incorporated without much

difficulty into the existing computer programs for analysis of
three-dimensional framed structures.
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SUMMARY

The above theoretical analysis indicates that it is possible
to predict biaxial moment-curvature and load-deflection curves up
to the maximum moment capacity of the column specimen. Also the
use of hard rubber blocks in column compression tests makes it
possible to measure the complete biaxial moment-curvature and
load-deflection curves up to the failure stage as defined
earlier. The analysis in this paper has resulted in the
evaluation of the flexural rigidity coefficients for members of
three-dimensional structural concrete frames and can be
incorporated without much difficulty into to existing computer programs
for analysis of three-dimensional framed structures.

RESUME

L'étude théorique rend possible la détermination des courbes
moment-courbure et charge-déformation jusqu'à la charge ultime
de la colonne considérée. L'utilisation d'éléments en caoutchouc
durci lors d'essais de colonnes comprimées rend possible la mesure

Bg. 4 VB
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intégrale des courtes moment biaxial-courbure et charge-déformation
jusqu'à l'état de rupture mentionné plus haut. L'étude présentée
ici a permis l'évaluation des coefficients de rigidité à la
flexion d'éléments de cadres tridimensionnels en "béton armé;
elle peut être incorporée sans grandes difficultés aux programmes
existants d'ordinateur pour l'étude des structures tridimensionnelles.

ZUSAMMENFASSUNG

Die vorliegende Untersuchung zeigt, dass es möglich ist,
die Beziehungen zwischen Biegemoment und Krümmung sowie zwischen
Last und Verformungen bis zur Biegetragfähigkeit der
Versuchsstützen auch für schiefe Biegung theoretisch vorauszusagen.
Die Verwendung von Gummiblöcken für die Lagerung der Versuchsstützen

gestattet die vollständige Beobachtung dieser Beziehungen
bis zum Bruch. Das vorgelegte Berechnungsverfahren führt zu
Koeffizienten für die Ermittlung der Biegefestigkeit von Bauteilen in
räumlichen Tragwerken und kann leicht in bestehende Computer-
Programme eingebaut werden.
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1. INTRODUCTION

For ascertaining the safety of a column or a frame under severe earthquake
loading it is important to know the load-deflection relation of a column or a
frame in the unloading range as well as the loading range under constant
vertical and monotonically increasing or alternately repeated horizontal
loading(l). Although several experimental investigations have been reported,
the theoretical approach to the problem has not been well developed in the
field of steel reinforced concrete SRC

The behavior of a SRC column under axial force and bending moment is
almost the same as that of an ordinary reinforced concrete column in loading
range if it is not subjected to severe shear force. However, a SRC column
shows some-what different behavior from that of an ordinary reinforced concrete
column in the unloading range in the following sence; the covering concrete
falls off during the unloading, and the steel flange is not apt to buckle.

As pointed out in the introductory report the computation may become
formidable if we start from accurate stress-strain relation. In this paper,
starting from idealized hysteretic stress-strain relations and using discrete
element approach, moment-curvature relations of a column tinder constant axial
force are calculated. Since, as quoted in the introductory report,
consideration of a finite length of the member is unavoidable when the negative
slope range of the stress-strain curve of material is to be analyzed, the
analysis of a member or a frame is carried assuming the flexural portions with
a finite length near the member ends in which the curvature is uniformly
distributed.

2. THEORETICAL INVESTIGATION

a. Moment-Curvature Relation: Let us consider a steel-reinforced concrete
column section subjected to constant axial force and varying bending moment,
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in which stress and strain distributions are uniquely determined at a certain
loading stage, and suppose that the state of stress at this stage is given by
a piecewise-linear function of the state of strain, Oz fz(ez), where az and
ez are the stress and the strain in the fiber in the distance of z from the
central axis. The shear force effect is neglected. The increments of axial
force, dN, and the bending moment, dM, developed in the subsequent loading are
given by

0 dN fdaz-dA /fz-dA*dez (1)
dM /doz•z•dA /f£-z-dA-dez (2)

where daz and dez are the stress and the strain increments, respectively, the
prime denotes the derivative with respect to ez and the integration is carried
over the cross sectional area.

If we assume that the plane section normal to the central axis remains
plane, dez is explained by the strain increment on the central axis, de, and
the curvature increment, dK. Employing the definitions,

Ä /fz*dA, S /f'-z-dA, Ï ffi•Z2-dA (3)
Eqs. (1) and (2) become

Ä*de + S'dK 0 (4)
S*de + ï'dK dM (5)

Eliminating de from Eqs. (4) and (5), the incremental moment-curvature relation
is determined as

dM Ï - S2/Ä )-dK (6)
This procedure does not always demand the linearity of the stress-strain

relationship, but the nonlinear relationship requires the iterative procedure
and^the application to the deflection analysis of frames may become difficult.
Ä, S and ï can be evaluated from Eq. (3) by deviding the cross section into a
finite number of strip elements perpendicular to z axis, and by assuming the
uniform distrubution of f'z in a strip.

The hysteretic stress-strain relationship of steel is assumed to be the
one shown in Fig. 1(a), taking Bauschinger effect into account. In the
figure, ay, £y, and Es are the yield stress, yield strain and Young's modulus
of steel, respectively. The compressive strength of the covering concrete
deteriorates due to the crash at an early stage of the compressive strain. On
the other hand, the crashing strain of the confined concrete may be quite large
due to the restraining action of steel flanges. From this point of view, two
different kinds of the hysteretic stress-strain relations, shown in Figs. 1(b)
and (c), are assumed for the confined and covering concrete, respectively. For
both of them, the maximum strength ag is taken as 75% of the cylinder strength of
concrete and the tensile strength is neglected.

b. Deflection Analysis of a Single Column and a Framed Structure: When the
shear force effect is neglected, the deflection of a member subjected to bending
can be determined by integrating the curvature, if the material is "stable"
according to Drucker's postulate, and thus the moment is uniquely related to
the curvature. However, as pointed in the introductory report, we must
consider that finite lengths of section are governed by the same relationship
between moment and curvature, when to deal with the unstable material like
concrete.

In this paper, the following mathematical model is considered for
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simplicity to conduct the deflection analysis of a column or a frame. Let us
consider a cantilever subjected to a lateral load P at its tip. When it is
assumed that a curvature K, which corresponds to the bending moment at the end
(=P•i), is uniformly distributed along the length s, and that the remaining
portion of the cantilever with length of (£-s) is rigid, the deflection at the
tip, 6, can be obtained as

6 k*s•( I - s/2 (7)
In the actual computation, the length s is so determined that the deflection,
6, of this model coincides the exact tip deflection of the entirely elastic
cantilever, and it is given as

s 1 - 1//3 (8)

The incremental load-displacement relation for the cantilever is directly
obtained by rewriting Eq.(7) in the incremental form, and using Eq.(6), as
follows :

,p *-(î-S2/Â).„ (9)
s*( I - s/2

This method of approach can be applicable to the deflection analysis of a
portal frame subjected to the constant vertical load, N, on columns and
monotonie or alternately repeated horizontal load, Q. As conducted in the
deflection analysis of a column, the flexural portions are imposed at both
ends of the beam and columns, in which uniform curvatures are assumed to be
distributed, and all other portions are assumed to show the rigid body motion.
A simple computation based on the equilibrium condition at the joints and the
geometrical relation gives the linear relation between the load increment and
displacement increment.

3. EXPERIMENTS

To ascertain the accuracy of the theoretical treatment, the theoretical
results are compared with the experimental ones which have been obtained by
the authors(2, 3, 4). A brief explanation on the tests is given here.

The experimental works are composed of six series as shown in Table 1.
Shapes and dimensions of specimens and the loading system are given in Fig. 2.
In all series, the axial loads, N, are kept constant, and the horizontal or
lateral loads, Q, are applied in the monotonie or alternately repeated manner,
as identified by the second alphabet of each specimen, M or R, respectively.
Numerals appearing in the specimen numbers denote the axial load ratio N/N0,
where N0 is the ultimate compressive strength of a SRC cross section obtained
by the method of superposition.

In SM and SR series, the specimen is subjected to uniform bending, and
moment-curvature relations are derived from the deflection data detected at
three points along the member axis. The column specimens in CR series are
subjected to double curvature bending, and the chord rotation angle, R, is
computed from the deflection data detected at the top and bottom of the column.
On the other hand, the drift angle, R, of the frame is given by the horizontal
displacement, 6, divided by the column height, h, as shown in Fig. 3.

In SM, SR and CR series, the bending cracks are first observed during the
tests, the ultimate strength of each specimen is attained due to the yielding
of steel and the development of the ultimate compressive strain of the concrete.
And finally the covering concrete falls off causing the decrease of resistance.
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Damaged portion is located at the center in SM and SR series, and at member
ends in CR series. In the frame tests, the bending cracks are observed at
beam and column ends, and the final failure occurs at both ends of columns. In
all frame specimens, the concrete crash is not observed at the beam ends.

4. DISCUSSION ON THE RESULTS

The theoretical results(solid lines) are compared with the experimental
ones(dashed lines) in Figs. 4 to 8. The moment-curvature relations are drawn
for SM and SR series in Figs. 4 and 5. For monotonie loading cases, it is
observed that the theory well predicts the strength deterioration after the
attainment of the maximum strength. The negative slope of the moment-curvature
curve becomes steeper with the increase of the axial load. In the large
curvature range, the strength seems to converge to the sum of the strengths
contributed from the confined concrete and the steel. Since the theory assumes
entirely ductile stress-strain relation for the confined concrete, the
strengths given by the theory are larger than that by the tests, and the
positive slope appears again on the curve in the large curvature range due
to the strain-hardening of the steel, except for the case of zero axial load.
For repeated loading cases, the theoretical results of SRO shows a very good
agreement with the experimental one. Particularly the stiffning effect due to
the closing of cracks are well predicted by the theory, although the stiffness
change appears rather sudden in the theory. On the other hand, the large
discrepancy is seen between the experimental and theoretical maximum strengths
of SR3. However, it is clearly shown in case of SR3, that the strength
converges to the sum of the strengths of the confined concrete and the steel.

The hysteresis loops of column specimens subjected to double curvature
bending repeatedly are shown in Fig. 6. In general, the theory well predicts
the experimental results. As clearly shown in the case of CRO, the discrepancy
is seen on the shapes of hysteresis loops; stable spindle type in the test and
rather parallelogrammic type in the theory. Since this discrepancy is not
obvious in the moment-curvature relation, this is because the theory does not
take into consideration the cracks due to bending distributed entire length of
the column and the shear deformation. The test result of CR3 shows that the
confined concrete already crashed at the final stage of the test.

Shown in Figs. 7 and 8 are the results of the frame analysis. One point
that cannot be properly explained yet is the large discrepancy between the
theoretical and experimental maximum strengths of FM series. This discrepancy
is more or less observed in the results of FR series. It may be said that
the accuracy of the theoretical results becomes poorer as the objective
structure becomes more complicated. From this point of view, the development
of the more refined mathematical model for the deflection analysis is needed.
Since the members in CR, FM and FR series are subjected to double curvature
bending,the moment curvature relation for such a member may have to be checked
by the theory to give an explanation to the discrepancy. The difference in
the shapes of the hysteresis loops of the frame is very similar to that
observed in case of the columns. The large strength reduction observed in
the final experimental loop of FRO may be caused by the fracture of the steel.

5. CONCLUSIVE REMARKS

The moment-curvature relation of a steel reinforced concrete cross section
under the constant axial force and monotonie or alternately repeated bending
is computed by separating the cross section into a finite number of strip
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elements based on the assumption that the plane remains the plane. It can
be concluded that it is needed to employ the accurate stress-strain relation
of the concrete when to carry out the deflection analysis of the reinforced or
steel reinforced concrete members, and its accuracy shows the critical effect
on the result of the analysis. When the axial load is zero, the maximum
bending moment of the cross section, and thus the maximum strength of the
member, depends only on the strength of the bare steel portion including
reinforcing bars, and the concrete strength hardly affects on the numerical
results. However, when the axial load is present, the estimation of erg plays
a key role to determine the maximum strength of the member. In the present
analysis, <Jg is assumed to be 75% of the cylinder strength, and different
types of stress-strain relations are assumed for the covering and confined
concrete. The theoretical result shows a good agreement with the experimental
one under the loading condition where the mean strain in the confined concrete
is small.

The main advantage of the present method of analysis may lie on the point
that the hysteretic load-deflection relation of the member of the frame can
be directly derived from the moment-curvature relation of the member cross
section, by considering the flexural portions with a finite lengths concentrated
at the member ends. In general, the deflection analysis of the frames shows
the discrepancy between the maximum strength obtained by the present method
and that from the test. It seems adequate to impose the rigid portion with a
finite length at the member ends, in order to obtain a good agreement with
the test result.
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TABLE AND FIGURES

Table 1. Test Specimens and Material Properties
Series SM SR CR FM FR

Loading Type Monotonie Repeated Repeated Monotonie Repeated

Specimen No. SMO SM2 SM4 SM6 SRO SR3 CR0 CR3 FM0 FM4 FRO FR3

N (ton) 0 30 60 90 0 25 0 35 0 40 0 34.4

N/N0 0 0.2 0.4 0.6 0 0.3 0 0.3 0 0.4 0 0.3

Fc(ton/cm2) .215 .269 .295 .275 .233 .216 .364 .326 .228 .242 .349 .328

stfy(ton/cm2) 3.05 3.12 3.12 3.12 3.42 3.42 3.48 3.48 2.95 2.83 3.46 3.09

j<jy( ton/cm2) 3.68 3.68 3.68 3.68 4.18 4.18 3.38 3.91 2.61 2.61 3.87 3.87

N:Axial Load, N0:Ultimate Compressive Strength, Fc:Cylinder Strength of Concrete,

of Frame Tests
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(b) CR3

Fig. 6 Load-Deflection Curves of CR Series

Q(t) 12 Q(t) 12,

(b) FR3

Fig. 7 Load-Deflection
Curves of FM Series

Fig. 8 Load-Deflection Curves of FR Series



I - A STUDY ON THE BEHAVIOUR OF STEEL REINFORCED CONCRETE COLUMNS AND FRAMES

SUMMARY

A numerical analysis is carried out to obtain the moment-
curvature relationship of the steel reinforced concrete cross
section under constant axial force and monotonie or alternately
repeated bending moment, based on the idealized stress-strain
relations for steel and concrete. A method of the deflection
analysis of steel reinforced concrete columns and frames is
proposed, introducing a mathematical model. The numerical
results are compared with the experimental ones that have been
obtained by the authors.

RESUME

On procède à un calcul numérique pour obtenir la relation
moment-courbure d'une section en béton armé soumise à une force
axiale constante et à un moment de flexion constant ou alterné;
on se base sur des diagrammes tension-déformation idéalisés pour
l'acier et le béton. On propose une méthode pour le calcul des
déformations des cadres et colonnes en béton armé, qui utilise
un modèle mathématique. On compare les résultats numériques avec
des résultats expérimentaux des auteurs.

ZUSAMMENFASSUNG

Eine numerische Berechnung wird durchgeführt, um die Moment-
Krümmungs-Beziehung von Stahlbetonquerschnitten unter konstanter
Axiallast und gleichförmig ansteigendem oder wechselndem
Biegemoment zu bestimmen. Hierbei werden idealisierte Spannungs/
Dehnungs-Beziehungen für Stahl und Beton eingeführt. Eine Methode
für die Berechnung der Verformungen von Stahlbetonstützen und
-Rahmen wird vorgeschlagen, welche auf einem mathematischen Modell
beruht. Die numerischen Resultate werden mit den Ergebnissen von
Versuchen der Autoren verglichen.
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Introduction

It is widely recognized that the true behavior of reinforced
concrete is extremely complicated. Among the various physical
phenomena that occur on a macro-scopic level in reinforced concrete,
the following will be mentioned: nonlinear compressive stress-strain
relationship of concrete; cracking of concrete; yielding of steel
reinforcement bars; bond slip between reinforcement bars and concrete.
Geometric imperfections and second-order geometric effects are also
of considerable importance for beam, plate and shell structures.
The picture is further complicated by various time dependent phenomena.

In spite all of this, the analyses of most concrete structures

today are based on greatly simplified models for the materials.
The finite element method has proved to be a very efficient tool

for analysis of a great variety of nonlinear problems [1] [2] A
review of applications of the method to nonlinear analysis of
concrete structures has been given by Scordelis [ 3] Studies considering

both material nonlinearities and large deformations have
previously been reported by Berg et.al. [4] who analyzed concrete plates
and by Blaauwendraad [ 5] and Aas-Jakobsen and Grenacher [ 6] who
dealt with concrete frames.

In theory, the finite element method can be formulated so that
almost an unlimited number of complex physical and geometrical effects
may be incorporated in the numerical algorithms. A prerequisite
for this is of course that the various effects can be defined
mathematically. But at least as important as to include various physical
phenomena in the analytical model is .to ensure that the method
becomes economical and practical in use.

In the present paper an attempt is made to achieve a method of
analysis that is capable of accurately predicting the inplane
behavior of plane, slender, reinforced concrete frames and arches
that are subjected to loads up to the ultimate carrying capacity.
Major efforts have been made to make the analytical model economical

and efficient. The approach is based on the finite element method
utilizing a beam displacement model. The material properties of
concrete and steel reinforcement may be relatively general. The
loading geometry, support conditions and distribution of
reinforcement may also be arbitrary. The cross-sections are assumed to
be rectangular. Large deflections of the frame are also accounted
for. The present method is demonstrated by two numerical examples,
eccentric buckling of a column and stability analysis of an arch.
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Governing equations

z,w

Config.2

z.w Confîg. 1

vu
Initial

Configuration
B

~

vu

Fig.l. Description of motion of an element
during deformation.

In the proceeding, a simple but powerful approach for large
displacement analysis of frames will be followed. The structure
is assumed to be divided into finite elements. To every element
is "attached" a local Cartesian coordinate system going through the
end nodal points, see Fig. 1.

This coordinate system follows
the element during the deformation.

On the local element level
the deformations are assumed to
be small (small strains).
However, forces and displacements
for each element are transformed
to a global coordinate frame in
which the equilibrium equations
for the entire system are assembled.

In effect, this approach
is a matter of updating the
nodal point geometry of the
structure in accordance with
the current deformations. The
geometric nonlinearities entering
this procedure are entailed in
the continuously changing
transformation matrices between local
and global systems (rotational

effect of elements).
Two equations are of great importance for a nonlinear analysis:

the equilibrium equations and the incremental form of the
equilibrium equations. The condition of equilibrium for an element can
be stated in terms of the virtual work principle

JcrôedV - /T-Su-dS 0 (1)
V Sj

For a beam element a is the axial stress, V the element volume,
T^ the surface traction which is prescribed on surface 6u^
are the virtual displacements and 6e the corresponding virtual
strain. Using the approach just described, Eq. (1) yields the small
displacement (secant) stiffness relation, i.e. the equilibrium
equation, referred to the local coordinate system in the current
deformed configuration. Eq. (1) may very well account for nonlinear
material effects.

By considering equilibrium of two configurations 1 and 2

of the element that are close to each other, an incremental form of
the virtual work principle may be obtained

JAcröedV + Ja6AedV - /AT.ôu.dS 0 (2)
V V Sj

1 1

where A denotes increment of quantities between the two configurations.

In accordance with the previous description Eq. (2) has
been linearized by neglecting the term jAaôAedV.

V

The reference frame for Eq. (2) is the local coordinate system in
configuration 1, see Fig. 1. For a beam element the term 6Ae may
be obtained from the nonlinear strain term which includes the
rotational effect i 2 so that
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6Ac <5[ J(^ +
8 Aw N 2t 3X

~ 5v3X' j " wv3x' 9x_ lr9Wx2i
2 j 6 (IS) 3 Aw (3)

Equation (2) yields the socalled incremental or tangent stiffness
relation which accounts for both nonlinear material properties and
geometric effects (geometric stiffness on linearized form).

Finite Element Model

IZ,W

f1
U1, ,U3,

] 3

u2 V'u
2

<, S x/l M

The finite element idealization
of the beams is here

based on a pure displacement
model [ 1] The axial

displacement along the x-
axis of a beam element is
defined by

("+)

where
V

Fig.2. The beam element. Nu - [ Ç, 1-Ç, tÇ(l-Ç)](5)
U [Up u2, us] (6)

The internal degree of freedom at the midplane, see Fig. 2, is introduced

in order that the strain due to axial deformation be of the
same degree as the strain due to flexure. The lateral displacement
w is defined by

N w
w

where

Nw=[ 1-3Ç2 + 2Ç3,-AÇ(1-Ç)2 l-3(l-£)2 + 2(l-Ç)3,AÇ2(1-Ç)]
W [ Wj ,0 j ,1

(7)

(8)

(9)

Adopting Kirchhoff's hypothesis, the strain at an arbitrary point
within the beam element is given by

^ N u - zN Wdx u,x w,xx (10)

The above model does not accountThe comma denotes differentiation,
for shear deformations.

Assuming that forces act only at the nodal points of an element,
the element equilibrium equation is obtained by substitution of
Eq. (10) into Eq. (1).

V

N
u ,x

T-zN
w,xx

dV S (11)

S is the nodal point force vector corresponding to the state of
stress a. The stress a is given by the current strain, see the
next section.

The increment of the axial stress is related to the strain
increment through the equation

Act E^Ae (12)
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where E^ is the current tangent modulus. By substitution of
Eqs. (10) and (12) into Eq. (2), the incremental force-displacement
relationship for the element is obtained

JE4

N
T

N
u ,x u ,x

-zN T
N

u,x w,xx
symm. z2N N

w,xx w,xx

dV+N/
Jl

0

0 N

0

T
N

w ,x w ,x

dx
"Au" "AS
AW

— ASU
w

AS (13)

Here, N is the resulting axial force over the element cross section.
The second term of Eq. (13) is the geometric contribution to the
incremental force-displacement relationship. A similar incremental
relationship for the total structure is obtained by transformation
from the current local to the global coordinate system and using
a standard assemblage process.

Material properties
The method described herein allows for a general, nonlinear

stress-strain relationship for both concrete and reinforcement. The
concrete and the steel are assumed to be perfectly bonded.

In the computational procedure, it is assumed that there is a
unique relationship between stresses and strains (total deformation
formulation). The stress-strain curve for the concrete is identified

by a set of discrete points, see Fig. 3. Linear interpolation
between these points are used for
intermediate values. The tangent
modulus needed in Eq. (13) is given in
a similar way by utilizing discrete
tangent values from the experimental
stress-strain curve. The tangent
modulus may be negative. In tension
the concrete is assumed to behave
linearly up to a cracking strain
ecr beyond which the concrete has
no strength. The computer program
which was developed can also
automatically generate the standard CEB-
FIP design curve for concrete [ 7]
(also used in the Norwegian building
code NS 3473).

The material properties for the
steel are obtained in a similar way
as for the concrete by identifying
discrete values from experimental
curves.

Numerical solution

Lcrt

(Negative)

^ 1

/ I (Negative)

T1 e2 e3 e4

(a) Uniaxial stress for concrete.

Ej ii (Positive)

—\\\
I I Nv.,r (Negative)

ecr -J £c
(b) Tangent modulus for concrete

Fig.3. Material properties for
concrete.

The major constituents in the solution process are the
equilibrium equation (11) and its incremental form Eq. (13). These
equations require integration to be carried out over the volume of
the beam elements. A Gaussian quadrature scheme is adopted forthis purpose. This integration is performed by utilization of 2

to 4 cross sections located at Gaussian points along the longitudinal
axis of the beam element. Integration is also carried out over

the height of each section employing Gaussian integration for stress
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points in the compression zone. The material properties at these
points are obtained from diagrams like that of Fig. 3. The part of
the tension zone where the strain exceeds the cracking limit is
excluded from the integration. Several layers of reinforcement
can also be accounted for.

The response of the structure during increasing external loading
is basically determined by applying the external load in increments
and by performing equilibrium iterations at each new level of loading.
It may well happen that equilibrium of the structure is not satisfied

after a new displacement vector has been obtained. The difference
between the external forces acting on the structure and the

assemblage of element force vectors from Eq. (11) give rise to a
set of unbalanced forces. This residual force vector is utilized
in a Newton-Raphson iteration in which the gradient matrix is
supplied by Eq. (13). The iteration is terminated when the displacements

have converged or material rupture has occured. The material
properties at the integration points and the extension of the cracked
zones are constantly updated during solution according to the current
state of deformations. Also the local coordinate systems for the
elements are steadily updated to account for the change in geometry
of the frame.

The solution process is capable of proceeding beyond points of
maximum carrying capacity of the structure. The load-steps
automatically change sign after maximum point has been passed (reduction

of external loading). This capability can be of great importance
for determining the safety of a design. Further details on the
solution procedure that is used may be found in Ref. [8].
Numerical Examples

The present method will be illustrated by two numerical
examples.

The first example is a hinged column subjected to eccentric
axial loading, see Fig. 4. The steel reinforcement is symmetric
and it is assumed to behave elastic-ideally plastic. Its modulus
of elasticity is Eg 2.055*105 N/mm2(29.2•106 psi) and its yield
strength is f 461 N/mm2(65500 psi). The compressive stress-
strain relationship of concrete is described by the standard CEB-
FIP curve [7] with an ultimate strain of e - -0.0035. The maxi-c
mum compressive strength is taken as f 25.7 N/mm2(3660 psi)
corresponding to 80 per cent of the cube strength. The tensile
strenght of concrete is neglected. Half the total length of the
column is divided into six beam elements. The axial loading is
applied in 18 increments and an equilibrium iteration is carried
out at each level of loading. Fig. 4 shows the load-deflection
curve for the present analysis compared with test and analytical
results from Ref. [ 6] The results obtained agree closely with the
two other curves. For all the curves the maximum point corresponds
to an axial force of N 242 kN (53.4 kips). To some extent, the
discrepancy between the test curve and the analytical curves may
be due to that the tensile strength has been set equal to zero.
Fig. 5 shows a graph of the relationship between moment (M) and
axial force (N) at the critical section of the column during
deformation. The interaction diagram which represents material
failure is also plotted in the figure. It is clearly demonstrated

Bg. 5 VB
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Fig.4. Load - deflection curves for column. Fig.5. M - N relationships for column.
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that the final collapse of the column occurs when the M-N curve of
the column reaches the interaction diagram (failure envelope). The
total solution time for this example was 18 CPU-seconds on a
UNIVAC 1108 computer.

The second example is a 180 hinged arch subjected to uniform
hydrostatic pressure. Since no test data or alternative analytical
results are available, the main purpose of this example is to demonstrate

various capabilities of the present approach. The dimensions
of the arch are given in Fig. 7. It is assumed to have a geometric
imperfection defined by e eQsin2a. The ultimate strain of the
steel is taken as e e + 0.005 0.0069. The arch is analyzedsu y J

both as an unreinforced concrete structure with perfectly linear
elastic material properties and as a reinforced concrete structure
with nonlinear material properties. The shape of the nonlinear
stress-strain relationship is assumed to be the same as for the
previous example, and the numerical values are given in Fig. 6. The
hydrostatic pressure is applied both as a conservative loading for
which the original direction of the force is kept during deformation
and as a nonconservative loading for which the water pressure
always is acting perpendicular to the deformed configuration. The
arch is divided into 12 equal elements.

The results obtained are shown in Figs. 6 and 7. In Fig. 6,
the horizontal displacement of node H, u is plotted against
the load intensity p. Curve shows the load-displacement
relationship for an elastic structure subjected to a nonconservative
load. The curve approaches the critical load level for linearized
buckling pcr 3EI/RQ3 418 N/mm. A similar curve for conservative
loading is marked © • Curve (3) and (4) represent a reinforced
concrete arch with conservative and nonconservative load, respectively.

Curve <D reaches its peak value at a load level of po -250 N/mm.

Material failure is reached at p - 140 N/mm 0.56 p Therms S3

corresponding values for curve © are p ^ 230 N/mm and

Pml( - 125 N/mm 0.54 PS1)- The curves representing nonconservative
load are located approximately 10 per cent lower than the
corresponding curves representing conservative load. This demonstrates
that practical design procedures ought to account for changes in
the direction of loads. From Fig. 6 it may also be seen that the
asymptotes of the elastic curves are located about 80 per cent
higher than the maximum points of the corresponding reinforced
concrete curves. Fig. 7 shows the relationship between moment (M)
and axial force (N) at the critical section (node 4) for the
reinforced concrete arch with conservative and nonconservative
loading, respectively. Also the corresponding interaction diagram
(failure envelope) is shown. The loading was applied in 11 to 22
load increments corresponding to a total solution time of 30 to
76 CPU-seconds on a UNIVAC 1108 computer.

References
[ 1] ZIENKIEWICZ, O.C., Thz Finitz Element Mzthod. in Enginzzfiing

Sziznzz, McGraw-Hill, London (1971)
[2] ODEN, J.T. F initz Elzmznti o fa Nonlinza.fi Continua, McGraw-Hill,

New York (1971)



Properties ;

E.= 3.0-104 N/mm2
(4.26-106 psi
fc 19.2 N/m m

2

(2720 psi
fs 320 N/m m 2

(45400 psi

Es= 1.67*10^ N/mrr?
(23.7-106 psi

rMaterial
failure

Conservative Load.
Nonconservative Load.

Reinf. Concrete. Conservative Load.
Reinf. Concrete. Nonconservative Load.

ux 4

250 500 750 (mm)

Fig.6. Load - deflection curves for arch. Horizontal
displacement of node 4

"Node 4

e eQsin2i

(618in. AT= At - 6000m m 2
1 I f (9.3 in.2)

6 MN (795 kips

Rupture in
tensile reinf.
1 L

Fig.7. M - N relationships for arch

-M»,
(MNm)

>
ID
G)

o
m

O
3)

>
H

H
>
CD

-<

>z>
I—

<
CO

CO

o

O
m
o

oo
o
33

33

>



E. ALDSTEDT - P.G. BERGAN 69

[3] SCORDELIS, A.C., "Finite Element Analysis of Reinforced
Concrete Structures", presented at the June 7-2. 2972,
Speciality Confaerence on the finite Element Me.th.od In Civil
Engineering, Montreal, Canada.

[4] BERG, S., BERGAN, P.G., HOLAND, I., "Nonlinear Finite Element
Analysis of Reinforced Concrete Plates", Proceedings o fa the.
2nd International Confaerence on Stn.uctu.iaJi Mechanics tn
Reactor Technology, Vol. M, Berlin, Sept. 1973

[5] BLAAUWENDRAAD, Ir.J., "Realistic Analysis of Reinforced Con¬
crete Framed Structures", HERON, Vol. 18, No. 4, 1972.

[6] AAS-JAKOBSEN, K.A., GRENACHER, M., Berechnung unelastischer
Rahmen nach den. Theonte 2. Ordnung, Bericht Nr. 45, Institut
für Baustatik, ETH, Zürich, Januar 1973.

[7] CEB-FIP, International Recommendations faon, the Design and
Construction ofa Concrete Structures, English Edition, June 1970.

[8] BERGAN, P.G., S0REIDE, T., "A Comparative Study of Different
Numerical Solution Techniques as applied to a Nonlinear Structural

Problem", Computer Methods in Applied Mechanics and
Engineering 2 (1973) 185 - 201.

SUMMARY

The paper presents a method of nonlinear analysis for plane,
reinforced concrete frames. Both geometric and material nonline-
arities are accounted for. The method allows for incremental
application of the external loads and the structural behaviour
may be followed even beyond the point of maximum carrying capacity.
The analysis is based on a finite element formulation in which
the frames are modelled by small beam elements. The present method
has proved to be very efficient and accurate.

RESUME

Ce rapport présente une méthode de calcul non-linéaire pour
les cadres plans en béton armé. On tient compte des comportements
non-linéaires et de la géométrie et du matériau. Cette méthode
permet d'étudier le comportement d'une structure sous l'accroissement

de la charge extérieure, même au-delà du point où la
charge maximum est atteinte. Le calcul se base sur la méthode des
éléments finis: les cadres sont considérés comme un assemblage de
petits éléments de poutre. On a démontré que la méthode ci-dessus
était efficace et exacte.

ZUSAMMENFASSUNG

Der Beitrag stellt eine Methode vor, mit welcher eine
nichtlineare Berechnung ebener Stahlbetonrahmen möglich ist. Sowohl
die geometrischen Nichtlinearitären als auch diejenigen der
Baustoffe werden berücksichtigt. Die Methode gestattet stufenweises
Aufbringen der äusseren Belastung, und das Verhalten lässt sich
selbst über den Punkt der maximalen Tragfähigkeit hinaus
verfolgen. Die Berechnung benützt die Methode der Piniten Elemente,
wobei der Rahmen aus kleinen Balkenelementen zusammengesetzt wird.
Die vorliegende Methode hat sich als sehr leistungsfähig und genau
erwiesen.



Leere Seite
Blank page
Page vide



I

Inelastic Analysis of Reinforced Concrete Beam Columns

Calcul non-élastique de poutres-colonnes en béton armé

Unelastische Berechnung von Balken-Stützen-Systemen aus Stahlbeton

Visiting Assistant Professor
John M. KULICKI Celai N. KOSTEM

Associate Professor
Fritz Engineering Laboratory
Lehigh University Bethlehem
Bethlehem, Pennsylvania, USA

INTRODUCTION

This paper presents the results of a pilot study on the application of an
incremental, tangent stiffness finite element analysis technique to the solution
of beam-column problems. Results of numerical investigations on reinforced
concrete and steel beam-columns subjected to concentrated midspan lateral loads
were compared to results obtained using the Column-Curvature-Curve (CCC) method
(Ref.l) and, in some cases, the Column-Deflection-Curve (CDC) method (Ref.5) via
interaction diagrams. The results have been presented in Ref.A. Only those
examples dealing with reinforced concrete beam-columns will be presented here. In
each case it will be assumed that the complete axial load is applied first, then
the lateral load is applied.
BASIC MODEL

Consistent with the finite element method, the beam-column will be assumed
to be divided into elements along its length as shown in Fig.l. A frame or
beam type finite element will be used and bending will be assumed to occur about
only one axis. Inelastic biaxial bending could also be analyzed by an extended
version of the same element. There will be three degrees of freedom at each
node point used to define the elements. They are the axial displacement, U, the
lateral displacement, V, and the bending rotation, 0. These displacements will
occur along an arbitrary reference axis shown as the X axis in Fig.l.

The elements are subdivided into layers which are also indicated in Fig.l.
Each layer is assumed to be in uniaxial tension or compression with the strain
in each layer analytically related to the strain at the reference axis by the
assumption that the cross-section is a plane before and after bending. Each
layer may have its own stress-strain relation. Ascending portions of stress-
strain curves are idealized using a Ramberg-Osgood formulation for either steel
or concrete (Ref.3). Unloading legs of stress-strain curves are modeled as
straight line segments.

The displacements within the elements are described by the polynomials
below.

U a1 + a2X

V a. + a.X + acX2 + a£X3
3 A 5 6

(1)

(2)
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0 - dV/dX (3)
The generalized stresses are chosen as the normal force and moment at the
reference axis. The corresponding strains are the axial strain and curvature.
Utilizing the assumption of plane sections it is possible to define the
elasticity matrix as: _ _N AS dU/dX

(4)

in which: J
X

i=l
EiAi

N A S dU/dX

M s" I 2
-d V/dX

J J
S X E A Z I X E,

i=l X 1 X i-1 J
(5)

The tangent stiffness matrix given below was developed following the well
established procedures of the finite element method, e.g. Ref. 7.

M

le2

0

si2
12Î

-611 4l£2
symm

-It2 0 -?£2 It2
0 -12Ï 611 0

-S£2 -6l£ 2ïe2 st2
121

611 bïl1

(6)

The arbitrary reference axis mentioned earlier has been used in the development
of the stiffness matrix above. This facilitates consideration of the

change in the position of the neutral axis as nonlinear action proceeds. The
equilibrium equations are applied in incremental form so as to treat a nonlinear

problem as a series of piecewise linear problems.
The P-A effect caused by the deflection of the beam-column can be included

by using the geometric stiffness matrix. The particular form used here was
found in Ref.6. The bending displacements are related to the axial force by
Eq.7 in which the axial force P is positive if it causes tension.

M - p
301

0
0 36 0 symm
0 -31 4-t
0 0 0 0
0 -36 31 0 36
0 -31 -12 0 31 4r

(7)

Combining Eqs.6 and 7 results
placed beam-column element.

{F}

in the equilibrium equations for the dis-

[h] + M] {6} (8)

The total stiffness matrix of each~element can then be assembled to form the
global equilibrium equations. After application of the boundary conditions
these equations can be solved for each increment of load.

A more complete discussion of the basic model is contained in Ref. 3.
Comparisons of analytic and experimental load-deflection curves for reinforced
and prestressed concrete beams are also presented as verification of the model.
ITERATION SCHEME

The iteration procedure for a given lateral load increment is started by
solving the global equilibrium equations for the increments of displacement.
Strain increments are computed from the displacement increments. Using the
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latest level of stress available new tangent moduli are computed for each layer,
the tangent stiffness matrix, Eq.6, is regenerated and added to the geometric
stiffness matrix. The equilibrium equations are solved again. If the new
increments of displacement are within a relative tolerance of the previous set,
convergence is said to have occurred. If convergence is not attained in several
trials the load increment is reduced and the process is repeated. If no
convergence is attained after a number of reductions in load the process is stopped.

If convergence is attained in relatively few trials the load increment to
be applied for the next load step is increased.

Once convergence has been attained for the load step, consideration is
given to cracking and crushing if appropriate. The first phase in this step is
a pre-scanning process in which all the layers are checked to see if they have
exceeded the allowable tensile or compressive stress tolerances by an excessive
amount. If this occurs the basic load step is reduced and the problem of finding

a converged displacement increment for the basic load step is repeated.
Once it has been determined that no stress criteria are exceeded by more

than their tolerances any alteration in stiffness required by the cracking or
crushing of a layer is made. The downward legs of the analytic stress-strain
curves are used to convert strain increments into "fictitious stresses" which
are used to unload layers which have been found to exceed cracking or crushing
criteria. The "fictitious stresses" are used to compute nodal "fictitious
forces" which hold the rest of the beam-column in equilibrium. This process
produces a globally adequate but not locally exact redistribution of stresses.
The global equilibrium problem corresponding to that set of "fictitious forces"
is solved until convergence is attained. The layers are then rechecked to see
if subsequent cracking or crushing has occurred. If so the cracking-crushing
analysis is repeated. Execution of a given beam-column analysis is terminated
in one of two ways: 1) the total stiffness matrix given by Eq.8 ceases to be
positive-definite, or, 2) the process of cracking or crushing results in an
inability to find a total solution for a given load step. The first mode of
termination was most common in the examples presented here.

Alterations in the stiffness matrix arising from plastic flow like
phenomena in reinforcing steels or in steel beam-columns are automatically
accounted for by employing the appropriate Ramberg-Osgood curve.
NUMERICAL RESULTS

The rectangular, doubly reinforced section used here is shown in Fig.l.
Beam-columns using the same cross-section have been analyzed using the CCC

method (Ref.2). The section is 356mm deep, 305mm wide and has equal compressive
and tensile areas of 21.68cm2 each. The compressive strength of 17.58

MN/m2 used in the CCC analysis was also used here. The yield strength of the
steel was 310.27 MN/m2. The 26 beam-columns which will be discussed herein
are enumerated in the table below.

ANALYTIC REINFORCED CONCRETE BEAM COLUMNS

e 0.0
L/t 10 10 10 10 10 20 20 20 20 20 30 30 30 30

P/P0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6

e 0.3t
L/t 10 10 10 10 20 20 20 20 30 30 30 30

P/Po 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

The interaction curves produced by both the finite element and CCC methods
for a concentric axial load are shown in Fig.2. It can be seen that the results
of both analyses agree quite well for the curves with L/t=30 and L/t=20. The

agreement with the CCC results for L/t=10 is not as good but is still within
about 5% of the same Q/Q0 value for a given value of P/PD.
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The load-deflection curves produced using the current work for the case
with L/t=20 is shown in Fig.3. The load-deflection curves do not appear to form
a systematic pattern as was obtained when the same analysis was applied to a
steel wide-flange beam-column (Ref.4). There are several reasons for this:
1) as seen in Fig.2, there are some values of P/P0 for which a reinforced
concrete beam-column loaded in this manner can support a larger lateral load
than is possible when P/P0 =0. This was not true for the steel beam-columns,
and 2) the effect of cracking is evident in these load-deflection curves as a
relatively early change in slope. The amount of change is dependent on the
extent of cracking along and through the beam-column.

Figure 4 is a comparison of interaction diagrams for an eccentrically
loaded reinforced concrete beam-column. Good agreement with the corresponding
CCC results is again noted. The finite element results do not extend as far
along these interaction curves because of a limitation in the current iterative
procedure. For the higher values of P/PQ in both the eccentric and concentric
cases the axial load alone caused enough nonlinear behavior to result in a
failure to converge to the first displacement increment. This is because the
axial load is applied in one load step in the current algorithm while the
subsequent lateral load is applied in small steps. The algorithm could be modified

so as to apply the axial load in several steps. For the concentric load
case it was relatively easy to circumvent this problem by using an initial
stress field which satisfied equilibrium and strain compatibility.

Figure 5 is a set of load-deflection curves for the eccentric load case
with L/t=20. The almost horizontal offset at the beginning of each curve
represents the effect of the application of the total axial load and the first
increment of lateral load.

This analysis technique has also been applied to steel wide-flange beam
columns and the results were compared to those obtained using both the CCC and
CDC methods. The corresponding interaction curves have been reported in Ref.4
and show even better agreement than indicated herein.
CONCLUSIONS

It can be concluded from this study that this incremental iteractive analysis

technique using a simple layered beam-type finite element can provide
solutions to inelastic beam-column problems. While there is already a large body
of information in this area, this method does have several advantages which may
prove useful in future beam-column studies: 1) a wide range of loadings can be
handled. There is no intrinsic difference between one concentrated, several
concentrated, uniform, symmetric or unsymmetric loads. 2) boundary conditions
can also be handled easily. There is no change in the formulation for different
boundary conditions. 3) There is no need for an a-priori moment-thrust-curvature
curve. 4) There is nothing conceptually prohibitive about changing the order of
loading or using simultaneous (but proportional) axial and lateral loads. 5)
Previous work on prestressed concrete beams using basically the same simple
model would indicate that prestressed concrete beam-columns could also be
treated by this technique.

NOMENCLATURE

A Generalized area
E Initial modulus of elasticity
I Generalized moment of inertia
J Number of layers in an element
L Beam-column length
M - Bending moment
N Normal force
P Axial load
Q Lateral load
s Generalized statical moment
e Eccentricity of axial load
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I
U

V

Element length
Axial displacement
Lateral displacement
Bending rotation
Concrete area

e

A
c

Steel area
P

o
Ultimate load of a concrete beam with no axial load

f 0.85f'
cc

f Yield stress
Stiffness matrix
Geometric stiffness matrix
Constants in displacement polynomials

y
[KE]

W
M
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SUMMARY

An efficient model has been developed which predicts the
flexural load-deformation behaviour and stress history of
inelastic reinforced concrete and steel beam-columns. The beam-
column is discretized into an assemblage of layered beam type
finite elements and is analyzed using an incremental, iterative,
tangent stiffness approach, good agreement between interaction
curves developed by this method and the column-curvature-curve
method is demonstrated herein.

RESUME

On a développé un modèle efficace permettant de prévoir le
comportement flexion-déformation et l'évolution des sollicitations
de poutres-colonnes non élastiques en béton armé ou en acier. La
poutre-colonne est traitée comme un assemblage d'éléments finis
en forme de lamelles. Le calcul se base sur une approche progressive

par itérations du module de rigidité tangentiel; on montre
également une bonne concordance entre les courbes d'interaction
obtenues par cette méthode et la méthode des courbes de courbure
de colonne.

ZUS ÂMMERFAS SIOTG-

Ein leistungsfähiges Modell wurde entwickelt, mit welchem die
Vorhersage des Verformungsverhaltens und des Beanspruchungsverlaufs
in unelastischen Balken - Stützen - Systemen aus Stahlbeton bzw.
Stahl möglich ist. Das Balken - Stützen - System wird dabei aufgelöst

in schichtförmige Finite Elemente und untersucht mittels eines
stufenweisen iterativen Vorgehens, bei welchem die jeweilige Steifigkeit

Verwendung findet. Die gute Uebereinstimmung der mittels der
verliegenden Methode ermittelten Interaktions-Diagramme mit
denjenigen aus einer Stützen - Krümmungs - Methode hergeleiteten
wird aufgezeigt.
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Stabilität von Stahlbetonstützen und Stahlbetonrahmen

Stability of Reinforced Concrete Columns and Frames

Stabilité des colonnes et des cadres en béton armé
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1. Einleitung
Der Stabilitätsnachweis für außermittig gedrückte

Stahlbetondruckglieder wird unter anderem nach den
Vorschriften der einschlägigen Normen in den einzelnen Ländern

geführt. In der Kegel wird dabei das Verfahren der
Ausweichzahlen vorgeschrieben. Dieses Vefahren istaber äußerst unbefriedigend, weil das tatsächliche
Verhalten des Betondruckgliodes nicht in die Kechnung
eingeht. Das Verformungsverhalten des Stahlbetons wird nicht
richtig wiedergegeben. Der Anwendung des Hooke'sehen
Gesetzes für den Ausdruck für die Krümmung bei der Ableitung

der Differentialgleichung steht bekanntlich entgegen:

die beschränkte Zugfähigkeit des Betons
die nichtlineare Ai'beitslinie des Betons
die elastoplastische Arbeitslinie des

Bewehrungsstahles
die Abhängigkeit der Krümmung vom Bewehrungs¬

gehalt
Im folgenden Beitrag wird nun ein programmiertes

Verfahren gebracht, das unter Berücksichtigung aller dieser
Eigenarten von Stahlbetonquerschnitten den Nachweis

der Stabilität von beliebig gelagerten und belasteten
Stahlbetonstützen mit gleichzeitiger Ermittlung der
erforderlichen Bewehrung ermöglicht.
2. Das Rechenverfahren und die getroffenen Annahmen

2.1. Grundsätzliches

Das nachstehend beschriebene Verfahren beruht auf
der numerischen Lösung der Integraldarstellung der Gleichgewicht

sbedingungen einer beliebig gelagerten und
belasteten Stütze unter Verwendung einer wirklichkeitsnahen
Momenten-Krümmungsbeziehung. Die Verformungen werden als
klein angenommen, die Schubverformung wird nicht berück-
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sichtigt und es wird drillfreie Biegung in einer Ebene
vorausgesetzt. Die Steifigkeit der Stütze kann beliebig
variieren (Abb. 1).

Ns]

a

vwvy

i

TOTO

£(*)

V(x)

AT

ATM

Abb.1: Art der Lagerung, Art der
Belastung und Verteilung
des Bewehrungsstahles und
der Betonträgheitsmomente
des Stabmodelles

Abb.2: Schnittkräfte
und
Koordinationssystem

2.2. Ausgangsgleichungen_und_Lösungsverfahren

Es existieren die 2 Gleichgewichtsbedingungen (Abb.2)

N U)= +ws " V- ^1° ~ ïWÏÏ J

M fA*+To- * «-Nj.y + J (*-£} {«(f)-« (Ç) [vo-yfÇ)]]
O)

(2)

(5)
und die allgemeine Momenten-KrümmungsbeZiehung:

y" f (M(x),N(x)) y (x)
Die Randbedingungen lauten:
t~o-. y o *=h M«Ci yj

F, • - CJ. y, (4)
Mo - Ms-Cj.y;

Über die Überführung dieser Gleichungen in ein Differenzenschema
mit weitgehender Integraldarstellung wird auf [7]

verwiesen.
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2.3. 2ie_KrümmungS3Momentenbeziehung

An Stelle der bekannten Beziehung

y" i y * - M / ÈI
rialien mit 1

alle die Fun!
y" i P $ Ii, • ^ (M,u)

(5)
bei Materialien mit linearem Elastizitätsgesetz tritt in
diesem Falle die Funktion

(6)

el'W]

Abb.3: Schnittkräfte und Verteilung der Dehnung über
dem Querschnitt

Das hier beschriebene Verfahren erfordert die Aufteilung
der geometrischen Form in lauter Trapeze (Abb.4).

• J-0

JS
• iL

•

aa

•

Abb.4: Örtliche Koordinaten eines Teiltrapezes
Für jedes Teiltrapez kann nun die Normalkraft und das
Moment um den Druckrand wie folgt berechnet werden:

Hi.

Wto r J s'b- ^(y) Mv, * - ] 6b- y iy >

a*

worin
t>(y) U bc- bL

(y-ftft) ist.

(7)

(8)

Für die Betonarbeitslinie wird nun der Ansatz so gemacht,
daß den CEB-Empfehlungen [O entsprochen werden kann;

6v>

$>
'

CA
' 2

£„ fif
fwr

0 > 1 > l <,

u > t «Î.

(9)
(10)

Bg. 6 VB
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Für 6.^ - 2 o/oo, e2 ~ °/OC) eP 0,8 x Rechen-
wert für die Betondruckfestigkeit folgt das Parabel-Rechteck-Diagramm;

für £„ - ti« Rechenwert für die
ulaLX '

Betondruckfestigkeit folgt das Parabel-Diagramm.
In ähnlicher Weise wird für den Bewehrungsstahl angesetzt:
Nt * Fe- ß't Me. * ~ Ks fe> (ii)
mit f«. * öl. tty)1- 1 (y) +y. C"12)

Durch geeignete Wahl von <*,(i und -y läßt sich abschnittsweise
eine ausreichend genaue Anpassung an jede Stahlarbeitslinie
finden. (Abb.5)

Abb.5= Arbeitslinien von Beton und Stahl

Nach Summierung der Normalkräfte und Momente über alle
Teiltrapeze und Stahleinlagen und nach Gleichsetzung dieser
Werte den äußeren Schnittkräften werden 2 quadratische
Gleichungen mit den 2 Unbekannten ig und e erhalten.
Elimination von t liefert eine Gleichung 4-, Grades für y von
der Form:

M" Li' * L11« LiW, -o oj)
Bei der Auswahl der maßgebenden Lösung aus den vier

Ergebnissen wird wie folgt vorgegangen: bei gegebenem
negativen Vorzeichen der Schnittkräfte M und N muß ig positiv
sein (Abb.3). Die Lösungskurven können daher nur die in
Abb. 6 gezeigten Formen annehmen.
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Wenn nur die zu stabilen inneren Spannungszuständen
gehörigen Verdrehungen gesucht werden - wenn man daher in der
Kurve, wie eine solche in Abb. 7 typisch dargestellt wurde,

nur den Bereich bis zum Maximum verfolgt -, ist die kleinere
der beiden positiven Lösungen die gesuchte. Tritt einmal

die in Abb. 8 ersichtliche dritte Variante der Lösung auf,
so bedeutet dies, daß kein Gleichgewicht zwischen den äußeren

Schnittkräften und dem Integral der inneren Spannungen
mehr möglich ist. Das Verfahren wurde nun derart programmiert,

daß die Bewehrungsflächen solange vergrößert werden,
bis ein Gleichgewicht im Querschnitt möglich ist.

Das Vergrößern der Bewehrungsfläche wird mit einer
eingegebenen Schrittweite rç, in Prozenten des Anfangswertes
für die Bewehrung vorgenommen. Allgemein gilt, daß die
erforderliche Stahlbewehrung umso genauer ermittelt wird, je
kleiner die Schrittweite n gewählt wird. Andererseits sinkt
mit der Vergrößerung der Schrittweite natürlich die Eechen-
zeit und man liegt außerdem auf der sicheren Seite (Abb.8).

liehe Bewehrung

3. EDV-Programm

Zur numerischen Durchrechnung einer Stahlbetonstütze
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wurde ein Rechenprogramm in FORTRAN erstellt. Die Eingabe
wurde so gestaltet, daß hinsichtlich der Sicherheitsphilosophie

und hinsichtlich der Generierung von zusätzlichen
Verformungen zufolge Kriechen, Fundamentschiefstellung und
ungewollter Exzentrizität der Normalkraft voll der DIN [5]
entsprochen werden kann.

In umfangreichen Vergleichsrechnungen wurden die
Ergebnisse des Iterationsalgorithmus, der Bemessungsroutine
und der endgültigen Verformungsberechnung mit in der
Literatur bekannten Ergebnissen auf Übereinstimmung verglichen.

4. Stabilität von Stahlbetonrahmen

Das eben beschriebene Verfahren zur Untersuchung der
Stabilität von Stahlbetonstützen läßt sich erweitern zur
Untersuchung der Stabilität von eingeschossigen Rahmen. Die
Vorgangsweise beruht darauf, daß für einen vorgegebenen
Lastzustand

(Summe aller mit den Sicherheitsfaktoren vervielfachten
Lastfällen) die Kopfverschiebungen der Rahmenstützen
kompatibel gemacht werden. Die Einspannung der Rahmenstützen
in den Riegel wird durch eine linearelastische Drehfeder
simuliert. Aus der Verträglichkeitsbedingung für die
Stützenkopfverschiebungen ergeben sich Änderungsquerkräfte
am Stützenkopf gegenüber der Berechnung nach der Theorie
1. Ordnung. Die Dehnungen, die diese Änderungskräfte im
Riegel hervorrufen, werden vernachlässigt, was bedeutet,
daß der Rahmenriegel unter den Änderungskräften inkom-
pressibel ist.
Die gesamte Kopfverschiebung ist:

y -, y. ist die Horizontalverschiebung im betrachteten
' Lastzustand nach der linear-elastischen Theorie

1. Ordnung :

- I Vc n (14)

y yei,i + yei,2 + yA,o (15)

d p+z
^eljl ~ ^eljl ^eljl (16)

ye^ ^ Verformung aus Dauerlasten

y ?+5 Verformung aus Verkehrs- und
* 7.n QQ+ttiI a .Q+:<=mZusatzlasten

y ist die HorizontalVerformung zufolge Abweichung'° der Stielachse von der lotrechten Wirkungslinie
der Normalkraft

yA,o ye,o + ypi,0 + yf,o (17)

Verformung zufolge ungewollter
Exzentrizität der Normalkraft
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ypl,o plastische Verformung yei ^)

yf Verformung zufolge Fertigungsfehler' der Stabachse

y p ist die zusätzliche Verschiebung zufolge Berücksich-
' tigung des Gleichgewichtes am verformten Element

und zufolge des nichtlinearen Werkstoffverhaltens

Besteht die Verbindung zwischen den Stützen und dem
Eahmenriegel aus einem Gummilager, dann setzen sich die
Verformungen ye-^ ^ » yef+^ un<3- Je± 2 aus <ien Verformungen
der Stütze und aus jener des Gummilagers

yLager ^ h (18)

(Q Querkraft, F Lagerfläche, G Schubmodul, h Lagerhöhe)

zusammen.

Es werden nun die Stützenkopfquerkräfte der einzelnen
Stiele betrachtet, die durch die genaue Rechnung eine
Verteilungsänderung erfahren. Zur Verteilungsänderung dieser
Kräfte tragen jene Verformungen nicht bei, die schon nach
der Berechnung nach der linear-elastischen Theorie 1.
Ordnung vorhanden waren ((hju)y<!£ ifeiî* )• Die restlichen
Verformungen berechnen sich mit :

r > A 1

y - 7 - L y*,< 4 yec|4 J r Ye,o + yfl. * y*l2 • (19)

Die Inderungskräfte werden mit H. bezeichnet, n sei die
Anzahl der Stützen. Die Verträglichkeitsbedingung lautet
dann:

yä konst; i=1,...n (20)

und das Gleichungssystem für die Änderungskräfte :

4 Hc - 7 }
c 'K, *1

i Hc - 0 (22)

Dies sind n+1 Gleichungen für die n Unbekannten H. und y.
Die Lösungen können nicht analytisch gefunden werden.
Errechnet man für mehrere Werte von H. die Verformungen y.
und trägt diese Kurven für jede Stütze in einem Diagramm
(H-y) auf, dann kann graphisch die lotrechte Schlußlinie
so gezogen werden, daß ZH. =0 wird. Die zur Schlußlinie
gehörige Abszisse y ist diè Lösung und liefert die
Änderungskräfte H^.
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Beispiel
Gegeben ist ein statisches System gem. Abb. 9:

i 2 3 4 5_ 6 j « 1 w
A.

i_ te

S

*6

«si
si¬

3

*

«-

*6 s.

S

i*

H
si. s

£

St

»
«s

st
•at

SO

S

A

1 rs J t
1 * J

Abb.9: Statisches System

und die Baustoffe B 450 Tragwerk
B 300 Pfeiler
BT 50

mit dem Kriechbeiwert 1,8.
Für den Pfeilerquerschnitt (Abb.10)

Pfeiler 1-8: t 25 cm

Pfeiler 9,10: t 35

Abb.10: Pfeilerquerschnitt
wurde die Mindestbewehrung nach ÖNorm B 4200, 9. Teil
vorgesehen (=1,4 o/oo). [6]
Gesucht ist der Nachweis der Tragsicherheit für folgende
5 Lastkombinationen:

I) Leere Brücke, voller Wind, kein Erdbeben sur Zeit
t 0 mit dem Sicherheitsfaktor V= 1,7

II) Leere Brücke, voller Wind, mit Erdbeben zur Zeit
t 0 mit dem Sicherheitsfaktor V= 1,1

III) Volle Brücke, halber Wind, ohne Erdbeben zur Zeit
t =-o mit dem Sicherheitsfaktor V 1,7

IV) Stabilitätsnachweis für zenfcrische Belast\mg des
Bahmensystems mit dem Sicherheitsfaktor v 2,5

V) wie Lastkombination I, sämtliche Horizontalkräfte
wirken jedoch von der anderen Seite

Die Normal- und Querfcräfte am Stützenkopf (die
Momente sind identisch Null wegen der Gelenke am Pfeilerkopf)
als Ergebnis der Bahmenrechnung nach der linearelastischen
Theorie 1. Ordnung sind bekannt. Es wurde jede Lastkombination

mit mehreren Ansätzen für die Inderungskräfte H.
mit dem EDV-Programm durchgerechnet. Die Kopfverschiebun-
gen y wurden tabellarisch zusammengestellt und graphisch
aufgetragen (Abb. 11 für Lastkombination II). Die Lösun-
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gen wurden durch, heuristisches Auffinden jener Kopfauslenkung

y ermittelt, für die die Summe der positiven
Änderungskräfte gleich der Summe der negativen Änderungskräfte

ist.

Abb.11: Pfeilercharakteristika Beispiel

Bemerkungen_zu_den_Pfeilercharakteristiken^

Die Steigung der Kurven ist ein Maß für die Steifigkeit der
Pfeiler. Aus den Abb. 11 sieht man deutlich, daß die Pfeiler
5 und 6 die steifsten und die Pfeiler 7>9 und 10 die weichsten

sind.
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Knickpunkte :

Sie können an 2 Stellen entstehen: dort, wo die Nulllinie

beginnt, in den Querschnitt hineinzuwandern, und dort,
wo Gleichgewicht des Pfeilers nur mehr hei Vergrößerung der
Bewehrungsfläche möglich ist (z.B. Pfeiler 5 und 8).
Asymptoten:

Sie treten dort_ auf, wo eine endlich kleine Vergrößerung
der Horizontal(Änderungs)-Kraft eine unendlich große

Verschiebung verursacht (z.B. Pfeiler 9 und 10). Bei dieser
Art der Labilität hilft ein Vergrößern der Bewehrungsfläche

nicht mehr (im Gegensatz zu Pfeiler 8, der sich durch
Vergrößerung der Bewehrungsfläche noch retten läßt). Die
Grenze für die Möglichkeit, einen Pfeiler durch Vergrößern
der Bewehrungsfläche stabil zu machen, hängt einzig und
allein von seiner Schlankheit und die in die Schlankheit
eingehenden Materialkonstanten ab (Abb.12).

Abb.12: Verhalten einer Stahlbetonsäule unter seit¬
licher Horizontallast und Druck:

H^ < ^grenz: Bewehrungsfläche vergrößern bewirkt Stabilität
H2>®grenz: Keine Stabilität mehr möglich

Zick-Zack-Charakteristik:
Bei Pfeilern, deren Bewehrungsflächen sehr stark

vergrößert werden bei den einzelnen Ansätzen für die Änderungskraft,
kann das Auftragen der Ergebnispunkte zu einer

wenig sinnvollen Zickzackkurve führen, wenn der Faktor der
Eisenflächenvergrößerung groß gewählt wurde (z.B. <i 1,0).
In diesem Fall muß dieser Pfeiler mit einem wesentlich
kleineren (z.B. 0,2) wiederholt werden, um eine möglichst
glatte Kurve zu bekommen. In Abb. 13 wurde dieses Phänomen
prinzipiell dargestellt.
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für die Bewehrungsflächenvergrößerung

Stabilitätsuntersuchung LK IV:

Für eine Stahlbetonstütze gibt es prinzipiell 2
Verhaltensarten: den Verzweigungsfall bei zentrischem Druck
und den Traglastfall bei exzentrischem Druck.

Bei der Stabilitätsuntersuchung nach diesem Verfahren
wird der Verzweigungsfall (der über die Ermittlung der
Eigenwerte zu lösen wäre) auf den Traglastfall übergeführt
dadurch, daß eine seitliche Störlast (ca. P/100) an dem
Rahmentragwerk angebracht wird. Stellt sich unter der Störlast

ein Gleichgewicht ein, so hat der Lastzustand noch
nicht die kritische Last des Verzweigungszustandes erreicht.
Im allgemeinen genügt wegen der Kleinheit der Verformungen
unter der Störlast 1 Versuch und lineare Extra- und
Interpolation.

Als Ergebnis konnte bei diesem Beispiel festgestellt
werden, daß das Rahmentragwerk unter allen untersuchten
Lastkombinationen stabil ist und daß mit der normenmäßigen
Mindestbewehrung das Auslangen gefunden werden kann. Die
nach diesem Verfahren ermittelten Änderungskräfte am
Stützenkopf sind von der gleichen Größenordnung wie die
Kopfquerkräfte aus der linear-elastischen Rechnung und haben
daher ausschlaggebende Bedeutung für die Stabilität und
Bemessung des Rahmentragwerkes.
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CEB :

ZUSAMMENFASSUNG

Es wird ein Verfahren zur Untersuchung der Stabilität von
Stahlbetonstützen und Stahlbetonrahmen beschrieben. Das
Verformungsverhalten der Bauglieder wird von normgemässen Annahmen für
die Arbeitslinien von Beton und Stahl abgeleitet. Bei Versagen
der Stützen wird in einem Algorithmus untersucht, ob Vergrössern
der Stahleinlagen stabiles Tragverhalten ergibt. Rahmentragwerke
zeigen eine überraschend grosse Aenderung der Kopfquerkräfte
gegenüber der Berechnung nach der linear-elastischen Theorie. Das
Ergebnis ist eine Mobilisierung von Tragreserven. Die Berechnungen
werden mit einem elektronischen Rechenprogramm durchgeführt.

SUMMARY

A method for the investigation of the stability of reinforced
columns and frames is described. The load deformation behaviour of
the structural members is derived from the standard assumptions
for the stress-strain relations of steel and concrete. A special
algorithm investigates whether stable structural behaviour can be
reached by enlarging of the reinforcement if the columns fails.
Reinforced concrete frameworks show an astonishing change in the
shear forces at the top of the columns resulting in a mobilisation
of unused structural capacities. The calculations are carried out
with the aid of a computer program.

RESUME

On décrit un procédé pour l'étude de la stabilité des colonnes
et des cadres en béton armé. Le comportement charge - déformation
des éléments de construction est dérivé des hypothèses faites pour
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les diagrammes tension - déformation du béton et de l'acier. On
étudie un algorithme permettant, en cas de rupture des colonnes,
de déterminer si le renforcement de l'armature conduit à un
comportement stable, les efforts tranchants au sommet des colonnes
des cadres présentent des différences d'une ampleur étonnante
par rapport à la théorie élastique linéaire, ce qui donne une
"mobilisation" des capacités de charge, normalment négligées,
les calculs sont effectués à l'aide d'un programme d'ordinateur.
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