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On the Extreme Compressive Strain of Concrete for Calculating the Ultimate Strength
of Reinforced Concrete Section

Raccourcissement uitime du béton et calcul de la sollicitation ultime d'une section
en héton armé

Uber den Grenzwert der Druckstauchung von Beton bei der Berechnung der Traglast
von Stahlbetonguerschnitten

Hiroshi MUGURUMA Shinzo TANAKA
Prof., Doctor of Engineering  Graduate Student
Kyoto University
Kyoto, Japan

1. Introduction

The failure of reinforced concrete section subjected to the flexural
moment, axial load or combined flexural and axial loads is generally caused by
crushing of concrete at the compression zone., For the calculation of ultimate
strength it is necessary to assume the extreme compressive fiber strain of
concrete, €qy, induced in the section at the ultimate strength. Usually, the
values of eqy empirically or semi-empirically determined are adopted in the
calculation. 1) For instance, gcu = 0.15 - 0.2% is assumed for pure axial load-
ing failure and e, = 0.25-0,35% for flexural failure under the action of pure
flexural load or combined flexural and axial loads.

However, the extreme compressive fiber strain of concrete, e.;, at the
ultimate strength is not always defined clearly from the theoretical view-point,
The value of e seems to be affected by many factors such as the combination
of applied axial and flexural forces, the characteristics of stress-strain
curve of concrete, especially the falling branch of it after compressive
strength, and the percentage of reinforcements etc. In this paper, numerical
estimations are made on the value of ecy for ultimate strength calculation by
using the typical stress-strain curves of concrete, and the effects of these
factors upon the value of g, are discussed.

2. Definition of concrete fiber strain, ecy, at ultimate strength

The ultimate loading capacity of reinforced concrete section subjected to
combined axial and bending forces can be represented by the ultimate axial load-
moment interaction curve. This can be calculated from the equilibrium of forces
acting on the section under the consideration of stress and strain compatibility,
where the compressive fiber strain of concrete, ecy, at ultimate strength should
be assumed, While the collapse of reinforced concrete section is generally
caused by crushing of concrete in compression zone, the applied load shows its'
maximum value before the crushing of concrete. Fig. 1 shows such phenomenon by
load-deflection curve of typical member. Thus, generally the maximum of applied
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Maximum loading
capacity.

.

Crushing of
concrete.

Applied load

Deflection

load recorded until the collapse of section takes
place by crushing of concrete is so defined as

the ultimate loading capacity or the ultimate
strength,2),3) And also the corresponding com-
pressive fiber strain of concrete, ecy, is defined
as the strain which should be used in the calcu-
lation of ultimate strength.

3. Method of numerical estimation of eqy

The purpose of this study is to obtain
numerically the compressive fiber strain of
concrete, €.y, at maximum loading capacity of
reinforced concrete column section subjected to

Fig. 1 Load-deflection various combinations of applied axial load and
curve of reinforced flexural moment. To explain the procedure of
concrete member numerical estimation, the rectangular column

section shown in Fig, 2(a) is considered. The
stress and strain distributions
b overall the section are shown in
-,jc: Fig. 2(b) and 2(c), respectively,
Y Mu(écu) in general form. The stress
PbD \ distribution shown in Fig. 2(c)
D — is obtained in correspondence to
1—- PbD /Pu(Ecu) the strain distribution in Fig.
| Yo 2(b) by using the stress-strain
Jo , relations of component materials.
: 1 g The compressive fiber strain of
(a) Section =,’ concrete, ec, and the distance
(b) Strain (c)Snress of negtral.axis, X, erm com-
distribution.  ~ distribution. pressive fiber of section are

Fig. 2 Stress and strain distributions
overall the rectangular column

section.

generally expressed as the function of e. and x.

determined so as to satisfy the
equilibrium equations for given
combined loads, P(ec) and M(e.).
That is, the applied combined
loads, P(ec) and M(e.), are
However, considering that loads,

P(ec) and M(ec), are so applied as the eccentricity,

e = M(ec)/P(ec)

(1,

becomes constant without regard to their magnitude, the distance of neutral axis,

X, can also be expressed as a function of g,

Thus, in other words, a set of

combined loads, P(ec) and M{ec), can be obtained numerically for a given value
of €. under the consideration of constant eccentricity, e.

Pu(Ecu)

Axial force P(Ec)
7
iy o F

Ecu

Fig.3 e.-P(e;) or M(ec)relation

Strain E&c

Fig. 3 shows e. - P(ec) or M(ec) relation
for various values of eccentricity, e = ey, es,
ez, **++++ , where the concrete fiber strain,
€cu, corresponding to the peak value of P(e.)
coincides with that of M(ec) because of the
linear relation between P(e.) and M(e.). From
the definition of ultimate strength described
in 2 the peak values, Pu(ecy) and Mu(ecy), in
gc - P(ec) and egc - M(ec) curves are defined
as the maximum loading capacity for a given
loading condition, e = M(ec)/P(ec), and the
corresponding compressive fiber strain, ec=ecy,
is the strain to be used in the theoretical
calculation of ultimate strength, In this paper
using ec - P(ec) or gc - M(e;) relation as
shown in Fig. 3, the ultimate strengths, Pu(ecy)
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and Mu(e.,), as well as corresponding compressive fiber strain of concrete, ecy,
is estimated graphically for rectangular column section shown in Fig., 2(a).
Moreover, the ultimate strengths, Pu(e.,) and Mu(e.,), and corresponding
concrete fiber strain, ecy, can be obtained as the values satisfying following
mathematical conditions.3)

dP(ec)

deg =0

or

dM(Ec) _
de.

0 (2).

Of course, a set of values, €., Py(ecy) and My(ecy), obtained from first

equation in Eq.

4.

(2) satisfys the second condition in Eq. (2) simultaneously.

Stress-strain curves of component materials for numerical calculation

For numerical calculation of compressive fiber strain of concrete, ecy, at
the ultimate strength of reinforced concrete column section, the stress-strain

-
<

Stress

curves of component materials should
be assumed. To simplifying the numeri-
cal calculation, the ideal elastic-

Es=l2, 100,000kg/cm

plastic relation shown in Fig. 4 is
assumed for reinforcement, where the
elastic modulus of Eg =2,100,000 kg/cm?
is taken without respect to the yield
strength of reinforcement,

Fig. 5 shows three different types
of typical stress-strain curve of plain
2 concrete obtained from compressive

tests on cylinder specimens of various
kinds of concrete.”g,S) The ordinate

Fig.

ey=FylEs

4 Stress-strain curve of

kiks , k2 or kalkiks
o
[

o
N

2 f

reinforcement
B g /.‘:'\\ Curve |
/ N Curvel
rd . ~ /
// N \\\
[ /7 Curvel ... "’L___
< T | L e
0.1 0.2 03 04 05
\ ——=— Strain ( i )
\ Curve 1
— \ ————Curve I
e L ememeens Curve 1

Fig. 5

Typical stress-strain
curves of concrete and
corresponding values of
klkg, kz and kz/klkg

Strain

in Fig. 5 is expressed as the ratio of
applied stress to the compressive
strength. Curve I represents the
stress-strain relation for ordinary
aggregate concrete having 28-day com-
pressive strength up to 350 kg/cm?. Curve II
is that of light-weight aggregate structural
concrete. The strain at the peak stress
{that is, at the compressive strength) as
well as the negative inclination of strain
softening region in Curve II is greater than
that in Curve 1. Curve III in Fig. 5 1is
identical one modified from Curve I for in-
vestigating the effect of the negative incli-
nation of strain softening region upon the
compressive fiber strain of concrete, ecy,

at the ultimate strength. For convenience

of the numerical calculation of eqy, the area
surrounded by each stress-strain curve shown
in Fig. 5 and its' center of gravity were
calculated in correspondence to an arbitrary
strain. The results are also shown in Fig. 5
in the coefficients, kjks and ks, versus
compressive strain, e., relations, where

kiks and k, denote the ratio of average stress
of stress-strain curve until an arbitrary
strain, e., to the compressive strength, Fc,
and the ratio of the location of center of
gravity of corresponding area from an arbitra-
Tty strain, e, to the strain e., respectively.
That is, coefficients, kjk3 and ky, can be
considered as the generalized stress block
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coefficients of concrete in flexural compression zone of reinforced concrete
section,

5. Effects of the eccentricity of applied axial load and the percentage of
reinforcements upon Ecy

The numerical calculations
of compressive fiber strain,

& €cy, at ultimate strength were
[Ecu-Pu(Ecu)relation) ] performed on the percentage of
1.5—;5 (Interaction Curve) reinﬂforcements, p =0.5% and
< S P=05% p==1?, of rectgngu;ar column
5 P ..s\gghoos —_———P=1.0% section shown in Fig. 2. The
§N<\ Z - stress-strain relation of
{7 105 concrete as well as the yield
% i [ strength of reinforcement
c / adopted in calculation are
8/ Curve I in Fig. 5 and F,=4000
< / .
+4 1,’ o . 05+ kg/cm?, respectively, %he
> "s s reiulps are ﬁhgwn by ecy-Pulecuy)
et o 8 ?etatlog'w1t u(Ecu):'Mgfecu%
- IT:?:;::s Iz,. | . in eric 103 ?zrvi as in Fig. 6.
03 02 0 o 02 cu - Pu(€cu) relations
Ecu(%) (on Mu( € cu)/bD*Fe shown in Fig. 6 can be divided
into following four regions.
Fig. 6 e, -Pulecu) -~My(ecu) relations for Region A : Range that
rectangular column section {(Curve I applied combined
concrete stress-strain relation and loads reach at
Fy =4000 kg/cm? are used in their muximum
calculation) without yielding
of whole rein-
forcements.
Region B : Range that applied combined loads reach at their maximum after
yielding of reinforcements in compression zone, where the stress
in reinforcements in tensile zone still remains in elastic range.
Region C : Range that applied combined loads reach at their maximum after
yielding of whole reinforcements.
Region D : Range that applied combined loads reach at their maximum after

yielding of reinforcements in tensile zone, where the stress in
reinforcements in compression zone still remains in elastic range.

In ecy - Pulecy) relation for the section of p =0.5%, Region C disappears
and is expressed border line between B and D.

It can be seen from Fig. 6 that the compressive fiber strain ecy is much
influenced by the combination of applied axial and flexural loads. In Fig. 6
the pure axial loading column section shows the minimum value of ecy. These are
listed in Table 1, which are a little larger than the strain, €cy = 0.15%, corre-
sponding to the peak stress in concrete stress-strain curve. In Region A and B
in Fig. 6, the compressive fiber strain e, increases gradually with increase
of the relative degree of applied moment M(e.) to applied axial force P(e.),
that is, with increase of the eccentricity e = M(e.)/P(e.). On the lower bound
of Region B, the strain e;, reaches at a peak value, where the corresponding
ultimate flexural moment My(ecy) becomes maximum in the interaction curve. In
Table 1, the values of €., on the lower bound of Region B are also listed. In
Region C and D, considerable increase of e, is recognized after a little decrease
near the upper bound of Region C or D, and the maximum value of gqy is Obtained at
the middle portion of these range. After that, the value of e, decreases rapidly
to the value of about 0.21%, which corresponds to the value for pure flexure.
The maximum values of gqy are also summarized in Table 1.

From such observation, it can be stated that for the exact calculation
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Table 1

The values of e.y for critical point in egy

25

- Pylegy)

relation {Curve I concrete stress-strain relation
and Fy = 4000 kg/cm® are used in the calculation)

Percentage of reinforcement P (%) 0.5 1
tcu (%) 0.152 0.180
For pure axial loading Py (eeu) /bDE¢ 1.125 1,250
Ecu (%) 0.211 0.217
On theRi°¥§; bound of P, (ecy) /bDF¢ 0.920 0.970
g My (ecu) /bD2Fc 0.070 0.107
ecu (%) 0.267 0.281
On theRi°¥§; bg“”d of Py (ecu)/bDFc 0.370 0.390
g My (ecu) /bD2F, 0.171 0.233
. ecu (%) 0.300 0.360
At the peak value in Py (ecy) /bDFe 0.195 0.140

€cu - Py(ecu) relation

u My (ecy) /BD2F, 0.139 0.185
ecu (%) 0.204 0.210

For pure flexure Pu(ecu) /bDF¢ 0 0
My (ecu) /bD2F 0.068 0.132

* F, denotes the compressive strength of concrete.

wA | | P=05% | |
Region C —:;F_]P=th i
egionB AN |
T /' \ Region D

~ 03[}iRegionA £ S ]

Sl UAN S
8 .v‘ \v‘\, T ——d

w /h \ 74 AN =%
02f A4
Region D

Ol 10 75 20

e/D=Mu(Ecu}/Pu( Ecu)D
Fig. 7 e -egqy relations for rectangular

column section of p= 0.5% and 1%
(Curve I concrete stress-strain

relation and F, =
are used in ca{culation)

4000 kg/cm2

of maximum loading capacity,
especially that of corresponding
deflection of reinforced concrete
member the change of compressive
fiber strain, ecy, as shown in
Fig. 6 may be considered in
correspondence to the combination
of applied axial and flexural
loads.

The effects of the percent-
age of reinforcement, p, upon
the compressive fiber strain, ecu,
can be observed from e - ey,
relations shown in Fig. 7, which
is rewritten from the results of
Fig. 6. It seems from Fig. 7
that the effects of p is so small
as negligible in Region A and B,
while much difference of ecy
between p= 0,5% and p= 1% is
observed in Region C and D.

6. Effects of the shape of stress-strain curve of concrete upon the compressive

fiber strain ecy

Using three different types of stress-strain curve of plain concrete shown in
Fig. 5, the compressive fiber strain, e.y, at ultimate strength was calculated

on the rectangular cclumn section having p = 0.5%.
forcement was assumed as 4000 kg/cm2 in the calculation.
While three interaction curves are very closed with each

illustrated in Fig. 8.

The yield strength of rein-
The results are

other, much difference can be seen in three results on gy - Py(ecuy) relation.
Comparison between the results for concrete stress-strain Curve I and II shows
that the larger compressive strain at the peak stress in stress-strain curve of
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Table 2 Effects of the type of concrete stress-strain
curve upon eqy for pure axial loading section
of p = 5% (Fy = 4000 kg/cm2)

Type of stress-strain curve of | Ultimate axial load | The value of
concrete used in calculation Py (€ey) /BDFe €cy in %
Curve I 1.125 0.152
Curve II 1.160 0,208
Curve III 1.125 1.151

concrete results in the larger
values of e, within Region A and
B in eqy - Pylecy) relation. The
difference between the compressive
fiber strains for Curve I and II
becomes maximum in the case of
o1 pure axial loading. As a refer-
\\\ ence, the values of €, obtained
for pure axial loading are summa-
x\ rized in Table 2, On the contrary
it appears from the comparison of
the results for concrete stress-
strain Curve IIT with that for
Curve I that the increase of
; R« I I A negative inclination in strain
03 ecu%.) (091) Sﬂ(Ecu)lszig:z softening region of concrete stress-
strain relation reduces the com-
pressive fiber strain at ultimate
strength of reinforced concrete
. . . section, while no obvious effect
compressive fiber strain, ey,

at ultimate strength (p=0.5%, ;ib?zzzggligd Szet2i12$cgggne
Fy = 4000 kg/cm?2) J P ce.

o
bl * 1
Pu(Ecu)bDFc

(Interaction Curve)
Curve I

(Ecu-Pu(Ecu)relation)

Region B
/

o
o
L

~-..7“’

[RegionD! |

Fig. 8 Effects of the type of concrete
stress-strain curve upon the

7. Effects of the yield strength of reinforcement, Fy, upon e.y

Fig. 9 shows the results of numerical calculation on the ultimate strengths,
Py(ecy) and My(ecy), and corresponding compressive fiber strain, ecy, for rectan-
gular column section of p = 0.5% having various yield strengths of reinforcement,
The stress-strain relation of concrete used in calculation is Curve I in Fig. 5,

Comparison between the results for Fy = 4000 kg/cm? and FY = 5000 kg/cm?
shows that Region A in e¢y - P,(e.y) relation becomes larger with increase of the
yield strength of reinforcement, which results in the considerable increase of
compressive fiber strain, €.y, in Region B. In Fig. 9, the strain e¢y in Region
B for Fy = 5000 kg/cm? is about 0,05% larger than that for Fy = 4000 kg/cm?.

The use of reinforcement having smaller yield strength provides the decrease
of Region A in egy - Py(ecy) curve. In Fig. 9, Region A disappears in ecy - Py(ecy)
relation for Fy = 2400 kg/cm? because the yield strain of reinforcement is smaller
than the strain corresponding to the peak stress in stress-strain curve of
concrete. In such case, the strain e, for pure axial loading just coincides
with the strain at peak stress in concrete stress-strain relation.

8. Conclusions

Based on the general concept that the ultimate loading capacity of reinforced
concrete section is defined as the loads satisfying the equation dP(ec)/dec = 0
or dM(e.)/dee = 0, corresponding compressive fiber strain of concrete, eqy, was
calculated numerically on the rectangular column section and the effects of the
combination of applied axial and flexural loads, the percentage of reinforcement,
the shape of stress-strain curve of concrete and the yield strength of reinforce-
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Fy=4,000kg/cm?

&

=

o .

3 (Interaction Curve)
o

s T Fy=5,000kg/ecm?

1

Region B iRegion A

I

- Region C&D

_______ Fy=2,400kg/cm?

Region B

051

w o
-
n < o~

0 0 )
Ecu(®) {01) Mu( Ecu)/bD?Fe

Effects of the yield strength of
reinforcement upon ecy - Py(ecy)
-My (eqy) relations of rectangular
column section of p=0.5% (Curve
I concrete stress-strain relation

ment, etc, upon the compressive
fiber strain were investigated.
The following conclusions are
obtained from the results.

(1} The compressive fiber strain
€cy Varies considerably with the
relative intensity of applied
flexural moment to axial load.
€cu - Pulecu) relation obtained
in this paper can be divided into
four regions in corresponding to
the yielding of reinforcement.
The value of e, becomes minimum
in the case of pure axial loading
and the increase of eccentricity
results in the gradual increase
of ecy. Also it decreases with
increase of eccentricity after
reaching the maximum value near
pure flexure.

(2) No obvious effects of the
percentage of reinforcement upon

is used in the calculation) the value of e, are recognized
within Region A and B of eqy - Py
(ecy) curve, where relative
intensity of applied axial load is larger in comparison with applied flexural
moment.

(3) The larger strain at peak stress in concrete stress-strain curve increases
the value of ey, within Region A and B of ecy - Py(ecy) curve, especially the
maximum increase of ecy is obtained in case of pure axial force. Also, the
increase of negative slope of strain softening region in concrete stress-strain
curve reduces the value of g, considerably. These factors have no obvious
effects on the ultimate axial load and flexural moment interaction curve of
section.

(4) The use of reinforcements having larger yield strength results in consider-
able increase of ecy in region B of e,y - Py(ecy) curve,

(5) The effects of the factors described in this paper upon the value of ecy
may be necessary to consider for the exact estimation of ultimate strength as
well as corresponding deformation of reinforced concrete member,
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SUMMARY

Numerical estimations were made on the value of extreme
compressive fiber strain of concrete at ultimate strength of
reinforced concrete column section subjected to various combi-
nations of axial and flexural loads. The results showed that
the extreme compressive fiber strain is much affected by many
factors such as the combinations of axial and flexural loads,
the caracteristics of stress-strain relation of concrete, the
yiald strength of reinforcement and the percentage of
reinforcements, etc.

RESUME

On a estimé la valeur de la tension de compression extréme
dans le béton d'une colonne en béton armé soumise & diverses
combingisons de flexions et d'efforts axiaux. Les résultats
montrent que l'allongement spécifique dans le béton varie consi-
dérablement en fonction de facteurs tels que les combinaisons de
flexions et d'efforts axiaux, les caractéristiqués de la courbe
tension-déformation du béton, la limite d'élagticité des arma-
tures, le pourcentage d'armature, etc.

ZUS AMMENFASSUNG

Zahlenmissige Schitzungen fUr den Wert der griéssten Druckstauchung
von Beton bei der Bruchbeanspruchung von Stahlbeton-Stiutzenguer-
schnitten unter Einwirkung verschiedener Kombinationen von Normal-
kraft und Biegemomenten wurden vorgenommen. Die Ergebnisse zeigten,
dass die grodsste Druckstauchung durch eine Reihe von Faktoren, wie
die Kombination von Normalkraft und Biegemoment, den Verlauf des
Spannungs-Dehnungs-Diagramms von Beton, die 3treckgrenze der Be-
wehrung, den Bewehrungsgehalt usw. beeinfliusst wird.
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H. A. CERVERA G. J. CREUS
Assistant Professor Associate Professor
institute of Applied Mechanics and Structures (I.M.A.E.)

Universidad Nacional de Rosario
Rosario, Argentina

1, INTRODUCTION

Adequate theoriss exist for the analysis of deformation and failure of
linearly viscoelastic columns. J. N. Distéfano, /1/, has studied the problem in
a series of papers of great generality, considering arbitrary end conditions,
lateral loads and initial imperfactions, and the most general expreasion for
linear creep.

However, both instantansous and time dependent deformations of concrets
are nonlinear, specially at high stresses, In fact, the behaviour of concrete
renges from almost linear, bounded crsep at low stresses to highly nonlinesr,
unbounded creep at stresses near the compressive strength,

The effect of nonlinear behaviour on creep buckling is anelyzed in this
paper, In Section 2 a nonlinear rheclogical model apt to describe the behaviour
of concreta for the whole renge of stresses is introduced.

In Section 3, the creep buckling problem is studied for the above mentioned
rheological model, using e simplified model for the column.

In seccion 4, the model is refined by congidering edditional effects
prasent in real situations, as the influence of axial thrust on the bending
rigidity and the different behaviour of concrete in loading and unloading
processes /2/. '

For the simpler situations, analytical solutions to the differential
equations are used. In the general case, m step by step numerical analysis is
necessary. The effect of ageing of concrete may be easily taken into account
by teking age dependent coefficients.

2. RHEOLOGICAL MODEL

The proposed model, shown in Fig.l is similar to the well known standard
solid, Its particular feature is the nonlinear stress—strain relation assumed
for the spring elements 1 and 2. We dsnate with&i(t) the strein due to the
deformation of spring element 1 and with £;(t) the strain corresponding to
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spring 2 and dashpot. The total strain is & (t)=€1{t)+&(t}, where t denotes
the tims.
For spring 1 we assume the stress-strain relation

G C=E&(1-B&) ;. og 5\4?31: (1)

G, max

A

Here § (t) is the strsss and E, yPrere

Ea,Pz matarial constants. This equation defines
a maximum stress (J' % and a correspon-
ding deformation 1/2@,. Increasing deforma—

By, (34 tions from 1/gp, to 1/, are possible for

decreasing stresses. No physical meaning
is attached to deformations larger than%-‘.
The nonlinear Kelvin element consti-

£ tuted by the spring 2 and the dashpot is

|
]
[
I

Ve Vape responsible for the time dependent beha-
viour, The spring 2 and the dashpot are
FIG. 13 RHEQLOGICAL MODEL defined by the relationships
I
0 = Ez€, (1-P252) ; 0K €4 -
‘P (2)
d"= Kk €2

where E , /5 and K are material constants and the dot indicates diffsrentiation
with respect to time. Being 0=0% 0" we obtain the equation for the nonlinear
Kelvin slement
- ﬁ‘zEZ E2 Cr
Ez--——-Ez + —& = — (3)
K K K
which is a Riccati's first order nonlinear differential eguation.
We shall consider now the case of a constant siress (t):(}; applied at
time t=0 and mantained thereafter. Inversion of Eq.(1) provides the expression

Jo

- l1 - - : O&E 4‘—' (a)
= = 2p.( 1 cr"“”‘) " 2

for the instantaneous defaormation. In order to determine the valus of the de-

layed deformations, we must replace the value Jo into (3) and solva it (For more

details see Ref./3/). Adding instantaneous and time dependent deformations, the
final expressions are

_ 4[51 Vicg =1= A=Y + (8 ) exp- 2 V17 t)
elt)= “ )+2Pz —1-\{_3 (—1+\I'1_-3):x:(- \[—t)) (&)

'\f 480G A
E(t)_Zﬁ‘( 1'?‘—)+2P2(2K+t ) (6)
£ 4“, 14 VE-1 smKV t*COSKV t
t) = (1— ) ! : (?)
"2 2P¢ B+28-1 sin 2yt t4(32)cos 251 ¢

for §<1, 8=1 and §>1 respectively, being ¥ =4B,0./c; = Go/G,™ (8)
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The behaviour of the model under constant stress is indicated in Fig.2. We

N
Te 03 Wo €2, P2
P S
’ ¥ =12 N
;
¥=1 i
5=0.8 :
100 500 000 t days ~ 'w
FIG.2:CREEP CURVES FOR THE RHEOLOGICAL MODEL FIG.3:COLUMN MODEL

max

may see that for J>1,i.e. Por 0, >0, a condition similar to failure is
reached after a finite time. As G 1is the strength under instantaneous
loading, 0;™" may be interpreted as the strength under sustained load (static
fatigue). In Ref./3/ a comparison of this model behaviour with the experimental
results of Rlsch /4/ is given.

3., SIMPLIFIED COLUMN MODEL

Let us consider now the system in Fig.3. In this structure the deflexion of
the hinged bar due to the action of the force P 1s prevented by a viscoelastic
element which in turn reacts with a force S, This simple model contains many of
the more intesresting features of considerably more complex systems, For small,
guasi-static deflexions, equilibrium provides the relation

5=P WA We (9)
L
We are interested in the behaviour of this column model in the presence of
nonlinear creep. For the seke of clarity, we shall study first some simpler
situetions.

3.1, Linear spring ( ﬁ:o; E2=00)3 The force in the spring is S«E,w ; from this
and (9} we obtain

Wo

Es w = BAWIWe) or W= (10)
L Byl

When P — LE, we have w->c° jP. =« E, may be considersd the buckling load for this
case.

3.2, Linear Kelvin material (B,=o0;€1=0): The force in the viscoelastic ele-
ment is S=E,wHw ; the differential eguation for equilibrium is

. Ez _ P \_ Pws _ 11
W*WK”E"LK) x - © | (11)

It may be seen that the solution of (11) shall be bounded for t-»®whenever the
the coefficient of w is possitive; thus, the creepbuckling loed in this cese is
R, =lE; , while the instantaneous load is infinite.

3.3, Linear standard material (Ri1={@2=0 )t Proceeding in a similar way, we find
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in this cae Pg=lE, ;R =LE,4E,/(E +E,).

Both 3.2 and 3.3 are particular casses of the general linear viscoelastic
problem as studied by Disté&fano/l/. The creep buckling load is given (as it
should) by the reduced modulus load. Physically, this may be interpreted
saying that, in order to obtaln the load stable for t—- oo, only the spring
constants are significant,as the action of thas dashpot vanishes for t —co(*),

3.4. Nonlinear spring (E2=cC): The force in the spring is now S=&,w(1-p,w);
from this and (9] we have

Eqw(1-{3.w) =L"‘:“ﬁl (12)
Solving for w we find that for each pair of values (P,w,} there exist two equi-

librium points, defined by

W= 4 (f_~1)+_‘_\ﬁ (.‘i -1)I-fﬂ°— (13)
2p \LEx™ '/~ 7 V 3L, LEf
and repressntad by points A and 8 in Fig.4. It is easy to ses that A corresponds
to stable equilibrium and B to unstablae

S = P(wet+wW)/L equilibrium, The maximum load that allows
4 stabls equilibrium is obviously that
corresponding to point C and may ba
obtained making the square root equal to

zero, We obtain

R = LE {(zwap‘ﬂ)-ZWoP‘V 1+ _\\‘E—P:. }
Wer =Wo(\“+ _“%—P‘ - 1)

Also from Fig.4 we may see that, in order
FIG.4: NONLINEAR SPRING to reach the critical condition, one may
increase the load P to P or increass the
initial excentricity w,. Thus, a column whose material is characterized by a
nonlinear stress—strain relation for instantaneous loading hes a critical
deflexion at which the applied load is the criticel load. This fact is
specially important in the treatment of creep buckling problems,

(14)

Y

-We w

3.5, Nonlinear Kelvin materiel ( Ey=90)tIn this case we have SsE;w(1-f,w)+Kw;
From this and {(9) we obtain

. €2B: 2 E P ) Pw,
W _ wi g B2ly P yw . TWe _ (15)
m + 2 L& ik - °

Eq.(15) is formally identicel with (3). Following the same procedure we obtain
the corresponding soluticn for w(t), namely

(*) This is of course only true for materials with bounded deformations, i.s,
solids.,
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: , | : : . e YO SN '
w(t):._"..(1-§§2) {1—\[1—5 f T (- exp (B (- EE T t )}

— G (16)
26, 1-\-\(1?‘---(1«-\/1-?)&@(-%( - VAT E)
4 P t p
W) = - 1_,,..)&—————); (17)
| 2@2( LE2 (1 3 )-’rt
w(t)z-—l-U—%)H\" ”Fs‘“ K\F‘—t —cos Vr‘- t } (8)
2B, % P+2\[F:‘; sin "-’i\r— t+({" 2)cos
for ¢l , =4 and Y\ respectively, being
4P .
r=tfz L i (19)
- P \2
(- =)
Thus, the critical load is given by
Pe = LE2 (142 pwe —\4BWo (fwo+ 1)) | (20)

Comparing this with (14)1 we see that, as for the linear case, the load for
infinite stability corresponds to the instantanesus critical load of a similar
column where the Kelvin body has been replaced by the spring.

3.6, Nonlinesr standard material: In this case, a closed solution has not been
found. The problem has been solved numerically, using a step by step procedure.

The time interval of interest is divided into emall (%) time intervels A t.
Then, at a time t, the force S{t) satisfies the equation

\[ 4@;5&5
S =E =2 -

= (W + W) = £ (Wotwpwe) = £ (Worwot) + LS Zh (21)
where w, is the delayed deflexion for time t (of course, wp =0 for t=0}, and w,
is the elastic deflexion, In the following time interval {t,t+Bt} we consider
the spring 1 frozen, while the Kelvin element deforms under the action of force
g{t) assumed constent during the interval. The corresponding creep deformation
is -

S(t) = B2 Wp (1) (1-Bawn (t}) A

Aws = t | . N
? " (22)

and the delayed deformation now amounts to wp(ttAt)= wp(t)+*Awy . Then,wy(t+at)
is replaced into (21) and the process continues in the same fashion. The outlined
procedure is very easily progremmed for a digital computer,

The analysis of the results may be better understood looking at Fig.S.
Line A represents the t=0 isochronous curve for the material and corresponds
to the G-& relation for spring 1 in Fig.l. Line OFR corresponds to the t=o00
isochronous curve and represents the behaviour of springs 1 and 2 in series.

(*) Small when compared with the characteristic retardation time of the model,

B 3VB
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Different loads, applied with sxcentricity w, are represented by straight lines
beggining at N, We cbhserve that:

1)The instantaneous buckling load Pg (line NA) depends only on the
characteristics of spring 1 and the initial excentricity w,.

2)The creep buckling load P, (line NF) depends on the characteristics of
springs 1 and 2 and the initial excentricity w_ . More precisely, it may be
evaluated as the instantaneous buckling load of an ideal elastic nonlinear
column with a spring equivalent to springs 1 and 2 in series,

A S:-‘E—(W."‘W)

FIG.5: NONLINEAR STANDARD MATERIAL

This behaviour resembles in some ways the case of linear viscoslastic
columns (see Section 3.3) where a reduced modulus exists. Of course, being the
present problem nonlinear, a unigue reduced modulus does not exists, end the
load P, depends on the initial excentricity.

3)A column loaded with Ps< Py reaches a limit deflexion with a velocity
that depends on the value of K,

4)If a load R, > Py > P, (represented by NC} is applied, an instantaneous
equilibrium position D is reached at t=0, As time goas on,successive equilibri-
um positions D, ,D5,...are reached.At some time t.r {which depends on the value
of K) the delayed deflexion w, reaches a value for which Py 1is critical for
spring 1. At this time, the column fails suddently. Failure points lay along a
frontier indicated by AC.

The pattern of bshaviour described closely resembles that observed axperi-
mentally /5,6/.

4, A REFINED MODEL

The model studied in Section 3 does not teke into accounts
a)the effect of axial thrust P gn the banding rigidity
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b) the different beshaviour of concreéte in loading and unloading processes.
In order to teke account of this influences, a refined model may be used, as
indicated in Fig.6. Accordingly, the stress~strain relation for the springs in
the rheological model has been generalized, as indicated in Fig.?7

G
P +
-
Ew
*
E1,p1 Bl
4——5——¥ 06
FIG.6: REFINED COLUMN MODEL FIG.73:STRESS5~5TRAIN RELATION

Stresses and strains are now takenm with their corresponding signs (com-
pression:positive; tensioninegative). Then, the base curve OA in compression is
given by £q.(1) with E4 and P«,>O ; the base curve 0B in tension 1is given by
the same Eq.(1) with E4 and P11 <O . During unloading, the material behaves
along line COE with origin in C and E, , By _..g pT <O . This curve contacts
the base curve 08 at point E smoothly (both curves have a common tangent at
point).

By putting together the equilibrium and compatibility eguations for the
column model, and the constitutive relations of the sprirgs, a system of
equations is obtained that allows the study of the stability of the model,
Comparing the critical loads obteined using this model (Fbrz) and the model in
Section 3 (Perq ), the effect of axial deformation may be evaluated,

Perz ‘ Per 1
\ o -
wﬁr ® \ =01 ®
Per4
08{ -——=Per2
we=30
06| we=1.0| £=30
N A we=0.1) D
04 i \‘:: \‘-._‘~~- ws =30 L
TSae T wez=10| =—=10
02} ~~~~ we=01) b
0 . . .
0.1 125 25  [e=-fin

0 10 20 30
FIG.8: COMPARISCON BETWEEN COLUMN MODELS

In Fig.B8-a we ohserve that the influence of axial deformation increases with
the nonlinearity coefficient fﬂc- The influence of the initial excentricity w,
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and the slenderness ratio L/b is also shown. In Fig.8-b we may see how the
critical loads for both models depend on ﬁhc, w, and L/b.
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SUMMARY

The effect of nonlinear behaviour on creep buckling is analized,
using a nonlinear rheological element to express material properties
and simplified models for the column.

RESUME

On analyse 1l'influence du comportement non-linéaire sur le
flambement 40 au fluage en utilisant un élément non~linéaire pour
exprimer les caractéristiques du matériau, ainsi que des modeles
simplifiés pur la colonne.

ZUS AMMENFASSUNG

Unter Verwendung eines nichtlinearen rheologischen Elementes
filr die Beschreibung der Materialeigenschaften und eines verein-
fachten Modelles flir die Stlitze wird die Wirkung des nichtlinearen
Verhaltens auf das Kriechknicken untersucht.
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A Realistic Numerical Computation of the time dependent Curvature of Reinforced
Concrete Columns

Contribution a I'analyse numérique réaliste de la courbure de colonnes en béton
en fonction du temps
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1. EINFUEHRUNG

Als grundlegende Voraussetzung flir eine wirklichkeitsnahe Trag-
lastberechnung von Stahl- und Spannbetondruckstdben ist das zeitab-
héngige Verformungsverhalten des Verbundquerschnittes anzusehen.
Die vorliegende Methode ist durch ihren sehr allgemeinen Aufbau vor
allem fir vergieichende theoretische Untersuchungen geeignet. Sie
wird hier fir beliebige einfach symmetrische Querschnittsform und
gerade Biegung dargestellt, l&dsst sich jedoch auch auf unsymmetri-
sche Querschnitte und zweiachsige Momentenbeanspruchung (schiefe
Biegung) erweitern. Das Bild 1 zeigt die zeitabh&ngige Spannungsum-
lagerung und die dadurch bedingte Aufteilung der Gesamtbetondehnun-
gen in Langzeit- und die schraffierten Kurzzeitanteile.

M =15 Mpm N=-100 Mp
. b=30c¢ . € . 2 ¥
_ur’I// T o —L T_—] : /‘r
J : ]I |
‘6(1,.,”)-'
§ Ocltney) =
: / Rl Gelt et )
=
%
VDO PDY, é
4 / 3
h/h = 0.1 ]Fe = F¢ = 15cm? ] Pltnsr, t)=2  Eft,4)=2-10
€, €,

Bild 1: Zeitabhdngige Spannungsumlagerung im Stahlbetonquerschnitt



38 [ — BESTIMMUNG DER ZEITABHANGIGEN KRUMMUNG VON STAHLBETONSTUTZEN

2. GENERELLES VORGEHEN ZUR ERMITTLUNG DER KRUEMMUNG

Die iterative numerische Ermittlung der Krimmung K erfolgt mit-
tels einer "rdumlichen Regula Falsi” [1]. In den Achsrichtungen der
Grundrissebene seien die beiden unbekannten Randdehnungen -g: und
€2,1in der dritten Richtung die Differenz aus &usserem (aktivem) und
inpnerem (reaktivem) Biegemoment aufgetragen (Bild 2). Oadurch ent-
steht eine rd8umliche Fl&che, da jedem Wertepaar -e; und e, ein Wert
AM = My-M. zugeordnet ist. Trdgt man weiters an Stelle von AM die
Differenz aus &usserer und innerer Normalkraft auf, so entsteht ei-
ne zweite rdumliche Fla&che AN. Das Bild 4 zeigt eine Schichtenli-
niendarstellung derartiger Raumfldchen AN und AM. Die Spuren dieser
Fldchen in der Grundrissebene (£;,€3) schneiden sich in einem Punkt
A, dessen Koordinaten €; und €, die gesuchten Randdehnungen darstel-
len, flr die sowohl AM=Mg;-Mp=0 als auch AN=Ny-Np=0 ist, flr die al-
so Gleichgewicht zwischen inneren und &usseren Schnittlasten be-
steht.

\
* AM bzw. AN AM oder AN

Bild 2 Bild 3

Ausgehend von Ndherungswerten flr €; und €.,erh&lt man durch
deren Variation je drei Punkte P, P,, Pa flir AM bzw. AN, durch die
je eine Ebene gelegt werden kann (Bild 3). Diese Ebenen ersetzen
ndherungsweise Tangentialebenen an die beiden Raumfldchen AM und
AN. Jede der beiden Tangentialebenen schneidet die Grundrissebene
(ey1,€2) in einer Geraden g. Der Schnittpunkt der beiden Geraden
liefert ein verbessertes Wertepaar g; und €. Dieses ersetzt die
Grundrisskoordinaten jenes Punktes P, flir den die relative Abweichung
AM/Mg oder AN/N, am grissten ist. Nun kann ein neues Tangentialebe-
nenpaar aufgespannt werden, das einen verbesserten Schnittpunkt A
in dern (€,,e;)-Ebene liefert. Dieser Vorgang wird so lange wieder-
holt, bis die absoluten Werte AM und AN (innerhalb der Abbruchge-
nauigkeit) genlgend gegen Null gehen. Damit sind zu den vorgegebenen
Schnittlasten M5; und Ny jene beiden Randdehnungen €; und €; gefun-
den, flr die sich innere und &ussere Schnittkrdfte im Gleichgewicht
befinden. Die gesuchte Querschnittskrlimmung ergibt sich zu
K = {eg; + €2)/h.
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- +Eg Raumfléiche AM -€¢

Bild 4

3. BERECHNUNG DER INNEREN SCHNITTLASTEN

Bei der Krimmungsberechnung nach Abschnitt 2 sind flr ein be-

stimmtes Wertepaar €; und €, die inneren Schnittgrdssen Np und Mr
erforderlich:

+h/2 +h/2
Np = [ o_+bedy + TAe0g , M = [ ooebeysdy + ZAge0geyg (1)
-h/2 : -h/2

Zur numerischen Berechnung der Integrale in (1) nach Simpson
wird der Betonguerschnitt diskretisiert (Bild 5a). Unter der Voraus-
setzung eben bleibender Querschnitte setzt sich das Gesamtdehnungs-
bild aus Kurz- und Langzeitdehnungen (Bild 1, Bild 5b) zusammen.

[
biy)l— Foet te —+  +—'g—+
—7 7

75153 L

;2’,f
‘rL

1:§y .
-1

|
|
|
I
|
L ]
+—e.—+ —+—+Es

Bild 5¢ Bild 5b "Kriechpolygon"

1

1]

M=

Mg
—ﬁr
L

T~

i e L 8° | VT

!

| m

Nur der elastische Anteil der Kurzzeitverformung liefert die Beton-
spannungen in (1), wogegen flr den Stahl selbstverst@ndlich die Ge-
samtdehnung massgebend ist. Die Berechnung der elastischen Kurzzeit-
dehnungen durch Abziehen der plastischen Kurzzeitverformung und der

Langzeitverformungen vom Geamtdehnungsbild wird im Abschnitt 5 dar-
gestellt.
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4. DIE ZEITLICHE KRUEMMUNGSAENDERUNG

Das hier vorausgesetzte lineare Kriechen ist meist gegeben,
wenn die sté&ndige Last hodchstens den mit dem vorgesehenen Sicher-
heitsfaktor reduzierten Kurzzeitlasten entspricht. Zur Ermittlung
der zeitabhdngigen Querschnittskrimmung wird der zeitliche Verfor-
mungsablauf diskretisiert. Innerhalb eines sog. "plastischen Inter-
valles” wird die kriecherzeugende Spannung konstant gehalten. Durch
kriechbedingte Spannungsumlagerungen im Querschnitt vom Beton auf
den Stahl wilrden die Betonspannungen innerhalb eines Intervalles ab-
nehmen. Bei Stahlbetonstlitzen nehmen jedoch die Verformungsmomente
infolge Kriechen zu, wodurch gegenldufig Betonspannungen aufgebaut
werden. Dadurch liefert die Annahme konstanter Spannungen innerhalb
eines Intervalles bereits flr eine geringe Anzahl von Kriechinter-
vallen gute Ergebnisse.

Nach jedem plastischen Intervall kdnnen die &8usseren Schnitt-
lasten ver&ndert werden (Theorie 2. Ordnung und/oder Relaxation).
Danach werden gemdss Abschnitt 2 die Randdehnungen €, und €, berech-
net, flr die Gleichgewicht zwischen inneren und Busseren Schnitt-
lasten besteht. Aus den so erhaltenen elastischen Dehnungen kann
nach Abschnitt 5 die plastische Verformung am Ende des né&chsten
Kriechintervalles bestimmt werden. Man berechnet also alternierend
aus elastischen Verformungen plastische und danach entsprechend
Theorie 2. Ordnung neue elastische Dehnungen.

Die Langzeitverformungen werden im sog. "Kriechvektor"” gespei-
chert. Befindet sich der Querschnitt im Zustand II,so erhdlt das
"Kriechpolygon” (Bild 5b) nach jedem plastischen Intervall einen
weiteren Knick. Dadurch ist auch der Verlauf der Kurzzeitdehnungen
im Bereich der zeitabh&ngigen Nullinienverschiebung nicht linear.

5. DIE BESTIMMUNG DER BETONSPANNUNGEN

5.1 Kurzzeitverformungen

Das Bild 6 stellt das o-e-Diagramm flr eine mit o, vorbelaste-
te Querschnittsfaser dar. DOer schraffierte Bereich entspricht den
plastischen Kurzzeitstauchungen. Eine Erhdhung der Spannung (o;)} be-
wirkt ein Anwachsen des plastischen Verformungsanteiles, wogegen
dieser bei Abnahme der Spannung (0,) unverandert bleibt. Es muss da-
her stets in jeder betrachteten Querschnittsfaser der aus allen Vor-
belastungen resultierende maximale Wert ‘e 10 bekannt sein. Er wird
in der numerischen Berechnung auf den "plastischen Kurzzeitvektor”
{EPO},, abgespeichert. Die plastische Kurzzeitverformung ist auch vom
Belastungsalter (Festigkeitszunahme und "Versprddung”] und der Be-
lastungsgeschwindigkeit ("rasches Anfangskriechen”]) beeinflusst.
Dieser Tatsache kann man durch zeitabh&ngiges Veréndern des o-¢-
Diagrammes Rechnung tragen. Vereinfachend werden jedoch allgemein
in den Normen mittlere o-e-Diagramme flr Kurzzeitbelastungen ange-
geben.
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Bild 6

5.2 Langzeitverformungen

Aus der Integralgleichung flr stetige Belastungs&nderungen [3]

0
0 byt 9 eel(ti)
s (B ™ Teg (B a0t Lt 0 f e 140 (£, £ ) T by re (R))
t1=t2 1
erhdlt man durch Auswertung flir mehrere konstante Belastungsstufen

den plastischen Anteil der Langzeitverformung

T =T
i

k=1
t -0 : 0 .
e (b= Ce (B 0ttt J+ti§t2 A% ) (.00t ,,)ve _(£) (1)
. s 0 - 0 -.D . »
Setzt man in (1) fir A eel(ti)— Eel(ti) eel(ti—1) so ergibt sich
" e
e 0 . -
aplttk)— . ft ety tolt Lt -0t Lt L)]+e (L)) (2)
i1

In {3] wird die verzdgert elastische Verformung in den Kriechzahlen
¢ berilicksichtigt. Erfasst man sie jedoch getrennt {2], so &ndern
sich die Kriechzahlen in (2)}.

bty
= 0 . . - . - -
e85 T e (t)e[0,4-0(t, -t )] [1-0(t -t )] (3)

1
t =
il JC’I

t

Der jeweils erste Ausdruck in eckiger Klammer baut die verzogert
elastische Verformung auf, der zweite bewirkt die elastische Rick-
verformung. Die Gleichungen (2) und (3) lassen sich zusammenfassen:

t

t _
e(tk] = g o1 k)+88(tk) (4)

t _ 0 .
el(tk)+ epl(tk)— E € (ti} A¢(ti,t
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A¢(ti‘t J=[D,4'®(ti+ -ti)]-[’1-<I>(tk-ti)]+[¢(tk,ti)-¢(tk,ti+ )1 (5)

k 1 1
£, durchl3uft die Werte t> bis tp+4, ti die Werte tq bis t,. Die

in (4) erforderlichen elastischen Kurzzeitdehnungen werden, flr die
m-Querschnittsfasern (Bild 5a) angewendet, zur Matrix [EEO]xn zu-
sammengefasst, wéhrend die Vektoren {A¢(tyl}lk-q flr tg=tp bis tp .
eine rechte Dreiecksmatrix belegen. Der Vektor der Langzeitdehnun-
gen zur Zeit t; ergibt sich zu:

{EL}, = [EEO] 4y {8008},

5.3 Die Betonspannung in einer Querschnittsfaser zur Zeit t,

Burch Abziehen der Langzeitdehnungen te von der Gesamtdehnung
€ggs erhalt man die Kurzzeitdehnung %¢ (Bild 7). Das o-e-Diagramm
fur Kurzzeitbelastung stellt den nichtlinearen Zusammenhang

0 0€ OS
o = f("¢) [z.B. 0 = B ¢+ — +(2- —)] (6)
& g c € £
B B
dar, woraus sich die plastische Kurzzeitverformung ‘e errechnen
. pl
18sst
0 o D 0 e 1 062
€51 e-0 /E [z:B. €p1 5 EB]
Durch Vergleich mit °ep10 erhdlt man folgende Fallunterscheidungen:
a) |%e 1|>|°€ lD] : Spannungszunahme (Bild 7). Wenn geméss
P P Abschnitt 2 Gleichgewicht gefunden ist,
wird {EP0} korrigiert.
b) |%e_.|<]|"% | : Spannungsrelaxation (Bild 8). Die Betan-
pl plo . .
spannung ist neu zu berechnen:
o =E ("e-%¢ . )
o & plo
"6]' =
oeel L oepl "
1 1 1/ °Eal “Eplo |,
7
°g lo
/ plo g
/
fa og -£ te og ~£
Eges
9 , , eges .

Bitd 7 Bild 8
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5.4 Vereinfachungen

Gelingt es, die Zeitintervalle (tj+q-t;) fir i=1,2,..n so zu
wdhlen, dass alle Elemente A¢(t;,ti)#0 gleich gross werden, so lasst
sich die Gleichung (4) wie folgt schreiben:

t ti=tk‘10
e(tk) = Adp- z sel(ti) + €s[tk3
Ti=ty

In diesem Fall genligt zur Berechnung der Langzeitverformungen
der Vektor {EL}y, = {A¢-Z°eeltti]}m. Die Matrizen [EEO],, und
[Ad] k&nnen entfallen.

nxn

Wird der Beton n&herungsweise als nichtlinear elastisches Ma-
terial angesehen, so erhdlt man die Betonspannungen stets aus Glei-
chung (6). Alle weiteren Ueberlegungen im Abschnitt 5.3 und der
plastische Kurzzeitvektor {EPO} werden dann unnétig.

Bezeichnungen

Ma dusseres (aktives) Moment
Mp inneres {reaktives) Moment
Na dussere (aktive)l Normalkraft
Np innere {(reaktive) Normalkraft
K Krdmmung
O¢ Kurzzeitverformung des Betons
te Langzeitverformung des Betons
%eg1(ti) glastische Kurzzeitdehnung zur Zeit tj
;epl(ti) plastische Kurzzeitdehnung zur Zeit ¢t;
€g1(ti) elastische Langzeitdehnung zur Zeit tj
tspl(til plastische Langzeitdehnung zur Zeit tj
°ep10 maximale Dehnung einer Faser aus allen Vorbelastungen
wirksame Zeit
¢(tk,ty) Kriechzahl fir das Zeitintervall tj bis tg
dltr-t3) Beiwert, der den zeitlichen Verlauf der verzégert

elastischen Verformung berlcksichtigt (o<¢<1 ist nur
von ti-ti abhéngig)

egl(tk) Schwinddehnung bis zur Zeit ty

€1 gesamte Dehnung am Druckrand

€2 gesamte Dehnung am Zugrand

€3 Dehnung der Druckbewehrung

€y Dehnung der Zugbewehrung

€3 Dehnung der Stegbewehrung

€y Vordehnung, falls es sich um Spannstahl handelt
Oc Betonspannung

Og Betonspannung infolge der Vorbelastungen

Be Prismenfestigkeit des Betons

€8 absolut kleinste Betondehnung bei B,

b Breite eines Rechteckquerschnittes

h Hohe eines Rechteckquerschnittes
M=M./B,b*h? bezogenes Biegemoment (Rechteckguerschnitt)
N=Np/B.*b*h bezogene Normalkraft (Rechteckquerschnitt)
As Querschnittsfléche eines Bewehrungsstabes

m Anzahl der betrachteten Querschnittsfasern
n Anzahl der "Kriechintervalle”

> Gesamtdehnung zur Zeit tyg

ges
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ZUS AMMENFASSUNG

Es wird eine numerisch iterative Methode zur wirklichkeits-
nahen Bestimmung des zeitabhingigen Verformungsverhaltens von
Stahl- und Spannbetonquerschnitten dargestellt. Beliebige ela-
stische und plastische zeitabhingige Betoneigenschaften, eine
vorgegebene Belastungsgeschichte und verschiedene Stahltypen
konnen beriicksichtigt werden. Wiahrend des zeitabhingigen Ver-
formungsvorganges kann der Querschnitt vom ungerissenen Zustand
in den gerissenen Ubergehen und umgekehrt.

’

SUMMARY

A numerical method by trial and error to compute the time
dependent deformation behavior of reinforced- and prestressed
concrete cross-sections is described. Arbitrary elastic and
plastic time dependent concrete properties, a given loading
history and different types of reinforcing steel can be con-
gidered. During the time dependent deformation process the
cross—-section can change from an uncracked state to a cracked
one and conversely.

RESUME

On présente une méthode numérique itérative qui approche
le comportement réel & la déformation en fonction du temps de
sections en béton armé ou précontraint. On peut introduire
dans le calcul toutes les caractéristiques élastiques et
plastiques du béton en fonction du temps, 1'"historique" de
la charge, ainsi que différents types d'acier. Au cours du
processus de déformation, la section peut passer de 1'état
non figsuré 2 1'état fissuré et vice-versa.



An Experimental-Analytical Study of Complete Load-Deformation Characteristics of
Concrete Compression Members Subjected to Biaxial Bending

Etude analytique et expérimentale de la relation charge-déformation de piéces
comprimées en béton armé soumises a une flexion biaxiale

Eine rechnerische und versuchstechnische Untersuchung Uber die Beziehungen zwischen
Last und Verformung von Druckgliedern unter schiefer Biegung

Cheng-Tzu HSU M. Saeed MIRZA
Ph.D. Candidate Associate Professor of Civil Engineering
Department of Civil Engineering and Applied Mechanics and Dean of Students
McGill University
Canada

. INTRODUCTION

This investigation was aimed at studying the "complete"
behaviour of short reinforced concrete pin-ended columns subjected
to biaxial bending moments as the applied compressive loads were
increased from zero until failure which was defined as the stage at
which spalling of concrete tocok place accompanied by buckling of the
steel reinforcing bars. This paper discusses briefly the mathemat-
ical formulation leading to the computer program besides reviewing
the experimental procedure. The experimental and computed load-
deflection curves are compared for a symmetrically loaded column
subjected to biaxial bending.

THEORETICAL ANALYSIS .

A numerical analysis was developed by the writers (Ref.1,2) to
determine strain and curvature distributions in any structural
concrete section subjected to biaxial bending moment and axial
compression. This analysis can account for any given section geom-
etry and material properties. Member cross~section is divided into
several small elements and the stress resultants P, Mx and My on

this section can be expressed as function of ¢x, ¢y and ep given by
the following equations (see Fig.l):

P = P(¢X’¢Y’€p) (1a), Mx = Mﬁ(¢x’¢y’€p) (1b),

and MY = M§(¢x’¢y’ep) (1c)
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= axial force
bending moment about the x-axis

where

= Qz ~d
]

= bending moment about the y-axis

= yniform direct strain due to an axial load P

T 9

the curvature produced by the bending moment component
Mx and 1s considered positive when it causes compressive

S M
"
[}

strains in the positive y~-direction, and
¢ = the curvature produced by the bending moment component
Y M_ and is considered positive when it causes compression

in the positive x~direction.

The strain €, across any element k can be assumed to be uniform
and since plane sections remain plane during bending

e, = €p + 6. ¥ +¢yxk (2)

where x, and y, are coordinates of the centroid of the element k.

Having established the strain distribution across the cross-
section, the axial force P and the bending moment components Mx and
My can be calculated using the following equations:

n n n
P =7 f a (3a), M =% fay (3b), M =7 f a (3c)
(e) "oy Kk x(e) . KKk y(e) o KKk

Subscript (¢) indicates wvalues of P, M_ and M_ calculated in an
iteration cycle, and a, is the area of elemenz k. The values of P,
Mi and My can be estimated using the Taylor's theorem from the

values of P(c),Mi(c)and My(c) from equations (3) as follows:

P=P,  +°%cyss _ + °F(e) 86, + °T(c) 8 (4a)
(c) 3 X y P
$ X 3e
M= M%(c) + aMx(c!6¢ <7t auigc! 6¢y + aM%!c!GSp (4b)
9¢ T J€
y P
MM+ Myre , + Mye) 80, + Myerse (4e)
v g, 9%, M T P

P
required to produce changes 6P, GMK and GMy respectively. The par=

The values 6¢x, 6¢y and Gep are increments in ¢x’ ¢y and ¢

tial derivatives aP(cz s «s.e8tc. are the rates of change of P, Mi
99
X
and M& with ¢x’ ¢y and sp.

These partial derivatives in equations (4) are replaced by the
corresponding difference quotients; and by suitably incrementing
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each deformation quantity at a time, the rates of change can be
evaluated and substituted in equations (4). The resulting simultan-
eous equations (4) are solved for 5¢x, 6¢y and Gep and these

increments are added to the initial deformations and the process is
repeated using the new deformation values until convergence is
obtained. For more details, the reader may refer to Reference 2 and
3.

The central deflections sz and 62y along x and y~directions

respectively (see Fig.2) were calculated using the following equation
derived from a suitable modification of the moment-area theorems to
account for behaviour non-linearities.

2 2
§ = ¢ 1 ) = ¢ 1
2x _j%;_ (5a) 2y x8 (5b)

The axial load P, for each loading step was calculated using the
value of P computed and modified for the influence of mid-span
deflections using the following equations:

(a) Loading Condition I (see Fig.3a)

2 2,1/2
Pj _ P(ex + ey ) (6a)
2 2.1/2
[(ex+ Gzy) + (ey+ 62x) 1
(b) Loading Condition II (see Fig.3b)
1 1
P = Ey_'_ (6b) P = Pex'— (6c)
3x 2(ey + sz) 3y 2(ex + Gzy)
and P3 = P3x + P3y (6d)

More details can be found in Reference 3.

EXPERIMENTAL PROCEDURE

The test specimens were designed as short, tied columns with a
square under-reinforced section (see Fig.4). Eleven specimens were
manufactured and tested to study the influence of the variation of
eccentricities e and ey and the total longitudinal steel percen-

tage (p + p'). Details of the symmetrically loaded test specimen U-3
and the loading arrangement are shown in Fig.3(b) and 4. The stress-
strain curves for the concrete and the reinforcing steel wire D5 are

shovm in Figs.5 and 6, respectively.

Hard rubber blocks were incorporated in the loading frame to
dissipate some of the energy of the loading system. Beyond the
ultimate load, this arrangement permitted the application of further
deformations which were accompanied with a decrease in the applied
loads measured using calibrated load cells.

47



I — AN EXPERIMENTAL-ANALYTICAL STUDY OF COMPLETE LOAD-DEFORMATION CHARACTERISTICS

The average curvatures along the mid-span section of the column
were evaluated using two sets of experimental data -~ one from strain
gauges installed on the concrete and the reinforcing steel wire and
the other from the demec gauges suitably arranged near the section.
Deflections along the x- and y-axes were measured using dial gauges
with a least count of 0.001 in. Details of the test procedure,
material properties, etc. azlong with the experimental data can be
found in Reference 3.

CURVATURE EVALUATION

Experimental observation shows that the strain distributioms
across the mid-span section along the x and y-direction are very
nearly linear, therefore curvature in either direction is given by

EC+ Es
d

where € and g, are strains in the concrete and the reilnforcing

¢ = (73-)

steel respectively and d is the distance between the points where
Eg (steel strain in tension reinforcement in X~ or y- directions)

and €, (the extreme concrete compressive strains in x- or y-

directions) are measured. After significant cracking, it was
observed from the strain gauges that the strain distribution in the
compression block became non-linear. Similarly demec gauge results
indicated a non-linear strain distribution across the entire
section. Average curvature can be approximated by the equation

‘ >

[
¢ = I (7b)

where kd is the distance between the point where EE is measured

and the point of zero strain and in x~ or y-directicns.

COMPARISONS OF EXPERIMENTAL AND ANALYTICAL RESULTS

The cross section was idealized as shown in Fig.7. The
theoretical and experimental biaxial moment-curvature curves across
the mid-span sections for the symmetrically loaded specimen U-3
(Fig.4) are shown in Fig.8. (e; = 17.78 cm. e§ = 17.78 cm.)

The experimental moment-curvature relationships were obtained until
either strain gauges became damaged or demec points became dis-
lodged while the theoretical values were computed until the maximum
moment capacity. Fig.9 shows the axial load P3 -~ central deflection

relationship at mid-span of the column. The theoretical values were
computed up to the stage when the maximum moment capacity was
attained while the experimental values were measured up to the
collapse or buckling of the reinforcement. More test data on
symmetrically and unsymmetrically loaded specimens can be found in
Reference 13,
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CONCLUSIONS

The above theoretical analysis indicates that it is possible
to predict biaxial moment-curvature and load-deflection curves up
to the maximum moment capacity of the column specimen. Also the
use of hard rubber blocks in column compression tests makes it
possible to measure the complete bilaxial moment-curvature and
load-deflection curves up to the failure stage as defined earlier.
The analysis in this paper has resulted in the evaluation of the
flexural rigidity coefficients for members of three-dimensional
structural concrete frames and can be incorporated without much
difficulty into the existing computer programs for analysis of
three-dimensional framed structures.
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SUMMARY

The above theoretical analysis indicates that 1t 1s possible
to predict bisxial moment-curvature and load-deflection curves up
to the maximum moment capacity of the column specimen. Also the
use of hard rubber blocks in column compression tests makes it
possible to measure the complete biaxial moment-curvature and
load~deflection curves up to the failure stage as defined
garlier. The analysgis in this paper has resulted in the eva-
luation of the flexural rigidity coefficients for members of
three~-dimensional structural concrete frames and can be incor-
porated without much difficulty into to existing computer programs
for analysis of three-dimensional framed structures.

RESUME

L'étude théorique rend possible la détermination des courbes
moment-courbure et charge-déformation jusgqu'a la charge ultime
de la colonne congidérée. L'utilisation d'éléments en caoutchouc
durci lors d'essais de colonnes comprimées rend possible la mesure



I — AN EXPERIMENTAL-ANALYTICAL STUDY OF COMPLETE LOAD-DEFORMATION CHARACTERISTICS

intégrale des courbes moment biaxial-courbure et charge-déformation
jusqu'a 1'état de rupture mentionné plus haut. L'étude présentée

ici a permis 1'évaluation des coefficients de rigidité a la

flexion d'éléments de cadres tridimensionnels en béton armé:

elle peut étre incorporée sans grandes difficultés aux programmes
existants d'ordinateur pour 1'étude des structures tridimensionnelles.

ZUS AMMENFASSUNG

Die vorliegende Untersuchung zeigt, dass es mdglich ist,
die Beziehungen zwischen Biegemoment und Krilmmung sowie zwischen
Last und Verformungen bis zur Biegetragfihigkeit der Ver-
suchsstiitzen auch flir schiefe Biegung theoretisch vorauszusagen.
Die Verwendung von Gummiblocken fur die Lagerung der Versuchs-—
stlitzen gestattet die vollstédndige Beobachtung dieser Beziehungen
bis zum Bruch. Das vorgelegte Berechnungsverfahren flihrt zu Koef-
fizienten flr die Ermittlung der Biegefestigkeit wvon Bauteilen in
raumlichen Tragwerken und kann leicht in bestehende Computer-
Programme eingebaut werden.
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FIG.1 [DEALIZATION OF A CROSS-SECTION SUBJECTED
TO BIAXIAL BENDING ANC AXIAL COMPRESSION
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1. INTRODUCTION

For ascertaining the safety of a column or a frame under severe earthquake
loading it is important to know the load-deflection relation of a column or a
frame in the unloading range as well as the loading range under constant
vertical and monotonically increasing or alternately repeated horizontal
loading(l). Although several experimental investigations have been reported,
the theoretical approach tbé the problem has not been well developed in the
field of steel reinforced concrete { SRC ).

The behavior of a SRC column under axial force and bending moment is
almost the same as that of an ordinary reinforced concrete column in loading
range if it is not subjected to severe shear force. However, a SRC column
shows some-what different behavior from that of an ordimary reinforced concrete
column in the unloading range in the following sence; the covering concrete
falls off during the unloading, and the steel flange is not apt to buckle.

As pointed out in the introductory report the computation may become
formidable if we start from accurate stress-strain relation. In this paper,
starting from idealized hysteretic stress-strain relations and using discrete
element approach, moment-curvature relations of a column under constant axial
force are calculated. Since, as quoted in the introductory report,
consideration of a finite length of the member is unavoidable when the negative
slope range of the stress—-strain curve of material is to be analyzed, the
analysis of a member or a frame is carried assuming the flexural portions with
a finite length near the member ends in which the curvature is uniformly
distributed.

2. THEORETICAL INVESTIGATION

a. ‘Moment~-Curvature Relation: Let us consider a steel-reinforced concrete
column section subjected to constant axial force and varying bending moment,
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in which stress and strain distributions are uniquely determined at a certain
loading stage, and suppose that the state of stress at this stage is given by
a piecewise-linear function of the state of strain, o, = fz(e,), where 0, and
€z are the stress and the strain in the fiber in the distance of z from the
central axis. The shear force effect is neglected. The increments of axial
force, dN, and the bending moment, dM, developed in the subsequent loading are
given by

0 = dN = [do,"dA = [f}-dA-de, (1)
dM = fdo,-z+dA = [EL+z-dA-de, (2)

where dO, and d€, are the stress and the strain increments, respectively, the
prime denotes the derivative with respect to €, and the integration is carried
over the cross sectional area.

If we assume that the plane section normal to the central axis remains
plane, de; is explained by the strain increment on the central axis, de, and
the curvature increment, dv. Employing the definitioms,

A=Jfy.dA, § = [flez.dA, T = [f3-22.4A (3)
Egqs. (1) and (2) become

Ade + S+dk = 0 (4)

S+de + I+dk = dM (5)

Eliminating de from Eqs. (4) and (5), the incremental moment-curvature relation
is determined as

dM = ( I - §%/% )-dx (6)

This procedure does not always demand the linearity of the stress-strain
relationship, but the nonlinear relationship requires the iterative proéedure
and the application to the deflection analysis of frames may become difficult.
A, S and T can be evaluated from Eq. (3) by deviding the cross section into a
finite number of strip elements perpendicular to z axis, and by assuming the
uniform distrubution of f£', in a strip.

The hysteretic stress-strain relationship of steel is assumed to be the
one shown in Fig. 1(a), taking Bauschinger effect into account. In the
figure, Oy, €y, and Egare the yield stress, yield strain and Young's modulus
of steel, respectively. The compressive strength of the covering concrete
deteriorates due to the crash at an -early stage of the compressive strain. On
the other hand, the crashing strain of the confined concrete may be quite large
due to the restraining action of steel flanges. From this point of view, two
different kinds of the hysteretic stress-strain relations, shown in Figs. 1(b)
and (c), are assumed for the confined and covering concrete, respectively. For
both of them, the maximum strength op is taken as 75% of the cylinder strength of
concrete and the tensile strength is neglected.

b. Deflecticn Analysis of a Single Column and a Framed Structure: When the
shear force effect is neglected, the deflection of a member subjected to bending
can be determined by integrating the curvature, if the material is "stable"
according to Drucker's postulate, and thus the moment is uniquely related to
the curvature. However, as pointed in the introductory report, we must
consider that finite lengths of section are governed by the same relationship
between moment and curvature, when to deal with the unstable material 1like
concrete,

In this paper, the following mathematical model is considered for
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simplicity to conduct the deflection analysis ¢f a column or a frame. Let us
consider a cantilever subjected to a lateral load P at its tip. When it is
assumed that a curvature K, which corresponds to the bending moment at the end
(=P:%), is uniformly distributed along the length s, and that the remaining
portion of the cantilever with length of (#-s) is rigid, the deflection at the
tip, §, can be obtained as

§ = kes*( 2 ~-8/2) (7)

In the actual computation, the length s is so determined that the deflection,
§, of this model coincides the exact tip deflection of the entirely elastic
cantilever, and it is given as

s=(1=-1/VY3 )% (8)

The incremental load-displacement relation for the cantilever is directly
obtained by rewriting Eq.(7) in the incremental form, and using Eq.(6), as
follows:
. —_._2_
dP = 2+( 1 - 8/A )-dG
s'( 2 -18/2)
This method of approach can be applicable to the deflection analysis of a
portal frame subjected to the constant vertical load, N, on columms and
monotonic or alternately repeated horizontal load, Q. As conducted in the
deflection analysis of a columm, the flexural portions are imposed at both
ends of the beam and columns, in which uniform curvatures are assumed to be
distributed, and all other portions are assumed to show the rigid body motiom.
A simple computation based on the equilibrium condition at the joints and the

geometrical relation gives the linear relation between the load increment and
displacement increment.

(9)

3. EXPERIMENTS

To ascertain the accuracy of the theoretical treatment, the theoretical
results are compared with the experimental ones which have been obtained by
the authors(2, 3, 4). A brief explanation on the tests is given here.

The experimental works are composed of six series as shown in Table 1.
Shapes and dimensions of specimens and the loading system are given in Fig. 2.
In all series, the axial loads, N, are kept constant, and the horizontal or
lateral loads, Q, are applied in the monotonic or alternately repeated manner,
as identified by the second alphabet of each specimen, M or R, respectively.
Numerals appearing in the specimen numbers denote the axial load ratio N/No,
where N, is the ultimate compressive strength of a SRC cross section obtained
by the method of superposition.

In SM and SR series, the specimen is subjected to uniform bending, and
moment-curvature relations are derived from the deflection data detected at
three points along the member axis. The column specimens in CR series are
subjected to double curvature bending, and the chord rotation angle, R, is
computed from the deflection data detected at the top and bottom of the column.
On the other hand, the drift angle, R, of the frame is given by the horizontal
displacement, §, divided by the column height, h, as shown in Fig. 3.

In SM, SR and CR series, the bending cracks are first observed during the
tests, the ultimate strength of each specimen i1s attained due to the yielding
of steel and the development of the ultimate compressive strain of the concrete.
And finally the covering concrete falls off causing the decrease of resistance.
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Damaged portion is located at the center in SM and SR series, and at member
ends in CR series. In the frame tests, the bending cracks are observed at
beam and column ends, and the final failure occurs at both ends of columns. In
all frame specimens, the concrete crash is not observed at the beam ends.

4. DISCUSSION ON THE RESULTS

The theoretical results(solid lines) are compared with the experimental
ones(dashed lines) in Figs. 4 to 8. The moment-curvature relations are drawn
for SM and SR series in Figs. 4 and 5. For monotonic loading cases, it is
observed that the theory well predicts the strength deterioration after the
attainment of the maximum strength. The negative slope of the moment-—curvature
curve becomes steeper with the increase of the axial load. 1In the large
curvature range, the strength seems to converge to the sum of the strengths
contributed from the confined concrete and the steel. Since the theory assumes
entirely ductile stress—strain relation for the confined concrete, the
strengths given by the theory are larger than that by the tests, and the
pesitive slope appears again on the curve in the large curvature range due
to the strain-hardening of the steel, except for the case of zero axial load.
For repeated loading cases, the theoretical results of SRO shows a very good
agreement with the experimental one. Particularly the stiffning effect due to
the closing of cracks are well predicted by the theory, although the stiffness
change appears rather sudden in the theory. On the other hand, the large
discrepancy is seen between the experimental and theoretical maximum strengths
of SR3. However, it is clearly shown in case of SR3, that the strength
converges to the sum of the strengths of the confined concrete and the steel.

The hysteresis loops of column specimens subjected to double curvature
bending repeatedly are shown in Fig. 6. In general, the theory well predicts
the experimental results. As clearly shown in the case of CRO, the discrepancy
is seen on the shapes of hysteresis loops; stable spindle type in the test and
rather parallelogrammic type in the theory. Since this discrepancy is not
obvious in the moment-curvature relation, this is because the theory does not
take into consideration the cracks due to bending distributed entire length of
the column and the shear deformation. The test result of CR3 shows that the
confined concrete already crashed at the final stage of the test.

Shown in Figs. 7 and 8 are the results of the frame analysis. One point
that cannot be properly explained yet is the large discrepancy between the
thecretical and experimental maximum strengths of FM series. This discrepancy
1s more or less observed in the results of FR series. It may be said that
the accuracy of the theoretical results becomes poorer as the objective
structure becomes more complicated., From this point of view, the development
of the more refined mathematical model for the 'deflection analysis is needed.
Since the members in CR, FM and FR series are subjected to double curvature
bending, the moment curvature relation for such a member may have to be checked
by the theory to give an explanation to the discrepancy. The difference in
the shapes of the hysteresis loops of the frame is very similar to that
observed in case of the columns. The large strength reduction observed in
the final experimental loop of FRO may be caused by the fracture of the steel.

5. CONCLUSIVE REMARKS

The moment-curvature relation of a steel reinforced concrete cross section
under the constant axial force and monotonic or alternately repeated bending
is computed by separating the cross section into a finite number of strip
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elements based on the assumption that the plane remains the plane. Tt can

be concluded that it is needed to employ the accurate stress-strain relation
of the concrete when to carry out the deflection analysis of the reinforced or
steel reinforced concrete members, and its accuracy shows the critical effect
on the result of the analysis. When the axial load is zero, the maximum
bending moment of the eross section, and thus the maximum strength of the
member, depends only on the strength of the bare steel portion including
reinforcing bars, and the concrete strength hardly affects on the numerical
results. However, when the axial load is present, the estimation of op plays
a key role to determine the maximum strength of the member. In the present
analysis, Oop is assumed to be 75% of the cylinder strength, and different
types of stress-strain relations are assumed for the covering and confined
concrete. The theoretical result shows a good agreement with the experimental
one under the loading condition where the mean strain in the confined concrete
is small.

The main advantage of the present method of analysig may lie on the point
that the hysteretic load-deflection relation of the member of the frame can
be directly derived from the moment-curvature relation of the member cross
section, by considering the flexural portions with a finite lengths concentrated
at the member ends. In general, the deflection analysis of the frames shows
the discrepancy between the maximum strength obtained by the present method
and that from the test. It seems adequate to impose the rigid portion with a
finite length at the member ends, in order to obtain a good agreement with
the test result,
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TABLE AND FIGURES
Table 1. Test Specimens and Material Properties

Series SsM SR CR M FR

Loading Type Menotonic Repeated | Repeated|Monotonic| Repeated
Specimen No. SMO| SM2| SM4| SM6| SRG|] SR3| CRO| CR3| FMO| FM4| FRO| FR3
N (ton) 0 30, 60 90| O 251 0 351 O 401 O |34.4
N/Ng 0| 0.2| 0.4/ 0.6| 0| 0.3 0 | 0.3] 0 0.4 0| 0.3

Fc(ton/cm?) | .215| .269|.295|.275(.233|.216 |.364|.326| .228|.242|.349|,328
goy(ton/cm?) 3.05/3.1213.12{3.12|3.42|3.42{3.48 3.48|2.95|2.83|3.46|3.09
roy(ton/cm?) 3.68/3.68]3.68(3.68|4.1814.18(3,38/3,91/2.61/2.61|3.87|3.87

N:Axial Load, Ng:Ultimate Compressive Strength, F.:Cylinder Strength of Concrete,
gjy:Yield Stress of Steel, roy:Yield Stress of Main Reinforcing Bars.
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SUMMARY

A numerical analysis is carried out to obtain the moment-
curvature relationship of the steel reinforced concrete cross
section under constant axial force and monotonic or alternately
repeated bending moment, based on the idealized stress—-strain
relations for steel and concrete. A method of the deflection
analysis of steel reinforced concrete columns and frames is
proposed, introducing a mathematicsal model. The numerical re-—
sults are compared with the experimental ones that have been
obtained by the authors.

RESUME

On procede & un calcul numérigque pour obtenir la relation
moment-courbure d'une section en béton armé soumise & une force
axiale constante et & un moment de flexion constant ou alterné;
on se base sur des diagrammes tension-déformation idéalisés pour
l'acier et le béton. On propose une méthode pour le calcul des
déformations des eadres et colonnes en béton armé, qui utilise
un mod&le mathématique. On compare les résultats numériques avec
des resultats expérimentaux des suteurs.

ZUS AMMENFASSUNG

Eine numerische Berechnung wird durchgefiihrt, um die Moment-
Krummungs-Beziehung von Stahlbetonquerschnitten unter konstanter
Axiallast und gleichfdrmig ansteigendem oder wechselndem Biege-
moment zu bestimmen. Hierbei werden idealisierte Spannungs/
Dehnungs~Beziehungen fir Stahl und Beton eingefiihrt. Eine Methode
fir die Berechnung der Verformungen von Stahlbetonstiitzen und
~Rahmen wird vorgeschlagen, welche auf einem mathematischen Modell
beruht. Die numerischen Resultate werden mit den Ergebnissen von
Versuchen der Autoren verglichen.
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Introduction

It is widely recognized that the true behavior of reinforced
concrete is extremely complicated. Among the various physical
phenomena that cccur on a macro-scopic level in reinforced concrete,
the following will be mentioned: nonlinear compressive stress-strain
relationship of concrete; cracking of concrete; yielding of steel
reinforcement barsj; bond slip between reinforcement bars and concrete.
Geometric imperfections and second-order geometric effects are also
of considerable importance for beam, plate and shell structures.

The picture is further complicated by various time dependent pheno-
mena. In spite all of this, the analyses of most concrete struc-
tures today are based on greatly simplified models for the materials.

The finite element method has proved to be a very efficient tool
for analysis of a great variety of nonlinear problems [1], [2]. A
review of applications of the method to nonlinear analysis of con-
crete structures has been given by Scordelis [3]. Studies consider-
ing both material nonlinearities and large deformations have pre-
viously been reported by Berg et.al. [4] who analyzed concrete plates
and by Blaauwendraad { 5] and Aas~Jdakobsen and Grenacher [6] who
dealt with concrete frames.

In theory, the finite element method can be formulated so that
almost an unlimited number of complex physical and geometrical effects
may be incorporated in the numerical algorithms. A prerequisite
for this is of course that the various effects can be defined mathe-
matically. But at least as important as to include various physical
phenomena in the analytical model is to ensure that the method be-
comes economical and practical in use.

In the present paper an attempt is made to achieve a method of
analysis that is capable of accurately predicting the inplane be-
havior of plane, slender, reinforced concrete frames and arches
that are subjected to loads up to the ultimate carrying capacity.
Major efforts have been made to make the analytical model economi-

cal and efficient. The approach is based on the finite element method
utilizing a beam displacement model. The material properties of
concrete and steel reinforcement may be relatively general. The

loading , geometry, support conditions and distribution of rein-
forcement may also be arbitrary. The cross-sections are assumed to
be rectangular. Large deflections of the frame are also accounted
for. The present method is demonstrated by two numerical examples,
eccentric buckling of a column and stability analysis of an arch.
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Governing equations

In the proceeding, a simple but powerful approach for large
displacement analysis of frames will be followed. The structure
is assumed to be divided into finite elements. To every element
is "attached" a local Cartesian coordinate system going through the
end nodal points, see Fig. 1.
This coordinate system follows
the element during the deforma-
= tion. On the local element level
the deformations are assumed to
be small (small strains). How-
ever, forces and displacements
for each element are transformed
to a global coordinate frame in
which the equilibrium equations
for the entire system are assem-
bled. 1In effect, this approach
is a matter of updating the
nodal point geometry of the
X X structure in accordance with
_» the current deformations. The
geometric nonlinearities entering
this procedure are entailed in
the continuously changing trans-
formation matrices between local
and global systems (rotational

Initial
Configuration

Fig.1. Description of motion of an element
during deformation,

effect of elements).

Two equations are of great importance for a nonlinear analysis:
the equilibrium equations and the incremental form of the equi-
librium equations. The condition of equilibrium for an element can
be stated in terms of the virtual work principle

fo8edV - [T 8u;ds = 0O (1)
v S,

For a beam element ¢ is the axial stress, V the element volume,

Ti the surface traction which is prescribed on surface 5,, Sui

are the virtual displacements and &e the corresponding virtual
strain. Using the approach just described, Eq. (1) yields the small
displacement (secant) stiffness relation, i.e. the equilibrium
equation, referred to the local coordinate system in the current
deformed configuration. Eg. (1) may very well account for nonlinear
material effects.

By considering equilibrium of two configurations 1 and 2
of the element that are close to each other, an incremental form of
the virtual work principle may be obtained

[AcéedV + [o8AedV - [AT.6u.dS = 0 52
v \Y S,
where A denotes increment of quantities between the two configu-
rations. In accordance with the previous description Eq. (2) has

been linearized by neglecting the term fAcGAedV.
vV

The reference frame for Eq. (2) is the local coordinate system in
configuration 1, see Fig. 1. For a beam element the term &Ae may
be obtained from the nonlinear strain term which includes the rota-

tional effect %(g—‘;)z, so that
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Shwya _ 3 @y2y - gy 2w (3)

she = o[ 1(2Y 4 Hy2) = 53y 24w

9X X

Equation (2) yields the socalled incremental or tangent stiffness
relation which accounts for both nonlinear material properties and
geometric effects (geometric stiffness on linearized form).

Finite Element Model

The finite element ideali-
zation of the beams is here

zZ,w based on a pure displace-
f ment model [1l]. The axial
"1 Wo displacement along the x-
6 ( uy u3 Uz \x,u h axis of a beam element is
——.——H —_—— -
1 l] 3 2 93 ' defined by
% E=#1 lb] By = By (4
| where
N = 1~ LE(LI-E)] (5)
Fig.2. The beam element. u L, £ gT £)]
u = [u s u,, u,l (6)

The internal degree of freedom at the midplane, see Fig. 2, is intro-
duced in order that the strain due to axial deformation be of the
same degree as the strain due to flexure. The lateral displacement

w 1is defined by

w=Nw (7)
where

N =[1-382+28°% ,-28(1-£)%, 1-3(1-£)%+2(1-£)%,0E%(1-8)] (8)

W = [Wl,el,wz,ele (9)

Adopting Kirchhoff's hypothesis, the strain at an arbitrary point
within the beam element is given by

_ du

ax - Nu,xu = ZNW,XXW (10)
The comma denotes differentiation. The above model does not account
for shear deformations.

Assuming that forces act only at the nodal points of an element,
the element equilibrium equation is obtained by substitution of
Eq. (10) into Eq. (1).

NT S
fU U.X dav = Su = 5 (11)
vV T W

N

W, XX

=2

S 1s the nodal point force vector corresponding to the state of
stress o. The stress ¢ 1is given by the current strain, see the
next section.

The increment of the axial stress is related to the strain
increment through the equation

Ao = ETAE (12)
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where ET is the current tangent modulus. By substitution of

Eqs. (10) and (12) into Eq. (2), the incremental force-displacement
relationship for the element 1is obtained

T T
N N -zN N 0 0
J-E UWaX U,uX, u:% WeXX dV+NJ’ T dx g:’ gg =AS (13)
symm. , z2N N 2 |0 N N
WHyXX W,XX WX W,X

Here, N 1is the resulting axial force over the element cross section.
The second term of Eq. (13) is the geometric contribution to the
incremental force-displacement relationship. A similar incremental
relationship for the total structure is obtained by transformation
from the current local to the global coordinate system and using

a standard assemblage process.

Material properties

The method described herein allows for a general, nonlinear
stress-strain relationship for both concrete and reinforcement. The
concrete and the steel are assumed to be perfectly bonded.

In the computational procedure, it is assumed that there is a
unique relationship between stresses and strains (total deformation

formulation). The stress-strain curve for the concrete is identi-
fied by a set of discrete points, see Fig. 3. Linear interpolation
. between these points are used for
% a(Negative) intermediate values. The tangent mo-
—_— dulus needed in Eq. (13) is given in
/ - 2 bl :
a ’ 1 a similar way by utilizing d1§crete
2 /f I tangent values from the experimental
€cr I/ I (Negcﬁve)stress—straln curve. The tangept mo -
" S T— 1 | —» ~dulus may be negative. In tension
VE1€E0 €3 €4 €n €. the concrete is assumed to behave
(@) Uniaxial stress for concrete, linearly up to a cracking strain
B beyond which the concrete has
E- 4 (Positive) no strength. The computer program
H—< which was developed can also auto-
I \ matically generate the standard CEB-
I \\\ FIP design curve for concrete [7]
I S g (Negative) (@lso usea in the Norwegian building
er ¢ » 'code NS 3473).
cr -4 Ec The material properties for the
(b) Tangent modulus for concrete steel are obtained in a similar way

as for the concrete by identifying
discrete values from experimental
curves.

Fig.3. Material properties for
concrete,

Numerical solution

The major constituents in the solution process are the equi-
librium equation (11) and its incremental form Eq. (13). These
equations require 1ntegratlon to be carried out over the volume of
the beam elements. A Gaussian quadrature scheme is adopted for
this purpose. This integration is performed by utilization of 2
to 4 cross sections located at Gaussian p01nts along the longitudi-
nal axis of the beam element. Integration is also carried out over
the height of each section employing Gaussian integration for stress
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points in the compression zone. The material properties at these
points are obtained from diagrams like that of Fig. 3. The part of
the tension zone where the strain exceeds the cracking limit is
excluded from the integration. Several layers of reinforcement

can also be accounted for.

The response of the structure during increasing external loading
is basically determined by applying the external load in increments
and by performing equilibrium iterations at each new level of loading.
It may well happen that equilibrium of the structure is not satis-
fied after a new displacement vector has been obtained. The differ-
ence between the external forces acting on the structure and the
assemblage of element force vectors from Eq. (11) give rise to a
set of unbalanced forces. This residual force vector is utilized
in a Newton-Raphson iteration in which the gradient matrix is
supplied by Eq. (13). The iteration is terminated when the displace-
ments have converged or material rupture has occured. The material
properties at the integration points and the extension of the cracked
zones are constantly updated during solution according to the current
state of deformations. Also the local coordinate systems for the
elements are steadily updated to account for the change in geometry
of the frame.

The solution process is capable of proceeding beyond points of
maximum carrying capacity of the structure. The load-steps auto-
matically change sign after maximum point has been passed (reduc-
tion of external loading). This capability can be of great importance
for determining the safety of a design. Further details on the
solution procedure that is used may be found in Ref. [8].

Numerical Examples

The present method will be illustrated by two numerical
examples.

The first example is a hinged column subjected to eccentric
axial loading, see Fig. 4. The steel reinforcement is symmetric
and it is assumed to behave elastic-ideally plastic. Its modulus
of elasticity is E_ = 2.055105 N/mm?(29.2+10° psi) and its yield

strength is f_ = 461 N/mm?*(65500 psi). The compressive stress-

strain relationship of concrete is described by the standard CEB-
FIP curve [7] with an ultimate strain of By = -0.0035. The maxi-

mum compressive strength is taken as fC = 25,7 N/mm?(3660 psi)

corresponding to 80 per cent of the cube strength. The tensile
strenght of concrete is neglected. Half the total length of the
column 1s divided into six beam elements. The axial loading is
applied in 18 increments and an equilibrium iteration is carried
out at each level of loading. Fig. 4 shows the load-deflection
curve for the present analysis compared with test and analytical
results from Ref. [6]. The results obtained agree closely with the
two other curves. For all the curves the maximum point corresponds
to anaxial force of N = 242 kN (53.4 kips). To some extent, the
discrepancy between the test curve and the analytical curves may

be due to that the tensile strength has been set equal to zero.
Fig. 5 shows a graph of the relationship between moment (M) and
axial force (N) at the critical section of the column during de-
formation. The interaction diagram which represents material
failure is also plotted in the figure. It is clearly demonstrated
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that the final collapse of the column occurs when the M-N curve of
the column reaches the interaction diagram (failure envelope). The
total solution time for this example was 18 CPU-seconds on a
UNIVAC 1108 computer. o

The second example is a 180~ hinged arch subjected to uniform
hydrostatic pressure. Since no test data or alternative analytical
results are available, the main purpose of this example is to demon-
strate various capabilities of the present approach. The dimensions
of the arch are given in Fig. 7. It is assumed to have a geometric
imperfection defined by e = eosinZa. The ultimate strain of the
steel is taken as €y = Ey + 0.005 = 0.0069. The arch is analyzed
both as an unreinforced concrete structure with perfectly linear
elastic material properties and as a reinforced concrete structure
with nonlinear material properties. The shape of the nonlinear
stress-strain relationship is assumed to be the same as for the pre-
vious example, and the numerical values are given in Fig. 6. The
hydrostatic pressure is applied both as a conservative loading for
which the original direction of the force is kept during deformation
and as a nonconservative lcading for which the water pressure al-
ways is acting perpendicular to the deformed configuration. The
arch is divided into 12 equal elements.

The results obtained are shown in Figs. 6 and 7. In Fig. 6,

the horizontal displacement of node 4, Uy, is plotted against

the load intensity p. Curve (2) shows the locad-displacement
relationship for an elastic structure subjected toc a nonconservative
load. The curve approaches the critical load level for linearized
buckling Pop * SEI/RO3 = 418 N/mm. A similar curve for conservative

loading is marked @ . Curve (@ and (@ represent a reinforced
concrete arch with conservative and nonconservative load, respective-
ly. Curve (@) reaches its peak value at a load level of p03=250 N/mm.

- 140 N/mm = 0.56 Pg, - The
corresponding values for curve ()Aipe P ~ 230 N/mm and

Sh

Dy = 125 N/mm = 0.54 Py, - The curves representing nonconservative

locad are located approximately 10 per cent lower than the corre-
sponding curves representing conservative load. This demonstrates
that practical design procedures ought to account for changes in
the direction of locads. From Fig. 6 it may also be seen that the
asymptotes of the elastic curves are located about 80 per cent
higher than the maximum points of the corresponding reinforced con-
crete curves. Fig. 7 shows the relationship between moment (M) '
and axial force (N) at the critical section (node 4) for the re-
inforced concrete arch with conservative and nonconservative
loading, respectively. Also the corresponding interaction diagram
(failure envelope) is shown. The loading was applied in 11 to 22
load increments corresponding to a total solution time of 30 to

76 CPU-seconds cn a UNIVAC 1108 computer.

R

Material failure is reached at p
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SUMMARY

The paper presents a method of nonlinear analysis for plane,

reinforced concrete frames. Both geometric and material nonline-
erities are accounted for. The method allows for incremental
application of the external loads and the structural behaviour

may
The
the
has

be followed even beyond the point of maximum carrying capacity.
analysis is based on a finite element formulation in which
frames are modelled by small beam elements. The present method
proved to be very efficient and accurate.

RESUME

les

Ce rapport présente une méthode de calcul non-linéaire pour
cadreg plans en béton armé. On tient compte des comportements

non-linéaires et de la géométrie et du matériau. Cette méthode
permet d'étudier le comportement d'une structure sous l'accrois-
sement de la charge extérieure, méme au-dela du point ol la

charge maximum egt atteinte. Le calcul ge base sur la méthode des
éléments finis: les cadres sont considérés comme un assemblage de
petits éléments de poutre. On a démontré que la méthode ci-dessus
était efficace et exacte.

ZUS AMMENFASSUNG

Der Beitrag stellt eine Methode vor, mit welcher eine nicht-
lineare Berechnung ebener Stahlbetonrahmen mdglich ist. Sowohl
die geometrischen Nichtlinearitdren als auch diejenigen der Bau-
stoffe werden beriicksichtigt. Die Methode gestattet stufenweises
Aufbringen der Husseren Belastung, und das Verhalten l&8sst sich
selbst Uber den Punkt der maximalen Tragfghigkeit hinaus ver-
folgen. Die Berechnung beniitzt die Methode der Finiten Elemente,

wobei der Rahmen aus kleinen Balkenelementen zusammengesetzt wird.
Die vorliegende Methode hat sich als sehr leigstungsfihig und genau
erwiesen.
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Inelastic Analysis of Reinforced Concrete Beam Columns
Calcul non-élastique de poutres-colonnes en béton armé

Unelastische Berechnung von Balken-Stitzen-Systemen aus Stahlbeton

John M. KULICKI Celal N. KOSTEM
Visiting Assistant Professor Assocciate Professor
Fritz Engineering Laboratory
Lehigh University Bethlehem
Bethlehem, Pennsylvania, USA

INTRODUCTION

This paper presents the results of a pilot study on the application of an
incremental, tangent stiffness finite element analysis technique to the solution
of beam-column problems. Results of numerical investigations on reinforced
concrete and steel beam-columns subjected to concentrated midspan lateral loads
were compared to results obtained using the Column-Curvature-Curve (CCC) method
(Ref.l) and, in some cases, the Column-Deflection-Curve (CDC) method (Ref.5) via
interaction diagrams. The results have been presented in Ref.4. Only those ex-
amples dealing with reinforced concrete beam—columns will be presented here. 1In
each case it will be assumed that the complete axial load is applied first, then
the lateral load is applied.

BASIC MODEL

Consistent with the finite element method, the beam-column will be assumed
to be divided into elements along its length as shown in Fig.l. A frame or
beam type finite element will be used and bending will be assumed to occur about
only one axis. Inelastic biaxial bending could also be analyzed by an extended
version of the same element. There will be three degrees of freedom at each
node point used to define the elements. They are the axial displacement, U, the
lateral displacement, V, and the bending rotation, 6. These displacements will
occur along an arbitrary reference axis shown as the X axis in Fig.l.

The elements are subdivided into layers which are also indicated in Fig.1l.
Each layer is assumed to be in uniaxial tension or compression with the strain
in each layer analytically related to the strain at the reference axis by the
assumption that the cross-section is a plane before and after bending. Each
layer may have its own stress-strain relation. Ascending portions of stress-
strain curves are idealized using a Ramberg-Osgood formulation for either steel
or concrete (Ref.3). Unloading legs of stress—strain curves are modeled as
straight line segments.

The displacements within the elements are described by the polynomials
below.

U= 0 + onzx (1)

_ 2 3
V = a, + u4x + asx + a6X (2)
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6 = - 4dv/d&X 3
The ‘generalized stresses are chosen as the normal force and moment at the ref-
erence axis. The corresponding strains are the axlial strain and curvature.
Utilizing the assumption of plane sections it is possible to define the elas-—
ticity matrix as:

N A S du/dx
=| _ _ (4)
M S I —d2V/dX2
in which: _ J J J 2
A=% EA,, S=I EAZ, , I=C% EAZ (5)
4op 11 jmp 114 qog L1 4

The tangent stiffness matrix given below was developed following the well es-
tablished procedures of the finite element method, e.g. Ref. 7.

-l —
0 121 symm
=2 = =,2
1 S€” -61L 41L
%] - 3 2?0 -s?  m ©)
0 -12I 61 © 121
=2 = —2 =2 = =,2
| -Se“ -6Te 2T SE°  eIL  4TR” |

The arbitrary reference axis mentioned earlier has been used in the develop-
ment of the stiffness matrix above. This facilitates consideration of the
change in the position of the neutral axis as nonlinear action proceeds. The
equilibrium equations are applied in incremental form so as to treat a nonlin-
ear problem as a series of piecewlse linear problems.

The P~-A effect caused by the deflection of the beam—column can be includ-
ed by using the geometric stiffness matrix. The particular form used here was
found in Ref.6. The bending displacements are related to the axial force by
Eq.7 in which the axial force P is positive if it causes temsion.

— -
0
0 36 9 symm
[K ] _ P 0 -3¢ 4L 7
G 308 0 0 0 0
' 0 -36 3L 0 36 2
0 -3z -£2 0 3L 4
- -

Combining Eqs.6 and 7 results in the equilibrium equations for the dis-
placed beam-column element.

=[x ] o+ [%]] (8)
The total stiffness matrix of each element can then be assembled to form the
global equilibrium equations. After application of the boundary conditions
these equations can be solved for each increment of load.
A more complete discussion of the basic model is contained inm Ref. 3.
Comparisons of analytic and experimental load-deflection curves for reinforced
and prestressed concrete beams are also presented as verification of the model.

ITERATION SCHEME

The iteration procedure for a given lateral load increment is started by
solving the global equilibrium equations for the increments of displacement.
Strain increments are computed from the displacement increments. Using the
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latest level of stress available new tangent moduli are computed for each layer,
the tangent stiffness matrix, Eq.6, is regenerated and added to the geometric
stiffness matrix. The equilibrium equations are solved again. If the new
increments of displacement are within a relative tolerance of the previous set,
convergence is sald to have occurred. If convergence is not attained in several
trials the load increment is reduced and the process is repeated. If no con-
vergence is attained after a number of reductions in load the process is stop-
ped. If convergence is attained in relatively few trials the load increment to
be applied for the next load step is increased.

Once convergence has been attained for the load step, consideration is
given to cracking and crushing if appropriate. The first phase in this step is
a pre-scanning process in which all the layers are checked to see if they have
exceeded the allowable tensile or compressive stress tolerances by an excessive
amount. If this occurs the basic load step is reduced and the problem of find-
ing a converged displacement increment for the basic load step is repeated.

Once it has been determined that no stress criteria are exceeded by more
than their tolerances any alteration in stiffness required by the cracking or
crushing of a layer is made. The downward legs of the analytic stress-strain
curves are used to convert strain increments into 'fictitious stresses' which
are used to unload layers which have been found to exceed cracking or crushing
criteria. The "fictitious stresses' are used to compute nodal "fictitious
forces" which hold the rest of the beam-column in equilibrium. This process
produces a globally adequate but not locally exact redistribution of stresses.
The global equilibrium problem corresponding to that set of "fictitious forces"
is solved until convergence is attained. The layers are then rechecked to see
if subsequent cracking or crushing has occurred. If so the cracking-crushing
analysis is repeated. Execution of a given beam-column analysis is terminated
in one of two ways: 1) the total stiffness matrix given by Eq.8 ceases to be
positive-definite, or, 2) the process of cracking or crushing results in an in-
ability to find a total solution for a given load step. The first mode of ter-
mination was most common in the examples presented here.

Alterations in the stiffness matrix arising from plastic flow like phe-
nomena in reinforcing steels or in steel beam—columns are automatically ac-
counted for by employing the appropriate Ramberg-Osgood curve.

NUMERICAL RESULTS

The rectangular, doubly reinforced section used here is shown in Fig.l.
Beam~columns using the same cross-section have been analyzed using the CCC
method (Ref.2). The section is 356mm deep, 305mm wide and has equal compres-—
sive and tensile areas of 21.68cm2 each. The compressive strength of 17.58
MN/mZ? used in the CCC analysis was also used here. The yield strength of the
steel was 310.27 MN/m2. The 26 beam-columns which will be discussed herein
are enumerated in the table below.

ANALYTIC REINFORCED CONCRETE BEAM COLUMNS

L/t §10 110 |10 10 {10 |20 |20 |20 (20 }J20 j30 {30 |30 |30
e = 0.0
P/PO 0.0/ 0.2}0.410.6{0.8/0.0[0.2]0.41 0.6} 0.8/0.0{0.2{0.4{0.6
L/t 10 110 {10 {10 |20 |20 }20 20 130 |30 }30 130
e = 0.3t
P/P,|0.0{0.1] 0.2/ 0.3]0.0(0.1{0.2§0.3/0.0/0.1]0.2 Olﬂ

The interaction curves produced by both the finite element and CCC methods
for a concentric axial load are shown in Fig.2. It can be seen that the results
of both analyses agree quite well for the curves with L/t=30 and L/t=20. The
agreement with the CCC results for L/t=10 is not as good but is still within
about 5% of the same Q/Q, value for a given value of P/P,.
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The load-deflection curves produced using the current work for the case
with L/t=20 is shown in Fig.3. The load-deflection curves do not appear to form
a systematic pattern as was obtained when the same analysis was applied to a
steel wide-flange beam-column (Ref.4). There are several reasons for this:

1) as seen in Fig.2, there are some values of P/P, for which a reinforced
concrete beam-column loaded in this manner can support a larger lateral load
than is possible when P/P, =0. This was not true for the steel beam-columnms,
and 2) the effect of cracking is evident in these load-deflection curves as a
relatively early change in slope. The amount of change is dependent on the
extent of cracking along and through the beam=-column.

Figure 4 is a comparison of interaction diagrams for an eccentrically
loaded reinforced concrete beam-column. Good agreement with the corresponding
CCC results is again noted. The finite element results do not extend as far
along these interaction curves because of a limitation in the current iterative
procedure. For the higher values of P/P, in both the eccentric and concentric
cases the axial load alone caused enough nonlinear behavior to result in a
failure to converge to the first displacement increment. This is because the
axial load is applied in one load step in the current algorithm while the sub-
sequent lateral load is applied in small steps. The algorithm could be modi-
fied so as to apply the axial load in several steps. For the concentric load
case it was relatively easy to circumvent this problem by using an initial
stress field which satisfied equilibrium and strain compatibility.

Figure 5 is a set of load-deflection curves for the eccentric load case
with L/t=20. The almost horizontal offset at the beginning of each curve rep-
resents the effect of the application of the total axial load and the first
increment of lateral load.

This analysis technique has also been applied to steel wide-flange beam
columns and the results were compared to those obtained using both the CCC and
CDC methods. The corresponding interaction curves have been reported in Ref.4
and show even better agreement than indicated herein.

CONCLUSIONS

It can be concluded from this study that this incremental iteractive anal-
ysis technique using a simple layered beam-type finite element can provide so-
Jutions to inelastic beam-column problems, While there is already a large body
of information in this area, this method does have several advantages which may
prove useful in future beam-column studies: 1) a wide range of loadings can be
handled. There is nc intrinsic difference between one concentrated, several
concentrated, uniform, symmetric or unsymmetric loads. 2) boundary conditions
can also be handled easily. There is no change in the formulation for different
boundary conditions. 3) There is no need for an a-priori moment-thrust-curvature
curve. 4) There is nothing conceptually prohibitive about changing the order of
loading or using simultaneous (but proportional) axial and lateral loads. 5)
Previous work on prestressed concrete beams using basically the same simple
model would indicate that prestressed concrete beam-columns could alsc be
treated by this technique.

NOMENCLATURE

Generalized area

Initial modulus of elasticity
Generalized moment of inertia
Number of layers in an element
Beam~-cclumn length

Bending moment

Normal force

Axial load

Lateral load

Generalized statical moment
Eccentricity of axial load
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Element length
Axial displacement
Lateral displacement
Bending rotation
Concrete area

Steel area
" A + f A
cec v s

= Ultimate load of a concrete beam with no axial load
£ = 0.85f'
c c
f
y
[Xg]

(%]
{a} Constants in displacement polynomials
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S UMMARY

An efficient model has been developed which predicts the
flexurgl load-deformation behaviour and stress history of in-
elastic reinforced concrete and steel beam-columns. The beam-—
column is discretized into an assemblage of layered beam fType
finite elements and is analyzed using an incremental, iterative,
tangent stiffness approach, good agreement between interaction
curves developed by this method and the column-~curvature-curve
method is demonstrated herein.

RESUME

On a développé un modele efficace permettant de prévoir le
comportement flexion-déformation et 1l'éveolution des sollicitations
de poutres-colonnes non élastiques en béton armé ou en acier. La
poutre-colonne est traitée comme un assemblage d'éléments finis
en forme de lamelles. Le calcul se base sur une approche progres-
sive par itérations du module de rigidité tangentiel; on montre
également une bonne concordance entre les courbes d'interaction
obtenues par cette méthode et la méthode des courbes de courbure
de colonne.

ZUS AMMENFASSUNG

Ein leistungsféhiges Modell wurde entwickelt, mit welchem die
Vorhersage des Verformungsverhaltens und des Beanspruchungsverlaufs
in unelastischen Balken - Stutzen - Systemen aus Stahlbeton bzw.
Stahl mglich ist. Das Balken - Stiutzen - System wird dabei aufge-
16st in schichtformige Finite Elemente und untersucht mittels eines
stufenweisen iterativen Vorgehens, bei welchem die jeweilige Steifig-
keit Verwendung findet. Die gute Uebereinstimmung der mittels der
verliegenden Methode ermittelten Interaktions-Diagramme mit den-—
Jenigen aus einer Stitzen - Krimmungs - Methode hergeleiteten
wird aufgezeigt.
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Stabilitdt von Stahlbetonstiitzen und Stahlbetonrahmen
Stability of Reinforced Concrete Columns and Frames

Stabilité des colonnes et des cadres en béton armé

Wolfgang J. OBERNDORFER ‘ Dieter FISCHER
Dipl.-ing., Dr., M.S. Koautor, Dipl.-Ing., Dr.
Firma Ing. Mayreder, Kraus & Co Linz, Qesterreich

l.inz, Oesterreich

1. Einleitung

Der Stabilitdtsnachweis fiir auBermittig gedriickte
Stahlbetondruckglieder wird unter anderem nach den Vor-
schriften der einschlédgigen Normen in den einzelnen Lin-~
dern gefuhrt. In der Regel wird dabei das Verfahren der
Ausweichzahlen 'y, vorgeschrieben. Dieses Vefahren ist
aber duBerst unbefriedigend, weil das tatsichliche Ver-
halten des Betondruckgliedes nicht in die Rechnung ein-
geht. Das Verformungsverhalten des Stahlbetons wird nicht
richtig wiedergegeben. Der Anwendung des Hooke'schen Ge-—
setzes flir den Ausdruck fiir die Kriimmung bei der Ablei-
tung der Differentialgleichung steht bekanntlich entge~
gen:

die beschrinkte Zugfihigkeit des Betons

die nichtlineare Arbeitslinie des Betons

die elastoplastische Arbeitslinie des
Bewehrungsstahles

die Abh3ngigkeit der Krilimmung vom Bewehrungs-—
gehalt

Im folgenden Beitrag wird nun ein programmiertes
Verfahren gebracht, das unter Beriicksichtigung aller die-
ser Eigenarten von Stahlbetonquerschnitten den Nachweis
der Stabilitdt von beliebig gelagerten und belasteten
Stahlbetonstiitzen mit gleichzeitiger Ermittlung der er-
forderlichen Bewehrung ermdoglicht.

2. Das Rechenverfahren und die getroffenen Annahmen

2.1. Grundsgtzliches

Das nachstehend beschriebene Verfahren beruht auf
der numerischen Losung der Integraldarstellung der Gleich-
gewichtsbedingungen einer beliebig gelagerten und bela-
steten Stutze unter Verwendung einer wirklichkeitsnahen
Momenten~Kriimmungsbeziehung. Die Verformungen werden als
klein angenommen, die Schubverformung wird nicht beriick-
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sichtigt und es wird drillfreie Biegung in einer Ebene
vorausgesetzt. Die Steifigkeit der Stiutze kann beliebig

variieren (Abb, 1).
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Abb.1: Art der Lagerung, Art der
Belastung und Verteilung
des Bewehrungsstahles und
der Betontragheitsmomente

des Stabmodelles
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Abb.2: Schnittkriafte
und Koordina-
tionssysten

Es existieren die 2 Gleichgewichtsbedingungen (Abb.2):

N =S80 ag om -y re JTalg)= e (9). byo = y0§ )] ag]
M(x)= Mo+ B x v Mgy +oj(x-§). {,w(g).((g).[yo.j,(g)]}‘ugr

*ogfv(ﬁ)- [yt -y(§)] 4
und die allgemeine Momenten-Kriimmungsbeziehung:
y' o= £ (M(x),N(x)) = ¢ (x)

Die Randbedingungen lauten:
!
)‘=h ' Mll. = le . )’u,

x-O: Yeo
fo = ?5 - (. Yo
M°= Ms’cz.yo'

(1)

23

(3)

(4)

Uber die Uberfiihrung dieser Gleichungen in ein Differenzen-

schema mit weitgehender Integraldarstellung wird auf [7]

verwlesen.
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An Stelle der bekannten Beziehung
.
y ¢ - MJ/eL (5)

bei Materialien mit linearem Elastizitédtsgesetz tritt in
diesem Falle die Funktion

Y“é?: ‘g/d. * &[M,“) (6)
N\

N

M

J

Druckrand

ylm]

Ys

--—1-

- Zugrand
; +

AR

Abb.3: Schnittkridfte und Verteilung der Dehnung iiber
dem Querschnitt

Das hier beschriebene Verfahren erfordert die Aufteilung
der geometrischen Form in lauter Trapeze (Abb.4).
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Abb.4: Ortliche Koordinaten eines Teiltrapezes

Fir jedes Teiltrapez kann nun die Normalkraft und das

Moment um den Druckrand wie folgt berechnet werden:
4L

Q,

No= S 6, blddy My o - QS G- b(y) Y dy (7)
a R

worin
bly)= b+ ﬁ (y-ag) ist. (8)

Flir die Betonarbeitslinie wird nun der Ansatz so gemacht,
daB den CEB-Empfehlungen [4] entsprochen werden kann;

< T
g\ - GP'T«‘(Z“E) far  02%2 £ (9)

Bv = 9p fax €2 & . (10)

Bg. 6 VB

81
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Fire, = -2 o/oo,'e.2 = - 3,5 0/oo und 6p = 0,8 x Rechen-

wert fur die Betondruckfestigkeit folgt das Parabel-Recht-
eck-Diagramm; fir &, - f.- €, .. und 6p = Rechenwert fiir die

Betondruckfestigkeit folgt das Parabel-Diagramm.
In @dhnlicher Weise wird fiur den Bewehrungsstahl angesetzt:

Ne = Fe. B¢ " Me = - Fe. Gl ae 1)

mit e s o 2ly)t B e ly) vy, (12)

Durch geeignete Wahl von «§ und 4 148t sich abschnittsweise
eine ausreichend genaue Anpassung an Jjede Stahlarbeitslinie
finden. (4bb.5)

Gb[kyk‘m"] be ['Kp[cml]

- 6p I

B & _ol%) i & €el%s)

~+

Abb.5: Arbeitslinien von Beton und Stahl

Nach Summierung der Normalkrdfte und Momente iiber alle
Teiltrapeze und Stahleinlagen und nach Gleichsetzung dieser
Werte den ZuBeren Schnittkrdften werden 2 quadratische
Gleichungen mit den 2 Unbekannten y und ¢ erhalten. Elimi-
nation von € liefert eine Gleichung 4. Grades fir ¢ von
der Form:

log s P v g rhgr =0 (13)

Bei der Auswahl der mafligebenden Losung aus den vier
Ergebnissen wird wie folgt vorgegangen: bel gegebenem nega-
tiven Vorzeichen der Schnittkrdfte M und N muBl y positiv
sein (Abb.3). Die Losungskurven kénnen daher nur die in
Abb. 6 gezeigten Formen annehmen.

A

w($) ()

I ‘\ //’ \ ¢ 9)

Abb.6: Varianten der Nullstellen von y (3)
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Wenn nur die zu stabilen inneren Spannungszustidnden ge-
horigen Verdrehungen gesucht werden - wenn man daher in der
Kurve, wie eine solche in Abb. 7 typisch dargestellt wurde,

L M

M stabil ) Label
3 /—

I
l
l
l
|
|

e

I A
Abb.?7: Typische M-y-Kurve

nur den Bereich bis zum Maximum verfolgt -, ist die kleine-
re der beiden positiven LOsungen die gesuchte. Tritt einmal
die in Abb, 8 ersichtliche dritte Variante der Losung auf,
so bedeutet dies, daB kein Gleichgewicht zwischen den AuBe-
ren Schnittkraften und dem Integral der inneren Spannungen
mehr moglich ist. Das Verfahren wurde nun derart program-
miert, daBl die Bewehrungsflachen solange vergroRert werden,
bis ein Gleichgewicht im Querschnitt mdglich ist.

Das VergrdBern der Bewehrungsfldche wird mit einer
eingegebenen Schrittweite n in Prozenten des Anfangswertes
fir die Bewehrung vorgenommen, Allgemein gilt, daB die er-
forderliche Stahlbewehrung umso genauer ermittelt wird, je
kleiner die Schrittweite gewdhlt wird. Andererseits sinkt
mit der VergroBerung der Schrittweite natiirlich die Rechen-
zeit und man liegt auBerdem auf der sicheren Seite (AbbL.8).

e |

— — | T
I

h,. '@,mv'n
mfe,mﬁn
/ fer

fa

'Ft, min [

M

g

Abb.8: Zusammenhang Schrittweite -~ theoretisch erforder-
liche Bewehrung

3. EDV-Programm

Zur numerischen Durchrechnung einer Stahlbetonstiitze
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wurde ein Rechenprogramm in FORTRAN erstellt. Die Eingabe
wurde so gestaltet, daf hinsichtlich der Sicherheitsphilo-
sophie und hinsichtlich der Generierung von zusidtzlichen
Verformungen zufolge Kriechen, Fundamentschiefstellung und
ungewollter Exzentrizitdt der Normalkraft voll der DIN [5]
entsprochen werden kann.

In unfangreichen Vergleichsrechnungen wurden die Er-
gebnisse des Iterationsalgorithmus, der Bemessungsroutine
und der endgiltigen Verformungsberechnung mit in der Li-
teratur bekannten Ergebnissen auf Ubereinstimmung verglichen.

4, Stabilitidt von Stahlbetonrahmen

Das eben beschriebene Verfahren zur Untersuchung der
Stabilitdt von Stahlbetonstiitzen 1aBt sich erweitern zur
Untersuchung der Stabilitdt von eingeschossigen Rahmen. Die
Vorgangsweise beruht darauf, dafl fiir einen vorgegebenen

TLastzustand
P - ZY’@ P.‘, (14)

(Summe aller mit den Sicherheitsfaktoren vervielfachten
Lastfdllen) die Kopfverschiebungen der Rahmenstiitzen kom-
patibel gemacht werden. Die Einspannung der Rahmenstiitzen
in den Riegel wird durch eine linearelastische Drehfeder
simuliert. Aus der Vertrdglichkeitsbedingung fir die
Stitzenkopfverschiebungen ergeben sich Anderungsquerkrifte
am Stiitzenkopf gegeniiber der Berechnung nach der Theorie
1. Ordnung. Die Dehnungen, die diese Anderungskrifte im
Riegel hervorrufen, werden vernachlidssigt, was bedeutet,
daB der Rahmenriegel unter den Anderungskridften inkom-
pressibel ist.

Die gesante Kopfverschiebung ist:

I = Te1,1 t Te1,2 F Ia,0° (15)

ist die Horizontalverschiebung im betrachteten
Lastzustand nach der linear-elastischen Theorie
1. Ordnung:

_ d DP+Z
Ye1,17 = Jel,1 T Jel,1 (16)

4
Jel,1

Pz
Jel,1

Yel,1

i

Verformung aus Dauerlasten

Verformung aus Verkehrs~ und
Zusatzlasten

ist die Horizontalverformung zufolge Abweichung
der Stielachse von der lotrechten Wirkungslinie
der Normalkraft

Ye,0 T Iplyo T Ig,0 (17

Verformung zufolge ungewollter
Exzentrizitiat der Normalkraft
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]

st @ . = o
Yp1,0 plastische Verformung (= v,. yel,ﬂ)

it

Verformung zufolge Fertigungsfehler
der Stabachse

Jeol.2 ist die zusdtzliche Verschiebung zufclge Beriicksich-
tigung des Gleichgewichtes am verformten Element
und zufolge des nichtlinearen Werkstoffverhaltens

yf,o

Besteht die Verbindung zwischen den Stiitzen und dem

Rahmenriegel aus einem Gummilager, dann setzen sich die
' d p+z

Verformungen yel,ﬂ’ yel,ﬂ und yel,B aus den Verformungen

der Stitze und aus Jener des Gummilagers

L
yieeeT o 8- . (18)
(Q = Querkraft, F = Lagerfliche, G = Schubmodul, h = Lager-
hche) zusammen.

Es werden nun die Stltzenkopfquerkrifte der einzelnen
Stiele betrachtet, die durch die genaue Rechnung eine Ver-
teilungsénderung erfahren. Zur Verteilungsidnderung dieser
Krifte tragen Jene Verformungen nicht bei, die schon nach
der Berechnung nach der linear-elastischen Theorie 1. Ord-
nung vorhanden waren (H+&Jnﬁ +ﬁm% ). Die restlichen Ver-
formungen berechnen sich mit:

a it ]

¥ = [ (44 0) et 4 Yot Yeo * Yeoo * Yotz - (19)

Die Anderungskrifte werden mit H. bezeichnet, n sei die
Anzahl der Stitzen. Die Vertraglichkeltsbedlngung lautet
dann:

ii = konst; i=1,.e00 (20)
und das Gleichungssystem flir die Anderungskréfte:
4 (he)= 3 Ced M (1)
n .
he = O (22)

i=4

Dies sind n+1 Gleichungen fiir die n Unbekannten H. und jy.
Die Losungen konnen nicht analytisch gefunden werden. Er-
rechnet man fir mehrere Werte von H. die Verformungen y.
und_trédgt diese Kurven fur jede Stiifze in einem Diagram
(H-y) auf, dann kann gra thCh die lotrechte SchluBlinie
S0 gezogen werden,_dal 0 wird. Die zur SchluBllinie
gehorige Abszisse y ist dl% Losung und liefert die An-
derungskréafte H “
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Beispiel
Gegeben ist ein statisches System gem. Abb. 9:
1 2 3 4 5 3 F & 9 10
V.S 2
]“{ Ifi ];{
o L3
9 2 3 5 .
ke be 3% 76 SO . JPS | F. 81 b 12 *© La B
I 3 o & ot i
o - i
Abb.9: Statisches System -

und die Baustoffe B 450 Tragwerk
B 300 DIPfeiler
RT 50

mit dem Kriechbeiwert 4, = 1,8.
Fiir den Pfeilerquerschnitt (Abb.10)

Pfeiler 1-8: t
Pfeiler 9,10: ¢

25 cnm
35 cm

3
R
.20
it

{}

1
i
8

-l
¥

Abb.10: FPfeilerquerschnitt

wurde die Mindestbewehrung nach ONorm B 4200, 9. Teil vor-
gesehen (=1,4 o0/00). [6]

Gesucht ist der Nachweic der Tragsicherheit fiir folgende

5 Lastkombinationen:

I) Leere Briicke, voller Wind, kein Erdbeben zur Zeit
t = O mit dem Sicherheitsfaktorv= 1,7

I1) ZLeere Briicke, voller Wind, mit Erdbeben zur Zeit
t = 0 mit dem Sicherheitsfaktor v= 1,1

ITII) Volle Briicke, halber Wind, ohne Erdbeben zur Zeit
t =« mit dem Sicherheitsfaktor v = 1,7

IV) Stabilitdtsnachweis fiir zentrische Belastung des
Rahmensystems mit dem Sicherheitsfaktor ¥ = 2,5

V) wie Lastkombination I, sdmtliche Horizontalkrifte
wirken Jjedoch von der anderen Seite

Die Normal- und Querkriéfte am Stiitzenkopf (die Mo~
mente sind identisch Null wegen der Gelenke am Pfeilerkopf)
als Ergebnis der Rahmenrechnung nach der linearelastischen
Theorie 1. Ordnung sind bekannt. Es wurde jede Lastikombi-
nation mit mehreren Ansédtzen fir die Anderungskrifte H.
nit dem EDV-~Programm durchgerechnet., Die Kopfverschiebﬁn-
gen ¥ wurden tabellarisch zusammengestellt und graphisch
aufgetragen (Abb. 11 filir Lastkombination II). Die L&sun-
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gen wurden durch heuristisches Auffinden jener Kopfaus-
lenkung y ermittelt, fiir die die Summe der positiven En-

derungskrifte glelch der Summe der negativen Anderungs-
krafte ist.

H[Mv]

so T

-50 1

Abb.11: Pfeilercharakteristika Beispiel

Die Steigung der Kurven ist ein MaB flir die Steifigkeit der
Pfeiler. Aus den Abb. 11 sieht man deutlich, daB die Pfeiler

S und 6 die steifsten und die Pfeiler 7,9 und 10 die weich-
sten sind.
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Knickpunkte:

Sie konnen an 2 Stellen entstehen: dort, wo die Null-
linie beginnt, in den Querschnitt hineinzuwandern, und dort,
wo Gleichgewicht des Pfeilers nur mehr bei Vergridferung der
Bewehrungsfliche mdglich ist (z.B. Pfeiler 5 und 8).

Asymptoten:

Sie treten dort auf, wo eine endlich kleine VergroBe-
rung der Horizontal(lAnderungs)-Kraft eine unendlich groBe
Verschiebung verursacht (z.B. Pfeiler 9 und 10). Bei dieser
Art der Labilitdt hilft ein Vergrdlern der Bewehrungs-
fldache nicht mehr (im Gegensatz zu Pfeiler 8, der sich durch
VergrdBerung der Bewehrungsfliche noch retten 1dBt). Die
Grenze fir die Moglichkeit, einen Pfeiler durch VergrdBfern
der Bewehrungsfldche stabil zu machen, hingt einzig und
allein von seiner Schlankheit und die in die Schlankheit
eingehenden Materialkonstanten ab (Abb.12).

L1

Hgrons e ___Asynptete

0 /\

Abb.12: Verhalten einer Stahlbetonsiule unter seit-
licher Horizontallast und Druck:
H1<ZH : Bewehrungsfliche vergrdoBern bewirkt Stabilitdt

grenz
H2t>ngenz: Keine Stabilit&t mehr moglich

Zick-Zack-Charakteristik:

Bei Pfeilern, deren Bewehrungsfldchen sehr stark ver-
groBert werden bel den einzelnen Ansdtzen fir die Anderungs-
kraft, kann das Auftragen der Ergebnispunkte zu einer we-
nig sinnvollen Zickzackkurve fiihren, wenn der Faktor der
EisenfldichenvergroBerung groB gewdhlt wurde (z.B.q = 1,0).
In diesem Fall muBl dieser Pfeiler mit einem wesentlich
kleineren n (z.B. 0,2) wiederholt werden, um eine mdglichst
glatte Kurve zu bekommen. In Abb. 13 wurde dieses Phidnomen
prinzipiell dargestellt.
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5F

Abb. 1%: Abhidngigkeit der Charakteristik vom Faktor
fiir die Bewehrungsfldchenvergroflerung

Stabilitdtsuntersuchung LK IV:

Fir eine Stahlbetonstiitze gibt es prinzipiell 2 Ver-
haltensarten: den Verzweigungsfall bei zentrischem Druck
und den Traglastfall bei exzentrischem Druck.

Bei der Stabilitdtsuntersuchung nach diesem Verfahren
wird der Verzweigungsfall (der iiber die Ermittlung der
Eigenwerte zu ldsen wire) auf den Traglastfall iibergefiihrt
dadurch, daR eine seitliche Stdrlast (ca. P/100) an den
Rahmentragwerk angebracht wird. Stellt sich unter der Stor-
last ein Gleichgewicht ein, so hat der Lastzustand noch
nicht die kritische Last des Verzweigungszustandes erreicht.
Im allgemeinen geniigt wegen der Kleinheit der Verformungen
unter der Storlast 1 Versuch und lineare Extra- und Inter-
polation.

Als Ergebnis konnte bei diesem Beispiel festgestellt
werden, daBll das Rahmentragwerk unter allen untersuchten
Lastkombinationen stabil ist und daB mit der normenméfigen
Mindestbewehrung das Auslangen gefunden werden kann. Die
nach diesem Verfahren ermittelten Anderungskrifte am Stiit-
zenkopf sind von der gleichen GrdBenordnung wie die Kopf-
querkrafte aus der linear-elastischen Rechnung und haben
daher ausschlaggebende Bedeutung fir die Stabilitdt und Be-
messung des Rahmentragwerkes.
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ZUBS AMMENFASSUNG

Es wird ein Verfahren zur Untersuchung der Stabilitit von
Stahlbetonstiitzen und Stahlbetonrahmen beschrieben. Das Verfor-
mungsverhalten der Bauglieder wird von normgemissen Annashmen fur
die Arbeitslinien von Beton und Stahl abgeleitet. Bei Versagen
der Stutzen wird in einem Algorithmus untersucht, ob Vergrissern
der Stahleinlagen stabiles Tragverhalten ergibt. Rahmentragwerke
zeigen eine Uberraschend grosse Aenderung der Kopfquerkrafte ge-
geniber der Berechnung nach der linear-elastischen Theorie. Das
Ergebnis ist eine Mobilisierung von Tragreserven. Die Berechnungen
werden mit einem elektronischen Rechenprogramm durchgefiihrt.

SUMMARY

A method for the investigation of the stability of reinforced
columns and frames is described. The load deformation behaviour of
the structural members is derived from the standard assumptions
for the stress—-strain relations of steel and concrete. A special
algorithm investigates whether stable structural behaviour can be
reached by enlarging of the reinforcement if the columns fails.
Reinforced concrete frameworks show an astonishing change in the
shear forces at the top of the columns resulting in a mobilisation
of unused structural capacities. The calculations are carried out
with the aid of a computer program.

RESUME

On décrit un procédé pour l'étude de la stabilité des colonnes
et des cadres en béton armé. Le comportement charge - déformation
des éléments de construction est dérivé des hypothéses faites pour
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les diagrammes tension - déformation du béton et de 1l'acier. On
étudie un algorithme permettant, en cas de rupture des colonnes,
de déterminer si le renforcement de 1'armature conduit & un com-
portement stable. Les efforts tranchants au sommet des colonnes
des cadres présentent des différences d'une ampleur étonnante
par rapport & la théorie élastique lindaire, ce qui donne une
"mobilisation" des capacités de charge, normalment négligées.
Les calculs sont effectués & 1'aide d'un programme d4'ordinateur.
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