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IV

Ein baustatisches Verfahren zur Bestimmung der Traglasten ebener Druckbogen

A Practical Method for Determining the Load Capacity of Plane Arches under Compression

Un procédé pratique pour le calcul de la charge ultime des arcs plans comprimés

Helmut BOMHARD
Direktor der Dyckerhoff & Widmann AG

München, BRD

1. Einleitung
Das Traglastproblem des Druckbogens ist ein Durchschlagproblem
mit oder ohne Gleichgewichtsverzweigung. Der für die Traglast

tingünstige Durchschlagvorgang ist nur mit einer geometrisch
nichtlinearen Theorie faßbar. Doch genügt für die numerische Traglastrechnung

im Schlankheitsbereich, den die technischen Baubestimmungen
erlauben (z.B. [1][2] die geometrisch linearisierte Theorie.
Mit dieser bestimmte Traglasten sind dann nur mehr wenige

Prozent größer als die Durchschlaglasten, wie Vergleichsrechnungen
an 2-Gelenkbogen beweisen [3]. Bei Pfeilverhältnissen f/l 2:0,1
kann außerdem die Achsdehnung EQ unberücksichtigt bleiben.

Auf der Grundlage der geometrisch linearen Theorie wird ein
leistungsfähiges und anschauliches Rechenverfahren großer Genauigkeit

entwickelt, mit dem die Traglasten ebener Bogen ohne und mit
Gleichgewichtsverzweigung schnell von Hand gerechnet werden können,

und das mit den üblichen baustatischen Mitteln auskommt. Mit
dem Verfahren ist das geometrisch linearisierte Traglastproblem
sowohl näherungsweise als auch genau lösbar. Erfaßbar sind bei
beliebiger Bogenform und frei wählbaren es - £ -Beziehungen für Beton
und Stahl nicht nur vertikale und horizontale Lasten, sondern auch
Geometrieimperfektionen, Vor- und Eigendehnungszustände, eingeprägte

Verschiebungen sowie Kriechverformungen.
In [4] ist das Verfahren dazu benutzt, den Einfluß

unterschiedlicher Querschnittsformen (Rechteck und 2-Punktquerschnitt)
und unterschiedlicher cr-£ -Diagramme von Beton (Normalbeton und
Leichtbeton)zu studieren.
2. Voraussetzungen
a. Der Bogen ist eben und nur in seiner Ebene belastet. Ausweich¬

erscheinungen senkrecht zur Bogenebene werden ausgeschlossen.
b. Die Bogenquerschnitte sind unverformbar. Die Schwerpunkte ihrer

Betonflächen bilden die Bogenachse. Eine Hauptachse der
Querschnitte liegt in der Bogenebene, im übrigen sind sie beliebig
geformt.

c. Für die Querschnitte gilt die Bernoulli-Hypothese.
d. Die Anfangskrümmung ist so schwach, daß die Schnittgrößen-Ver¬

zerrungsbeziehungen des geraden Stabes gelten.
e. Die Lasten bleiben bei Verformung richtungstreu und ändern ih¬

re Größe nicht.
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3. Gleichgewicht
In den Gleichungen kennzeichnet

der Zirkumflex die Werte des
verformten Bogens.

Belastung (Bild 1)

qzds qz(l+£0) ds= qz ds= q2dx (1a)

qxds qx(l+£0) ds= qxds= qxdz (1b)

Tb1 ]/ iL J/ 1 ^2

Bei Eo 0 ist jede Belastung mit
einem einheitlichen^Lastparameter
beschreibbar, weil q q und
3x <lx-

BILD 1

GEOMETRIE UND BELASTUNG

Moment und Normalkraft im Querschnitt k (Bild 1)
x. r Zv

Mek=Mk + Vkuk+Hkvk+^MA
kf_ kf—

+ ^VAxk ~^HAzk + qzu dx - qxv dz (2a)
o J o J

Nek= Nk(1 - eok} + <Vkvk - Hkuk} COS(Pk - ^VA sin(Pk -^HA cos?k (2b)

Auf den rechten Gleichungsseiten ist der Zeiger e für "äußere
Schnittgröße" der Übersichtlichkeit wegen weggelassen.

(4

Es bedeuten: Vk ^A ~ Hk **A + J^xdz' ^ ^

^mA= *a - 4'^VA \ - VA'^HA - Ha " HA-

In (2) sind, im Sinne einer geometrisch linearen Theorie kleiner
Verschiebungen, alle Glieder vernachlässigt, die Produkte von
Verschiebungsgrößen enthalten (Abschnitt 10).

Die bezogenen Schnittgrößen m und n sind dimensionslos und
parametrisiert: M „ N / c \m OFT ' n Ol 5 }

c c c c
Der Einfachheit halber sind Ortszeiger k und Zirkumflex weggelassen.
4. Geometrie

Alle Geometriebeziehungen werden linearisiert. Damit gelten
die üblichen baustatischen Methoden wie Arbeitsgleichung, Mohrsche
Analogien usw.
5. Werkstoffgesetz

Beanspruchbarkeit (m,n) (Bild 2) und Verzerrungen (Stabkrümmung
Kh und Achsdehnung E0) (Bild 3) eines Querschnitts gegebener

Form und Bewehrung (^ pCy/f^,co'= p'dy/f^) werden festgelegt durch
-n/N

f'c pRI1]

0.05 0,10 0.15 m
BILD 2 n -m-DIAGRAMM MIT LEITDEHNUNGS-

ZUSTÄNDEN Ec1=K0NST. GERASTERT.
RASTERABSTAND ^Ec1 =0,25%o

0,05 0.10 0,15 m

BILD 3 n-m-DIAGRAMM MIT LINIEN GLEI¬
CHER KRÜMMUNG Kh (0.5/1.0...5,0)
U. ACHSDEHNUNG E0 (-0.5,-1,0.-2.0)
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die Spannungsdehnungslinien von Beton und Stahl sowie durch
Dehnungsdiagramme, die angeben, wie weit die er- £-Linien ausgenutzt
werden dürfen. Jedem Wertepaar m, n ist ein Wert Kh Kh (m,n)
und £q £Q (m,n) eindeutig zugeordnet (s. Bild 3).

Für das Rechenverfahren wird das Interaktionsdiagramm (Bild 2)
durch Interaktionslinien gerastert, die durch Variation der Größe
der Leitdehnung £c1 des gedrückten Querschnittsrandes erhalten
werden. Die Linien bilden nichts anderes als Interaktionsdiagramme
mit fiktiven Grenzdehnungen £ßu ec-| konst. Durch dieses
Rastern, das mit einem Rechner keine Mühe bereitet, gelingt es,
auch die Gleichgewichtszustände zu erfassen, bei denen der Bogen
instabil wird, ohne Grenzdehnungen zu erreichen (Linien mit
dn/dm 0 in Bild 8). Meist genügt ein grober Raster.

Das Werkstoffverhalten wird für Kurzzeitlast elastisch
vorausgesetzt. Die Traglast wird damit unabhängig von der Belastungsgeschichte.

6. Traglastberechnung mit einem angenommenen Krümmungsverlauf
Das Rechenverfahren ist innerhalb seiner Voraussetzungen auf

beliebige Bogenformen und Belastungen anwendbar (Abschnitt 7). Es
wird hier am Beispiel symmetrischer Bogen dargestellt^, deren Achse
bei £0 0 Stützlinie einer symmetrischen Gleichlast qzg ist, und
die entweder einer antimetrischen Gleichlast <3 pq„„ oder einer^za ' zs
symmetrischen Scheitellast Q ßqzsl als Störlasten ausgesetzt
sind (Bilder 4, 5, 6). Die Grundgedanken des Verfahrens kommen bei
diesem einfachen Bogenmodell besonders klar zum Ausdruck, da es
ohne großen formalen Aufwand behandelt werden kann. Der Rechengang
ist bei Bedarf ohne weiteres auf allgemeinere Fälle übertragbar,
wozu nicht mehr als die üblichen baustatischen Mittel benötigt werden

(s. [3] Wenn beispielsweise auch horizontale Störlasten qx
auftreten, müssen sie in die Rechnung einbezogen werden, da sie
die Traglast verkleinern.
6.1 Iterationsgleichung für den 3-Gelenkbogen

Die kritische Ausweichform des flachen Bogens (etwa f/l<0,3)
ist symmetrisch (Bild 4). Dementsprechend sind symmetrische
Störmomente Mjj zu betrachten, wie sie von der Scheitellast Q erzeugt
werden.

Aus einer symmetrischen Biegelinie (u^, v^) folgen symmetrische
Verformungsmomente ^Mjj. Glchg. (2a) läßt sich vereinfachen zu:

i, (6a)Mek A. q__Qzs W uk+ B
k,qzgQ '^Ha^zsQ

Die Momente werden damit etwas zu groß,
weil die vernachlässigten Glieder Anteile
liefern, die abzuziehen wären. z^V^ 0
aus Symmetriegründen. Bei der Normalkraft
verschwinden an der Stelle des Größtmo-
ments in sehr guter Näherung die
Differentialquotienten ufc und v£. (2b) läßt
sich demnach vereinfachen -

£ P-

1 ,1/ ,J/ iL, >1/ V~1
5zs

Nek Nk,qzsQ -HA,qzs

zu
COStp^. (6b)

Aus Meß 0 für das Scheitelgelenk k G

folgt u

HG,q„„Q * VG

^tîTffîmîw.

^UfHK

A.H
A^zsQ

1zs_

f (7

Uk

Vk

BILD 4

3-GELENKBOGEN (f/l=<Q3)
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Bei bekanntem Krümmungsverlauf K(x) können die Komponenten uk,des Verschiebungsvektors berechnet werden, beispielsweise mit
der Arbeitsgleichung:
uk 1( K(x) i 2 f-#- J cob9(x) - cuk (P (f) (Kh)E (8a)

vk
1 f K(x) -,

2

TT « * 0J coscp (x) Ni Wto - Cyk (J) (Kh)E (8b)

Dabei bedeuten:
Kg - Me/(EI)e Stabkrümmung an der Stelle k E

als Krümmungsparameter
Mw-i » Momente aus den virtuellen Einheits¬

lasten H 1 und V 1 an der Stelle k
C„ir> C Verschiebungskonstanten für die Stelle

k, abhängig von f(x) Glchg. (9)
Tatsächlich ist der Krümmungsverlauf unbekannt, er wird deshalb
möglichst zutreffend angenommen:

K (x) Kg f(x) (9
Die Ansatzfunktion f(x) (Abschnitt 6.4) muß bei symmetrischer
Ausweichform ebenfalls symmetrisch sein.

Mit dem angenommenen Krümmungsverlauf (9) kann das Gleichgewicht
zwischen äußeren (e) und inneren (r) Schnittgrößen nur an

einer Stelle k genau erfüllt werden. Dafür wird die Stelle k E
des Größtmoments gewählt: ^ ^max MeE MrE' ^eE NrE
An allen übrigen Stellen wird das Gleichgewicht Fehler aufweisen,
deren Größe davon abhängt, wie gut der angenommene Krümmungsverlauf
mit dem tatsächlichen übereinstimmt. Die Stelle E könnte iteriert
werden, es genügt jedoch E ^
zu setzen. Damit werden aus (6) (7) (8) im l/4-Punkt:

2

SeE * - 2ff-{2l,+4(1+2(,)<E>[2l0uEl<f>+<lCvEl+! <12a>

N « - V 1+2 n

eE § cos<pE
[1+IcVGIcos2cPE (T> (E> ^E] (12b)

Das Zusammenfassen von (12a) und (12b) ergibt nach einigem
Rechnen eine parametrisierte Iterationsgleichung für das Wertetri-
pel (n,m,Kh), wobei der Ortszeiger E nicht mehr_angeschrieben ist,
soweit keine Verwechslungsgefahr besteht (Kh Kh):

l„i- ilsL Air") i+|cvG|c°s2'P(M>lKhl <2£>
' ' c°*f T T# <é> [2 I2UEI <t>+< IcVEHI°VGI
Das Zählerglied mit Cvq ist vor allem bei flachen Bogen nicht mehr
<< 1 und deshalb nicht vernachlässigbar.

Die kritische Last schließlich folgt aus:
^zs.cr _ q 1 lncrl
b c

T T 1+|CvG|cos2<p(|)(J) |Kh| (1+2p)
Dabei ist b Ac/h unabhängig von der Querschnittsform die Breite
eines flächengleichen Rechteckquerschnitts der Höhe h.
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Der steile 3-Gelenkbogen versagt wie der 2-Gelenkbogen, es
gelten die für diesen entwickelten Gleichungen.
6.2 Iterationsgleichung für den 2-Gelenkbogen

i * ^ t * * i j» M> * I ^20

^za= P9zs

Jliiiiiik »•

Die kritische Ausweichform ist
antimetrisch (Bild 5). Zu betrachten sind
demnach antimetrische Störmomente M^. Bei
der antimetrischen Biegelinie (uk,Vk)
entstehen zusätzlich Verformungsmomente

die aus qzs antimetrisch, aus §za
symmetrisch verlaufen. Für das Tragvermögen

entscheidend sind allein die
antimetrischen Verformungsmomente, die sehr
viel kleineren symmetrischen sind
vernachlässigbar. Diese erreichen erst bei
pxa * 0 und größerem f/1 merkliche Größe.
Bleibt außerdem der ebenfalls sehr kleine
antimetrische Anteil ^aV^x^ + xkf

n J ^ZSU

BILD 5
2-GELENKBOGEN UND
3-GELENKBOGEN (f/l= > 0.3)

unberücksichtigt,so werden Momente Mek
erhalten, die etwas zu groß sind. Sie
folgen aus (2a)s

Mek~Mk,qza + Vk,qzs Uk + Hk,q
zs

Mit den beim 3-Gelenkbogen beschriebenen Vereinfachungen wird
aus (2b): m ~ m -sin<pk,Nek-N,k,q q A,q q'^zs^za £^zs^za

wobei ^'Szs^za " "qzs
u
T dx ist.

(15a)

(15b)

(16
o"

Die Ansatzfunktion f(x) in (9) für die Stabkrümmung muß bei
antimetrischer Ausweichform antimetrisch sein (Abschnitt 6.4). Sie
genügt dann auch der Randbedingung ï 1 mit 0.

Für die Stelle k E l/4 des Größtmoments werden mit (8)
~ 12 r

"eE~ " [2 lCuE KtHCveI (®0e } (17a)

KeEÄ~ ÔcosyE (r)[l+^Tsin 2f E (K> (T> (Khk] (l7b)
In NgE ist eingesetzt, mit J als Kürzel für das Integral:

^VA - 5zs <E> <T> J cuta-
Die Iterationsgleichung wird nach einigem Rechnen ähnlich wie

beim 3-Gelenkbogen erhalten: 2

ml 1+4^ sin 2f (J)(f) |Kh|

T 7^7n
4|ml

COS I

(18
L2|0j(f) + |Cv| <$)] |Kh|

Der Ortszeiger E ist nicht mehr angeschrieben. Das Zählerglied mit
J ist stets << 1 und kann vernachlässigt werden. Dies bedeutet
aVa 0 in (15b) und 17b). (Lösungen enthält Bild 8.) Die kritische
Last wird mit dieser Vereinfachung

^£ 8cos?(J) (|) lo er
19
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6.3 Die Iterationsgleichungen für den gelenklosen Bogen
Wie beim 2-Gelenkbogen ist die Ausweichform antimetrisch

(Bild 6). Die Momente und Normalkräfte lassen sich deshalb in
gleicher Weise vereinfachen. Aus (2a) wird für die Momente:
Mek

M° + M. _
'qza ,qza

(1 -2t) + Vv h+ vk,q ' uk + %< (20a)
*zs 7 ^zs

(Der zu^M^ gehörende z\V^-Anteil ist nicht vernachlässigbar, weil
beide zusammen das Glied z^MA + z^VA xk=/2vMA^~^T^ bilden) •

Die Normalkraft folgt aus (2b): A

N

2MA öA> za sin <pkek k,qzsqza ~~T
Dabei sind M°, N°, V° und H° Werte des 2-Gelenkbogens, der als
Hauptsystem benutzt wird, wobei V V° und H s H°,weil M. - soA'qzs
nmi

(20b)

j, j, j,i q_ Die Ansatzfunktion für die Krümmimg muß

a
a antimetrisch und durch wenigstens zwei Parais********* *' qzs meter festgelegt sein (s. Bild 7):

3za=Mzs K(x) - K^x) + KEf(ÎCA/KE) f2(x) (21
Sie erfüllt die Randbedingung 1 1. KA ist
die Krümmung an der Einspannstelle k A,Kg
an der Stelle k E des Größtmoments im
Feld. Beiden K^ und Kg, sind durch die Rand-
bedingung "volle Einspannimg" miteinander

vw verknüpft: i/2
BILD 6
GELENKLOSER BOGEN

0
J COS(p(x) MM1(x) dx 0 (22a)

%1 =1(1 - 2j) ist das virtuelle Moment.
Die Integration liefert (Kh)g -c(Kh)..(22b)
fi TT"! A! 1 A HITA«wavi4> "

Mit den Krümmungsparametern K^ und Kg kann das Gleichgewicht
an den beiden BogenstellenA und E genau erfüllt werden.
Dementsprechend wird ein System von zwei gekoppelten Iterationsgleichungen

erhalten. Auch hier wird E 1/4 gesetzt.
Aus (20) folgen mit (8) die Schnittgrößen:

K,M
eA -A <EI>A

NeA
§zs 1

M
eE

ücösfT
2

^s1
~3T

NeE
qzs 1

j) £1 - P j) sin 2<pA j
2 M,

(J)+^
VE

j— sin<pA

(ï)](nOB]

(23a)

(23b)

+
Ma

+ T
sincpE

(24a)

(24b)8cos<pg

Die Verknüpfung von (23) und (24) ergibt nach einiger Rechnung

zusammen mit (22b) das System der Iterationsgleichungen:
i o l >« 2lm-| + Im.l '

c°s<pE n i- h i r -f i v
nEI+ 2lmA| sin(PEj [1 - sin 2PAJ ~ 2 |mAl (l)sin(pA

iA|(T)sinpE
(25b)

lnAl" COS<pA

Die kritische Last wird:
"bS/'Cr 8 C0S<PE(f>(T) [lnE| * 2 Kl (T) sin<PE] er (26)
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Aus (23) und (24) ergeben sich in den Iterationsgleichungen
die unteren Vorzeichen. Sie entsprechen der Untersuchung der linken

Bogenhälfte (s. Bild 6), oder anders gesagt, der Kombination
der Momente mit den kleinsten Bogendruckkräften. Die oberen
Vorzeichen gehören zur Untersuchung der rechten Bogenhälfte in der
die Momente zusammen mit den größten Druckkräften auftreten.
Maßgebend ist die Bogenhälfte, die das kleinste qzs>Cr liefert.
6.4 Ansatzfunktionen f(x) für die Stabkrümmung —g

Bei 3-Gelenk- und 2-Gelenkbogen liefert
eine quadratische Ansatzfunktion (Bild 7)
f(x) 8 f (1 - 2 j) mit (x s 1/2) (27) Q

meist sehr genaue Traglasten, die fast
ausnahmslos etwas kleiner als die exakten Werte
sind.

Bei gelenklosen Bogen gibt es dagegen b

keine einigermaßen einheitliche Ansatzfunktion,
die den gesamten ß- und f/l-Bereich

erfassen würde. Sieht man aber von sehr
kleinen Störungen - die meist nicht mehr im c

baupraktischen Bereich liegen - bei Bogen
mit sehr kleinem f/l ab, so sind BlLD 7

f fx) 1 - 2$ f (x) 8Î (1 - 2£) ANSATZFUNKTIONEN fix)I^x; - 1 ^ I2W -"I11 (28)a: 3-GELENKBOGEN
,?r ,?r \ IS I X« I x... / WM b: 2-GELENKBOGEN

~ + [ AI / I Ei fÜr (x-1/2) c: GELENKLOSER BOGEN

brauchbare Ansätze (Bild 7).
Stetig gekrümmte Ansatzfunktionen wie (27) (28) vermögen die

Stabkrümmung nur so lange zutreffend zu beschreiben, als Fließzonen
fehlen, die auftreten, wenn die Stahldehnung auf der Zugseite

die Streckgrenze überschreitet. Bei 3-Gelenk- und 2-Gelenkbogen
sind solche Zonen nicht bedeutsam, weil deren Tragvermögen mit dem
Erreichen der Streckgrenze der Zugbewehrung praktisch erschöpft
ist. Bei gelenklosen Bogen aber, kann, besonders wenn sie gedrungen

sind, die Last vielfach noch beträchtlich gesteigert werden,
wenn an der Einspannstelle die Streckgrenzendehnung überschritten
wird. Es breiten sich Fließzonen aus, im Grenzfall fließt die
Zugbewehrung auch in den Viertelpunktbereichen. Mit den Ansätzen (28)
lassen sich diese Tragreserven nicht erfassen. Das gelingt erst,
wenn der Krümmungsverlauf iterativ verbessert und so den auftretenden

Fließzonen angepaßt wird (Abschnitt 7).
6.5 Lösen der Iterationsgleichungen

Die Gleichungen werden für die einzelnen Leitdehnungszustände
e c1 konst. gelöst, mit denen das n-m-Diagramm gerastert ist.
Auf jeder Rasterlinie gibt es nur ein zusammengehöriges Wertetri-
pel (n,m,Kh), das die Iterationsgleichung erfüllt. Dieses Tripel
stellt einen Gleichgewichtszustand dar, der stabil, indifferent
oder labil sein kann (s. Bild 8). Das Maximum der Verbindungslinie
aller Gleichgewichtszustände ist die kritische Normalkraft n
aus der die Traglast q__ __ berechnet werden kann.zs f cr

Der Iterationsvorgang beim 3-Gelenk- und 2-Gelenkbogen bedarf
keiner weiteren Erläuterung. Beim gelenklosen Bogen sind folgende
Iterationsschritte nötig:

1. Leitdehnungszustand für Querschnitt A wählen
2. n^ schätzen, der Leitdehnungszustand liefert m^, (Kh).
3. ng aus (25b) rechnen, (Kh)jj; aus (22b)
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4. nE lind (Kh)E zusammen ergeben mE
5. nE aus (25a) rechnen mit mE, m^ und (Kh)E
6. nE-Identität prüfen

Iteration wiederholen bis die Identität erreicht ist.
Verzweigungslasten müssen mit sehr kleinem (Kh) berechnet werden,

weil sie für infinitesimal kleine Verschiebungen definiert
sind. Mit größerem (Kh) ist ein Lastabfall verbunden (s.Bild 8).

BILD 8 LOSUNGEN DER ITERATIONSGLEICHUNG FUR DEN 2-GELENKB0GEN MIT KONST
-QUERSCHNITT UND w=J=(U9A FUR DIE STORPARAMETER 0=0/0.01/0.10/0,50.

d-C-DIAGRAMME BETON U STAHL [1] BILD 13. U. 15

7. Traglastberechnung mit iterativ verbessertem Krümmungsverlauf
Durch iteratives Verbessern des Krümmungsverlaufs kann das

Traglastproblem exakt gelöst werden. Nachdem (Kh)jj;>crund ncr nach
Abschnitt 6 bestimmt sind, ist eine Iteration mit folgenden
Schritten nötig:

1. Biegelinien u und v rechnen^ ^2. mit den Biegelinienwerten M - und N -Verlauf rechnen.
© ©
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3. aus Me Mr und N0 Nr verbesserten K-Verlauf bestimmen
4. Einhalten der Randbedingungen prüfen. Wenn nötig Me-, Ne-

und K-Verlauf durch stat. unbest. Rechnung berichtigen.
5. Iterationsgleichung an den verbesserten und mit den

Randbedingungen verträglichen K-Verlauf anpassen (C-Werte und ggf.
verbesserte Stelle E) und lösen.

Iteration mit den verbesserten ncr~ und (Kh)E<nr-Werten wiederholen,
bis die Ergebnisse zweier Durchgänge ausreichend übereinstimmen.
Die Konvergenz ist gut, meist reichen ein bis zwei Durchgänge aus.

Normalerweise genügen auch^für diese Rechnung die Näherungsausdrücke

des Abschnitts 6 für und Es wäre nicht schwierig,

nur mühsam, die genauen Gleichungen (2) zu benutzen. Ebenso
könnte die Achsdehnung £Q in die Iteration einbezogen werden, was
vor allem bei 3-Gelenkbogen mit f/l<0,1 nötig sein kann.

Das Verfahren der iterativen Verbesserung soll nicht die Regel

sein. Es ist vielmehr besonders zum Nachprüfen der Güte der
K-Ansatzfunktion gedacht, wenn Querschnitt und Bewehrung veränderlich

sind. Dazu genügt schon ein Iterationsdurchgang.
8. Traglastberechnung mit Grenzdehnungszuständen

Das ist die einfachste Art der Traglastrechnung. Sie arbeitet
mit einem angenommenen Krümmungsverlauf (Abschnitt 6), verzichtet
aber auf die Rasterung des n-m-Diagramms durch Leitdehnungszustände

(Abschnitt 5) und löst die Iterationsgleichung nur für die
Begrenzungslinie des Diagramms, also für Grenzdehnungszustände.
Damit ist zwar die Bruchlast erfaßbar, nicht aber die vielfach
beträchtlich höhere Traglast bei Stabilitätsversagen, das durch
dn/dm 0 gekennzeichnet ist (s. Bild 8).
9. Verallgemeinern der Ergebnisse

3 ; 3 ' \l/ 1/ I» X 1 9z ^ ^ ^ CDie für einen bestimmten
Bogen gewonnenen Ergebnisse gelten
für alle Bogen gleichen statischen
Systems mit gleichen Geometrie-,
Bewehrungs-, Werkstoff- und Last-
Parametern (Bild 9). Beispielswei- hA

se sind die Verschiebungen (8) u/h
und v/h parametrisierte Verschie- g)LD 9 farametrisierter BOGEN FÜR
bungswerte und die krit. Lasten konstantes a*. und h
(14) (19) (26) q/bf£ parametri- hA HA/Acfc vA VA/Ac f'c
sierte Lasten. Parametrisiert sind
sie für konst. Querschnitt. Bei
veränderlicher Querschnittshöhe und -fläche wäre grundsätzlich h
durch ho zu ersetzen, wenn hQ als Höhenparameter eingeführt wird,
und außerdem in (8) (Kh)E durch (Kh)E hQ/hE und in (14) (19) b
durch bE h.E/h0, um einige Beispiele zu nennen.
10. Berücksichtigen des Einflusses nichtlinearer Geometrieglieder

Der Einfluß der nichtlinearen Geometrieglieder läßt sich
durch Korrekturen ^>u, ^v der Biegelinien u,v nach dem Gesetz
^.u' -^v'z' + (^ v'2 + EqV'z*) (1 + z'2) 0 (29)
abschätzen. Der Vergleich mit der linearisierten Verschiebungsbeziehung:

u, _ v,z, _ £q (1+Z,2j 0

zeigt, daß (1/2 v'2 + £0v'z') als fiktive Achsdehnung gedeutet
werden kann. Die Biegelinienkorrekturen z^u, z^v sind demnach in
1. Näherung nichts anderes als die horizontale bzw. vertikale
Biegelinie aus einer fiktiven Dehnung
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Auch sie sind demnach mit baustatischen Mitteln berechenbar.
Der Einfluß ist nur für den Grerizfall äußerst schlanker

Bogen bedeutsam. Die Rechnung vermag lediglich das Einleiten des
Durchschlags zu erfassen.

In Glchg.(2) sind die Glieder vernachlässigt, die Produkte
von Verschiebungsgrößen enthalten, bei Mgk: zxVAuk und
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ZUSAMMENFASSUNG

Für ebene Druckbogen wird ein leistungsfähiges Handrechenverfahren

beschrieben, das im gesamten Ausmittenbereich mit
geringem Arbeitsaufwand sehr genaue Traglasten liefert. Das
Verfahren arbeitet auf deterministischer Basis und kann mit
unterschiedlichen Genauigkeitsansprüchen betrieben werden.
Es führt bei iterativ verbesserter Stabkrümmung zur genauen
Lösung des geometrisch linearisierten Traglastproblems. Das
Problem wird so parametrisiert, dass die Ergebnisse bei gleichen
Parametern allgemein gelten.
SUMMARY

An efficient manual computation method for plane compression
arches is presented by which very accurate load carrying
capacities can be evaluated for the whole eccentricity range with
a comparatively small effort. The method works on a deterministic
basis and can be applied to varying demands of accuracy. By
iteratively improving the bar-curvature, it eventually leads
to the accurate solution of the geometrically linearized problem.
The problem is parametrizised thus that the results are generally
applicable.
RESUME

Pour les arcs comprimés plans, on décrit un procédé pratique
de calcul à la main, qui fournit en peu de temps les charges
ultimes très précises dans toute la zone d'excentricité. Le
procédé fonctionne sur une base déterministe et peut être appliqué

avec n'importe quel degré de précision. En améliorant itéra-
tivement la courbure des barres, il peut conduire à la solution
exacte du problème de charge ultime géométriquement linéarisé.
Le problème repose sur des paramètres tels que les résultats
sont toujours valables quand les paramètres sont égaux.
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