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Ein baustatisches Verfahren zur Bestimmung der Traglasten ebener Druckbogen
A Practical Method for Determining the Load Capacity of Plane Arches under Compression

Un procédé pratique pour le calcul de la charge ultime des arcs plans comprimés

Helmut BOMHARD
Direktor der Dyckerhoff & Widmann AG
Miinchen, BRD

1. Einleitung

Das Traglastproblem des Druckbogens ist ein Durchschlagpro-
blem mit oder ohne Gleichgewichtsverzweigung. Der fiir die Traglast
unglinstige Durchschlagvorgang ist nur mit einer geometrisch nicht-
linearen Theorie fafBbar. Doch geniigt fiir die numerische Traglast-
rechnung im Schlankheitsbereich, den die technischen Baubestimmun-
gen erlauben (z.B. [1] [2] ), die geometrisch linearisierte Theo-
rie. Mit dieser bestimmte Traglasten sind dann nur mehr wenige
Prozent grofiler als die Durchschlaglasten, wie Vergleichsrechnungen
an 2-Gelenkbogen beweisen [3]. Bei Pfeilverh#dltnissen £/12 0,1
kann auBerdem die Achsdehnung €s unberiicksichtigt bleiben.

Auf der Grundlage der geometrisch linearen Theorie wird ein
leistungsfdhiges und anschauliches Rechenverfahren grofier Genauig-
keit entwickelt, mit dem die Traglasten ebener Bogen ohne und mit
Gleichgewichtsverzweigung schnell von Hand gerechnet werden kon-
nen, und das mit den iiblichen baustatischen Mitteln auskommt. Mit
dem Verfahren ist das geometrisch linearisierte Traglastproblem
sowohl n&Zherungsweise als auch genau ldsbar. ErfaBbar sind bei be-
liebiger Bogenform und frei widhlbaren ¢ - £ -Beziehungen fiir Beton
und Stahl nicht nur vertikale und horizontale Lasten, sondern auch
Geometrieimperfektionen, Vor- und Eigendehnungszusténde, einge-
prégte Verschiebungen sowie Kriechverformungen.

In {4] ist das Verfahren dazu benutzt, den EinfluB unter-
schiedlicher Querschnittsformen (Rechteck und 2-Punktquerschnitt)
und unterschiedlicher o -¢t -Diagramme von Beton (Normalbeton und
Leichtbeton)zu studieren.

2. Voraussetzungen

a. Der Bogen ist eben und nur in seiner Ebene belastet. Ausweich-
erscheinungen senkrecht zur Bogenebene werden ausgeschlossen.

b. Die Bogenquerschnitte sind unverformbar. Die Schwerpunkte ihrer
Betonflédchen bilden die Bogenachse. Eine Hauptachse der Quer-
schnitte liegt in der Bogenebene, im iibrigen sind sie beliebig
geformt.

c. FUir die Querschnitte gilt die Bernoulli-Hypothese. ,

d. Die Anfangskriimmung ist so schwach, daB die SchnittgréBen-Ver-
zerrungsbeziehungen des geraden Stabes gelten.

e. Die Lasten bleiben bei Verformung richtungstreu und &ndern ih-
re GréBe nicht.
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3. Gleichgewicht

In den Gleichungen kennzeich-
net der Zirkumflex die Werte des
verformten Bogens.

Belastung (Bild 1)
ﬁsz qzﬁ+£ )ds= q,ds=7,dx (1a)
~ ~ F'“
qu-qx(1+€°)ds q, ds=q,dz (1b) Ha
Bei €0 = 0 ist jede Belastung mit BILD 1

einem einheitlichen Lastparameter grometgi
beschreibbar, weil q, = g, un E UND BELASTUNG

dy = qy-
Moment und Normalkraft im Querschnitt k (Bild 1)

VAT l

N

=

X z
k[_ Kl
ok = My + Viuy + Hyvy +aM, +aV, %, ~aH,z), + quzu dx - oIqxv dz (2a)

1

Nop = N (1= €50 + (Vv - Houl) cosg, - aV, sing, -aH, cosp, (2b)

Auf den rechten Gleichungsseiten ist der Zeiger e flir "#uBere
SchnittgrsBe" der Ubersichtlichkeit wegen weggelassen.

Xk [~ Zx
Es bedeuten: Ve =V, - ()Jﬁzdx, H =H, + . 4,dz, und (3)
In (2) sind, im Sinne einer geometrisch linearen Theorie kleiner

Verschlebungen, alle Glieder vernachldssigt, die Produkte von Ver-
schiebungsgroBen enthalten (Abschnitt 10).

Die bezogenen Schnittgrofen m und n sind dimensionslos und

parametrisiert: i, = M , n= N (5)
Kcﬁzc Kczc

Der Einfachheit halber sind Ortszeiger k und Zirkumflex weggelassen.

L. Geometrie

Alle Geometriebeziehungen werden linearisiert. Damit gelten
die iUiblichen baustatischen Methoden wie Arbeitsgleichung, Mohrsche
Anzlogien usw.

5. Werkstoffgesetz

Beanspruchbarkeit (m,n) (Bild 2) und Verzerrungen (Stabkriim-
mung Kh und Achsdehnung €,) (Bild 3) eines Querschnitts gegebener
Form und Bewehrung (w= Py /f af_ p'c /f ) werden festgelegt durch

-NA N

Ac=b- h DIO”"F
: A i
= = - S p 01hjl 10

sPc_),

10+

— 005 040 055 m — 006 010 015 m

BILD 2 n-m-~DIAGRAMM MIT LEITDEHNUNGS-  BILD 3 n-m-DIAGRAMM MIT LINIEN GLEI-
ZUSTANDEN E.1=KONST. GERASTERT. CHER KRUMMUNG Kh (05/10...5,0)

RASTERABSTAND A€ 4 =0,25% U. ACHSDEHNUNG €g 05,-10..-2.0)



Helmut BOMHARD 325

die Spannungsdehnungslinien von Beton und Stahl sowie durch Deh-
nungsdiagramme, die angeben, wie weit die o~ £€-Linien ausgenutzt
werden diirfen. Jedem Wertepaar m, n ist ein Wert Kh = Kh (m,n)
und € = Eo(m,n) eindeutig zugeordnet (s. Bild 3).

Fiir das Rechenverfahren wird das Interaktionsdiagramm (Bild 2)
durch Interaktionslinien gerastert, die durch Variation der GroéBe
der Leitdehnung €.4 des gedrilickten Querschnittsrandes erhalten
werden, Die Linien bilden nichts anderes als Interaktionsdiagramme
mit fiktiven Grenzdehnungen Ecu Fikt = €c1 = konst. Durch dieses

Rastern, das mit einem Rechner keine Milhe bereitet, gelingt es,
auch die Gleichgewichtszustidnde zu erfassen, bei denen der Bogen
instabil wird, ohne Grenzdehnungen zu erreichen (Linien mit
dn/dm = 0 in Bild 8). Meist geniligt ein grober Raster.

Das Werkstoffverhalten wird flir Kurzzeitlast elastisch vor-
ausgesetzt. Die Traglast wird damit unabhingig von der Belastungs-
geschichte.

6. Traglastberechnung mit einem angenommenen Krimmungsverlauf

Das Rechenverfahren ist innerhalb seiner Voraussetzungen auf
beliebige Bogenformen und Belastungen anwendbar (Abschnitt 7). Es
wird hier am Beispiel symmetrischer Bogen dargestellt, deren Achse
bei Eo = 0 Stlitzlinie einer symmetrischen Gleichlast ﬁzs ist, und

die entweder einer antimetrischen Gleichlast qza = pazs oder einer
symmetrischen Scheitellast Q = pqzsl als Storlasten ausgesetzt

sind (Bilder 4, 5, 6). Die Grundgedanken des Verfahrens kommen bei
diesem einfachen Bogenmodell besonders klar zum Ausdruck, da es
ohne groBen formalen Aufwand behandelt werden kann. Der Rechengang
ist bei Bedarf ohne weiteres auf allgemeinere Fidlle iibertragbar,
wozu nicht mehr als die iiblichen baustatischen Mittel bendtigt wer-
den (s. [3] ). Wenn beispielsweise auch horizontale Stérlasten Gy
auftreten, mlissen sie in die Rechnung einbezogen werden, da sie
die Traglast verkleinern.

6.1 Iterationsgleichung fiir den 3-Gelenkbogen

Die kritische Ausweichform des flachen Bogens (etwa £/1<0,3)
ist symmetrisch (Bild 4). Dementsprechend sind symmetrische Stor-
momente My zu betrachten, wie sie von der Scheitellast Q erzeugt
werden.

Aus einer symmetrischen Biegelinie (uy, vi) folgen symmetrische
Verformungsmomente aMy. Glchg. (2a) 1&Bt sich vereinfachen zu:

A’qsz Q= e
: . = P-19zs
Die Momente werden damit etwas zu gro8, e s m B
weil die vernachléssigten Glieder Anteile ES

liefern, die abzuziehen wéren. aVp = 0 5
aus Symmetriegriinden. Bei der Normalkraft E
verschwinden an der Stelle des GréBtmo-

ments in sehr guter NdZherung die Diffe-

rentialquotienten uj und vi. (2b) 158t
sich demnach vereinfachen " zu

Nex *Ni,5, 0 ~*Ha,q, 0 " °°%%: (6b)
Aus Mg = O fir das Scheitelgelenk k = G
folgt H v
G,3,.,0 'G
AH;ﬁt.,qzst;l = T (7) g

3-GELENKBOGEN (f/1=<0Q3)
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Bei bekanntem Krimmungsverlauf K(x) koénnen die Komponenten Uy
v,. des Verschiebungsvektors berechnet werden, beispielsweise mit

der Arbeitsgleichung:

v, Lo K@) 1,2 £ 7
® = ) seserm Mm(X¥)ax = - Oy () (7)) (Kh)g (82)
v, T K 1,2 .
" = o) cosp (x Myq(x)dx = ~ Cop () (Kh)g (8b)

Dabei bedeuten:

EE = - ﬁﬁ/(ﬁi)E Stabkriimmung an der Stelle k = E
als Krimmungsparameter

MH1’ Mv1 Momente aus den virtuellen Einheits-
lasten H =1 und V = 1 an der Stelle k
Cuk’ Cvk Verschiebungskonstanten fiir die Stelle

k, abhidngig von f(x) Glchg. (9)
Tatsdchlich ist der Krimmungsverlauf unbekannt, er wird deshalb
méglichst zutreffend angenommen:

K (x) = Kg £(x) (9)

Die Ansatzfunktion f(x) (Abschnitt 6.4) muB bei symmetrischer
Ausweichform ebenfalls symmetrisch sein.

Mit dem angenommenen Kriimmungsverlauf (9) kann das Gleichge-
wicht zwischen ZuBeren (e) und inneren (r) SchnittgréBen nur an
einer Stelle k genau erfiillt werden., Dafiir wird die Stelle k = E
des GroB8tmoments gewdhlt: _ -

max Myp = M.py Nogp = Nop (10)
An allen iibrigen Stellen wird das Gleichgewicht Fehler aufweisen,
deren GroBe davon abhidngt, wie gut der angenommene Kriimmungsverlauf

mit dem tatsidchlichen iibereinstimmt. Die Stelle E kénnte iteriert
werden, es geniigt jedoch

E=1/4 (11)
zu setzen. Damit werden aus (6) (7) (8) im 1/4-Punkt:
= bl
N 1 .
Mg = - 35— { 2prrv2n) (2] cyg| e (g +2 [oyah@lEn)g | (12
N q,.1 .
N g ~- & %:’%‘%E () [14]C gl cos ey ) () (Rn)g] (12b)

Das Zusammenfassen von (12a) und (12b) ergibt nach einigem
Rechnen eine parametrisierte Iterationsgleichung fiir das Wertetri-
pel (n,m,Kh), wobei der Ortszeiger E nicht mehr _angeschrieben ist,
soweit keine Verwechslungsgefahr besteht (Kh = Kh):

nf= 42l 1+ || cos®p (3) (5) | K| (4%)
cosp ‘T/'T ’ngz% [1+2.g1_ﬁ).?§2 (‘}1) [ZICuEI (§)+( lch]% [chl)(%)]lKh”

Das Zihlerglied mit Cyg ist vor allem bei flachen Bogen nicht mehr
<< 1 und deshalb nicht vernachléssigbar.

Die kritische Last schlieBlich folgt aus:

st'cr =8 cos¢)({)(%) 1 !ncrl

14
c 1+ [Cyc|cos e () (§) [Kn|  (142p) )

Dabei ist b = Ac/h unabhingig von der Querschnittsform die Breite
eines fldchengleichen Rechteckquerschnitts der Hohe h.
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Der steile 3-Gelenkbogen versagt wie der 2-Gelenkbogen, es
gelten die flir diesen entwickelten Gleichungen.

6.2 Iterationsgleichung fiir den 2-Gelenkbogen

Die kritische Ausweichform ist anti-
metrisch (Bild 5). Zu betrachten sind

e ey w91 8, demnach antimetrische Stdrmomente Mi. Bei
der antimetrischen Biegelinie (uy,vy)

— dzs entstehen zusdtzlich Verformungsmomente
9za= N9z AMg, die aus §,g antimetrisch, aus @,
E symmetrisch verlaufen. Flir das Tragver-
mogen entscheidend sind allein die anti-
A metrischen Verformungsmomente, die sehr
i viel kleineren symmetrischen sind ver-
MH mm Uk nachlédssigbar. Diese erreichen erst bei
, , Pya * O und grioSerem f/1 merkliche Gré&Se.
5 Bleibt auBerdem der ebenfalls sehr kleine
x
mﬂ”‘||lm Vi antimetrische Anteil aV,x, + :J azsu dx
W unberiicksichtigt,so werden Momente ﬁek
BILD 5 erhalten, die etwas zu groff sind. Sie
2- GELENKBOGEN (UND - folgen aus (2a):
3~-GELENKBOGEN (#/{=>0.3 ¥ o~ . .
Mok Mk,.qza-c-vk,.qzs uk+Hk,Q'zs vy (15a)
Mit c(ien)beim 3-Gelenkbogen beschriebenen Vereinfachungen wird
aus (2b): o ;
: N.,=2N . - =-aV, - = -s8in (15b)
ek "k,q,.8,, A3:_’:12.3“12& P
wobei NI ™ J‘f dx ist. (16 )
»923%za &

Die Ansatzfunktion f(x) in (9) fiir die Stabkriimmung muf bei
antimetrischer Ausweichform antimetrisch sein (Abschnitt 6.4). Sie
geniigt dann auch der Randbedingung 1 = 1 mitaH, = 0.

Fiir die Stelle k = E=1/4 des Groltmoments werden mit (8)

- .2

~ l K

Mep - 3%;_ {P‘f‘*(ll;) [2 Cuz [E)+[Cyz] (%‘)] (Kh)g } (172)
Ech , 2,

Woox- giiem B[ sin 20 5 @) @) Gng] ()

In ﬁeE ist eingesetzt, mit J als Kilirzel fiir das Integral:
1
_ = 1 £\ &
av, =a,, & & Eny OJ’ c, dx.

Die Iterationsgleichung wird nach einigem Rechnen #hnlich wie
beim 3-Gelenkbogen erhalten:

1id sin 29 B’ i
Inl _ 4 m| (%)(Ll_) * iSln P h/\T ' _| (18 )
T cos 1 4 £ 1
f pea(g) [2]cy] )+ [oy] ()] [xn]
Der Ortszeiger E ist nicht mehr angeschrieben. Das Zdhlerglied mit
J ist stets <<1 und kann vernachldssigt werden. Dies bedeutet

AVy = 0 in (15b) und (17b). (Lésungen enthilt Bild 8.) Die kritische
Last wird mit dieser Vereinfachung

Zzgqer g cos o (§) (&) In| (19)

c
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6.3 Die Itérétionsgleichungen fiir den gelenklosen Bogen

Wie beim 2-Gelenkbogen ist die Ausweichform antimetrisch
(Bild 6). Die Momente und Normalkrifte lassen sich deshalb in
gleicheg Weise vereinfachen. Aus (2a) wird fiir die Momente:

M, = - M, - -2% V, = -u, +H = - 20
Mex = Me,g  * Mg, (1-27) + k4, %t Beg, vk (20a)

(Der.zugsmA gehorende aV,-Anteil ist nicht vernachldssigbar, weil
beide zusammen das Glied aM, + AyA,Aﬂhfk=‘>MA(1'2§) bilden).

Die Normalkraft folgt aus (2b):

2M, - .
- @ A’qza o
Dabei sind M®, N©, VO und H° Werte des 2-Gelenkbogens, der als
Hauptsystem benutzt wird, wobei V=V© und H=HC weil M, = 0.

~

N

Qg
e . . e -~ Die Ansatzfunktion fir die Kriimmung mu8

LJ;iJLtfﬁ SZO antimetrisch und durch wenigstens zwei Para-
Q2 2 T A A 9zs meter festgelegt sein (s. Bild 7):

Boa "Mzs K(x) =K 2, (x) + Rt ®, / Kp) £,(x) (21)
_ Sie erfillt die Randbedingung i.=ll.ﬁA igt
_ die Krimmung an der Einspannstelle k = A,Kg

A _ g, an der Stelle k = E _des GroBtmoments im
T, % Feld. Beide, K4 und Kg, sind durch die Rand-
' bedingung "volle Einspannung" miteinander
vk Vverknipft: j/

» N o éIK . M. (x) dx = O (22a)
BILD 6 : o cos¢lx§ M1 -

GELENKLOSER BOGJEN Die Integration liefert (Kh)g = -c(kh),.(22b)
My = 101 —'ZT) ist das virtuelle Moment.

Mit den Kriimmungsparametern K, und K kann das Gleichgewicht
an den beiden BogenstellenA und E genau erfiillt werden. Dement-
sprechend wird ein System von zwei gekoppelten Iterationsgleichun-
gen erhalten. Auch hier wird E = 1/5 gesetzt, '

Aus (20) folgen mit (8) die SchnittgrsBen:

ﬁeA = §A (E_'I)A . , 'ﬁ . ' (23&)
ﬁeA_ - g§§§¢z (%) [1-p(§) sin 2¢A] + —174 sing, (23b)
_ .2 =

2 g, .t - T e M
Mep ™ - —33— { P+a@) [2]Gg] ) +|ch|(]?E‘)](Kh)E}+ 7 (24a)
§ e _dgst o, My

éE ~ ~ Boospg (P T sineg (24b)

Die Verkniipfung von (23) und (24) ergibt nach einiger Rech-
nung zusammen mit (22b) das System der Iterationsgleichungen: (25a)

) Pl £ 2[ny| Brotory
s | o) [ 2[cyg | () lchl(T)] | ¥n| g (25b)
|n,|= mﬁ- [lnEI? ZImAI (-1%) Sin(PE] [1 + p({-) sin Z‘PA] t 2|m,| (%)sinq’A
- Die kritische Last wird:

q
ek costpE(%)(%) [|nE| 72m, | (P Sin‘FE] er (28}

[

~ h
|oe| = sty PG
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Aus (23) und (24) ergeben sich in den Iterationsgleichungen
die unteren Vorzeichen. Sie entsprechen der Untersuchung der lin-
ken Bogenhdlfte (s. Bild 6), oder anders gesagt, der Kombination
der Momente mit den kleinsten Bogendruckkrdften. Die oberen Vor-
zeichen gehdren zur Untersuchung der rechten Bogenhdlfte in der
die Momente zusammen mit den groBten Druckkrdften auftreten. MaB-
gebend ist die Bogenhdlfte, die das kleinste §zg, cr liefert.

6.4 Ansatzfunktionen f(x) fiir die Stabkriimmung e G
Bei 3-Gelenk- und 2-Gelenkbogen liefert
eine quadratische Ansatzfunktion %Bild 7) >
_aX _ »X
meist sehr genaue Traglasten, die fast aus- "Md" "“MI
nahmslos etwas kleiner als die exakten Werte Ke

£
sind. A
Bei gelenklosen Bogen gibt es dagegen b 'qm“mum“w,mﬂm“m“mm
keine einigermaflen einheitliche Ansatzfunk- it
tion, die den gesamten i- und f/1-Bereich A Ke

f2 {x)

erfassen wiirde. Sieht man aber von sehr Ka by TR s
kleinen Stdrungen - die meist nicht mehr im € 7 < ' :
baupraktischen Bereich liegen - bei Bogen Kg £
mit sehr kleinem f/1 ab, so sind BILD 7

=1 - oX = gX - oX ANSATZFUNKTIONEN f{x)
fi(x) =1 - 27, f(x) =81 (1 - 27) (28)a: g—GELENKBgGEL\IIX
o az . b: 2-GELENKBOG
£ (Ky/Kg) = 1+ [K,| /72 [Kg| fir (x=1/2)  C GELENKLOSER BOGEN

brauchbare Ansdtze (Bild 7).

Stetig gekriimmte Ansatzfunktionen wie (27) (28) vermégen die
Stabkrimmung nur so lange zutreffend zu beschreiben, als FlieBzo-
nen fehlen, die auftreten, wenn die Stahldehnung auf der Zugseite
die Streckgrenze ilberschreitet. Bei 3-Gelenk- und 2-Gelenkbogen
sind solche Zonen nicht bedeutsam, weil deren Tragvermigen mit dem
Erreichen der Streckgrenze der Zugbewehrung praktisch erschopft
ist. Bei gelenklosen Bogen aber, kann, besonders wenn sie gedrun-
gen sind, die Last vielfach noch betrdchtlich gesteigert werden,
wenn an der Einspannstelle die Streckgrenzendehnung iiberschritten
wird. Es breiten sich FlieBzonen aus, im Grenzfall flieB8t die Zug-
bewehrung auch in den Viertelpunktbereichen. Mit den Ansidtzen (28)
lassen sich diese Tragreserven nicht erfassen. Das gelingt erst,
wenn der Kriimmungsverlauf iterativ verbessert und so den auftre-
tenden FlieBzonen angepaft wird (Abschnitt 7).

6.5 Losen der Iterationsgleichungen

Die Gleichungen werden fiir die einzelnen Leitdehnungszusténde
€ o1 = konst. geldst, mit denen das n-m-Diagramm gerastert ist.
Auf jeder Rasterlinie gibt es nur ein zusammengehdriges Wertetri-
pel (n,m,Kh), das die Iterationsgleichung erfiillt. Dieses Tripel
stellt einen Gleichgewichtszustand dar, der stabil, indifferent
oder labil sein kann (s. Bild 8). Das Maximum der Verbindungslinie
aller Gleichgewichtszustidnde ist die kritische Normalkraft N
aus der die Traglast azs - berechnet werden kann.

Der Iterationsvorgang beim 3-Gelenk- und 2-Gelenkbogen bedarf
keiner weiteren Erlduterung. Beim gelenklosen Bogen sind folgende
Iterationsschritte notig:

1. Leitdehnungszustand fiir Querschnitt A wdhlen
2. np schidtzen, der Leitdehnungszustand liefert my, (Kh)A
3. ng aus (25b5 rechnen, (Kh)g aus (22b)
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4. np und (Kh)p zusammen ergeben m
5. ng aus (25a) rechnen mit Mg, m, und (Kh)E
6. np-Identitdt priifen
Iteration wiederholen bis die Identitdt erreicht ist.

Verzweigungslasten miissen mit sehr kleinem (Kh) berechnet wer-
den, weil sie fiir infinitesimal kleine Verschiebungen definiert
sind. Mit gréBerem (Kh) ist ein Lastabfall verbunden (s.Bild 8).

-N A -N 4’\

l/h = 40 l/h = 80
1.0 4\ 1.0-
| -0
001
£/1=01
010
0,51 0,51
0.50
005 010 0B m 005 0.0 0%
-n -nAN
10 - 10 -
£/1=0,3
051 05+
a b
T > =l T L >
005 00 015 m _—— 005 c10 655 m
-n A -n a:WERKSTOFFVERSAGEN
b: STABILITATSVERSAGEN
101 101 c: TRAGLAST N, ABSCHNITT &
£/1=0,5
05 05-
i — T T > T —r >
005 010 65 m 005 nlo 055 m

BILD 8 LOSUNGEN DER ITERATIONSGLEICHUNG FUR DEN 2-GELENKBOGEN MIT KONST.
0-QUERSCHNITT UND w =J=0,494 FUR DIE STORPARAMETER (*=0/001/010/0,50.
d-£-DIAGRAMME BETON U STAHL [1] BILD 13,14, 15

7. Traglastberechnung mit iterativ verbessertem Kriimmungsverlauf

Durch iteratives Verbessern des Kriimmungsverlaufs kann das
Traglastproblem exakt geldst werden. Nachdem (K.h)E,crund nep nach
Abschnitt 6 bestimmt sind, ist eine Iteration mit folgenden
Schritten notig:

1. Biegelinien u und v rechnen,, ~
2. mit den Biegelinienwerten M . und Ne-Verlauf rechnen,
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N

3. aus Mr und N = N verbesserten K-Verlauf bestlmmen

dy, Einhalten der Randbedlngungen priifen. Wenn nétig Me § Ne
und K-Verlauf durch stat. unbest. Rechnung berichtigen.

5. Iterationsgleichung an den verbesserten und mit den Randbe-
dingungen vertridglichen K-Verlauf anpassen (C-Werte und ggf.
verbesserte Stelle E) und 1ldsen,

Iteration mit den verbesserten n,.- und (Kh) ~Werten wiederholen,

bis die Ergebnisse zweier Durchgidnge ausreichend ilibereinstimmen.
Die Konvergenz ist gut, meist reichen ein bis zwei Durchginge aus.

Normalerweise genligen auch_ fiir diegse Rechnung die Ndherungs-
ausdriicke des Abschnitts 6 fiir M_, und Nek‘ Es wire nicht schwie-

rig, nur miihsam, die genauen Gleichungen (2) zu benutzen. Ebenso
konnte die Achsdehnung €, in die Iteration einbezogen werden, was
vor allem bei 3-Gelenkbogen mit £/1 <0,1 nétig sein kann.

Das Verfahren der iterativen Verbesserung soll nicht die Re-
gel sein. Es ist vielmehr besonders zum Nachpriifen der Giite der
K-Ansatzfunktion gedacht, wenn Querschnitt und Bewehrung verénder-
lich sind. Dazu geniigt schon ein Iterationsdurchgang.

8. Traglastberechnung mit Grenzdehnungszustinden

Das ist die einfachste Art der Traglastrechnung Sie arbeitet
mit einem angenommenen Kriimmungsverlauf (Abschnitt 6), verzichtet
aber auf die Rasterung des n-m-Diagramms durch Leitdehnungszustén-
de (Abschnitt 5) und 18st die Iterationsgleichung nur fiir die Be-
grenzungslinie des Diagramms, also fiir Grenzdehnungszusténde. Da-
mit ist zwar die Bruchlast erfafbar, nicht aber die vielfach be-
triachtlich hdhere Traglast bei Stabilitdtsversagen, das durch
dn/dm = O gekennzeichnet ist (s. Bild 8).

9. Verallgemeinern der Ergebnisse
Die fiur einen bestimmten Bo- g/ bfe
gen gewonnenen Ergebnisse gelten

fiir alle Bogen gleichen statischen Nz/h K
Systems mit gleichen Geometrie~, ﬁHm
Bewehrungs-, Werkstoff- und Last-

parametern (Bild 9). Beispielswei- h, \%;% %bec

se 51nd die Verschiebungen (8) u/h A

und v/h parametrisierte Verschie- g ¢ mpAMETRISIERTER BOGEN FUR
swerte und die krit. Lasten KONSTANTES A, UNDh

(115 (19) (26) q/bf{ parametri- ha=Ha /A fe .va=Va [Ac f'c

sierte Lasten. Parametrisiert sind

sie fiur konst. Querschnitt, Bei

verdnderlicher Querschnittshdhe und -fldche wire grundsatzlich h

durch hg zu ersetzen, wenn hy als Hbhenparameter eingefilhrt wird,

und auBerdem in (8) (Kh)g durch (Kh)g h,/hg und in (14) (19) b

durch bg hg/h,, um einige Beispiele zu nénnen.

10. Berlicksichtigen des Einflusses nichtlinearer Geometrieglieder
Der Einflufl der nichtlinearen Geometrieglieder 1&8t sich

durch Korrekturen au, aAv der Biegelinien u,v nach dem Gesetz

au! ~Av'z! + (% vl 4 Eov'z') (1 + 2'2) =0 (29)

abschdtzen. Der Vergleich mit der linearisierten Verschiebungsbe-

ziehung: u' - v'z' - g, (1+2'2) = 0

zeigt, daB (1/2 viZ 4 € ov'z') als fiktive Achsdehnung gedeutet

werden kann. Die Biegelinienkorrekturen au, Av sind demnach in

1. Ndherung nichts anderes als die horizontale bzw. vertikale Bie-
gelinie aus einer fiktiven Dehnung
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e ki |2 Tt
€& fixt = - (z V'T + £v'z2!) (30)
Auch sie sind demnach mit baustatischen Mitteln berechenbar.

Der EinfluB ist nur fiir den Grenzfall ZuBerst schlanker Bo-
gen bedeutsam. Die Rechnung vermag lediglich das Einleiten des
Durchschlags zu erfassen.

In Glchg.(2) sind die Glieder vernachlidssigt, die Produkte
von VerschiebungsgrioSen enthalten, bei Mek:AvAuk undAsHAvk.
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ZUS AMMENFASSUNG

Fir ebene Druckbogen wird ein leistungsfidhiges Handrechen-
verfahren beschrieben, das im gesamten Ausmittenbereich mit
geringem Arbeitsaufwand sehr genaue Traglasten liefert. Das
Verfahren arbeitet auf deterministischer Basis und kann mit
unterschiedlichen Genauigkeitsanspriichen betrieben werden.

Es fihrt bei iterativ verbesserter Stabkrimmung zur genauen
Losung des geometrisch linearisierten Traglastproblems. Das
Problem wird so parametrisiert, dass die Ergebnisse bei gleichen
Parametern allgemein gelten.

SUMMARY

An efficient manual computation method for plane compression
arches is presented by which very accurate load carrying capa-—
cities can be evaluated for the whole eccentricity range with
a comparatively small effort. The method works on a deterministic
basis and can be applied to varying demands of accuracy. By
iteratively improving the bar-curvature, it eventually leads
to the accurate solution of the geometrically linearized problem.
The problem is parametrizised thus that the results are generally
applicable.

RESUME

Pour les arcs comprimés plans, on décrit un proceédé pratique
de calcul & la main, qui fournit en peu de temps les charges
ultimes trés précises dans toute la zone d'excentricité., Le
procédé fonctionne sur une base déterministe et peut &tre appli-
qué avec n'importe quel degré de précision. En améliorant itéra-
tivement la courbure des barres, il peut conduire & la solution
exacte du probléme de charge ultime géométriquement lindarisé.

Le probléme repose sur deg paramdtres tels que les résultats
sont toujours valables quand les paramétres sont égaux.
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