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Safety Index of Short Concrete Columns

Indice de sécurité pour des colonnes courtes en béton

Sicherheitskennwert für kurze Stahlbetonstützen

A.M. HASOFER R.G. SEXSMITH
Visiting Professors

Institute of Engineering
National University of Mexico

Mexico

The goal of consistent safety is hampered by the fact that it is difficult to measure
safety and to define what we mean by consistency. An ideal situation might be to have
explicit probabilities and explicit costs of consequences, and to design for minimum
expected cost. Probabilities are not really attainable, however, and other measures of
safety are needed as substitutes.

The use of up to second moment measures of variability (means and variances), and
a determination of safety index/3 to represent degree of safety (1, 2, 3, 4), has proved
to be an appropriate bridge between traditional design procedures and explicit probabilistic
design. A recent second moment method proposed by Hasofer and Lind (4) permits
computation of the safety index in terms of any number of basic variables, thus overcoming
several shortcomings of earl ier approaches.

The safety index is a measure of safety that can be related to probability of failure
when distribution assumptions are made. In the absence of such assumptions, it is in itself
a measure of safety. Consistent safety may then involve design to a chosen safety index.
Choice of new design rules can be based in part on approaching constant safety index for
particular kinds of structures or elements. When the safety index varies, as in current
design rules, economy may be achieved by bringing it to a consistent level (for example,
constant).

The Hasafer-Lind criterion is formulated herein for the column interaction problem
(bending and axial force) and the computation of safety index is described. Cases of normal
and lognormal basic variables are considered, and correlation of axial and flexural loading
is included. A few selected results are presented to indicate the variation of under
current AC I design rules.
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A. The Hasofer-Lind Criterion for Safety Index

The safety index proposed by Hasofer and Lind (4) is computed as fol lows:

Let X (Xi, Xo, • •., Xn) be the vector of basic random variables relevant to the
design. Let the failure criterion for the design be F (X) < 0. The criterion devides the
space of X into a safe region G(X) and a failure region G* (X).

Now make an orthogonal transformation of the variables X to a new set of variables
Y (Y], Y2/ •.., Yn), such that the new variables Y; are uncorrelated. In addition,
make suitable transformations such that the Yj are approximately normally distributed.

Next introduce reduced variables y; (Yj - Y;)/Let y (yj, y2, yn).
To the failure criterion F(X) < 0 there will correspond in Vhe space of y a safe region
G(y) and a failure region G*( y).

The safety index ß is the minimum radius from the origin of y to the failure region

The short column interaction problem is an ideal one to demonstrate the power of this
criterion, for the following reason: Previous attempts to formulate a second moment code
format have required identification of the variables as load or resistance variables. The
Cornell and Rosenblueth - Esteva formats (1 and 2) require the failure event to be expressed
in terms of resistance R and load U. The Ditlevsen proposal (3), which handles more than
two variables, requires identification of variables that increase safety and those that
decrease safety. In the short column interaction problem the axial load P can play either
role, depending on its value, because of the non-monotonic interaction curve.

B. Behavior of Short Concrete Columns

The model of physical behavior used in this study is the one commonly used in strength
design of reinforced concrete, based on the Whitney rectangular stress block and linear
strain variation across the section. Attention is restricted to symmetric tied columns with
reinforcement only in the faces parallel to the axis of bending. Capacities and loads are
treated in non-dimensional form by dividing axial quantities by btfc' and flexural quantities
by bt^fc'. A single interaction diagram in non-dimensional form is defined by the
variables listed in Table I.

G*{y).

d/t

As/bt

Symbol

TABLE I

Definition

Ratio of concrete strain at failure
to steel yield strain

Depth from face of concrete to face
of reinforcement/total depth of section

Ratio of steel to concrete area

Ratio of steel yield to concrete
compressive strength

Typical value

2.0

0.15

0.04

14

k] and k2 Whitney stress block parameters 0.85
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C. Application of the Criterion to Short Concrete Columns

The random variables relevant to the design are P, M, and V, where P is the
non-dimensional axial load (actual force divided by btfc', M the non-dimensional flexural
load (actual moment divided by bt fc'), and V a random variable, representing variability
of flexural capacity on the interaction curve as a function of load P.

When P, M, and V are approximately normally distributed, the failure region is
defined by

f(P) + V - M < 0 (1)

where f(P) is the flexural capacity on the interaction curve as a function of load P, E(V) =0,
°~(V) g(P)r the standard deviation of flexural capacity as a function of P.

When P, M, and V are approximately lognormally distributed, the failure region is
defined by

f (p) V - M <0 (2)

where E(log V) 0, ""(log V) h(P) g(P)/f(P), the coefficient of variation of flexural
capacity as a function of P.

P and M may be correlated, while V is uncorrelated with both P and M.

1. Procedure for Normal Random Variables

Let R be the correlation coefficient of P and M, and write

P=P+ op p (3)

M M + crM(m J1 - R2 + p R) (4)

V g(P) (5)

where p and m and v are uncorrelated variably with mean zero and unit standard deviation.
It may be verified that E(P) P, <y2 (P) <Tp, E(M) M, rr2 (M) <Tj\, Cov (P, M)

R, as required. Moreover, the safety index obtained with the basic variables
P, M, V, is the same as that obtained with the reduced variables, p, m, v.

The failure surface is

F(p, m, v) F(P) + V - M (6)

and the safety indexß is the distance from the origin to the surface F(P, m, v) 0.

To calculate /3 we use the iteration technique described in Hasofer and Lind (4). The
iteration formulae are;

P(n+1)= *F,

Xf2
m(n+1)= X Fg
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[(p("+,))2 + (v("+,))2 + (mM))2 ] ,/2

where
F, - 4? (n)

"»-is*1»
p^ F] + >> F2 + m^ F3 - F

X= ö 5 5
F1 +F2 +F3

_ r/ (n) (n) (n)\
F(p ', v mx ')

and the partial derivatives of F can be shown to be

l£äf. (P) <Tp+g.(p)v <rp - o" R

dp m

9<p>

|L. f77
fcm m »

A starting point p^ \ v^\ ^
must be chosen. There are a number of perpendiculars

from the origin to the failure surface, and the iteration procedure may converge to any one
of them, depending on the starting point of the iteration. It is necessary to choose several

starting points and take the smallest of the /J' s obtained.

2. Procedure for Lognormal Random Variabl es

In this case we write

P P exp (VpP)

M M exp £ Vm(m i|l - + p R)J

V exp £h(P) v]
2

where p, m, v, and R are defined as before, and E (log P) log F, O" (log P) V
E (log M) log M, <T* (log M) Vm, Cov (log P, log M) Vp V/y\ R.

The failure surface is

F(p, m, v) f (p) V - M

and the safety index ft is the distance from the origin to the surface F(p, m, v) 0.
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The iteration formulae for computing the distance/3 is the same as forimormal random
variables, except that the partial derivitaves are

The choice of starting points again must be made with care to avoid missing convergence
to the smallest/3 • The authors encountered this problem in some instances, especially in
the lognormal case.

D. The Information Base

Current AC I design criteria is generally assumed to relate to load information by ANSI
Committee A58. Recent studies have resulted in prediction of mean lifetime loadings for
offices that differ substantially from ANSI. Because of this bias in design load, /3 varies
considerably. In order to focus on strength consistency, we assume that the mean peak lifetime

load from Mc Guire and Cornell (5) is used as the live load in the AC I design procedure.
This means that the^3 values discussed subsequently are for the single design area at which
ANSI and Ref 5 give the same loading (about 1000 ft The coefficient of variation of
live load Vj_ is taken as 0.15. Mean dead load is taken as nominal dead load, and
coefficient of variation of dead load is taken as 0.10. Current ACI load factors are used
to relate design load to ultimate strength.

Strength of concrete columns is subject to prediction error due to model discrepancies,
material and geometric variability, and professional uncertainty. Studies of these factors
has led the authors to choose a bias on strength b 0.95 as representative of ACI criteria,
where b U U, U is ACI predicted strength and U is mean strength. The coefficient of
variation of strength Vv was chosen as 0.20 on the strength as represented by radius to the
interaction curve.

For a given "case" in this study, a dimensionless interaction curve is generated. For
a particular ratio of nominal dead/live load intensity, a series of permissible ACI load
cases (P, M) are generated and denoted by letters A to I to identify eccentricty. For each
of these cases, /3 is computed as indicated in Section C. Dead/live ratio did not
significantly affect /3, and was taken as 0.5 in the calculations discussed here.

For any axial load P, the flexural capacity f(P) is computed from the parameters and
principles discussed in Section B. The standard deviation of flexural capacity, g(P), is
computed from the coefficient of variation of radius to the interaction curve (evaluated
from studies of available data) and corrected to account for the fact that it must represent
a "horizontal slice" through the interaction curve, rather than a "radial slice".

E. Selected Results

VPVp [f' (P) + f(P) h' (P) v] - MVM R

if Vf (P) h (P)

A large number of cases representing varying loading, geometry material strength,
and correlation coefficient of axial and flexural load were evaluated, and sensitivity studies
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were carried out by varying parameters in these cases. The results presented herein are
selected to illustrate the main conclusions of the study.

A basic column design was chosen using ACI design rules with the parameter values
as given in Table I. For this design, point C on the interaction curve represents an e/t
ratio of 1.1, in the tension zone close to the balanced design. Point G has e/t 0.30,
in the compression zone. Other designs are A (e/t 3.3), E(e/t 0.8), F(e/t 0.52),
and I (e/t 0.05). Parameter variations discussed below represent reasonable designs with
the named parameters varying from the basic case and the others held constant at the basic
values of Table I.

The safety index appears very sensitive to the e/t ratio, particularly for the lognormal
case, where (fig l)/3 is high in the compression failure zone (G), decreasing to a
minimum near the balanced point C. The normal case of fig 2 shows a peak at point G in
the compression zone, and a constant value in the tension zone.

The results show that /3 is not very sensitive to d/t. Fig 3, lognormal case, shows

an extreme situation in which /3 became larger as d/t increased, but for the normal case,
fig 4,/3 remains constant. Thus geometry is well accounted for in present design practice.
The variation of /3 with steel percentage As/bt is pronounced in the lognormal case (fig 5)
and insignificant in the normal case of fig 6.

The effect of steel strength appears in figs 7 and 8 for the lognormal and normal cases
respectively. The strength ratio fy/fc' does not appear to alter /3 in an important way.

The effect of correlation between axial load and moment is indicated for the lognormal
case in fig 9. Designs A through E show increasing /3 with increasing correlation coefficient.
This occurs because negative correlation results in increased chance of tension failure.
Designs G and I in the compression zone show the converse, as expected. Positive
correlation for compressive zone designs decreases the safety. These trends occur in the
normal case (fig 10) but the variation is so slight that it is almost indiscernible.

The safety index appears to be sensitive to most variables in the lognormal case, less

so in the normal case. It is higher in the lognormal case, as should be expected due to
the improved strength situation when strength is lognormally distributed.

fi appears to approach 3.2 in a number of situations in the lognormal case, and this
may be a reasonable calibration point. One possible consistency rule for column designs
would be to alter design rules to give/3 3.2. This would result in slightly more
economical columns in many cases, but would not decrease strength in the cases where /3
is already at this calibration point.
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SUMMARY

The Hasofer-Lind method of computing a second moment measure
of safety called the safety index is applied to the case of short
reinforced concrete columns. The variation of safety index with
the usual parameters is discussed for current ACI (1974) design
rules.

RESUME

On applique au cas de colonnes courtes en béton armé la méthode
de Hasofer-Lind consistant à calculer Lin indice de sécurité d'après
la méthode des moments des variables statistiques. La variation de
l'indice de sécurité selon les valeurs des paramètres de dimension-
nement usuels est étudiée pour les règles de dimensionnement ACI
(1974).

ZUSAMMENFASSUNG

Die Hasofer/Lind-Methode für die Berechnung eines Sicherheits-
Kennwertes mittels den Methode der zweiten Momente, wird auf den
Fall kurzer Stahlbetonstützen angewendet. Die Variation des
Sicherheits-Kennwertes mit den üblichen Parametern wird für die gültigen
ACI (1974) Normen diskutiert.
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