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Safety Index of Short Concrete Columns
Indice de sécurité pour des colonnes courtes en béton

Sicherheitskennwert flir kurze Stahlbetonstitzen

A.M. HASOFER R.G. SEXSMITH
Visiting Professors
institute of Engineering
National University of Mexico
Mexico

The goal of consistent safety is hampered by the fact that it is difficult to measure
safety ung to define what we mean by consistency. An ideal situation might be to have
explicit probabilities and explicit costs of consequences, and to design for minimum
expected cost. Probabilities are not really attainable, however, and other measures of
safety are needed as substitutes.

The use of up to second moment measures of variability (means and variances), and
a determination of safety index /3 to represent degree of safety (1, 2, 3, 4), has proved
to be an appropriate bridge between traditional design procedures and explicit probabil istic
design. A recent second moment method proposed by Hasofer and Lind (4) permits
computation of the safety index in terms of any number of basic variables, thus overcoming
several shortcomings of earlier approaches.

The safety index is a measure of safety that can be related to probabil ity of failure
when distribution assumptions are made. In the absence of such assumptions, it is in itself
a measure of safety. Consistent safety may then involve design to a chosen safety index.
Choice of new design rules can be based in part on approaching constant safety index for
particular kinds of structures or elements. When the safety index varies, as in current
design rules, economy may be achieved by bringing it to a consistent level (for example,
constant).

The Hasofer-Lind criterion is formulated herein for the column interaction problem
(bending and axial force) and the computation of safety index is described. Cases of normal
and lognormal basic variables are considered, and correlation of axial and flexural loading
is included. A few selected results are presented to indicate the variation of /3 under
current AC| design rules,
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A. The Hasofer-Lind Criterion for Safety Index

The safety index proposed by Hasofer and Lind (4) is computed as follows:

Let X = (X1, X9, ..., X,) be the vector of basic random variables relevant to the
design. Let the Failzure criterion for the design be F (X) < 0. The criterion devides the
space of X into a safe region G(X) and a failure region G* (X).

Now make an orthogonal transformation of the variables X to a new set of variables
Y =(Yy, Y2, ..., Yp), such that the new variables Y; are uncorrelated. In addition,
make suitable transformations such that the Y; are approximately normally distributed.

Next introduce reduced variables y; = (Y; - Y;)/ O,.. Lety =(yy, y2, «v., ¥, )
To the failure criterion F(X) < 0 there will correspond in the space of y a safe region
G(y) and a failure region G*( y). ‘

The safety index /3 is the minimum radius from the origin of y to the failure region
G*(Y).

The short column interaction problem is an ideal one to demonstrate the power of this
criterion, for the following reason: Previous attempts to formulate a second moment code
format have required identification of the variables as load or resistance variables. The
Cornell and Rosenblueth - Esteva formats (1 and 2) require the failure event to be expressed
in terms of resistance R and load U. The Ditlevsen proposal (3), which handles more than
two variables, requires identification of variables that increase safety and those that
decrease safety, In the short column interaction problem the axial load P can play either
role, depending on its value, because of the non~monotonic interaction curve.

B. Behavior of Short Concrete Columns

The model of physical behavior used in this study is the one commonly used in strength
design of reinforced concrete, based on the Whitney rectangular stress block and linear
strain variation across the section. Attention is restricted to symmetric tied columns with
reinforcement only in the faces parallel to the axis of bending. Capacities and loads are
treated in non-dimensional form by dividing axial quantities by bifc' and flexural quantities
by bt“f.'. A single interaction diagram in non-dimensional form is defined by the
variables listed in Table I. '

TABLE |
Symbol Definition Typical value
GC/Gs Ratio of concrete strain at failure
' to steel yield strain 2.0

d/t Depth from face of concrete to face

of reinforcement/total depth of section 0.15
A /bt Ratio of steel to concrete area 0.04
fy/Fc' Ratio of steel yield to concrete

compressive strength 14

k1 and ko Whitney stress block parameters 0.85
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C. Application of the Criterion to Short Concrete Columns
The random variabl es rel evant to the design are P, M, and V, where P is the
M the non-dimensional flexural

non-dimensional axial load (actual force divided by bif '
load (actual moment divided by bfzfc'), and V a random variable, representing variabil ity

of flexural capacity on the interaction curve as a function of load P

(1)

When P, M, and V are approximately normally distributed, the failure region is

defined by
f(P)+V-M <0
where f(P) is the flexural capacity on the interaction curve as a function of load P, E(V)=0

o~ (V) = g(P), the standard deviation of flexural capacity as a function of P

When P, M, and V are approximately lognormally distributed, the failure region is
2)

defined by
fP)V =M <0
where E(log V) =0, @ (log V) = h(P) = g(P)/f(P), the coefficient of variation of flexural

capacity as a function of P.
P and M may be correlated, while V is uncorrelated with both P and M

Procedure for Normal Random Variabl es

1.
Let R be the comrelation coefficient of P and M, and write
P=P+ oy p (3)
M=Fi+ a5, (m {1=R2 +pR) (4)
vV =g(P) ()

and unit itdndard deviation,

with mean zef
, Cov (P, M) =

vanqbl
gd( E(M)-Mo‘ M)= &

where p and m and v are uncorrelat
It may be verified that E(P) =P, o (P)=
S . R, asrequired. Moreover, the safery index obtained with the basic variables

=&
vV, is fhe same as that obtained with the reduced variables, p, m, v

P, M, V

The failure surface is
Flp, m, vV)=FP)+V =« M 6)

and the safety index /3 is the distance from the origin to the surface F(P, m, v)=0
To calculate /3 we use the iteration technique described in Hasofer and Lind (4). The

iteration formulae are; n+l) r
1
V(n+]) - A F2

m(n+'|) = x F3
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AEH- [(p("” W 1 o @2 4 ()2 ] 1/2

where
=2 )
. oF
F2— dv ()
Fg= am(”)

p(n) Fi +v(n) Fo + m(") Fa =-F

7\=222

Fy +F2 +Fq

F=re®), J0) )

and the partial derivatives of F can be shown to be

AF=pp)y op 4 g -
F _

57 = 9(P)

A, . 1-r2

Bm O

1
A starting point p(l ), v( ), m(]) must be chosen., There are a number of perpendiculars
from the origin to the failure surface, and the iteration procedure may converge to any one
of them, depending on the starting point of the iteration. It is necessary to choose several
starting points and take the smallest of the /' s obtained.
2. Procedure for Lognormal Random Variables

In this case we write
P=Pexp (Vop)
M=M exp [Vm(m m+p R)]
V=exp [h(P) v]

where p, m, v, and R are defined as before, and £ (log P) =log P, O' (fog P) = V
E (log M) = log M, &2 (fog M) = V,,, Cov (log P, log M) =V, VpR.

The failure surface is
Fp, m, v)=f (p)V-M

and the safety index /3 is the distance from the origin to the surface F(p, m, v) = 0.
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The iteration formulae for computing the distance /3 is the same as for mormal random
variables, except that the partial derivitaves are

;—5 =Vvev, [P+ R (P)v] = MVR

¥F _
2= =VF(P)h (P)

F . f-2
3L =-Mvy 1R

The choice of starting points again must be made with care to avoid missing convergence
to the smallest /3 . The authors encountered this problem in some instances, especially in
the lognormal case.

D. The Information Base

Current AC| design criteria is generally assumed to relate to load information by ANSI
Committee A58. Recent studies have resulted in prediction of mean lifetime loadings for
offices that differ substantially from ANS). Because of this bias in design load, /3 varies
considerably, In order to focus on strength consistency, we assume that the mean peak |ife~
time load from Mc Guire and Cornell (5) is used as the live load in the ACI design procedure.
This meons that the #/3 values discussed subsequently gre for the single design area at which
ANSI and Ref 5 give the same loading (about 1000 ft©). The coefficient of variation of
live load Vy_ is taken as 0.15. Mean dead load is taken as nominal dead load, and
coefficient of variation of dead load is taken as 0.10. Current ACI load factors are used
to relate design load to ultimate strength.

Strength of concrete columns is subject to prediction error due to model discrepancies,
material and geometric variabil ity, and professional uncertainty, Studies of these factors
has led the authors to choose a bias on sirength b = 0. 95 as representative of AC| criteria,
where b U=1U, U is ACl predicted strength and U is mean strength. The coefficient of
variation of strength V,, was chosen as 0.20 on the strength as represented by radius to the
interaction curve.

For a given "case" in this study, a dimensionless interaction curve is generated. For
a particular ratio of nominal dead/live load intensity, a series of permissible ACI load
cases (P, M) are generated and denoted by letters A to | to identify eccentricty. For each
of these cases, /3 is computed as indicated in Section C. Dead/live ratio did not
significantly offect /3, and was taken as 0.5 in the calculations discussed here.

For any axial load P, the flexural capacity f(P) is computed from the parameters and
principles discussed in Section B, The standard deviation of flexural capacity, g(P), is
computed from the coefficient of variation of radius to the interaction curve (evaluated
from studies of available data) and comrected to account for the fact that it must represent
a "horizontal slice" through the interaction curve, rather than a "radial slice".

E. Selected Results

A large number of cases representing varying loading, geometry material strength,
and correlation coefficient of axial and flexural load were evaluated, and sensitivity studies
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were carried out by varying parameters in these cases. The results presented herein are
selected to illustrate the main conclysions of the study.

A basic column design was chosen using ACI design rules with the parameter values
as given in Table I. For this design, point C on the interaction curve represents an e/t
ratio of 1,1, in the tension zone close to the balanced design. Point G has e/t = 0.30,
in the compression zone. Other designs are A (¢/t = 3.3), E(e/t = 0.8), F(e/t = 0.52),
and | (e/t = 0,05). Parameter varictions discussed below represent reasonable designs with
the named parameters varying from the basic case and the others held constant at the basic
values of Table I.

The safety index appears very sensitive to the e/t ratio, particularly for the lognormal
case, where (fig 1) /3 is high in the compression failure zone (G), decreasing to a
minimum near the balanced point C. The normal case of fig 2 shows a peak at point G in
the compression zone, and a constant value in the tension zone.

The results show that /3 is not very sensitive to d/t. Fig 3, lognormal case, shows
an extreme situation in which /3 became larger as d/t increased, but for the normal case,
fig 4, /3 remains constant. Thus geometry is well accounted for in present design practice.
The variation of /3 with steel percentage Ag/bt is pronounced in the lognormal case {fig 5)
and insignificant in the normal case of fig 6.

The effect of steel strength appears in figs 7 and 8 for the lognormal and normal cases
respectively. The strength ratio fy/f.' does not appear fo alter /3 in an important way.

The effect of correlation between axial load and moment is indicated for the lognormal
case in fig 9. Designs A through E show increasing /3 with increasing correlation coefficient.
This occurs because negative correlation results in increased chance of tension failure.

Designs G and | in the compression zone show the converse, as expected. Positive
correlation for compressive zone designs decreases the sofety, These trends occur in the
normal case (fig 10) but the variation is so slight that it is almost indiscernible.

The sofety index appears to be sensitive to most variables in the lognormal case, less
so in the normal case. It is higher in the lognormal case, as should be expected due to
the improved strength situation when strength is lognormally distributed.

{3 appears to approach 3.2 in a number of situations in the lognormal case, and this
may be a reasonable cal ibration point. One possible consistency rule for column designs
would be to alter design rules to give /3 = 3.2. This would result in slightly more
economical columns in many cases, but would not decrease strength in the cases where /3
is already at this calibration point.

REFERENCES

1. Cornell, C. A., "A Proposal for qurobabilify - Based Code Suitable for Immediate
Implementation”, Memorandum to ASCE and ACI Committees on Structural Safety,
August, 1967,

2, Rosenblueth, E. and L. Esteva, "Reliabil ity Basis for some Mexican Codes", Paper
SP 31-1, Probabilistic Design of Reinforced Concrete Buildings, AC] 348, American
Concrete Institute, Detroit, .




204 Il — SAFETY INDEX OF SHORT CONCRETE COLUMNS

3. Ditlevsen, O., "Structural Reliability and the Invariance Problem". Solid Mechanics
Division, University of Waterloo, Report # 22, March 1973.

4, Hasofer, A. M. and N. C. Lind, "An Exact and Invariant Second Moment Code Format",
Solid Mechanics Division, University of Waterloo, Paper # 119, May 1973.

5. Mc Guire, R. K., and C. A, Cornell "Gravity Live Load Effects in Office Buildings",
to be published.

ACKNOWLEDGMENT

The authors wish to acknowledge the support of the Institute of Engineering, National
University of Mexico, for the conduct of this research.

SUMMARY

The Hasofer-Lind method of computing a second moment measure
of safety called the safety index is applied to the case of short
reinforced concrete columns. The variation of safety index with
the usual parameters is discussed for current ACI (1974) design
rules.

RESUME

On appligue au cas de colonnes courtes en béton armé la méthode
de Hasofer-Lind consistant & calculer un indice de sécurité d'apres
la méthode des moments des variables statistiques. La variation de
1l'indice de sécurité selon les valeurs des paramétres de dimension-
nement usuels est étudiée pour les régles de dimensionnement ACT

(1974).

ZUS AMMENFASSUNG

Die Hasofer/Lind-Methode fiir die Berechnung eines Sicherheits-
Kennwertes mittels den Methode der zweiten Momente, wird auf den
Fall kurzer Stahlbetonstiitzen angewendet. Die Variation des Sicher-
heits-Kennwertes mit den liblichen Parametern wird flir die giltigen
ACI (1974) Normen diskutiert.



Ein wahrscheinlichkeitstheoretisches Konzept zur Ermittlung “bester”’ Bemessungswerte
fiir schianke Stahlbetondruckglieder

A Probability Theory Concept for the Determination of ""Best’ Design Values of Slender
Reinforced Concrete Compreassion Members

Un concept basé sur la théorie de probabilité permettant d‘obtenir les “'meilleures”
valeurs de dimensionnement pour les piéces comprimées élancées en béton armé

R. RACKWITZ 0. KNAPPE
Wiss. Mitarbeiter am Institut fir Massivbau
Technische Universitat Miinchen
Miinchen, BRD

1. Einfiihrung

Ein Versagen von schlanken Stahlbetondruckgliedern erfolgt ohne Vor-
ankiindigung und ist in der Regel mit hohen Schadensfolgen verbunden. Der
"sicheren" Bemessung solcher Bauteile kommt daher besondere Bedeutung zu.
Es ist dabei notwendig, die mechanische und geometrische Nichtlinearitiat
des Tragverhaltens bei der Festlegung der Bemessungswerte zu beriicksichti-
gen.

Die aktuelle Gr&Be der Variablen ist im vorhinein unbekannt und vom
Zufall beeinfluBit. Eine sicherheitstheoretische Betrachtung des Problems
der Sicherheit von Druckgliedern ist daher mit den Methoden der Wahr-
scheinlichkeitslehre zu fiihren. Der Begriff "Sicherheit" ist durch Zuver-
léissigkeit zu ersetzen und z.B, durch den Wert der Versagenswahrschein-
lichkeit zu beschreiben. Die Unsicherheit {iber eine EinfluBgrédfSe findet
in Form eines Veriteilungsgesetzes oder einer pufélligen Funktion quantita-
tiv Ausdruck.

Genormte Bemessungsanweisungen miissen einfach sein. Sie sind so ein-
zurichten, daB im gesamtem Anwendungsbereich eine gleichmiBige, ausreichend
kleine und wirtschaftlich vertretbare Versagenswahrscheinlichkeit gegeben
ist.

Demnach ist zundchst die Versagenswahrscheinlichkeit fiir definierte
Versagenskriterien zu berechnen /1/ und ihre Empfindlichkeit gegenfiber
den EinfluBgrsBen zu untersuchen /2/. Dann ist das Kriterium zu formulie-
ren, welches die Ableitung von Bemessungsanweisungen erlaubt, welche den
vorstehend genannten Bedingungen in bestmdglicher Weise entsprechen. Die
Kenntnisse sind noch nicht ausreichend, Wirtschaftlichkeit und Zuverléssig-
keit unmittelbar zu optimieren. Das Hauptaugenmerk ist vorerst auf Gleich-
méfBigkeit des Sicherheitsniveaus zu richten. Der Zielwert der Versagens-
wahrscheinlichkeit ist daher einstweilen in Ubereinstimmung mit dem Sicher-
heitsniveau gewihlt, welches durch die derzeit i{iblichen Bemessungsverfah-
ren im Mittel garantiert wird.

2. Mechanisch-physikalische Grundlagen

Gegeben sei eine Kragstiitze mit symmetrisch bewehrtem Rechteckquer;
schnitt, welche durch eine Normalkraft N = Na und ein Biegemoment M = Ma
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belastet wird (Abb. 1). Thre Schlankheit sei A = 2 + 1/i (1 = Stiitzen-
hthe, i = Trigheitsradius des Betonquerschnitts). Fiir die Werkstoffe gel-
ten folgende wirklichkeitsnahen Annahmen:

a) Beton - die Spannungsdehnungslinie folgt dem Parabelrechteck-
gesetz (Abb. 2). Die Rechenfestigkeit Bp betrigt bei kurzzeiti-

ger Belastung 85 % der Wiirfelfestigkeit Bw und sinkt bei an-
dauernder Belastung auf 0,72 B ab. (siehe /1/).

b) Betonstahl - zugrundegelegt wird die Verwendung eines natur-
harten Betonstahls, dessen Spannungsdehnungslinie bilinear ver-
lauft (Abb. 3).

Na A

o =
o ?

Mu Fe = Fe F |+ l

£ ~!

- Moepls—t e p T

b-d
Stiitzenquerschnitt
7

7

Abb. 1: Statisches System und

Stiitzenquerschnitt
-8,
4
6 z P
B 6. = E8) 0se, 82 T
b= PR (Eb- L Ep
R
6= ; 236,535
& 7
P (-]
2 35 va [ /oo] ES 3 tge [%/a0)
tan o = Ey, g10% fip tan y = E,= 21-108kp/ecm?
Abb, 2 Abb. 3

Im {ibrigen gelten die iiblichen Voraussetzungen der Tragwerksberech-
nung nach Theorie II.Ordnung (z.B. /3/).

Das Versagen einer Stahlbetonstiitze kann auf drei Arten (Grenzzu-
stﬁnde) erfolgen, die sich gegenseitig ausschlieBen:

a) Bruch der Betondruckzone durch tfberschreiten der Bruch-
stauchungen; dieser Zustand wird im folgenden als Versagens-
art A bezeichnet.

b) tberschreiten einer plastischen Verformungsgrenze der auf der
Zugseite liegenden Bewehrung - Versagensart B.

c) Instabilitit der Stiitze, bevor die Grenzdehnungen des Betons
oder Betonstahls erreicht werden - Versagensart C.

Versagensart B kennzeichnet kein Versagen durch Verlust des Gleich-
gewichtes, sondern ist durch Uberlegungen zur Gebrauchsfihigkeit und
Daverhaftigkeit des Bauteils festzulegen., Ein Versagen durch ZerreiBSen
der Bewehrung kann wegen der groBen Bruchdehnungen der iiblichen Betonsgtih-
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le auBeracht gelassen werden.

Zur Berechnung der mdglichen Grenzzustinde wird die inhomogene
Differentialgleichung der Biegelinie der Stiitze (siehe Abb. 4 bzw. Abb.S)

Mix Ag!x! (1)

(=) = - FETGY - -
in zwei gekoppelte Differentialgleichungen I,Ordnung zerlegt,
7,(x) = ¥ (x) mit y,(x) = "(x); 7,(x) = y(x) mit y,' = y' (x)=y,(x); (2)
welche durch eine Extrapolationsmethode /4/, ausgehend von den Anfangs-

werten am StiitzenfuB, schrittweise geldst werden.

Die Stlitze ist labil, wenn das Moment M° fir gegebene Normalkraft zu
einem Maximum wird, also

Mg = max M° (N, y(1)) (3)

Die Gleichgewichtsbedingung liefert das zugehtrige FuBmoment M2°

Die Stiitze versagt im Zustand B, wenn die Dehnung der Zugbewehrung im
StiitzenfuB £y = 5 %o {iberschreitet und im Zustand A, wenn an der gleichen

Stelle die Betonstauchung ¢, = - 3,5 %o unterschreitet.

ax N
2 -~
y(1) r_N
ny
} o %]
° ! 9
- 4 L4 o
P
~ |
Y S
(] y
MU
N
Abb.4:Verformtes Systen Abb.5:Beziehungen am verformten
Stiitzenelement

Per Definition versagt die Stiitze, wenn einer der genannten Grenz-
zustéinde erreicht wird. Mithin gilt fiir alle N das folgende Versagens-
kriterium

u u u u
v (N> N U N> g
worin vereinfachend angenommen wird, daB die mechanischen und geometri-
schen Eigenschaften l&ngs der Stiitze konstant sind.

3.Zuverlissigkeitsanalyse

Die wichtigsten EinfluBgrdBen auf den Tragzustand der Kragstiitze sind
die Querschnitisbreite b, die Querschnittshdhe d, die Betoniiberdeckung h',
die Betonfestigkeit BR’ die Stahlstreckgrenze Bs sowie die angreifende

vu s > min ) (4)

Last N = Na und das angreifende Kopfmoment Mz. Deren stochastisches Ver-

halten sei durch die Wahrscheinlichkeitsdichten f(-) beschrieben. Die
Variablen seien bis auf die Querschnittshshe und =breite, welche streng
korreliert angenommen werden, stochastisch paarweise voneinander(unabhﬁngig.
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Wir berechnen zunichst die Versagenswahrscheinlichkeit am Ort des Ver-
sagens (FuB der Stfitze). Die Lisungen der in Abschnitt 2 erliuterten Diffe-

rentialgleichungen stellen den Zusammenhang zwischen M: und Hz bzw. M:,

u i}

MB’ c fir jede Kombination der Variablen her., Sowohl angreifendes Moment

M:, als auch die widerstehenden Momente M;, U = A,B,C sind dann Funktionen

der EinfluBvariablen und stochastisch voneinander abhingig. Demnach sind
durch Anwendung der Transformationsregeln fiir Funktionen von Zufallsvariab-

len die zweidimensionalen Randdichten f (M:, n"j) fir alle N zu bilden /5/.
Bei gegebenem N ist dann mit (siehe auch Abb. 6)

u ,u u n
Peu = [] £(My, My) M, & (5)
(M, > )
die Versagenswahrscheinlichkeit wegen Gl. (4)
P.(N) = Pe s (¥) v Pr p M)y Py ¢ (¥)

= Pf’A (¥) + Pf,B (§) + Pf’c (n) - Pf’A(N)- Pf’B(N) - Pf’A(N)°Pf’c(N)

-Pf’B(H) " P (N) + Proa (w) - Pf'B(N) . Pf’c(N) (6)
und nach Integration {iber alle N schlieB8lich

P, = [ £(8) 2, (¥)ax (7)
(N)
Eine exakte numerische Ldsung erfordert bei Einsatz groBer Rechen-

anlagen bereits bei Berechnung von MZ und Mg und weiter bei der Bildung
der gemeinsamen Dichten f (Mg, Mg) erheblichen Aufwand, so daB8 Nihrungs-

ldsungen gesucht werden.

Lo
420 N'=0,10-bd,
Bn 250
A=T0
u
q M a ZP= 2%
015
Mg>M;
usl_ L L
Mﬂ.
010
005
Mu
J
T3 - w
M: 0 M
o 005 10 0,15 020

Abb,6 Abb.7: Zusammenhang zwischen Mg und M%
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Zundchst kann man das Versagenskriterium derart transformieren, da8

~ Beanspruchung und Beanspruchbarkeit n#herungsweise stochastisch vonein-
ander unabhingig werden. Dies gelingt durch Formulierung des Vereagens-
kriteriums am Stiitzenkopf. Zwischen dem Moment am StiitzenfuB und am Stiitzen-
kopf existiert niimlich in jedem Versagenszustand ein relativ straffer, posi-
tiver in guter NZherung linearer Zusammenhang, wie das Beispiel von Abb.T
zeigt /1/. Damit konnen die Verteilungsdichten von Beanspruchung und Be-
angpruchbarkeit vorab und unabhingig berechnet werden.

Transformiert man also die Momente Mg in Kopfmomente Mg (vegl.4vb.8)
bei bereits exrmitteltem M. so,daB
o 1 N MalN ™ u u
My |¥ =P (pU) mit py= Of fU(MU | ) My = Fy (Ma | ), (8)
so vereinfacht sich die Berechnung der Versagenswahrscheinlichkeit nach
Einftthrung des Gl. (5) entsprechenden Ausdrucks
' v 0 o O
Peg® = [ £0Q) - By (M| N) aM) (9)
; 0 ‘ : OIN
F, =P, (M| N) Muf (M2 ¥)a M° (10)
Lo | Fy =P (M (W) = [ fp(glwa g
: ' 0
und unter Beachtung von Gl. (6) zu

P, gof £(N) {_fo(ma) [Fy+ Fyt Bym B, * FooF,-F-Fy Fo+F, Fy FC]dMa}dN (11)

Weitere NZherungen sind bei Berechnung der

f(MOIN) .
; Dichten £2 (Mgl N) notwendig. Um erste Anhalts-
EQY(T}¥$_ Ll oy ;
- punkte iiber die Form dieser Verteilungsdichte
N o zu erhalten - daB immer die Bedingung N gilt,
(“)M wird im folgenden nicht mehr gesondert bezeich-

net - wurde zunéchst mit Hilfe der Monte-Carlo-
Methode unter Zugrundelegung der Angaben von
My - Tabelle 1 die Beanspruchbarkeit simuliert.
@9 Statistische Anpassungstests ergaben, daB die
R 8 N Hypothese zugrundeliegender Normalverteilungen
‘ mit einer statistischen Sicherheit von 95 %
R MY N nicht verworfen werden muB, Betrachtet man das
‘ Modell einer bei Null gestutzten Normalvertei-
Abb.8 lung als hinreichend genau, so kann man sich

im weiteren mit der Berechnung der ersten bei-
den Momente der Verteilung der Beanspruchbarkeit begniigen /6/:

B () cey (2 (x)) (12)
Var (MU)% (;) (ggf—)z Var (xi) '(13_)

Hierin ist g (+) das in Abschnitt 2 beschriebene Berechmungsverfahren
zur Bestimmung der Grenzzustinde und x5 die Zufallsvariablen nach Tab.1.

Bg. 14 VB



210 It — KONZEPT ZUR ERMITTLUNG ""BESTER” BEMESSUNGSWERTE

Tabelle 1
Zufallsvariable +) Mittelwert Streuung
Querschnittsabmessungen - Vb = V. = 0,05
d
b, & -
- +4)
Betoniiberdeckung h' 0,1 « 4 o Vh, = 0,30
Betonfestigkeit 8 330 kp/cm2 o = 5o kp/cm2
Betonstahlstreckgrenze | 4600 kp/cm2 = 243 kp/cm2
Bs
Normalkraft N - V. = o0,lo
a N
o
Moment Ma - Vﬁ = 0,20

+) Simtliche Variablen werden normalverteilt angenommen
++ ) Der Querstrich kennzeichnet Mittelwerte (Erwartungswerte).

Die Versagenswahrscheinlichkeit ist nunmehr niherungsweise berechenbar.
Umgekehrt kdnnen bei vorgegebener Versagenswahrscheinlichkeit und bekannten
Verteilungsgesetzen der die Beanspruchbarkeit beeinfluBenden Variablen die
Verteilungsparameter der zugehtrigen Beanspruchung iterativ ermittelt wer-
den.

Na

20|

8,
4%
2%
0]6 %o

T 6 005 O 010 020 530 040 G50 -
i G

In Abb. 8 sind fiir die Stiitzenschlankheit A = To und mehrere Bewehrungg-
gehalte die Ergebnisse einer Rechnung fiir P, = lo—4 aufgetragen, Auf der
linken Seite des Bildes ist die GréBe der Sgandardabweichung des Kopf-
momentes fiir die Versagensart C dargestellt, im Diagramm selbst finden
sich die Interaktionsbeziehungen der mittleren Grenztragfihigkeit und

im Diagramm oben rechts sind die Mittelwerte der zugehdrigen Beanspruchung
angegeben. Dexr Wert BR iet die 5 %-Fraktile des zu 0,85 °* Bw gehdrigen

Kollektivs nach Tabelle 1.
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Abb. 9 zeigt fiir A = To undzz}1= 2% den geometrischen Ort der 95%-Fraktilen
der Komponenten N_ und MZ fiir die Versagenswahrscheinlichkeiten Pf =

lo” 3, 1o~ 4 und 1o~ °. Zusttzlich sind die zulédssigen Werte bei der Be-
messung nach DIN 1045 /7/, den CEB-Empfehlungen /8/ und den ACI Vorschrif-
ten /9/ eingezeichnet.

Die im linken Teil der Abbildung aufgetragene bezogene Streuung
des Kopfmoments Hndert sich splirbar mit zunehmender Normalkraft. Dabei
fiberwiegen die Streuungen der Querschnittsabmessungen und der Beton-
festigkeit fiir die nach Tabelle 1 getroffenen Annahmen,

Man erkennt weiter, daB keine dieser Bemessungsanweisungen ein gleich-
mEBiges Sicherheitsniveau gewdhrleistet. Diese Pestatellung bleibt auch
bei anderen Annahmen fiir die Verteilungsgesetze sowie fiir andere Betongiiten,
Stahlgiiten, Querschnittsformen, Schlankheiten etc., im Prinzip giiltig /1/.
Anzumerken ist, daB die jeweilige Gr&Be der Versagenswahrscheinlichkeit
als operativer Rechenwert zu verstehen ist, welcher nur in Verbindung mit
den getroffenen Annahmen und Vereinfachungen Aussagekraft besiizt.

N’ A= 70
| FTCI T |/ —— AC! 318-71 (R=1)
— — DIN 1045
—— CEB
ﬁ=103173;373}8eanspruchungs—
tos— - —Jfraktilen (95 %)
~
~
\ \
3
~—
N M
/
W zut (Mo N /
/f ‘ yd —5>
o/
0 acin=0) 010 M
Abb., 9

4, Bestimmung von "besten" Bemessungswerten

Vom praktischen Standpunkt aus kann die Forderung nach Einfachheit
und Durchsichtigkeit von Bemessungsregeln nicht genug hervorgehoben wer-
den. Es ist z.B. wiinschenswert, jede BinfluBgr®Be darin durch einen einzi-
gen Bemessungswert zu charakterisieren, welcher allerdings als Funktion
der Verteilungsparameter angebbar sein sollte. Eine praktikable Bemessungs-
anweisung kann im vorliegendem Pall etwa wie folgt aussehen:

*
Ll AR TS TS - G HE U - 8% N*) (14)

oF¥

Im Falle der Gleichheit ist Mz =M , g*(...) die vorgeschriebene, u.U.
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vereinfachte Berechnungsanweisung.

Unendlich viele Kombinationen von Bemessungswerten erfiillen diese Un-
gleichung, wenn ein vorgegebener Rechenwert der Versagenswahrscheinlich-
keit angezielt werden soll. So wird z.B. in einigen Vorschriften N baw.

M: sehr ungiinstig angesetzt; die anderen Bemessungswerte weichen nicht

gplirbar von den mittleren Werten ab. Es wird also unterstellt, daB8 Stiit-
zen dann versagen, wenn die Belastung extrem groB wird. Damit wird den
Verformungsmomenten iibergewichtiger EinfluB8 eingerdumt, obwohl Versagen
ebenso gut durch ein splirbares Absinken der Betonfestigkeit ausgeldst
werden kann,

Um die Verhiltnisse in einem Grenzzustand so wirklichkeitsnah wie mdg-
lich zu erfassen, ist es daher sinnvoll, als Bemessungswerte jene Reali-
sationen der Variablen auszuwihlen, fiir die Versagen, sofern es eintritt,
am wahrscheinlichsten ist (vgl. Abb., 6), Nur dann wird der EinfluB der
einzelnen Unsicherheiten auf die Sicherhait der Stiitze in bestmdglicher
Weise eingeschitzt. Wir suchen also das Maximum der bedingten Dichte der
Versagenswahrscheinlichkeit, Die Bemessungswertie Na und Mg*ergeben sich

z.B, als L&sungen der Gleichungen:

r. (M° N e
af ( ) co af, (x°, w) o (150,8)
o m° AN
. L N N,
vorin gty e [ o) o[ S e0r) - om0l | w,) @] e}
£ (M°, N) = ——d—8 2 (16)
P oM° « 3N

die bedingte Dichte der Versagenswahrscheinlichkeit ist. Die L&sungen
N_ und Mg konnen als Fraktilen der Randdichten f(Na) und f(Ma) gedeutet

werden,

Bild 10 veranschaulicht die Ergebnisse einer Rechnung in Form von
Hohenschichtlinien der Dichte der Beanspruchung f (Ma’ N), der bedingten

Dichte der Beanspruchbarkeit f (MU| N) sowie der Dichte fp (M, N) am
Stiitzenkopf.

Eine Anwendung dieses Prinzips auf die iibrigen Variablen fiihrt zu
n Gleichungen vom Typ (15) mit den L5sungen xJ} wenn n die Anzahl der

i’
beriicksichtigten Zufallsvariablen ist.
Vergleichsrechnungen haben gezeigt, daB8 die Ldsungen xr, xgﬁ ....x;*

bei Vorliegen von Normalverteilungen fiir die Variablen als Fraktilen in
der FPorm
¥ = +

X. X, - « B,
A | ai Bl o

i (17)

dargestellt werden kSnnen. Hierbei ist ii der Erwartungswert, oy die

Standardabweichung, @ ein Korrekturfaktor, der eine Funktion der Ableitung

des Versagenskriteriums nach der Variablen Xi an der Stelle x: und Bi die

standardisierte Variable der Verteilungen zur Wahrscheinlichkeit Pf ist.
Zu dem gleichen Ergebnis kommt Paloheimo - allerdings auf anderem Wege

/1lo/.
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Das Maximum der bedingten Dichte der Versagenswahrscheinlichkeit
ist wenig ausgeprigt, wie auch Abb. lo veranschaulicht. Eine exakte Be-
stimmung der a-Werte ist daher nicht notwendig - ein Umstand, der der
Normungsarbeit sehr entgegen kommen diirfte.

o fIMLIN)
N“ fP (M ;N )/r \\

50%

‘ob"',’ “'l 2l % o« ST °\° Bn 250
012 l:"\go R =] = N A=T70
iy’ X)) S
NCANAY | Pf-m
oy

0,10 I /
I
a
\ j i
0,08 o

0,06 AN . -
0,05 M!
Abb. lo

Natiirlich kénnen von (17) ausgehend auch die traditionellen Sicherheits-
elemente, wie z.B. Teilsicherheitsfaktoren, abgeleitet werdens

- k L

i i
i xi -a; Bi . oi
xi,c ist der charakteristische Wert.

5. Numerische Ergebnisse und Folgerungen

Fiir den betrachteten Knickstab wurden bislang folgende Werte berech-
nets:
0 = % == 0,3 bis 0,5; o ~ 13
"Ma N, "'Mg
Setzt man insbesondere Gy = Oy = Gy, = O, eine MaBnahme die aus prakti~

schen Griinden angemessen erscheint, so ergibt sich bei Analyse amg

@ o = 0,95 /. 1,03 o = 0,9 ./. 1,0

w 8

Ist weiter B = 3,7 - ein Wert, der im Mittel dem Rechenwert der Ver-
sagenswahrscheinlichkeit bei Anwendung der hisher iiblichen Bemessungsver-
fahren entspricht (siehe Abb.9), ergeben sich in erster Niherung die

folgenden Formeln zur Bestimmung der Rechenwerte.
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v*= E(b); ¢%= B(d); h'*= E(n')

8 r~E(B,) ~ 3,7 - %, 8 ~E(8,) - 3,7 - %
oF ~ E(M_) + 1,5 + o

M
a a Ma

-e

¥ )
N, E(Na) + 1,5 g

-

N

Entsprechend Gl. (18) eingefiihrte Teilsicherheitsfaktoren werden daraus
fiir die in Tabelle 1 angegebenen Streuungen der Variablen zu

1 1
Tg = T,88 Y = T, Ty = Ty~ Lo
W 8 a a
berechnet, wobei in Ubereinstimmung mit den CEB-Empfehlungen k = /1,65/ge-
setzt wurde.

Die numerischen Untersuchungen sind noch nicht abgeschlossen, so daB
die mitgeteilten Ergebnisse vorerst nur als Anhaltswerte gelten konnen. Nach-
stehende Folgerungen lassen sich jedoch bereits jetzt ziehen.

* Globale Sicherheitsbeiwerte,gegebenenfalls im Verein mit vorgeschrie-
benen zusitzlichen oder Mindestausmitten, vermégen den erforderlichen
Abstand zwischen Beanspruchbarkeit und Beanspruchung nicht in allen
Bemegsungssituationen gleichméB8ig gut herzustellen,

*Am zweckm#sSigsten scheint eine Festlegung der Bemessungswerte auf-
grund des in Abschnitt 4 erliuterten Prinzips entsprechend Gleichung
(17) oder die Verwendung partieller Sicherheitsfaktoren in Verbindung
mit definierten Nennwerten entsprechend Gl. (18) zu sein.
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ZUS AMMENFASSUNG

Die Theorie zur Berechnung der Versagenswahrscheinlichkeit
einer schlanken Stahlbetonstitze wird erliutert. Die numerische
Rechnung gelingt durch Einfihrung von Ndherungen flir einige Bei-
splele. Es zeigt sich, dass die derzeitigen Berechnungsverfahren
kaum gleichmissige Zuverlissigkeit der Bauteile gewdhrleisten.
Ein Verfahren, "beste" Bemessungswerte aufzusuchen, wird angege-
ben. Erste numerische Ergebnisse werden mitgeteilt.

SUMMARY

A theory for the computation of failure probabilities for
slender reinforced concrete columns is presented. Approximate
numerical solutions for some examples are given. It turns out
that present design methods cannot guarentee an uniform safety
level. A method to evaluate "best" design values is derived and
illustrated by some numerical results.

RESUME

On expose une théorie pour le calcul de la probibilité de
ruine d'une colonne élancée en béton armé. On procéde au calcul
numérique pour quelgues exemples en introduisant des approxima-
tions. On congstate gque les méthodes de calcul actuelles ne
conduisent pas & une gécurité uniforme. On indique un procédé
permettant d'obtenir les "meilleures" valeurs de dimensionnement.
Or. communique les premiers résultats numériques.
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Zur zuverldssigen Bemessung von Bauteilen mit Hilfe der ersten und zweiten Momente
der Zufallsvariablen von Last und Festigkeit

For a Reliable Design of Structural Elements by Means of the First and Seconds Moments
of the Random Variables of Load and Strength

Vers un dimensionnement siir des éléments de construction & V'aide des premiers et
deuxiémes moments des variables statistiques de la charge et de la résistance

Horst SCHAFER
TH Darmstadt, BRD

1. BEinleitung

Aufgabe des Ingenieurs ist es, Bauwerke wirtschaftlich und zuver-
ldssig zu erstellen, so daBl sie die ihnen zugedachten Funktionen
erfiillen konnen und nur mit einer sehr kleinen, akzeptierten Wahr-
scheinlichkeit versagen. Pur den entwerfenden Ingenieur ist der
Teil der Versagenswahrscheinlichkeit, der aus den Streuungen der
Beanspruchungs- und Beanspruchbarkeitsparameter herrihrt, fir die
Bemessung ausschlaggebend. Wenn auch bisher noch keine befriedi-
gende Philosophie fiir die Ermittlung von Grenzwerten fiir die zu-
lédssigen Versagenswahrscheinlichkeiten in Abhingigkeit von den
Versagensfolgen besteht, so sind sich doch alle Beteiligten einig
in der Forderung nach gleicher Versagenswahrscheinlichkeit fiir
vergleichbare Bauwerke und Bauteile, Die Berechnung der Versagens-—
wahrscheinlichkeit alg MaB fiir die Sicherheit einer Konstruktion
hat die Schwichen bisheriger Bemessungsverfahren zutage gefdrdert,
und es besteht der dringende Wunsch nach einem praktikablen neuen
Bemessungsverfahren, das die Miangel des auf Nennwerten basieren-
den Verfahrens mit stark schwankenden Versagenswahrscheinlichkei-
ten vermeidet. Die Standardabweichung o ist ein brauchbares MaB
fir die Streuung der Zufallsvariablen. Ist neben dem Mittelwert X
auch die Standardabweichung ¢ einer Zufallsvariablen mit einer ge-
wissen Aussagewahrscheinlichkeit bekannt, dann fithrt die Beriick-
sichtigung dieser zusdtzlichen Information, auch wenn die genaue
Form der Dichtefunktion der Zufallisvarigblen unbekannt ist, zu
viel ausgeglicheneren Sicherheiten (Versagenswahrscheinlichkeiten)
als wenn man nur mit dem Mittelwert X oder einem Fraktilwert Xp

rechnet. ..
Das Bestreben, dimensionslose GrdBen zu verwenden, flhrte

auf die bevorzugte Verwendung der Variationskoeffizienten Vg =
Gs/is und Vg = GR/iR der Beanspruchungs- und Beanspruchbarkeits-

parameter in den bisher vorgeschlagenen Bemessungsgleichungen, Z.
B. [1] bis[6]. Dabei wurde zum Teil iibersehen oder in Kauf genom-
men, daB die Variationskoeffizienten der meisten Pgrameter nicht
konstant, sondern eine Punktion des Mittelwertes sind. éus der

Definitionsgleichung des Variationskoeffizienten V ='G/X erkennt
man, daB bei konstantem Variationskoeffizienten Vo die Standard-
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abweichung eine lineare Funktion vom Mittelwert ist, die fiir klei-
ne Mittelwerte die Streuung der Parameter unterschétzt.

Dies seli am Beispiel der Lastexzentrizitidt einer Stahlbeton-
stitze ndher erlidutert. Erwartet man bei einer Stiitze fiir die Last
die Exzentrizitidt 8 = 0, dann bedeutet dies noch nicht, daB die
Stiitze wirklich mittig belastet wird. In Abhingigkeit von der
Streuung der Exzentrizitdt e, charakterigiert durch die Standard-
abwelchung og, wird die einzelne Stiitze in Wirklichkeit mehr oder
weniger exzentrisch belastet. Rechnet man mit konstantem Variati-

s onskoeffizienten Vgyg, dann erhidlt man fir
ik € >0 auch 0,=%8»0, Die Beanspruchung der
Wuw“ !|iqpuw TR Stiitze wird unterschidtzt. Da schlanke
hthlM”U'““ﬁMﬂdﬂMMMHMH Stiitzen aber sehr empfindlich gegen ex-
N ‘ zentrische Beanspruchungen sind, erhilt
f(e) man eine groBe Schein-Sicherheit [18 JDurch
die Vorgabe einer konstanten, ungewollten
Exzentrizitit ey wurde das Problem in der
€ deterministigchen Sicherheitsanalyse ge-
-0 g +0 1lost. Eine stochastische Analyse erfor-
dert jedoch eine Beriicksichtigung der

o TR s o i streuenden Eigenschaften der Lasten und
Abb'1.s¥;£§%§tggéiiizge der Exzentrizitit., Bel anderen Parametern

wie Lage der Bewehrung, Querschnittsab-
messungen und den Festigkeiten von Beton und Staghl liegen die Ver-
h&dltnisse dhnlich. Deshalb wird nachfolgend ein Vorschlag flir ei-
ne bessere Erfassung der Streuungen der Parameter unterbreitet.

2. Vorschlag flr eine wirklichkeitsnahe Erfassung der Streuungen
- von Beanspruchungs- und Beanspruchbarkeitsparametern

Um die Abh8ngigkeit der Standardabweichung vom Mittelwert zu er-
fassen, werden die folgenden linearen Funktionen angenommen mit
denen die Streuungen der meisten Parameter ausreichend genau be-
schrieben werden konnen:

Festigkeit: o = ogr + Vor - T» VR = VoRr + OoR/T ,
(1

Darin sind oygs Vors 90g8» Vpg konstante Werte, die mit Hilfe der

linearen Regressionsanalyse in Abhingigkeit vom Mittelwert der un-
tersuchten Parameter bestimmt werden kdnnen.

Last: oy = 0os * Vog - 8, Vg = Vgg + 00g/8

/ 5
% A 34 % |
e . -t
TOR[ .. gl BTC teVog Ios 08
< {ibliche Annahme - - _
— T ~— 3
Ve *
el
1’-%3
Vegp———— —— =
- S
a) Beanspruchbarkeit (R) b)Beanspruchung (S)

Abb, 2: Btandardabweichung und Variationskoeffizient in Abhingig-
keit vom Mittelwert.
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Die bei konstanten Variationskoeffigienten V_ ., V_ o bisher still-
schwelgend vorausgesetzten Bezilehungen sind %gstrgéhelt in Abb. 2
eingetragen. Sollte eine lineare Beziehung nach G1, (1) bei der
Beschreibung der Streuung filir einen Einzelparameter einmal nicht
ausreichen, dann ksnn durch eine bereichsweise Linearisierung(punk-
tierter Linienzug in Abb. 2a) eine gute Anndherung erzielt werden.
An dieger Stelle sgeil darauf hingewiesen, daB die Variationskoeffi-
zienten V,,V, fir kleine Mittelwerte T, § iiber alle Grenzen an-
wachsen, In “diesen Bereichen darf das bel der Ermittlung der
Streuung von Funktionen Z=f(X,,X;,,Xs) von unkorrelierten Zufalls-
groBen X, aus der TAYLOR-Entwicklung gewonnene GAUSS'sche Fehler-

fortpflafizungsgesetz 2 fl 2 2
Gz =~ f?;v (E)'F/ g"" l J_t«.i'tz".fu) oy (2)
das nur filr kleine Werte von 0X<g§ oder “x = VX<3:1

9 X
(in praxi §§ = VX<:O,3) gilt, nicht angewendet werden,

2.7 Ermittlung der Standardabweichung O und des Variationsko-

effizienten VOX einer ZufallsgroBe X

Vorausgesetzt wird die Auswertung einer groBlen Zahl von Zu-
fallsexperimenten (Versuchen), wobel jeweils fiir einen erwarteten
Mittelwert X die Standardabweichung o, bestimmt worden sei., Tragt
man die o iiber X auf (Abb. 3), dann 148t sich meist mit guter
ql Ndherung eine Ausgleichsgerade durch
diese Punkte zeichnen. Numerisch
gewinnt man Schétzwerte flir die Re-
gressionskoeffizienten - und VOX

v E&‘Gafp%f*l mit den Mitteln der linearen Regr-
arcty Vox — essionsanalyse (Fehlerquadratmini-
mum, Maximum-Likelihood-Methode),
die der Fachliteratur

entnommen werden kdnnen,

Abb, 3 zur Ermittlung einer
Ausgleichsgeraden

Nachfolgend soll versucht werden, die Standardabweichung der
fiir die Stlitzenbemessung wesentlichen Parameter anzugeben, Hierzu
8ind weitere Untersuchungen erforderlich.

2.2 Standardabweichung der Last

Wahrend die Streuung des Eigengewichts im allgemeinen vernachliés-
sigbar sein wird, kommt einer richtigen Einschidtzung der Streuung
der Verkehrslast eine groBe Bedeutung zu. GréBe, Verteilung und
Streuung der Verkehrslast ist fiir die verschiedenen TLastarten sehr
verschieden [#]. Thre Transformation zu den SchnittgrdBen, z. B.
zum Biegemoment S, und zur Normalkraft S, exzentrisch belasteter
Stltzen kann beil 1inearen Systemen durch die folgenden Gleichun-
gen beschrieben werden [SJ;

m
oy = ; 213 ¢ Soi By = g.' G5 = Bpy | (3)
Darin sind die So4 die einzelnen ILasten und die 8q54 854 system-
und steifigkeitsabhingige ZufallsgroBen, die aber infolge der da-
bel durchgefihrten Integrationen meist deterministisch angenommen

werden kodonnen, Da die Lasten oft mehr oder weniger streng korre-
liert sind, ist die Ermittlung der Streuungen der SchnittgrdBen
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aufwendig [6]., Die Lasten sind am wenigsten erforscht. Ihrer bes-
seren Erfassung kommt daher eine grofBle Bedeutung zu.

2.3 Standardabweichung der Lastexzentrizitit

Die Exzentrizitdt der Stiitzenlast setzt sich aus zwel Anteilen zu-
sammen, der Lastexzentrizitdt an der Lasteinleitungsstelle und den
geometrischen Imperfektionen der Stiutze., Der erste Antelil hingt
mit den im vorigen Abschnitt besprochenen Problemen zusammen, Der
zweite Anteil, bisher ebenfalls wenig untersucht, kann ndherungs-
welse aus den Neigungen der Stiitzen ermittelt werden. Angaben Uber
Fertigteilstiitzen finden sich in[8J, mit deren Hilfe die in Abb.4
dargestellten Standardabwelchungen er-
12 15 lom] h=4nm mitfelt wurden. Die geometrischen Im-
perfektionen sind unabhéngig von €,
h=3m Die Gesamt-Standardabweichung ergibt

h=2m gsich zu _ 2 z2 &
O 'VEe1 + Tgo .

Bei Ortbetonstiitzen ergeben sich wahr-
scheinlich grdBere Werte. Die Stahlbe-

h=8tiitzenhdhe

0 3 =€ tonnorm der BRD schreibt eine unge-
Abb. 4: Geometrische Tm- wollte Exzentrizitdt e, = §,/300 (s,=
perfekticnen von Abstand der Wendepunkte der Knickbie-

Fertigteilstiitzen gelinie) vor. Dieser Wert ist sehr ge-
ring; er darf aber nicht separat, son-

dern muB im Rahmen des gesamten Sicherheitssystems der Norm be-
trachtet werden, e, =1cm + 0,0%d 5cm 18] entspricht der Wirklich-
keit wahrscheinlidﬁ besgser.

2.4 Standardabweichung der Betonfestigkeit

Die Abh&ngigkelt der Standardabweichung von der Betondruckfestig-
keit wurde in [2] fiir Normalbetone eingehend untersucht.Im intere-
gssierenden Festigkeitsbereich kann eine konstante Standardabwei-
chung von g ~ 50 kp/cm? angenommen werden,

"5,
x_ﬁh_u_ (-]
» L 3
» ; P Y .
*e LN & o " -
: L 4 3 i "| . ...l‘ .. '. - A.‘ I.
Gogn ¥ 50 Phnt R RV R I Ak K i Y T T I A
# XA e e i T D O S e
L] "?‘};:‘- I 5. Fu A ‘.‘} a .n.‘-.—% - .
» ] & s..‘ % & .4- ‘é bl ] MR .‘- S » o -" S X S L £
L . o.'.“. L h:o [ R [
z . B .
/ ) A .
o} » L3
ﬂ kp/e E
] 7] w ] 0 250 E7] ] %0 7 o ] 0 7] w n a0 b

Abb. 5: Standardabweichung der Betondruckfestigkeit

Die Standardabweichung des Betons hingt sehr stark von der Sorg-
falt beil der Herstellung, Verdichtung und Nachbehandlung des Be-
tons ab., Aus Abb. 5 erkennt man auch, daBl jede Aussage iliber die
zu erwartenden statistischen Kennzahlen nur mit einer gewissen
Wahrscheinlichkeit méglich ist.

Die Betonzugfestigkeit streut noch stidrker als die Druckfe-
stigkeit., In Abb., 6 sind die Standardabweichungen iiber den Mittel-
werten aus 648 unter Laborbedingungen durchgefiihrten reinen Zug-
versuchen aufgetragen [10]. Die relativ geringe Zahl erlaubt noch
keine endgliltigen Schliisse, Im Gegensatz zur Druckfestigkeit
scheint bei der Zugfestigkeit eine lineare Abhé&ngigkeit der Stan-
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dardabweichung vom Mittel-

CAap® o0
T

K

o
<

Gk“w\ 648 Priifkdrper wert gegeben zu sein.
[h%ﬁl . 2.5 Standardabweichung der
(:::::::::::::) ¢ Stahlgtreckgrenze
a 5 | - [ ] ° *
' Querschnitt: . . o Der Stahl kann bei Druck-
7xT7,10x10,13%13 o4, ,, >~ gliedern infolge der ge-—
&0 — (emxcm] o, S A ringen Betongrenzstauchung
¢ Sl O, und bei biegebeanspruchten
15 |— . * g SO T Bauteilen wegen der erfor-
. o 4t L e derlichen Begrenzung der
10 - * et st . RiBweiten meilst nur bis zur
' . Lo . Streckgrenze ausgenutzt
& ¢ werden, Die Streuung der
05 |- 7 * Streckgrenze ist relativ
oy 0055 B [“P(mﬂgut erforscht. Aus Abb, 7
| ! | b2 - 1" —geht hervor, daB die Stan-
0 10 20 30 by  dardabweichung nur wenig
Abb. 6: Standardabweichung der Beton- von der Stahlgiite abhéngt
zugfestigkeit (Labor) (cogg 2,4 kp/mm?), Natiir-
lich kann man filir die ein-
zelnen Stahlgiliten auch Variationsko-
effizienten festlegen und damit rech-
3 Q&E%&ﬂ + nen (punktierte Linien in Abb. 7).
2k % Man erkennt Jedoch, daB diese Vorge-
2 “nJP ------ 8 hensweise nur bei GroBen mit diskre-
; et ten Mittelwerten sinnvoll ist.
‘-4 1 ] 1 I Bs
, i
1o 20 50 40 [kp/mm] 2,6 Standardabweichung der Quer-—
1 stanl - By %, Lit gchnittswerte
o St37 4000[28,1({2,34 [[11]] Die Streuungen der Betonquerschnitte
BSt42/50 48 |2,40 |[ 61| kbnnen aus den Streuungen der Quer-

" 47,312,84 112] ] schnittsabmessungen ermittelt werden.
FEE22 1367(2891(2,37 {[13]) | An 1068 Fertigteilstiitzen wurden die
Caron 113731496|2,00 |[13]| in Abb., 8 dargestellten Streuungen der

ASTM A7 3124|277 (2,20 [[14]] Stiitzenabmessungen gemessen [g]. Ort-
B.S.785 1050|330 3,01 |[[15] | betonstiitzen diirften erheblich stér-
ker gtreuende Querschnittsabmessungen
. . besitzen. Die geringen Streuungen der
bl e gﬁiﬁgaggibgi;hl— Quergchnittsflgche der Bewehrungsstih-
streckerenze le wird man meist vernachldssigen kon-
nen., Je nach Priifvorschrift sind sie
auch in den Streuungen der Stahlistreck-
grenze enthalten.
f‘gﬁibﬂm] Bei den Querschnittswerten ist

die Lage der Bewehrung im Querschnitt
bel biegebeanspruchten Bauteilen von
groflem EinfluB auf die Traglast., Hier-
bei muB mit noch grdBeren Streuungen

4
_ IR =_— gerechnet werden, als bei den Quer-
B o—° schnittsabmessungen von Ortbeton -
" stiitzen.
U U P P N W S IO 0. 1_,2]}nﬂ
040 a0 50 400
Abb, 8: Standardabweichungen der Querschnittsabmessungen
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3. Bemsssungsgleichungen flir normalverteilte Lasten und
Fegstigkeiten

Fur die folgenden Bemessungsgleichungen sei vorausgesetzt, daB die
Beanspruchungen und Beanspruchbarkeiten durch jeweils eine eindi-
mensionale, normalverteilte Zufallsgrofle ausreichend genau be-
gschrieben werden kdnnen., Diese Voraussetzung ist oft nur ndherung-
swelse erfiullt.

Nach [2]1, [3], erhdlt man die Versagenswahrscheinlichkeit Pf
als Funktion der ersten und zweiten Momente von Beanspruchung und
Beanspruchbarkeit .@/egp

e o o [ exp [FVTdY = (3/62) = Pp)
mit 8 = B/6z = r—§ :

(4)

Vt§ki*'skf
Bei einer maximal zul8ssigen Versagenswahrscheinlichkeit von zul.
Pr muBl B=BZ@ ' (zul. Pr) sein., Die erforderlichen B-Werte konnen

{hgﬂa Abb. 9 entnommen werden, Damit ergibt sich die
-8 Bemessung in der Form _ = 3
-}P———Beispie ¥z § +f y 6% + 6s (5)
el¥ o Werden die Angdtze fir die Standardabweichungen
“Sizuls (1) eingesetzt, erhdlt man
-4 F & 5+ B Y(GrtVoe7)%+ (GostWst JF (6)
“¥p- *ﬁ Flir die Ermittlung der erforderlichen Beanspruch-
'az é 3 QA"barkeit ¥ ist diese Gleichung ungeeignet, weil F
Abb.G: Pe-Be- links und rechts vom Gleichheitszeichen steht,

wois 2f Das Bemessungsproblem ist auf verschiedenen We-

FRAIGE SpE gen 10sbar:

a, Geschlossene LOsung

g[8 Vor G/ +B ~]/u,[a%+\gng4f‘%; AT i) .

oR

b. Iterative Losung
Man setzt in erster Ndherung auf der rechten Seite von Gl. (6)
T = § und ermittelt T aus Gl. (6) neu; usw. '

¢. Ndherungslosung _
Setzt man T = §/(1-B+Vop)in die Ldsung des ersten I terations-
schrittes nach b, und diese in Gleichung (6), dann erhidlt man
als Bemessungsgleichun

F & 8+ 3 VSt Vor(s+AV[Conr Vo S/RVon) Haus Vo5 o[Gict eS| (B)
Diese N&herung liefert ausreichend genaue Ergebnisse. Pir konstan-
te Standardabweichungen, d. h. Vo = 0, Vog = 0, erhdlt man fol-
gende einfache Bemessungsgleichung

F & §+BYVGR +6Gs® | (9)
In dieser Form ist die Gleichung invariant gegen Koordinatentrans-
formationen. Hingen die Standardabweichungen linear vom Mittel-

wert ab und ist ogg = O, gpgg = 0, dann erhdlt man die Bemessungs-
gleichung in der von CORNELL (3] angegebenen Form.

— - 3 - ! =2

e s MR- prwve 1/ -] (10)
Der Ausdruck in der geschweiften Klammer kann als Sicherheitsfak-
tor gedeutet werden, Diese Schreibweise kommt der Vorstellung ent-
gegen, dalB eine Last mit einem konstanten Faktor zu erhdhen sei,
um ausreichende Sicherheit zu erhalten., KIRCHNER [#6]schlug vor,
bei kleinen Mittelwerten die Streuung direkt additiv zu berliick -
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gichtigen, wie es in Gl., (9) zum Ausdruck kommt, Die vorangehen-
den Bezlehungen lassen die Zusammenhidnge von additiven oder mul-
tiplikativen Sicherheitszuschligen gut erkennen. Ein Sicherheits-
system mit ausgeglichenen Versagenswahrscheinlichkeiten erfordert
eine unterschiedliche Beaufschlagung der streuenden Parameter:

Parameter mit og # 0, V, = 0: additiver Zuschlag

Parameter mit o5 = 0, Vg # 0: multiplikative Erhdhung

Parameter mit g = Vo « X : kombinierter Zuschlag
Ein solches System wird flr die praktische Anwendung recht kom-
pliziert., Demgegeniiber erscheint die direkte Anwendung der Bemeg-
sungsgleichungen (5)3(10)als eine mogliche Alternative. Wenn die
Standardabweichungen orp und og aus den Streuungen weniger Parame-
ter relativ mihelos ermittelt werden kdnnen, kann filir eine gege-
bene Last § die erforderliche Beanspruchbarkeit r bestimmt und da-
mit z, B, die Bemessung der Bewehrung vorgenommen werden, Fir das
anzustrebende Sicherheitssystem ist es von untergeordneter Bedeu-
tung, ob mit Erwartungswerten oder Fraktilwerten gerechnet wird,
wenn der Informationsgehalt der verwendeten GroBen gleich ist.

4, Ermittlung der Kenngrodlen von Beanspruchungen und Beanspruch-
barkeiten

Beanspruchung und Beanspruchbarkeit sind meist Funktionen einer
groBen Zahl von Zufallsvariablen. Wird der Vergleich von Bean-
spruchung und Beanspruchbarkelt auf der Basis von Spannungsresul-
tanten der Koordinatenspannungen durchgefiihrt, dann handelt es sich
zudem meist um mehrdimensionale Probleme, deren einfache rechneri-
sche Handhabung nur moéglich ist, wenn ihre Reduktion auf ein ein-
dimensionales Problem gelingt £L57].

Nachfolgend sollen einige Transformationsgleichungen mitge-
teilt werden, die fir normalverteilte Zufallsvariable Xi meist
streng und fiir Variable mit anderen Dichtefunktionen nZherungs-
welse gelten, n
Summe von Zufallsvariablen Xi : Z = 2] Xi

n 2 =1
2= 38, &G = > B
1=1 =1 * n (11 )

Produkt von Zufallsvariablen Xi['!?J: 7 = ‘;'II; X4

2=, sel= fEead) (12)
5, Vergleich mit Bemessungsverfahren von BASLER oder CORNELL
—?‘L["JPF Dgo.@am An einem einfachen Beispiel sei ein
-6 \ \ M= A% Vergleich durchgefiihrt. Bine mittig
wff fe esaipimr Pelastete Stlitze wurde mit dem vorge-
-k Gops =50 Them?__ schlagenen Verfahren Gl. (7) fiir eine

2q Versagenswahrscheinlichkeit Pf= 31070

bemessen. PFlir verschiedene Variations-

By, koeff. Vg, Vg wurde nun die Versagens-—
-1 BO0TRP o] wahrscheinlichkeit nach (23 ,[3Jermit-
Abb. 10: Pp in Abhingig- telt. Abb. 10 zeigt die starke Abhin-

Yoit vom G=% B glgkeit von Pp von der Betonglite bei

tongiite einer Bemessung mit konstanten Variati-
onskoeffizienten. Natiirlich kann man

Ubereinstimmung erzielen, wenn man die

Variationskoeffizienten in Abhidngigkeit von der Betongiite festlegt
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ZUSAMMENFASSUNG

Fur eine zuverlidssige Bemessung von Bauteilen mit Hilfe der

ersten und zweiten Momente der Zufallsvariablen von Last und Fe-
stigkeit werden Bemessungsgleichungen angegeben. Die Streuung
der Zufallsvariablen wird durch eine lineasre Funktion vom Er-
wartungswert beschrieben. Fir einige Parameter werden Streuungen
mitgetellt. Die angegebenen Transformationsgleichungen erlauben
die Brmittlung der Momente von Funktionen. Am Beispiel der mit-



Horst SCHAFER 225

tig belasteten Stitze wird eine Vergleichsuntersuchung durchge-
fihrt.

SUMMARY

Design equations are given for a reliable design of structu-
ral elements by the means of the first and second moments of the
random vagriables of load and resistance. The standard deviation
of the random variable was chosen a linear function of the
expected value. For some parameters the standard deviations are
given. The presented transformation equations allow the computa-—
tion of the moments of random functions. A comparison is made by
an exeample of a centrically loaded column.

RESUME

Pour un dimensionnement silir des éléments de construction &
l'aide des premiers et deuxiemes moments des variables statisti-
ques de la charge et de la résistance, on indique des équations
de dimensionnement. La dispersion des variables statistiques est
écrite par une fonction lindaire & partir de la valeur probable.
Pour quelques parametres, on indique les dispersions. Les équa-
tions de transformation indiquées permettent d'obtenir les
moments des fonctions statistiques. On effectue un calcul com-
paratif pour l'exemple d'une colonne soumise & une charge centrée.

Bg. 15 VB
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