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Safety Index of Short Concrete Columns

Indice de sécurité pour des colonnes courtes en béton

Sicherheitskennwert für kurze Stahlbetonstützen

A.M. HASOFER R.G. SEXSMITH
Visiting Professors

Institute of Engineering
National University of Mexico

Mexico

The goal of consistent safety is hampered by the fact that it is difficult to measure
safety and to define what we mean by consistency. An ideal situation might be to have
explicit probabilities and explicit costs of consequences, and to design for minimum
expected cost. Probabilities are not really attainable, however, and other measures of
safety are needed as substitutes.

The use of up to second moment measures of variability (means and variances), and
a determination of safety index/3 to represent degree of safety (1, 2, 3, 4), has proved
to be an appropriate bridge between traditional design procedures and explicit probabilistic
design. A recent second moment method proposed by Hasofer and Lind (4) permits
computation of the safety index in terms of any number of basic variables, thus overcoming
several shortcomings of earl ier approaches.

The safety index is a measure of safety that can be related to probability of failure
when distribution assumptions are made. In the absence of such assumptions, it is in itself
a measure of safety. Consistent safety may then involve design to a chosen safety index.
Choice of new design rules can be based in part on approaching constant safety index for
particular kinds of structures or elements. When the safety index varies, as in current
design rules, economy may be achieved by bringing it to a consistent level (for example,
constant).

The Hasafer-Lind criterion is formulated herein for the column interaction problem
(bending and axial force) and the computation of safety index is described. Cases of normal
and lognormal basic variables are considered, and correlation of axial and flexural loading
is included. A few selected results are presented to indicate the variation of under
current AC I design rules.
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A. The Hasofer-Lind Criterion for Safety Index

The safety index proposed by Hasofer and Lind (4) is computed as fol lows:

Let X (Xi, Xo, • •., Xn) be the vector of basic random variables relevant to the
design. Let the failure criterion for the design be F (X) < 0. The criterion devides the
space of X into a safe region G(X) and a failure region G* (X).

Now make an orthogonal transformation of the variables X to a new set of variables
Y (Y], Y2/ •.., Yn), such that the new variables Y; are uncorrelated. In addition,
make suitable transformations such that the Yj are approximately normally distributed.

Next introduce reduced variables y; (Yj - Y;)/Let y (yj, y2, yn).
To the failure criterion F(X) < 0 there will correspond in Vhe space of y a safe region
G(y) and a failure region G*( y).

The safety index ß is the minimum radius from the origin of y to the failure region

The short column interaction problem is an ideal one to demonstrate the power of this
criterion, for the following reason: Previous attempts to formulate a second moment code
format have required identification of the variables as load or resistance variables. The
Cornell and Rosenblueth - Esteva formats (1 and 2) require the failure event to be expressed
in terms of resistance R and load U. The Ditlevsen proposal (3), which handles more than
two variables, requires identification of variables that increase safety and those that
decrease safety. In the short column interaction problem the axial load P can play either
role, depending on its value, because of the non-monotonic interaction curve.

B. Behavior of Short Concrete Columns

The model of physical behavior used in this study is the one commonly used in strength
design of reinforced concrete, based on the Whitney rectangular stress block and linear
strain variation across the section. Attention is restricted to symmetric tied columns with
reinforcement only in the faces parallel to the axis of bending. Capacities and loads are
treated in non-dimensional form by dividing axial quantities by btfc' and flexural quantities
by bt^fc'. A single interaction diagram in non-dimensional form is defined by the
variables listed in Table I.

G*{y).

d/t

As/bt

Symbol

TABLE I

Definition

Ratio of concrete strain at failure
to steel yield strain

Depth from face of concrete to face
of reinforcement/total depth of section

Ratio of steel to concrete area

Ratio of steel yield to concrete
compressive strength

Typical value

2.0

0.15

0.04

14

k] and k2 Whitney stress block parameters 0.85
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C. Application of the Criterion to Short Concrete Columns

The random variables relevant to the design are P, M, and V, where P is the
non-dimensional axial load (actual force divided by btfc', M the non-dimensional flexural
load (actual moment divided by bt fc'), and V a random variable, representing variability
of flexural capacity on the interaction curve as a function of load P.

When P, M, and V are approximately normally distributed, the failure region is
defined by

f(P) + V - M < 0 (1)

where f(P) is the flexural capacity on the interaction curve as a function of load P, E(V) =0,
°~(V) g(P)r the standard deviation of flexural capacity as a function of P.

When P, M, and V are approximately lognormally distributed, the failure region is
defined by

f (p) V - M <0 (2)

where E(log V) 0, ""(log V) h(P) g(P)/f(P), the coefficient of variation of flexural
capacity as a function of P.

P and M may be correlated, while V is uncorrelated with both P and M.

1. Procedure for Normal Random Variables

Let R be the correlation coefficient of P and M, and write

P=P+ op p (3)

M M + crM(m J1 - R2 + p R) (4)

V g(P) (5)

where p and m and v are uncorrelated variably with mean zero and unit standard deviation.
It may be verified that E(P) P, <y2 (P) <Tp, E(M) M, rr2 (M) <Tj\, Cov (P, M)

R, as required. Moreover, the safety index obtained with the basic variables
P, M, V, is the same as that obtained with the reduced variables, p, m, v.

The failure surface is

F(p, m, v) F(P) + V - M (6)

and the safety indexß is the distance from the origin to the surface F(P, m, v) 0.

To calculate /3 we use the iteration technique described in Hasofer and Lind (4). The
iteration formulae are;

P(n+1)= *F,

Xf2
m(n+1)= X Fg
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[(p("+,))2 + (v("+,))2 + (mM))2 ] ,/2

where
F, - 4? (n)

"»-is*1»
p^ F] + >> F2 + m^ F3 - F

X= ö 5 5
F1 +F2 +F3

_ r/ (n) (n) (n)\
F(p ', v mx ')

and the partial derivatives of F can be shown to be

l£äf. (P) <Tp+g.(p)v <rp - o" R

dp m

9<p>

|L. f77
fcm m »

A starting point p^ \ v^\ ^
must be chosen. There are a number of perpendiculars

from the origin to the failure surface, and the iteration procedure may converge to any one
of them, depending on the starting point of the iteration. It is necessary to choose several

starting points and take the smallest of the /J' s obtained.

2. Procedure for Lognormal Random Variabl es

In this case we write

P P exp (VpP)

M M exp £ Vm(m i|l - + p R)J

V exp £h(P) v]
2

where p, m, v, and R are defined as before, and E (log P) log F, O" (log P) V
E (log M) log M, <T* (log M) Vm, Cov (log P, log M) Vp V/y\ R.

The failure surface is

F(p, m, v) f (p) V - M

and the safety index ft is the distance from the origin to the surface F(p, m, v) 0.
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The iteration formulae for computing the distance/3 is the same as forimormal random
variables, except that the partial derivitaves are

The choice of starting points again must be made with care to avoid missing convergence
to the smallest/3 • The authors encountered this problem in some instances, especially in
the lognormal case.

D. The Information Base

Current AC I design criteria is generally assumed to relate to load information by ANSI
Committee A58. Recent studies have resulted in prediction of mean lifetime loadings for
offices that differ substantially from ANSI. Because of this bias in design load, /3 varies
considerably. In order to focus on strength consistency, we assume that the mean peak lifetime

load from Mc Guire and Cornell (5) is used as the live load in the AC I design procedure.
This means that the^3 values discussed subsequently are for the single design area at which
ANSI and Ref 5 give the same loading (about 1000 ft The coefficient of variation of
live load Vj_ is taken as 0.15. Mean dead load is taken as nominal dead load, and
coefficient of variation of dead load is taken as 0.10. Current ACI load factors are used
to relate design load to ultimate strength.

Strength of concrete columns is subject to prediction error due to model discrepancies,
material and geometric variability, and professional uncertainty. Studies of these factors
has led the authors to choose a bias on strength b 0.95 as representative of ACI criteria,
where b U U, U is ACI predicted strength and U is mean strength. The coefficient of
variation of strength Vv was chosen as 0.20 on the strength as represented by radius to the
interaction curve.

For a given "case" in this study, a dimensionless interaction curve is generated. For
a particular ratio of nominal dead/live load intensity, a series of permissible ACI load
cases (P, M) are generated and denoted by letters A to I to identify eccentricty. For each
of these cases, /3 is computed as indicated in Section C. Dead/live ratio did not
significantly affect /3, and was taken as 0.5 in the calculations discussed here.

For any axial load P, the flexural capacity f(P) is computed from the parameters and
principles discussed in Section B. The standard deviation of flexural capacity, g(P), is
computed from the coefficient of variation of radius to the interaction curve (evaluated
from studies of available data) and corrected to account for the fact that it must represent
a "horizontal slice" through the interaction curve, rather than a "radial slice".

E. Selected Results

VPVp [f' (P) + f(P) h' (P) v] - MVM R

if Vf (P) h (P)

A large number of cases representing varying loading, geometry material strength,
and correlation coefficient of axial and flexural load were evaluated, and sensitivity studies
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were carried out by varying parameters in these cases. The results presented herein are
selected to illustrate the main conclusions of the study.

A basic column design was chosen using ACI design rules with the parameter values
as given in Table I. For this design, point C on the interaction curve represents an e/t
ratio of 1.1, in the tension zone close to the balanced design. Point G has e/t 0.30,
in the compression zone. Other designs are A (e/t 3.3), E(e/t 0.8), F(e/t 0.52),
and I (e/t 0.05). Parameter variations discussed below represent reasonable designs with
the named parameters varying from the basic case and the others held constant at the basic
values of Table I.

The safety index appears very sensitive to the e/t ratio, particularly for the lognormal
case, where (fig l)/3 is high in the compression failure zone (G), decreasing to a
minimum near the balanced point C. The normal case of fig 2 shows a peak at point G in
the compression zone, and a constant value in the tension zone.

The results show that /3 is not very sensitive to d/t. Fig 3, lognormal case, shows

an extreme situation in which /3 became larger as d/t increased, but for the normal case,
fig 4,/3 remains constant. Thus geometry is well accounted for in present design practice.
The variation of /3 with steel percentage As/bt is pronounced in the lognormal case (fig 5)
and insignificant in the normal case of fig 6.

The effect of steel strength appears in figs 7 and 8 for the lognormal and normal cases
respectively. The strength ratio fy/fc' does not appear to alter /3 in an important way.

The effect of correlation between axial load and moment is indicated for the lognormal
case in fig 9. Designs A through E show increasing /3 with increasing correlation coefficient.
This occurs because negative correlation results in increased chance of tension failure.
Designs G and I in the compression zone show the converse, as expected. Positive
correlation for compressive zone designs decreases the safety. These trends occur in the
normal case (fig 10) but the variation is so slight that it is almost indiscernible.

The safety index appears to be sensitive to most variables in the lognormal case, less

so in the normal case. It is higher in the lognormal case, as should be expected due to
the improved strength situation when strength is lognormally distributed.

fi appears to approach 3.2 in a number of situations in the lognormal case, and this
may be a reasonable calibration point. One possible consistency rule for column designs
would be to alter design rules to give/3 3.2. This would result in slightly more
economical columns in many cases, but would not decrease strength in the cases where /3
is already at this calibration point.
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SUMMARY

The Hasofer-Lind method of computing a second moment measure
of safety called the safety index is applied to the case of short
reinforced concrete columns. The variation of safety index with
the usual parameters is discussed for current ACI (1974) design
rules.

RESUME

On applique au cas de colonnes courtes en béton armé la méthode
de Hasofer-Lind consistant à calculer Lin indice de sécurité d'après
la méthode des moments des variables statistiques. La variation de
l'indice de sécurité selon les valeurs des paramètres de dimension-
nement usuels est étudiée pour les règles de dimensionnement ACI
(1974).

ZUSAMMENFASSUNG

Die Hasofer/Lind-Methode für die Berechnung eines Sicherheits-
Kennwertes mittels den Methode der zweiten Momente, wird auf den
Fall kurzer Stahlbetonstützen angewendet. Die Variation des
Sicherheits-Kennwertes mit den üblichen Parametern wird für die gültigen
ACI (1974) Normen diskutiert.
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Ein wahrscheinlichkeitstheoretisches Konzept zur Ermittlung "bester" Bemessungswerte
für schlanke Stahlbetondruckglieder

A Probability Theory Concept for the Determination of "Best" Design Values of Slender
Reinforced Concrete Compression Members

Un concept basé sur la théorie de probabilité permettant d'obtenir les "meilleures"
valeurs de dimensionnement pour les pièces comprimées élancées en béton armé

R. RACKWITZ 0. KNAPPE
Wiss. Mitarbeiter am Institut für Massivbau

Technische Universität München
München, BRD

1.- Einführung
Ein Versagen von schlanken Stahlbetondruckgliedern erfolgt ohne

Vorankündigung und ist in der Hegel mit hohen Schadensfolgen verbunden. Her
"sicheren" Bemessung solcher Bauteile kommt daher besondere Bedeutung zu.
Es ist dabei notwendig, die mechanische und geometrische Niohtlinearität
des Tragverhaltens bei der Festlegung der Bemessungswerte zu berücksichtigen.

Hie aktuelle Größe der Variablen ist im vorhinein unbekannt und vom
Zufall beeinflußt. Eine sicherheitstheoretische Betrachtung des Problems
der Sicherheit von Bruckgliedern ist daher mit den Methoden der
Wahrscheinlichkeitslehre zu führen. Her Begriff "Sicherheit" ist durch
Zuverlässigkeit zu ersetzen und z.B. durch den Wert der Versagenswahrscheinlichkeit

zu beschreiben. Hie Unsicherheit über eine Einflußgröße findet
in Form eines Verteilungsgesetzes oder einer zufälligen Funktion quantitativ

Ausdruck.
Genormte Bemessungsanweisungen müssen einfach sein. Sie sind so

einzurichten, daß im gesamtem Anwendungsbereich eine gleichmäßige, ausreichend
kleine und wirtschaftlich vertretbare Versagenswahrscheinlichkeit gegeben
ist.

Bemnach ist zunächst die Versagenswahrscheinlichkeit für definierte
Versagenskriterien zu berechnen /l/ und ihre Empfindlichkeit gegenüber
den Einflußgrößen zu untersuchen /2/. Bann ist das Kriterium zu formulieren,

welches die Ableitung von Bemessungsanweisungen erlaubt, welche den
vorstehend genannten Bedingungen in bestmöglicher Weise entsprechen. Bie
Kenntnisse sind noch nicht ausreichend, Wirtschaftlichkeit und Zuverlässigkeit

unmittelbar zu optimieren. Bas Hauptaugenmerk ist vorerst auf
Gleichmäßigkeit des Sicherheitsniveaus zu richten. Ber Zielwert der
Versagenswahrscheinlichkeit ist daher einstweilen in Übereinstimmung mit dem Sicher-
heitsniveau gewählt, welches durch die derzeit üblichen Bemessungsverfahren

im Mittel garantiert wird.
2. Mechanisch-physikalische Grundlagen

Gegeben sei eine Kragstütze mit symmetrisch bewehrtem Rechteckquerschnitt,
welche durch eine Normalkraft N N und ein Biegemoment M M°

a a



206 III - KONZEPT ZUR ERMITTLUNG "BESTER" BEMESSUNGSWERTE

belastet wird (Abb. l). Ihre Schlankheit sei X 2 • l/i (l Stützenhöhe,

i Trägheitsradius des Betonquerschnitts). Für die Werkstoffe gelten

folgende wirklichkeitsnahen Annahmen:

a) Beton - die Spannungsdehnungslinie folgt dem Parabelrechteck-
gesetz (Abb. 2). Die Rechenfestigkeit ßß beträgt bei kurzzeitiger

Belastung 85 $ der Würfelfestigkeit ß und sinkt bei
andauernder Belastung auf 0,72 ßw ab. (Siehe /l/).

b) Betonstahl - zugrundegelegt wird die Verwendung eines natur¬
harten Betonstahls, dessen Spannungsdehnungslinie bilinear
verläuft (Abb. 3).

Q

o,K Fe Fe'

M V' bd

Fe'
TS

_L
vT

Stützenquerschnitt

Abb. 1: Statisches System und
Stützenquerschnitt

6"b=pR«£b- oaeb»2

6-b=pRj 2 S £bS 3.5

3,5

ton oc EbR=103fR

Abb. 2

5 -iE,['/..]

tan y - Ee= 2,1 •106kp/cm2

Abb. 3

Im übrigen gelten die üblichen Voraussetzungen der Tragwerksberech-
nung nach Theorie II.Ordnung (z.B. /3/).

Das Versagen einer Stahlbetonstütze kann auf drei Arten (Grenzzustände)

erfolgen, die sich gegenseitig ausschließen:
a) Bruch der Betondruckzone durch Überschreiten der Bruch-

stauchungen} dieser Zustand wird im folgenden als Versagensart
A bezeichnet.

b) Überschreiten einer plastischen Verformungsgrenze der auf der
Zugseite liegenden Bewehrung - Versagensart B.

c) Instabilität der Stütze, bevor die Grenzdehnungen des Betons
oder Betonstahls erreicht werden - Versagensart C.

Versagensart B kennzeichnet kein Versagen durch Verlust des
Gleichgewichtes, sondern ist durch Überlegungen zur Gebrauchsfähigkeit und
Dauerhaftigkeit des Bauteils festzulegen. Ein Versagen durch Zerreißen
der Bewehrung kann wegen der großen Bruchdehnungen der üblichen Betonstäh-
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le außeracht gelassen werden.
Zur Berechnung der möglichen Grenzzustände wird die inhomogene

Differentialgleichung der Biegelinie der Stütze (siehe Abb. 4 bzw. Abb.5)

y" (x) MW
LEJHx)

A E (*)
d (1)

in zwei gekoppelte Differentialgleichungen I.Ordnung zerlegt,

y1 (x) - y'(x) mit y1 (x) y"(x); y2(x) y(x) mit y2' y'W-y^x); (2)

welche durch eine Extrapolationsmethode /4/» ausgehend von den Anfangswerten

am Stützenfuß, schrittweise gelöst werden.

Die Stütze ist labil, wenn das Moment M° für gegebene Normalkraft zu
einem Maximum wird, also

M° max M° (N, y(l)) (3)

Die Gleichgewichtsbedingung liefert das zugehörige Fußmoment M^.
Die Stütze versagt im Zustand B, wenn die Dehnung der Zugbewehrung im
Stützenfuß c 5 $o überschreitet und im Zustand A, wenn an der gleichen
Stelle die Betonstauchung

&
3,5 unterschreitet.

Abb.4:Verformtes System Abb.3sBeziehungen am verformten
Stützenelement

Per Definition versagt die Stütze, wenn einer der genannten
Grenzzustände erreicht wird. Mithin gilt für alle N das folgende Versagenskriterium

v ={mu1n> m^|n u mu|n>m1£Inu
L & A Si Jj

m°|n >a' M°|N } (4)

worin vereinfachend angenommen wird, daß die mechanischen und geometrischen

Eigenschaften längs der Stütze konstant sind.
3.Zuverlässigkeitsanalyse

Die wichtigsten Einflußgrößen auf den Tragzustand der Kragstütze sind
die Querschnittsbreite b, die Querschnittshöhe d, die Betonüberdeckung h',
die Betonfestigkeit ß^, die Stahlstreckgrenze ß sowie die angreifendeK s
Last N N& und das angreifende Kopfmoment M°. Deren stochastisches
Verhalten sei durch die Wahrscheinlichkeitsdichten f(') beschrieben. Die
Variablen seien bis auf die Querschnittshöhe und -breite, welche streng
korreliert angenommen werden, stochastisch paarweise voneinander unabhängig.
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Wir 'bereohnen zunächst die Versagenswahrscheinlichkeit am Ort des
Versagens (Fuß der Stütze). Die Lösungen der in Abschnitt 2 erläuterten
Differentialgleichungen stellen den Zusammenhang zwischen M° und Mu bzw. VÜj",

u u a a A

IL, M- für jede Kombination der Variablen her. Sowohl angreifendes Moment
uMU, als auch die widerstehenden Momente M^., U A,B,C sind dann Funktionen

der Einflußvariablen und stochastisch voneinander abhängig. Demnach sind
durch Anwendung der Transformationsregeln für Funktionen von Zufallsvariablen

die zweidimensionalen Randdichten f (M^, M^) für alle N zu bilden /5/.
Bei gegebenem M ist dann mit (siehe auch Abb. 6)

rf,ü ff f(Mj, M}) dM* düj

K > *£)
die Versagenswahrscheinliohkeit wegen Gl. (4)

(N)

(5)

Pf(N) - PffA (N) u Pf>B 00 U Pf,C

" Pf,A <> + Pf,B 00 + pf,c

"Pf,B^N^ ' Pf,C (N) + Pf,A (N) 'r.ïW
Pf,B« "

(6)Pf,0<»>

und nach Integration über alle N schließlich

cf / f 00
(N)

Pf 00 dN (7)

Eine exakte numerische Lösung erfordert hei Einsatz groBer
Rechenanlagen bereits bei Berechnung von und und weiter bei der Bildung
der gemeinsamen Dichten f (M^, M^) erheblichen Aufwand, so daß Nährungs-
löeungen gesucht werden.

Q20

0,15

MQ>mÜ

K

v N\\y | N const 1

\ V
0,10

i J 1 Mu
U

Q05

MU* *
Mu 0

0

Abb. 6 Abb.

M0'

N'sO.IO-bdpp
Bn 250
A 70

2>A=2*/.

Mu'

0,05 Q10 0,15 Q20

Abb.7s Zusammenhang zwischen und
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Zunächst kann man das Versagenskriterium derart transformieren, daß
Beanspruchung und Beanspruchbarkeit näherungsweise stochastisch voneinander

unabhängig werden. Dies gelingt durch Formulierung des Versagenskriteriums

am Stützenkopf. Zwischen dem Moment am Stützenfuß und am Stützenkopf
existiert nämlich in jedem Versagenszustand ein relativ straffer, positiver
in guter Näherung linearer Zusammenhang, wie das Beispiel von Abb.7

zeigt /1/. Damit können die Verteilungsdichten von Beanspruchung und
Beanspruchbarke it vorab und unabhängig berechnet werden.

Transformiert man also die Momente M^ in Kopfmomente MjJ (vgl.Abb.8)
bei bereits ermitteltem Mu so,daß

1
a Mä|N

Up | N F~ (pn) mit pn= f fn(M^ | N) dM^ Fn (M* | N), (8)
o

so vereinfacht sioh die Berechnung der Versagenswahrscheinlichkeit nach
Einführung des Gl. (5) entsprechenden Ausdrucks

Pf,ïï(N) f f(M°) • Fn (MI | N) dMI (9)
MalN

wenn F^. - Fn (M& | N) f fn(M^|N)d m£ (10)
0

und unter Beachtung von Gl. (6) zu
oo oo

Pf -/ f(N)[/f(M°) [fa+ Fb+ Fc- Fa VVVVVVV^a}^ (11>

Weitere Näherungen sind bei Berechnung der
Dichten f° (M^ | N) notwendig. Um erste Anhaltspunkte

über die Form dieser Verteilungsdichte
zu erhalten - daß immer die Bedingung N gilt,wird im folgenden nicht mehr gesondert bezeichnet

- wurde zunächst mit Hilfe der Monte-Carlo-
Methode unter Zugrundelegung der Angaben von
Tabelle 1 die Beanspruchbarkeit simuliert.
Statistische Anpassungstests ergaben, daß die
Hypothese zugrundeliegender Normalverteilungen
mit einer statistischen Sicherheit von 95 $>

nicht verworfen werden muß. Betrachtet man das
Modell einer bei Null gestutzten Normalverteilung

als hinreichend genau, so kann man sich
im weiteren mit der Berechnung der ersten beiden

Momente der Verteilung der Beanspruchbarkeit begnügen /6/s
E (Mjj) ^gïï (E (Xi) (12)

Var (M^)« 2 (|^-)2. Var (x±) (15)
/

^

Hierin ist g^ (•) das in Abschnitt 2 beschriebene Berechnungsverfahren
zur Bestimmung der Grenzzustände und x± die Zufallsvariablen nach Tab.1.

ff (M°|NI

m.°'n

N

Om°

f(Mul N)

Abb .8

Bg. 14 VB
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Tabelle 1

Zufallsvariable +) Mittelwert Streuung

Querschni11sabmes sungen
b, d

Betonüberdeckung h'
Betonfestigkeit ßw

BetonstahlStreckgrenze
ß

s
Normalkraft N

a

Moment M°
a

i T ++)
0,1 • d

2
33° kp/cm

2
4600 kp/cm

Vb Vd °'°5

- o.5o
2

a 50 kp/cm

a 243 kp/cm2

VN - o.lo

VM - o,2o

+ Sämtliche Variablen werden normalverteilt angenommen
++) Der Querstrich kennzeichnet Mittelwerte (Erwartungswerte).

Die Versagenswahrscheinlichkeit ist nunmehr näherungsweise berechenbar.
Umgekehrt können bei vorgegebener Versagenswahrscheinlichkeit und bekannten
Verteilungsgesetzen der die Beanspruchbarkeit beeinflußenden Variablen die
Verteilungsparameter der zugehörigen Beanspruchung iterativ ermittelt werden.

gehalte die Ergebnisse einer Rechnung für P„ lo~4 aufgetragen. Auf der
linken Seite des Bildes ist die Größe der Standardabweichung des
Kopfmomentes für die Versagensart C dargestellt, im Diagramm selbst finden
sich die Interaktionsbeziehungen der mittleren Grenztragfähigkeit und
im Diagramm oben rechts sind die Mittelwerte der zugehörigen Beanspruchung
angegeben. Der Wert ßB ist die 5 ^-Fraktile des zu o,85 • ß gehörigenJt w

Kollektivs nach Tabelle 1.
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Abb. 9 zeigt für À. 7o 2$ den geometrischen Ort der 95$-Fraktilen
der Komponenten N und M° für die Versagenswahrscheinlichkeiten P»

7 i S r â X

lo" lo" und lo~ Zusätzlich sind die zulässigen Werte "bei der Be-
messung nach DIN 1045 /7/» den CEB-Empfehlungen /8/ und den ACI Vorschriften

/9/ eingezeichnet.
Die im linken Teil der Abbildung aufgetragene bezogene Streuung

des Kopfmoments ändert sich spürbar mit zunehmender Normalkraft. Dabei
überwiegen die Streuungen der Querschnittsabmessungen und der
Betonfestigkeit für die nach Tabelle 1 getroffenen Annahmen.

Man erkennt weiter, daß keine dieser Bemessungsanweisungen ein gleichmäßiges

Sicherheitsniveau gewährleistet. Diese Feststellung bleibt auch
bei anderen Annahmen für die Verteilungsgesetze sowie für andere Betongüten,
Stahlgüten, Querschnittsformen, Schlankheiten etc. im Prinzip gültig /1/.
Anzumerken ist, daß die jeweilige Größe der Versagenswahrscheinlichkeit
als operativer Rechenwert zu verstehen ist, welcher nur in Verbindung mit
den getroffenen Annahmen und Vereinfachungen Aussagekraft besitzt.

Abb. 9

4. Bestimmung von "besten" BemesBungswerten
Vom praktischen Standpunkt aus kann die Forderung nach Einfachheit

und Durchsichtigkeit von Bemessungsregeln nicht genug hervorgehoben werden.

Es ist z.B. wünschenswert, jede Einflußgröße darin durch einen einzigen
Bemessungswert zu charakterisieren, welcher allerdings als Funktion

der Verteilungsparameter angebbar sein sollte. Eine praktikable Bemessungsanweisung

kann im vorliegendem Fall etwa wie folgt aussehen:

M°| N* é mJ*| N* - g*(b*, d* h'#, ßw*, &*, N *) (14)

Im Falle der Gleichheit ist <^e vorSeso':lrie^eile»
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vereinfachte Berechnungsanweisung.
Unendlich viele Kombinationen von Bemessungswerten erfüllen diese

Ungleichung, wenn ein vorgegebener Rechenwert der Versagenswahrscheinlichkeit
angezielt werden soll. So wird z.B. in einigen Vorschriften N bzw.

M° sehr ungünstig angesetzt; die anderen Bemessungswerte weichen nicht
spürbar von den mittleren Werten ab. Es wird also unterstellt, daß Stützen

dann versagen, wenn die Belastung extrem groß wird. Damit wird den
Verformungsmomenten übergewichtiger Einfluß eingeräumt, obwohl Versagen
ebenso gut durch ein spürbares Absinken der Betonfestigkeit ausgelöst
werden kann.

Um die Verhältnisse in einem Grenzzustand so wirklichkeitsnah wie
möglich zu erfassen, ist es daher sinnvoll, als Bemessungswerte jene
Realisationen der Variablen auszuwählen, für die Versagen, sofern es eintritt,
am wahrscheinlichsten ist (vgl. Abb. 6). Nur dann wird der Einfluß der
einzelnen Unsicherheiten auf die Sicherheit der Stütze in bestmöglicher
Weise eingeschätzt. Wir suchen also das Maximum der bedingten Dichte der
Versagenswahrscheinlichkeit. Die Bemessungswerte N* und Mg*ergeben sich
z.B. als Lösungen der Gleichungens

9fD (M°, N) 0f (M°, N)2— - 0 E 0 1 5a, b
3 M° 9 N

N
_

WO

P.
* / f<V '[ / f<MI> * VMalNa) < dN

worin z

f (M°, N) - —£ :—UL_I (16)P 3M • 3N

die bedingte Dichte der Versagenswahrscheinlichkeit ist. Die Lösungen
und Mg können als Fraktilen der Randdichten f(N&) und f(Ma) gedeutet

werden.

Bild 1o veranschaulicht die Ergebnisse einer Rechnung in Form von
Höhenschichtlinien der Dichte der Beanspruchung f (M&, N), der bedingten
Dichte der Beanspruchbarkeit f (M^ | N) sowie der Dichte f (M, N) am

Sttitzenkopf.
Eine Anwendung dieses Prinzips auf die übrigen Variablen führt zu

n Gleichungen vom Typ (15) mit den Lösungen x^*, wenn n die Anzahl der
berücksichtigten Zufallsvariablen ist.

Vergleichsrechnungen haben gezeigt, daß die Lösungen x*, s.*, x*
bei Vorliegen von Normalverteilungen für die Variablen als Praktilen in
der Form

x.*= x. t a± • ß± • a± (17)
dargestellt werden können. Hierbei ist 5^ der Erwartungswert, die
Standardabweichung, ai ein Korrekturfaktor, der eine Punktion der Ableitung
des Versagenskriteriums nach der Variablen an der Stelle x* und ß1 die
standardisierte Variable der Verteilungen zur Wahrscheinlichkeit Pf ist.
Zu dem gleichen Ergebnis kommt Paloheimo - allerdings auf anderem Wege
/lo/.
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Das Maximum der bedingten Dichte der Versagenswahrscheinlichkeit
ist wenig ausgeprägt, wie auch Abb. lo veranschaulicht. Eine exakte
Bestimmung der a-Werte ist daher nicht notwendig - ein Umstand, der der
Normungsarbeit sehr entgegen kommen dürfte.

fP (M'.n
—— -! / \

MM'ilM

Bn 250
X 70

Z/u 0,8%

Pf =10 -4

Abb. lo
Natürlich können von (17) ausgehend auch die traditionellen Sicherheitselemente,

wie z.B. Teilsicherheitsfaktoren, abgeleitet werden:

i.c - k

*i t (18)

x. „ ist der charakteristische Wert.i,c
5. Numerische Ergebnisse und Folgerungen

Für den betrachteten Knickstab wurden bislang folgende Werte berechnet:

®M0 " aN
a a

Setzt man insbesondere a

o,3 bis o,5? 1?

b ah oth' ®*ne Maßnahme die aus praktischen

Gründen angemessen erscheint, so ergibt sich bei Analyse X
ß 0,95 •/• l»o? - o,9 •/• 1»°
w -g

Ist weiter ß 3,7 - ein Wert, der im Mittel dem Rechenwert der
Versagenswahrscheinlichkeit bei Anwendung der bisher üblichen Berne s sungs
verfahren entspricht (siehe Abb.9), ergeben sich in erster Näherung die
folgenden Formeln zur Bestimmung der Rechenwerte.
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b*= E(b),- d*= E(d)| h'*= E(h')
ß/«B(flw) - 3,7 • a ; ßg*«E(ßs) - 3,7 • aß

w s

H*»E(H + 1,5 * On J M°*~ E(Ma) + 1,5 • 0M
& SL

Entsprechend Gl. (18) eingeführte Teilsicherheitsfaktoren werden daraus
für die in Tabelle 1 angegebenen Streuungen der Variablen zu

rß TTS* rß T725 rN 7m**1'0
w s ' a a

berechnet, wobei in tfbere instimmung mit den CEB-Empfehlungen k /l,65/gesetzt
wurde.

Die numerischen Untersuchungen sind noch nicht abgeschlossen, so daß
die mitgeteilten Ergebnisse vorerst nur als Anhaltswerte gelten können.
Nachstehende Polgerungen lassen sich jedoch bereits jetzt ziehen.

• Globale Sicherheitsbeiwerte,gegebenenfalls im Verein mit vorgeschriebenen

zusätzlichen oder Mindestausmitten, vermögen den erforderlichen
Abstand zwischen Beanspruchbarkeit und Beanspruchung nicht in allen
Bemessungssituationen gleichmäßig gut herzustellen.

•Am zweckmäßigsten scheint eine Festlegung der Bemessungswerte
aufgrund des in Abschnitt 4 erläuterten Prinzips entsprechend Gleichung
(17) oder die Verwendung partieller Sicherheitsfaktoren in Verbindung
mit definierten Nennwerten entsprechend Gl. (18) zu sein.
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ZUSAMMENFASSUNG-

Die Theorie zur Berechnung der Versagenswahrscheinlichkeit
einer schlanken Stahlbetonstütze wird erläutert. Die numerische
Rechnung gelingt durch Einführung von Näherungen für einige
Beispiele. Es zeigt sich, dass die derzeitigen Berechnungsverfahren
kaum gleichmässige Zuverlässigkeit der Bauteile gewährleisten.
Ein Verfahren, "heste" Bemessungswerte aufzusuchen, wird angegeben.

Erste numerische Ergebnisse werden mitgeteilt.

SUMMARY

A theory for the computation of failure probabilities for
slender reinforced concrete columns is presented. Approximate
numerical solutions for some examples are given. It turns out
that present design methods cannot guarentee an uniform safety
level. A method to evaluate "best" design values is derived and
illustrated by some numerical results.

RESUME

On expose une théorie pour le calcul de la probibilité de
ruine d'une colonne élancée en béton armé. On procède au calcul
numérique pour quelques exemples en introduisant des approximations.

On constate que les méthodes de calcul actuelles ne
conduisent pas à une sécurité uniforme. On indique un procédé
permettant d'obtenir les "meilleures" valeurs de dimensionnement.
On communique les premiers résultats numériques.
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Ill

Zur zuverlässigen Bemessung von Bauteilen mit Hilfe der ersten und zweiten Momente
der Zufallsvariablen von Last und Festigkeit

For a Reliable Design of Structural Elements by Means of the First and Seconds Moments
of the Random Variables of Load and Strength

Vers un dimensionnement sûr des éléments de construction à l'aide des premiers et
deuxièmes moments des variables statistiques de la charge et de la résistance

Horst SCHÄFER
TH Darmstadt, BRD

1. Einleitung
Aufgabe des Ingenieurs ist es, Bauwerke wirtschaftlich und zuverlässig

zu erstellen, so daß sie die ihnen zugedachten Punktionen
erfüllen können und nur mit einer sehr kleinen, akzeptierten
Wahrscheinlichkeit versagen. Pür den entwerfenden Ingenieur ist der
Teil der Versagenswahrscheinlichkeit, der aus den Streuungen der
Beanspruchungs- und Beanspruchbarkeitsparameter herrührt, für die
Bemessung ausschlaggebend. Wenn auch bisher noch keine befriedigende

Philosophie für die Ermittlung von Grenzwerten für die
zulässigen Versagenswahrscheinlichkeiten in Abhängigkeit von den
Versagensfolgen besteht, so sind sich doch alle Beteiligten einig
in der Forderung nach gleicher Versagenswahrscheinlichkeit für
vergleichbare Bauwerke und Bauteile. Die Berechnung der
Versagenswahrscheinlichkeit als Maß für die Sicherheit einer Konstruktion
hat die Schwächen bisheriger Bemessungsverfahren zutage gefördert,
und es besteht der dringende Wunsch nach einem praktikablen neuen
Bemessungsverfahren, das die Mängel des auf Kennwerten basierenden

Verfahrens mit stark schwankenden Versagenswahrscheinlichkeiten
vermeidet. Die Standardabweichung a ist ein brauchbares Maß

für die Streuung der Zufallsvariablen. Ist neben dem Mittelwert x
auch die Standardabweichung a einer Zufallsvariablen mit einer
gewissen Aussagewahrscheinlichkeit bekannt, dann führt die
Berücksichtigung dieser zusätzlichen Information, auch wenn die genaue
Form der Dichtefunktion der Zufallsvariablen unbekannt ist, zu
viel ausgeglicheneren Sicherheiten (Versagenswahrscheinlichkeiten)
als wenn man nur mit dem Mittelwert x oder einem Fraktilwert x
rechnet. p

Das Bestreben, dimensionslose Größen zu verwenden, führte
auf die bevorzugte Verwendung der Variationskoeffizienten Vs_=
og/xg und Vr Or/sr der Beanspruchungs- und Beanspruchbarkeits-
parameter in den bisher vorgeschlagenen Bemessungsgleichungen, z.
B. [1] bis [6]. Dabei wurde zum Teil übersehen oder in Kauf genommen,

daß die Variationskoeffizienten der meisten Parameter nicht
konstant, sondern eine Funktion des Mittelwertes sind. Aus der
Definitionsgleichung des Variationskoeffizienten V ü/x erkennt
man, daß bei konstantem Variationskoeffizienten Vq die Standard-
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abweichung eine lineare Punktion vom Mittelwert ist, die für kleine
Mittelwerte die Streuung der Parameter unterschätzt.

Dies sei am Beispiel der lastexzentrizität einer Stahlbetonstütze
näher erläutert. Erwartet man bei einer Stütze für die last

die Exzentrizität ë 0, dann bedeutet dies noch nicht, daß die
Stütze wirklich mittig belastet wird. In Abhängigkeit von der
Streuung der Exzentrizität e, charakterisiert durch die
Standardabweichung ae, wird die einzelne Stütze in Wirklichkeit mehr oder
weniger exzentrisch belastet. Rechnet man mit konstantem Variati-

onskoeffizienten Voe, dann erhält man für
ë->o auch ae=^e-e-»0. Die Beanspruchung der
Stütze wird unterschätzt. Da schlanke
Stützen aber sehr empfindlich gegen
exzentrische Beanspruchungen sind, erhält
man eine große Schein-Sicherheit p8.jDurch
die Vorgabe einer konstanten, ungewollten
Exzentrizität eu wurde das Problem in der
deterministischen Sicherheitsanalyse
gelöst. Eine stochastische Analyse erfordert

jedoch eine Berücksichtigung der
streuenden Eigenschaften der lasten und
der Exzentrizität. Bei anderen Parametern
wie läge der Bewehrung, Querschnittsabmessungen

und den Festigkeiten von Beton und Stahl liegen die
Verhältnisse ähnlich. Deshalb wird nachfolgend ein Vorschlag für eine

bessere Erfassung der Streuungen der Parameter unterbreitet.
2. Vorschlag für eine wirklichkeitsnahe Erfassung der Streuungen

von Beanspruchungs- und Beanspruchbarkeitsparametern
Um die Abhängigkeit der Standardabweichung vom Mittelwert zu
erfassen, werden die folgenden linearen Funktionen angenommen mit
denen die Streuungen der meisten Parameter ausreichend genau
beschrieben werden können:

-er o +o

Abb.1 :"Mittig"belastete
Stahlbetonstütze

(1
Festigkeit: oR üoR + VoR r, VR VoR + aoR/r
last: as a0g + V0s • s, Vs VoS + aoS/s

Darin sind ooR, VoR, o0g, V0g konstante Werte, die mit Hilfe der
linearen Regressionsanalyse in Abhängigkeit vom Mittelwert der
untersuchten Parameter bestimmt werden können.

Li.

" arc tgVoR
übliche Annahme -

a) Beanspruchbarke it (R) b)Beanspruchung (S]
Abb. 2: Standardabweichung und Variationskoeffizient in Abhängig¬

keit vom Mittelwert.
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Die bei konstanten Variationskoeffizienten V R, V q bisher
stillschweigend vorausgesetzten Beziehungen sind g§str?fehelt in Abb. 2

eingetragen. Sollte eine lineare Beziehung nach Gl. (1) bei der
Beschreibung der Streuung für einen Einzelparameter einmal nicht
ausreichen, dann kann durch eine bereichsweise Linearisierung(punk-
tierter Linienzug in Abb. 2a) eine gute Annäherung erzielt werden.
An dieser Stelle sei darauf hingewiesen, daß die Variationskoeffizienten

VjD>V„ für kleine Mittelwerte r, s über alle Grenzen
anwachsen. "In diesen Bereichen darf das bei der Ermittlung der
Streuung von Funktionen Z=f(X1,XZ ,,X„) von unkorrelierten Zufallsgrößen

X. aus der TAYLOR-Entwicklung gewonnene GAUSS'sehe
Fehlerfortpflanzungsgesetz r--i | \a __ zSi ~ ^ [Ot/Oxi Jx^.Xxr-.Xn) • (2)
das nur für kleine Werte von er -«x oder x V «. 1

x
(in praxi =— Vx<0,3) gilt, nicht angewendet werden.

2.1 Ermittlung der Standardabweichung aQX und des Variationsko-
effizienten VQx einer Zufallsgröße X

Vorausgesetzt wird die Auswertung einer großen Zahl von
Zufallsexperimenten (Versuchen), wobei jeweils für einen erwarteten
Mittelwert x die Standardabweichung bestimmt worden sei. Trägt
man die a über x auf (Abb. 3), dann läßt sich meist mit guter

Näherung eine Ausgleichsgerade durch
diese Punkte zeichnen. Numerisch
gewinnt man Schätzwerte für die
Regressionskoeffizienten a und Vö ox ox
mit den Mitteln der linearen Regr-
essionsanalyse (Fehlerquadratmini-
mum,Maximum-Likelihood-Methode),
die der Fachliteratur
entnommen werden können.

Nachfolgend soll versucht werden, die Standardabweichung der
für die Stützenbemessung wesentlichen Parameter anzugeben. Hierzu
sind weitere Untersuchungen erforderlich,
2.2 Standardabweichung der Last

Während die Streuung des Eigengewichts im allgemeinen vernachlässigbar
sein wird, kommt einer richtigen Einschätzung der Streuung

der Verkehrslast eine große Bedeutung zu. Größe, Verteilung und
Streuung der Verkehrslast ist für die verschiedenen Lastarten sehr
verschieden C? D. Ihre Transformation zu den Schnittgrößen, z. B.
zum Biegemoment S. und zur Normalkraft Sp exzentrisch belasteter
Stützen kann bei linearen Systemen durch die folgenden Gleichungen

beschrieben werden CS 3;

S1 2 aH • Soi ' S2 S a2i ' Soi ^i*"« i»1
Darin sind die SQi die einzelnen Lasten und die a^, a2^ system-
und steifigkeitsabhängige Zufallsgrößen, die aber infolge der dabei

durchgeführten Integrationen meist deterministisch angenommen
werden können. Da die Lasten oft mehr oder weniger streng korreliert

sind, ist die Ermittlung der Streuungen der Schnittgrößen

Abb. 3 zur Ermittlung einer
Ausgleichsgeraden



220 III - BEMESSUNG VON BAUTEILEN MIT HILFE DER ERSTEN UND ZWEITEN MOMENTE

aufwendig [5 ]. Die Lasten sind am wenigsten erforscht. Ihrer
besseren Erfassung kommt daher eine große Bedeutung zu.

2,3 Standardabweichung der Lastexzentrizität
Die Exzentrizität der Stützenlast setzt sich aus zwei Anteilen
zusammen, der Lastexzentrizität an der Lasteinleitungsstelle und den
geometrischen Imperfektionen der Stütze. Der erste Anteil hängt
mit den im vorigen Abschnitt besprochenen Problemen zusammen. Der
zweite Anteil, bisher ebenfalls wenig untersucht, kann näherungsweise

aus den Neigungen der Stützen ermittelt werden. Angaben über
Pertigteilstützen finden sich inC83, mit deren Hilfe die in Abb.4

dargestellten Standardabweichungen
ermittelt wurden. Die geometrischen
Imperfektionen sind unabhängig von ë.
Die Gesamt-Standardabweichung ergibt
sich zu _ -v/T 2 2 '

G — V CT ^ + CT 0 «

e I e1 e2
Bei Ortbetonstützen ergeben sich
wahrscheinlich größere Werte. Die Stahlbetonnorm

der BRD schreibt eine unge-

42 ' LEft-ElSül k=4m

1 h=3m

h=2m

h=Stüt zenhöhe

Abb, 4: Geometrische Im¬
perfektionen von
Pertigteilstützen

wollte Exzentrizität e. V500
Abstand der Wendepunkte der Knickbiegelinie)

vor. Dieser Wert ist sehr
gering; er darf aber nicht separat,

sondern muß im Rahmen des gesamten Sicherheitssystems der Norm
betrachtet werden, e 1 cm + 0,03'd S5cm 08] entspricht der Wirklichkeit

wahrscheinlich besser.
2.4 Standardabweichung der Betonfestigkeit
Die Abhängigkeit der Standardabweichung von der Betondruckfestigkeit

wurde in [9] für Normalbetone eingehend untersucht .Im
interessierenden Eestigkeitsbereich kann eine konstante Standardabwei-

50 kp/cm^ angenommen werden.chung von
Sßb •

• -

• # d • c

"

*
« •• • Vi •

»50^ Ml* ^ ** f od "in '•?. 1 •

r* fr' p ; 't4 * « •

^ « » 3Ay y i * f Od
'

•

„ • •• *
«0» ••

!• * i *

" • •

>/o£ kxo m mmm w smssoaata mm
Abb. 5: Standardabweichung der Betondruckfestigkeit
Die Standardabweichung des Betons hängt sehr stark von der Sorgfalt

bei der Herstellung, Verdichtung und Nachbehandlung des
Betons ab. Aus Abb. 5 erkennt man auch, daß jede Aussage über die
zu erwartenden statistischen Kennzahlen nur mit einer gewissen
Wahrscheinlichkeit möglich ist.

Die Betonzugfestigkeit streut noch stärker als die
Druckfestigkeit. In Abb. 6 sind die Standardabweichungen über den Mittelwerten

aus 648 unter Laborbedingungen durchgeführten reinen
Zugversuchen aufgetragen C103. Die relativ geringe Zahl erlaubt noch
keine endgültigen Schlüsse. Im Gegensatz zur Druckfestigkeit
scheint bei der Zugfestigkeit eine lineare Abhängigkeit der Stan-
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648 Prüfkörper

c=oQuerschnitt :

7x7,10x10,13x13
[cmxcml

<

dardabweichung vom Mittelwert
gegeben zu sein.

o io ao 30

Abb. 6: Standardabweichung der
Zugfestigkeit (Labor)

zJt A.

To~ 2o 3ö^
/8s

40

l Stahl n ßs % Lit.
• St37 4000 28,1 2,34 [111
BSt42/50 48 2,40 L 6]

It 47,3 2,84 [121
I PEE22 1367 28,9 2,37 [131

Caron 11373 49,6 2,00 [131
ASTM A7 3124 27,7 2,20 [141
B.S.785 1050 33,0 3,01 [15]

2.3 Standardabweichung der
Stahlstreckgrenze

Der Stahl kann bei
Druckgliedern infolge der
geringen Betongrenzstauchung
und bei biegebeanspruchten
Bauteilen wegen der
erforderlichen Begrenzung der
Bißweiten meist nur bis zur
Streckgrenze ausgenutzt
werden. Die Streuung der
Streckgrenze ist relativ

rtykilgut erforscht. Aus Abb. 7
' gpn-F hervor, daß die Stan-

fa) - dardabweichung nur wenig
Beton- von der Stahlgüte abhängt

(ü0ßs 2,4 kp/mm2). Natürlich
kann man für die

einzelnen Stahlgüten auch Variationskoeffizienten

festlegen und damit rechnen

(punktierte Linien in Abb. 7).
Man erkennt jedoch, daß diese
Vorgehensweise nur bei Größen mit diskreten

Mittelwerten sinnvoll ist.

2.6 Standardabweichung der Quer-
schnittswerte

Abb. 7: Standardabwei¬
chung der
Stahlstreckgrenze

Die Streuungen der Betonquerschnitte
können aus den Streuungen der Quer-
schnittsabmessungen ermittelt werden.
An 1068 Pertigteilstützen wurden die
in Abb. 8 dargestellten Streuungen der
Stützenabmessungen gemessen [8],
Ortbetonstützen dürften erheblich stärker

streuende Querschnittsabmessungen
besitzen. Die geringen Streuungen der
Querschnittsfläche der Bewehrungsstähle

wird man meist vernachlässigen können.

Je nach Prüfvorschrift sind sie
auch in den Streuungen der Stahlstreckgrenze

enthalten.
Bei den Querschnittswerten ist

die Lage der Bewehrung im Querschnitt
bei biegebeanspruchten Bauteilen von
großem Einfluß auf die Traglast. Hierbei

muß mit noch größeren Streuungen
gerechnet werden, als bei den
Querschnittsabmessungen von Ortbeton -
stützen.

d

Abb. 8: Standardabweichungen der Querschnittsabmessungen
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3. Bemessungsgleichungen für normalverteilte Lasten und
Festigkeiten

Für die folgenden Bemessungsgleichungen sei vorausgesetzt, daß die
Beanspruchungen und Beanspruchbarkeiten durch jeweils eine
eindimensionale, normalverteilte Zufallsgröße ausreichend genau
beschrieben werden können. Diese Voraussetzung ist oft nur näherungsweise

erfüllt.
Nach Dt], C3] erhält man die Versagenswahrscheinlichkeit Pf

als Funktion der ersten und zweiten Momente von Beanspruchung und
Beanspruchbarkeit _g/sj

Pf ' J e*P Œ 4* fS/Gz) Œ <fi(ß)
mit ß * r-S2 V 6-r1 - Ss* "

Bei einer_ maximal zulässigen Versagenswahrscheinlichkeit von zul.
Pf_muß ß=ß=0 (zul. Pf) sein. Die erforderlichen ß-Werte können

Abb. 9 entnommen werden. Damit ergibt sich die
- Bemessung in der Form _

y- s + ß~ * ^

Werden die Ansätze für die Standardabweichungen
(1) eingesetzt, erhält_man

F ^ S+ß -VCGToR + Voe rj'-fCGis+VoS-5)a' (6)
Für die Ermittlung der erforderlichen Beanspruch-

-j, 3 g »rbarkeit r ist diese Gleichung ungeeignet, weil r
Abh Q* P -ß- links und rechts vom Gleichheitszeichen steht.

Das Bemessungsproblem ist auf verschiedenen We-
i? lliXK! o 1 on

gen losbar:
a# beschlossene Lösung *

>_5î \> a- ^ _[4 f +ß'

b. Iterative Lösung "
Man setzt in erster Näherung auf der rechten Seite von Gl. (6)
r s und ermittelt r aus Gl. (6) neu; usw.

c. Näherungslösung _Setzt man r s/{ 1 -ß • V0r) in die Lösung des ersten Iterationsschrittes
nach b. und diese in Gleichung (6), dann erhält man

als Bemessungsgleichung
r « s + ß VLWVo*(s+£-y(6;R+V„^^ (8)

Diese Näherung liefert ausreichend genaue Ergebnisse. Für konstante
Standardabweichungen, d. h. V0r 0, V0g 0, erhält man

folgende einfache Bemessungsgleichung
F« §+ ß V t G5sa

1

In dieser Form ist die Gleichung invariant gegen Koordinatentransformationen.
Hängen die Standardabweichungen linear vom Mittelwert

ab und ist a0R 0, a0g 0, dann erhält man die Bemessungsgleichung

in der von CORNELLÖ3angegebenen Form.

F è. §•{[/! +ß>]'vi + Vol -ßzVol Vos '] /[l-ßZVof]} (10)
Der Ausdruck in der geschweiften Klammer kann als Sicherheitsfaktor

gedeutet werden. Diese Schreibweise kommt der Vorstellung
entgegen, daß eine Last mit einem konstanten Faktor zu erhöhen sei,
um ausreichende Sicherheit zu erhalten. KIRCHNER p6lschlug vor,
bei kleinen Mittelwerten die Streuung direkt additiv zu berück
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sichtigen, wie es in Gl. (9) zum Ausdruck kommt. Die vorangehenden
Beziehungen lassen die Zusammenhänge von additiven oder mul-

tiplikativen Sicherheitszuschlägen gut erkennen. Ein Sicherheitssystem
mit ausgeglichenen Versagenswahrscheinlichkeiten erfordert

eine unterschiedliche Beaufschlagung der streuenden Parameter:
Parameter mit a0 ^ 0, V0 0: additiver Zuschlag
Parameter mit a0 0, Vo / 0: multiplikative Erhöhung
Parameter mit aQ Vo • ~ : kombinierter Zuschlag

Ein solches System wird für die praktische Anwendung recht
kompliziert. Demgegenüber erscheint die direkte Anwendung der
Bemessungsgleichungen (5 )v( 10)als eine mögliche Alternative. Wenn die
Standardabweichungen ctr und og aus den Streuungen weniger Parameter

relativ mühelos ermittelt werden können, kann für eine gegebene

Last s die erforderliche Beanspruchbarke it r bestimmt und damit

z. B. die Bemessung der Bewehrung vorgenommen werden, Eür das
anzustrebende Sicherheitssystem ist es von untergeordneter Bedeutung,

ob mit Erwartungswerten oder Eraktilwerten gerechnet wird,
wenn der Informationsgehalt der verwendeten Größen gleich ist.
4. Ermittlung der Kenngrößen von Beanspruchungen und Beanspruch-

barkeiten

Beanspruchung und Beanspruchbarkeit sind meist Punktionen einer
großen Zahl von Zufallsvariablen. Wird der Vergleich von
Beanspruchung und Beanspruchbarkeit auf der Basis von Spannungsresultanten

der Koordinatenspannungen durchgeführt, dann handelt es sich
zudem meist um mehrdimensionale Probleme, deren einfache rechnerische

Handhabung nur möglich ist, wenn ihre Reduktion auf ein
eindimensionales Problem gelingt Ü5H

nachfolgend sollen einige Transformationsgleichungen mitgeteilt
werden, die für normalverteilte Zufallsvariable Xp meist

streng und für Variable mit anderen Dichtefunktionen näherungsweise
gelten. n

Summe von Zufallsvariablen Xp : Z £] Xp

i'l & «£4*1
Produkt von Zufallsvariablen XpJfrJ : Z ."Jj Xp

2 X ** y 6* X
5. Vergleich mit Bemessungsverfahren von BASLER oder GORHELL

(11

(12)

30 '30 tm
A%

An einem einfachen Beispiel sei ein
Vergleich durchgeführt. Eine mittigbelastete Stütze wurde mit dem
vorgeschlagenen Verfahren Gl. (7) für eine
Versagenswahrscheinlichkeit Pf 3 * 1 0 5

bemessen. Pür verschiedene Variations-
koeff. Vg, Vr wurde nun die
Versagenswahrscheinlichkeit nach [2],[3] ermittelt.

Abb. 10 zeigt die starke
Abhängigkeit von Pp von der Betongüte bei
einer Bemessung mit konstanten
Variationskoeffizienten. natürlich kann man
Übereinstimmung erzielen, wenn man die

Variationskoeffizienten in Abhängigkeit von der Betongüte festlegt

m
Abb. 10

&
iüö 600[KP/cm*•]

Pf in Abhängigkeit
von der

Betongüte
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ZUSAMMENFASSUNG

Für eine zuverlässige Bemessung von Bauteilen mit Hilfe der
ersten und zweiten Momente der Zufallsvariablen von Last und
Festigkeit werden Bemessungsgleichungen angegeben. Die Streuung
der Zufallsvariablen wird durch eine lineare Funktion vom
Erwartungswert beschrieben. Für einige Parameter werden Streuungen
mitgeteilt. Die angegebenen Transformationsgleichungen erlauben
die Ermittlung der Momente von Funktionen. Am Beispiel der mit-
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tig belasteten Stütze wird eine Vergleichsuntersuchung durchgeführt

SUMMARY

Design equations are given for a reliable design of structural
elements by the means of the first and second moments of the

random variables of load and resistance. The standard deviation
of the random variable was chosen a linear function of the
expected value. For some parameters the standard deviations are
given. The presented transformation equations allow the computation

of the moments of random functions. A comparison is made by
an exeample of a centrically loaded column.

RESUME

Pour un dimensionnement sûr des éléments de construction à
l'aide des premiers et deuxièmes moments des variables statistiques

de la charge et de la résistance, on indique des équations
de dimensionnement. La dispersion des variables statistiques est
écrite par une fonction linéaire à partir de la valeur probable.
Pour quelques paramètres, on indique les dispersions. Les équations

de transformation indiquées permettent d'obtenir les
moments des fonctions statistiques. On effectue un calcul
comparatif pour l'exemple d'une colonne soumise à une charge centrée.

Bg. 15 VB
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