Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 16 (1974)

Artikel: Ein halbgraphisches Verfahren zur Bemessung von beliebig belasteten

Stahlbetondruckstäben

Autor: Sparowitz, L.

DOI: https://doi.org/10.5169/seals-15728

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ein halbgraphisches Verfahren zur Bemessung von beliebig belasteten Stahlbetondruckstäben

A Semi-Graphical Procedure for the Design of Arbitrarily Loaded Reinforced Concrete Struts

Une méthode semi-graphique permettant le dimensionnement des barres en béton armé comprimées sous l'effet d'une charge quelconque

L. SPAROWITZ

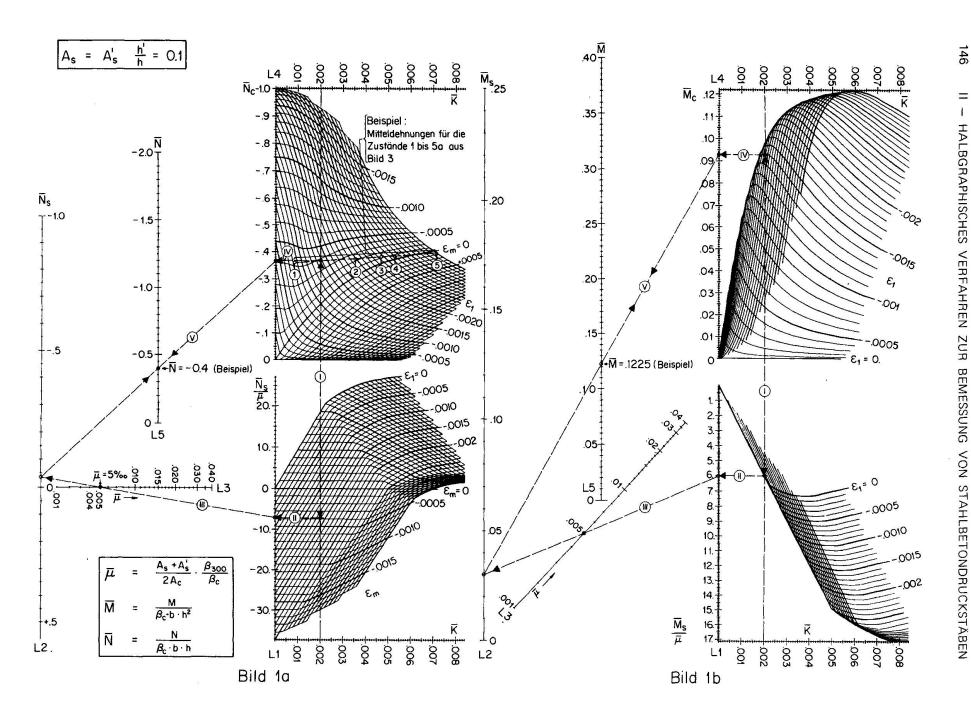
Dipl. Ing. Institut für Stahlbeton- und Massivbau Technische Hochschule Graz Graz, Oesterreich

- 1. MOEGLICHKEITEN DER DARSTELLUNG DES MOMENTEN-NORMALKRAFT-KRUEMMUNGS-ZUSAMMENHANGES EINES STAHLBETONQUERSCHNITTES
- 1.1 <u>Die Ermittlung des M-N-K-Zusammenhanges mit Hilfe nomographi-</u> scher Diagramme

Durch Trennung der Tragwirkung von Stahl und Beton in die vier Teilgrössen

 $\overline{N}_c = N_c/\beta_c$ bh (Anteil des Betons a.d. bezogenen inneren Normalkraft)

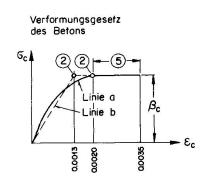
 $\overline{M}_{c} = M_{c}/\beta_{c}bh^{2}$ (Anteil des Betons am bezogenen inneren Biegemoment)


 $\bar{N}_s = N_s/\beta_c$ bh (Anteil des Stahls a.d. bezogenen inneren Normalkraft)

 $\overline{\text{M}}_s\text{=}\text{M}_s/\beta_c\text{bh}^2\text{(Anteil des Stahls am bezogenen inneren Biegemoment)}$ gelingt eine graphische Darstellung des M-N-K-Zusammenhanges als Funktion der beiden Veränderlichen ϵ_1 und $\overline{\text{K}}\text{=}\text{K}^{\bullet}\text{h}^{\bullet}$. Das Bild 1 stellt den Verlauf der inneren Schnittlastenanteile für einen symmetrisch bewehrten Rechteckquerschnitt (h'/h=0.1) und die $\sigma\text{-}\varepsilon\text{-Diagramme}$ nach Bild 2 (Linien a) dar.

Die beiden linken Kurvenscharen (Bild 1a) zeigen die inneren Normalkraftanteile, die beiden rechten (Bild 1b) die inneren Momentenanteile, die oberen Kurvenscharen enthalten jeweils die Betonanteile, die beiden unteren die durch den bezogenen Bewehrungsgrad

 $\bar{\mu} = \frac{A_S + A_S'}{2A_C} \quad \frac{\beta_{300}}{\beta_C}$ (1) geteilten Stahlanteile an den inneren Schnittgrössen. Die Multipli-


geteilten Stahlanteile an den inneren Schnittgrössen. Die Multiplikation der Ordinaten der unteren Kurvenscharen mit dem bezogenen Bewehrungsgrad (1) erfolgt mit Hilfe projektiver nomographischer Leitern (L1, L2, L3). Die beiden Teilschnittgrössen werden mit parallelen linearen Nomogrammleitern (L2, L4, L5) addiert. Für vorgegebene Werte K und ϵ_1 lassen sich die bezogenen Schnittlasten $N_r=N_c+N_s$ und $M_r=M_c+M_s$ nach Bild 1 (strichlierte Geraden) bestimmen. Will man Mo-

L. SPAROWITZ 147

mentenkrümmungslinien zeichnen, so ist neben K die Normalkraft Nr vorgegeben und $\bar{\mathbb{Q}}_r$ gesucht. Dann muss ϵ_1 im Bild 1a variiert werden, bis die Gerade W die N-Leiter im vorgegebenen Wert Nr schneidet. Eine weitere Kurvenschar mit der Mitteldehnung ϵ_m als Parameter erleichtert diesen Vorgang. Erhält man beim ersten Versuch \bar{N}_r zu klein, so ist für den nächsten ει bzw. εm grösser zu wählen. Wenn ει gefunden ist, kann das zugehörige bezogene Moment für ε₁ und K dem Bild 1b entnommen werden.

Das Diagramm gilt für beliebige Betongüten und Bewehrungsgrade. Es lassen sich entsprechende Kurventafeln für alle praktisch üblichen Querschnittsformen, Stahlüberdeckungen, Stahlsorten und Bewehrungsverhältnisse A's/As erstellen. Der Einfluss der Zugtragwirkung des Betons könnte näherungsweise in den oberen Kurvenscharen erfasst werden. Eine Berücksichtigung von Kriechverformungen ist im Abschnitt 4 beschrieben.

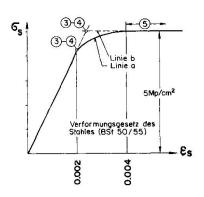


Bild 2

1.2 Die polygonale Darstellung des M-N-K-Zusammenhanges

Mit nomographischen Diagrammen nach Bild 1 kann man den Berechnungsgrundlagen entsprechend genaue Kurvenverläufe zeichnen. Meistens liefert eine polygonale Annäherung der M-N-K-Kurven bereits genügend genaue Ergebnisse.

Jede M-K-Linie enthält Punkte, die einen Uebergang zwischen Kurvenästen mit verschiedener Verformungscharakteristik darstellen (Bilder 2 und 4). Solche Uebergangszustände sind:

- (1) Betonzugzone beginnt zu versagen
- Betondruckzone beginnt zu fliessenStahldruckbewehrung beginnt zu plastifizieren
- Stahlzugbewehrung beginnt zu plastifizieren

Der Endpunkt (5) der M-K-Kurve wird normalerweise durch die Grenzdehnung des Betons (5a) festgelegt. Ist auch eine Stahlgrenzdehnung vorgeschrieben, so kann diese bei geringer Normalkraftbeanspruchung den Punkt (5) bestimmen (5b).

Für jeden der Zustände (1) bis (5) lassen sich in Abhängigkeit vom bezogenen Bewehrungsgrad M-K-N-Interaktionsdiagramme konstruieren, die im Bild 3 zusammengefasst dargestellt sind. Aus_diesem erhält man für vorgegebene Werte N und μ die Grössen M und K (Beispiel Bild 3: strichlierte Geraden) aller jener Zustände (1) bis (5), die im betrachteten M-K-Zusammenhang vorkommen (Bild 4). Verbindet man diese Punkte durch Gerade, so erhält man eine sehrenpolygonale Annähe-

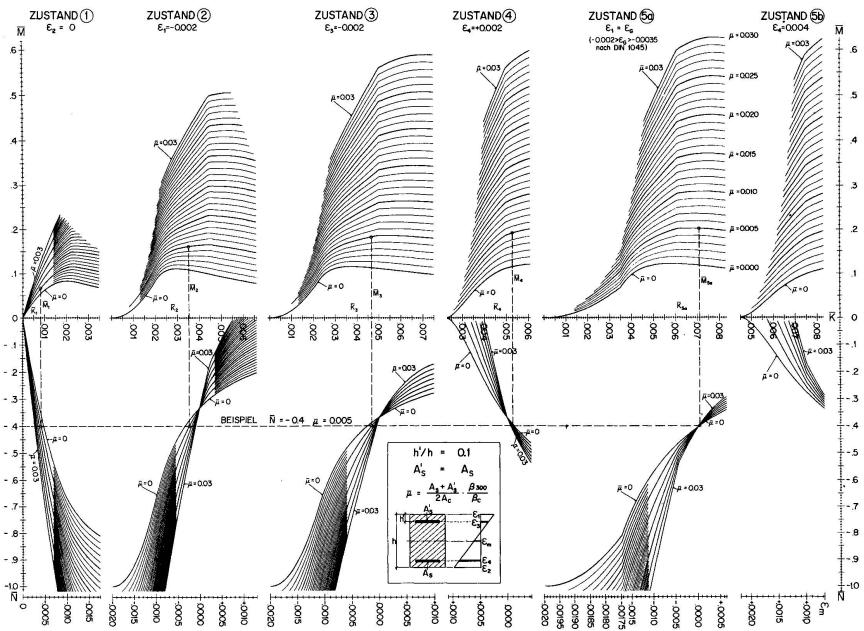
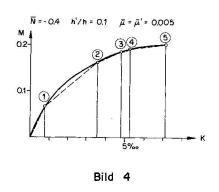
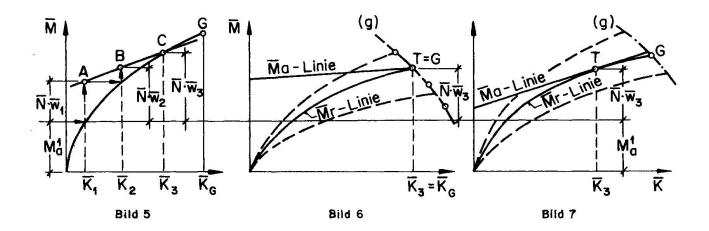



Bild 3: M-K-N-Interaktion

L. SPAROWITZ 149

rung des Momenten-Krümmungs-Zusammenhanges. Wählt man anstelle der gekrümmten σ - ε -Diagramme (Bild 2, Linien a) bi-lineare (Linien b) als Berechnungsgrundlage, so besteht eine noch bessere Uebereinstimmung zwischen dem genauen Kurvenverlauf und der polygonalen Annäherung.


Dem Bild 3 können auch die Mitteldehnungen ϵ_m =f(\bar{K}) entnommen werden. Wenn man diese im Bild 1a einträgt und miteinander verbindet, erhält man sehr gute Ausgangswerte ϵ_1 zur Bestimmung

weiterer Zwischenpunkte.

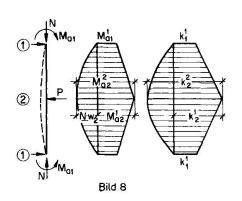
Quast [1] nähert die M-N-K-Beziehung durch eine Ersatzgerade an.

2. ZUR BEMESSUNG VON STAHLBETONDRUCKSTAEBEN

2.1 Die allgemein gültige halbgraphische Bemessung

Man kann die Linie der äusseren Momente im massgebenden Querschnitt mit genügender Genauigkeit wie folgt ansetzen:

$$\bar{M}_{a} = \bar{M}_{a}^{1} + \bar{N} \cdot \bar{w} = C_{1} \cdot \bar{N} \cdot \bar{k}^{2} \cdot \bar{K} + C_{2} \cdot \bar{N} \cdot \bar{k}^{2} = \bar{C}_{1} \cdot \bar{K} + \bar{C}_{2} \qquad (\bar{k} = l/h)$$


$$(2)$$

Die Werte C_1 und C_2 sind von der Krümmungsverteilung in Stablängsrichtung abhängig, die normalerweise nur geringfügig mit der Grösse von K veränderlich ist. M_a kann somit näherungsweise als lineare Funktion von K angesehen werden; die Linie der inneren Momente ist nach Abschnitt 1 bestimmbar. Wenn der Querschnitt und/oder Bewehrungsgrad in Stablängsrichtung veränderlich ist, müssen mehrere M-K-Linien gezeichnet werden. Für die aktiven Momente $M_a=M_a^1$ erhält man mit $w'' = K(M_a)$ die Stabausbiegung w_1 , die den Punkt A bestimmt und für $M_a=M_a^1+N\cdot w_1$ die Auslenkung w_2 , durch die der Punkt B und damit die M_a -Gerade festgelegt ist (Bild 5). Durch Zeichnen von auf max. w=1 reduzierten Biegelinien lässt sich die Biegelinienform kontrollieren. Bestehen zwischen den beiden reduzierten Biegelinien A und B grosse Unterschiede, so kann die Lage der M_a -Geraden durch eine

weitere Biegelinienberechnung für $\bar{\text{M}}_a=\bar{\text{M}}_a^1+\bar{\text{N}}\cdot\bar{\text{w}}_3$ korrigiert werden. Die Rechnung wird schematisiert in Tabellenform durchgeführt. Schneidet die M_a -Gerade die M_r -Linie bei $\bar{\text{K}}_3 < \bar{\text{K}}_G$, so kann der Beton- und/oder Stahlquerschnitt verringert werden, bis entweder das Stabilitätskriterium d $\bar{\text{M}}_a/d\bar{\text{K}}=d\bar{\text{M}}_r/d\bar{\text{K}}$ erfüllt ist oder die M_a -Gerade die M_r -Linie im Punkt G (Grenzdehnungszustand) schneidet. Da sich die Biegelinienform bei geringfügigem Variieren der Querschnitte kaum ändert, kann die Lage der M_a -Geraden näherungsweise beibehalten werden.

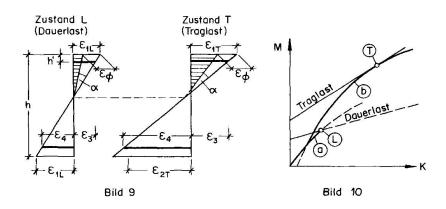
Die Wahl des erforderlichen Beton- und/oder Stahlquerschnittes lässt sich durch Zeichnen der Grenzlinie g (Bilder 6 und 7) vereinfachen, die man bei Variation des Bewehrungsgrades aus Interaktionsdiagrammen für den Grenzdehnungszustand entnehmen kann (Bild 3). Die Grenzlinie schneidet die $\bar{\rm M}_a$ -Gerade bei einem bestimmten Bewehrungsgrad im Punkt G. Die Interaktionsdiagramme können als weitere Kurvenschar den Anstieg der ${\rm M}_r$ -Kurve im Grenzdehnungszustand enthalten. Ist er grösser als der Anstieg der ${\rm M}_a$ -Geraden, so hat man es mit einem Spannungsfall 2. Ordnung zu tun (Bild 6). Andernfalls kann z.B. der Bewehrungsgrad weiter abgemindert werden, bis die ${\rm M}_r$ -Linie die ${\rm M}_a$ -Gerade tangiert. Je kleiner man die Grenzdehnungen festsetzt, desto seltener tritt der Instabilitätsfall (Bild 7) auf.

2.2 Die Bemessung bei Vereinfachung der Verformungsberechnung

Besonders einfach wird das Verfahren, wenn man die Form des Krümmungsverlaufes in Stablängsrichtung vorgeben kann, da man in diesem Fall die $\bar{\text{M}}_{\text{a}}$ -Gerade ohne Biegelinienberechnung erhält [2].

Eine gute Näherung erreicht man, wenn man den Krümmungsverlauf infolge der Biegemomente nach Theorie 1. Ordnung affin zu diesen und den Krümmungszuwachs infolge der Stabverformungen parabelförmig verteilt annimmt [1,3]. Für das im Bild 8 dargestellte Beispiel erhält man die Grössen C1 und C2 in (2) zu:

$$C_1 = 5/48$$
 $C_2 = (2\bar{K}_1^1 - \bar{K}_2^1)/48$


3. EINE NAEHERUNGSWEISE ERFASSUNG DER KRIECHEINFLUESSE

Der Traglastabfall infolge Kriechen wächst mit der Stabschlankheit und mit abnehmender Lastexzentrizität und/oder Bewehrung. Ausser in Extremfällen erreicht man, beim üblichen Verhältnis der Gebrauchsspannungen (unter Dauerlast) zu den Grenzspannungen, mit folgenden Vereinfachungen brauchbare Ergebnisse:

Während des Kriechvorganges werden die kriecherzeugenden Spannungen zeitlich konstant angenommen, und die Auswirkungen der Nulllinienverschiebung auf die Kriechumlagerung bleibt unberücksichtigt. Die Kriechdehnungen ϵ_{φ} (Bild 9) und damit die Langzeit-Betonanteile an den reaktiven Schnittlasten ergeben sich dadurch zu:

$$\varepsilon_{\phi} = \varepsilon_{1} L \cdot \frac{\phi}{1+\phi}$$
 $t_{C} = \tilde{N}_{C} \cdot \frac{1}{1+\phi}$
 $t_{M} = \tilde{M}_{C} \cdot \frac{1}{1+\phi}$
(3)

Diagramme entsprechend Abschnitt 1.1 (für lineares Verformungsverhalten des Betons), in denen die Kurzzeit-Betonanteile nach (3) mittels projektiver Leitern um den Faktor $1/(1+\phi)$ reduziert werden, ermöglichen die Darstellung von Langzeit-M-N-K-Linien (Bild 10, Linie a). Bei der Ermittlung der abschliessenden Kurzzeit-M-N-K-Linie b werden die Werte ε_1 und \bar{K} in den oberen Kurvenscharen des Bildes 1 (Betonanteile) um die für den Schnittpunkt L (Bild 10) geltenden Grössen ε_{ϕ} und α (Bild 9) verringert. Dadurch wird die Spannungsumlagerung vom Beton auf die Bewehrung näherungsweise erfasst.

Wenn man an Stelle von ϕ in (3) die Grösse $\rho \cdot \phi$ einführt, kann man die Genauigkeit steigern. ρ berücksichtigt die zeitliche Aenderung der kriecherzeugenden Betonspannungen in Abhängigkeit von der Lastexzentrizität, dem Bewehrungsgrad, der Stabschlankheit und der Grösse der Dauerlast.

Bezeichnungen

Der Querstrich über den Bezeichnungen bedeutet, dass es sich um eine dimensionslose Grösse handelt. Der Kopfzeiger 1 (bzw. 2) bedeutet Theorie 1. (bzw. 2.) Ordnung.

Ma Mr	aktives (äusseres) Moment reaktives (inneres) Moment M̄ _r =M _r /(β _c bh²)
Na	aktive (äussere) Normalkraft [
Nr	reaktive (innere) Normalkraft $N_r=N_r/(\beta_c bh)$
M_C	Betonanteil am reaktiven Biegemoment
N°	Betonanteil an der reaktiven Normalkraft
Ms	Stahlanteil am reaktiven Biegemoment
Ns	Stahlanteil an der reaktiven Normalkraft
β _C	rechnungsmässige Prismenfestigkeit des Betons
β300	Bezugsgrösse: rechnungsmässige Prismenfestigkeit eines
	Betons, dessen mittlere 28 Tage Würfelfestigkeit 300 kp/cm²
	beträgt ($\beta_{300} = 225 \text{ kp/cm}^2$)
Ь	Querschnittsbreite
h	Querschnittshöhe
h '	Randabstand der Bewehrung
μ	Bewehrungsgrad $\overline{\mu} = \mu \cdot \frac{\beta 300}{\beta_C}$

ε_1	gesamte Dehnung am Druckrand
€ 2	gesamte Dehnung am Zugrand
€з	Dehnung der Druckbewehrung
٤4	Dehnung der Zugbewehrung
εμ	Kriechstauchung am Druckrand
Aβ	Querschnittsfläche der Zugbewehrung A _s = μ•A _c
εφ Ας, Ας Κ	Querschnittsfläche der Druckbewehrung A; = μ'·Ac
AS	Betonquerschnittsfläche
κĞ	Krümmung K=K·h
L	Stablänge l̃=l/h
W	Stabausbiegungen w=w/h
φ.	Kriechzahl

Literaturverzeichnis

- [1] Kordina K., Quast U.

 Bemessung von schlanken Bauteilen Knicksicherheitsnachweis. Betonkalender 1974 (1. Teil).
- [2] Kupfer H., Bemessungsverfahren für knickgefährdete Stahlbetonstützen (unveröffentlichte Arbeit), 1965.
- [3] Aas-Jakobsen A., "Rapport préliminaire à la session plénière de Lausanne 1968".

ZUSAMMENFASSUNG

Das komplexe Problem der Bemessung beliebig belasteter Stahlbetondruckstäbe lässt sich graphisch anschaulich darstellen, indem man das Trag- und Verformungsverhalten des gesamten Stabes auf eine Betrachtung des Momenten-Normalkraft-Krümmungs-Zusammenhanges im "massgebenden Querschnitt" reduziert. Es werden Diagramme zur Ermittlung der M-N-K-Linien beschrieben, die auch die näherungsweise Berücksichtigung des Betonkriechens gestatten.

SUMMARY

The rather difficult design of arbitrarly loaded reinforced concrete compression members can be done graphically if the load carrying capacity and the deformation behavior of the compression member can be represented by the moment-load-curvature-behavior of a specified cross-section. Diagrams for the computation of the M-N-K-relations are given. An approximative consideration of the concrete creep is possible.

RESUME

Le problème complexe du dimensionnement des pièces comprimées en béton armé sous l'effet d'une charge quelconque peut être traité graphiquement de façon claire en remplaçant le comportement charge-déformation de l'ensemble de la colonne par l'étude du rapport moment de flexion (M) - effort normal (N) - courbure (K) dans la "section déterminante". On présente, pour la construction des courbures M-N-K, des diagrammes qui permettent également de tenir compte approximativement du fluage du béton.