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Large Deformation and Stability Analysis of Reinforced Concrete Frames Considering
Material Nonlinearities

Calcul des grandes déformations et de la stabilité des cadres en béton armé, tenant
compte des comportements non-linéaires du matériau

Berechnung grosser Deformationen und der Stabilität von Stahlbetonrahmen unter
Berücksichtigung der Nichtlinearitäten des Materials
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Introduction

It is widely recognized that the true behavior of reinforced
concrete is extremely complicated. Among the various physical
phenomena that occur on a macro-scopic level in reinforced concrete,
the following will be mentioned: nonlinear compressive stress-strain
relationship of concrete; cracking of concrete; yielding of steel
reinforcement bars; bond slip between reinforcement bars and concrete.
Geometric imperfections and second-order geometric effects are also
of considerable importance for beam, plate and shell structures.
The picture is further complicated by various time dependent phenomena.

In spite all of this, the analyses of most concrete structures

today are based on greatly simplified models for the materials.
The finite element method has proved to be a very efficient tool

for analysis of a great variety of nonlinear problems [1] [2] A
review of applications of the method to nonlinear analysis of
concrete structures has been given by Scordelis [ 3] Studies considering

both material nonlinearities and large deformations have
previously been reported by Berg et.al. [4] who analyzed concrete plates
and by Blaauwendraad [ 5] and Aas-Jakobsen and Grenacher [ 6] who
dealt with concrete frames.

In theory, the finite element method can be formulated so that
almost an unlimited number of complex physical and geometrical effects
may be incorporated in the numerical algorithms. A prerequisite
for this is of course that the various effects can be defined
mathematically. But at least as important as to include various physical
phenomena in the analytical model is .to ensure that the method
becomes economical and practical in use.

In the present paper an attempt is made to achieve a method of
analysis that is capable of accurately predicting the inplane
behavior of plane, slender, reinforced concrete frames and arches
that are subjected to loads up to the ultimate carrying capacity.
Major efforts have been made to make the analytical model economical

and efficient. The approach is based on the finite element method
utilizing a beam displacement model. The material properties of
concrete and steel reinforcement may be relatively general. The
loading geometry, support conditions and distribution of
reinforcement may also be arbitrary. The cross-sections are assumed to
be rectangular. Large deflections of the frame are also accounted
for. The present method is demonstrated by two numerical examples,
eccentric buckling of a column and stability analysis of an arch.
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Fig.l. Description of motion of an element
during deformation.

In the proceeding, a simple but powerful approach for large
displacement analysis of frames will be followed. The structure
is assumed to be divided into finite elements. To every element
is "attached" a local Cartesian coordinate system going through the
end nodal points, see Fig. 1.

This coordinate system follows
the element during the deformation.

On the local element level
the deformations are assumed to
be small (small strains).
However, forces and displacements
for each element are transformed
to a global coordinate frame in
which the equilibrium equations
for the entire system are assembled.

In effect, this approach
is a matter of updating the
nodal point geometry of the
structure in accordance with
the current deformations. The
geometric nonlinearities entering
this procedure are entailed in
the continuously changing
transformation matrices between local
and global systems (rotational

effect of elements).
Two equations are of great importance for a nonlinear analysis:

the equilibrium equations and the incremental form of the
equilibrium equations. The condition of equilibrium for an element can
be stated in terms of the virtual work principle

JcrôedV - /T-Su-dS 0 (1)
V Sj

For a beam element a is the axial stress, V the element volume,
T^ the surface traction which is prescribed on surface 6u^
are the virtual displacements and 6e the corresponding virtual
strain. Using the approach just described, Eq. (1) yields the small
displacement (secant) stiffness relation, i.e. the equilibrium
equation, referred to the local coordinate system in the current
deformed configuration. Eq. (1) may very well account for nonlinear
material effects.

By considering equilibrium of two configurations 1 and 2

of the element that are close to each other, an incremental form of
the virtual work principle may be obtained

JAcröedV + Ja6AedV - /AT.ôu.dS 0 (2)
V V Sj

1 1

where A denotes increment of quantities between the two configurations.

In accordance with the previous description Eq. (2) has
been linearized by neglecting the term jAaôAedV.

V

The reference frame for Eq. (2) is the local coordinate system in
configuration 1, see Fig. 1. For a beam element the term 6Ae may
be obtained from the nonlinear strain term which includes the
rotational effect i 2 so that
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Equation (2) yields the socalled incremental or tangent stiffness
relation which accounts for both nonlinear material properties and
geometric effects (geometric stiffness on linearized form).

Finite Element Model
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The finite element idealization
of the beams is here

based on a pure displacement
model [ 1] The axial

displacement along the x-
axis of a beam element is
defined by

("+)

where
V

Fig.2. The beam element. Nu - [ Ç, 1-Ç, tÇ(l-Ç)](5)
U [Up u2, us] (6)

The internal degree of freedom at the midplane, see Fig. 2, is introduced

in order that the strain due to axial deformation be of the
same degree as the strain due to flexure. The lateral displacement
w is defined by

N w
w

where

Nw=[ 1-3Ç2 + 2Ç3,-AÇ(1-Ç)2 l-3(l-£)2 + 2(l-Ç)3,AÇ2(1-Ç)]
W [ Wj ,0 j ,1

(7)

(8)

(9)

Adopting Kirchhoff's hypothesis, the strain at an arbitrary point
within the beam element is given by

^ N u - zN Wdx u,x w,xx (10)

The above model does not accountThe comma denotes differentiation,
for shear deformations.

Assuming that forces act only at the nodal points of an element,
the element equilibrium equation is obtained by substitution of
Eq. (10) into Eq. (1).

V

N
u ,x

T-zN
w,xx

dV S (11)

S is the nodal point force vector corresponding to the state of
stress a. The stress a is given by the current strain, see the
next section.

The increment of the axial stress is related to the strain
increment through the equation

Act E^Ae (12)
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where E^ is the current tangent modulus. By substitution of
Eqs. (10) and (12) into Eq. (2), the incremental force-displacement
relationship for the element is obtained

JE4

N
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N
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-zN T
N
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symm. z2N N

w,xx w,xx
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0
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N
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dx
"Au" "AS
AW

— ASU
w

AS (13)

Here, N is the resulting axial force over the element cross section.
The second term of Eq. (13) is the geometric contribution to the
incremental force-displacement relationship. A similar incremental
relationship for the total structure is obtained by transformation
from the current local to the global coordinate system and using
a standard assemblage process.

Material properties
The method described herein allows for a general, nonlinear

stress-strain relationship for both concrete and reinforcement. The
concrete and the steel are assumed to be perfectly bonded.

In the computational procedure, it is assumed that there is a
unique relationship between stresses and strains (total deformation
formulation). The stress-strain curve for the concrete is identified

by a set of discrete points, see Fig. 3. Linear interpolation
between these points are used for
intermediate values. The tangent
modulus needed in Eq. (13) is given in
a similar way by utilizing discrete
tangent values from the experimental
stress-strain curve. The tangent
modulus may be negative. In tension
the concrete is assumed to behave
linearly up to a cracking strain
ecr beyond which the concrete has
no strength. The computer program
which was developed can also
automatically generate the standard CEB-
FIP design curve for concrete [ 7]
(also used in the Norwegian building
code NS 3473).

The material properties for the
steel are obtained in a similar way
as for the concrete by identifying
discrete values from experimental
curves.

Numerical solution
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Fig.3. Material properties for
concrete.

The major constituents in the solution process are the
equilibrium equation (11) and its incremental form Eq. (13). These
equations require integration to be carried out over the volume of
the beam elements. A Gaussian quadrature scheme is adopted forthis purpose. This integration is performed by utilization of 2

to 4 cross sections located at Gaussian points along the longitudinal
axis of the beam element. Integration is also carried out over

the height of each section employing Gaussian integration for stress
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points in the compression zone. The material properties at these
points are obtained from diagrams like that of Fig. 3. The part of
the tension zone where the strain exceeds the cracking limit is
excluded from the integration. Several layers of reinforcement
can also be accounted for.

The response of the structure during increasing external loading
is basically determined by applying the external load in increments
and by performing equilibrium iterations at each new level of loading.
It may well happen that equilibrium of the structure is not satisfied

after a new displacement vector has been obtained. The difference
between the external forces acting on the structure and the

assemblage of element force vectors from Eq. (11) give rise to a
set of unbalanced forces. This residual force vector is utilized
in a Newton-Raphson iteration in which the gradient matrix is
supplied by Eq. (13). The iteration is terminated when the displacements

have converged or material rupture has occured. The material
properties at the integration points and the extension of the cracked
zones are constantly updated during solution according to the current
state of deformations. Also the local coordinate systems for the
elements are steadily updated to account for the change in geometry
of the frame.

The solution process is capable of proceeding beyond points of
maximum carrying capacity of the structure. The load-steps
automatically change sign after maximum point has been passed (reduction

of external loading). This capability can be of great importance
for determining the safety of a design. Further details on the
solution procedure that is used may be found in Ref. [8].
Numerical Examples

The present method will be illustrated by two numerical
examples.

The first example is a hinged column subjected to eccentric
axial loading, see Fig. 4. The steel reinforcement is symmetric
and it is assumed to behave elastic-ideally plastic. Its modulus
of elasticity is Eg 2.055*105 N/mm2(29.2•106 psi) and its yield
strength is f 461 N/mm2(65500 psi). The compressive stress-
strain relationship of concrete is described by the standard CEB-
FIP curve [7] with an ultimate strain of e - -0.0035. The maxi-c
mum compressive strength is taken as f 25.7 N/mm2(3660 psi)
corresponding to 80 per cent of the cube strength. The tensile
strenght of concrete is neglected. Half the total length of the
column is divided into six beam elements. The axial loading is
applied in 18 increments and an equilibrium iteration is carried
out at each level of loading. Fig. 4 shows the load-deflection
curve for the present analysis compared with test and analytical
results from Ref. [ 6] The results obtained agree closely with the
two other curves. For all the curves the maximum point corresponds
to an axial force of N 242 kN (53.4 kips). To some extent, the
discrepancy between the test curve and the analytical curves may
be due to that the tensile strength has been set equal to zero.
Fig. 5 shows a graph of the relationship between moment (M) and
axial force (N) at the critical section of the column during
deformation. The interaction diagram which represents material
failure is also plotted in the figure. It is clearly demonstrated

Bg. 5 VB
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Fig.4. Load - deflection curves for column. Fig.5. M - N relationships for column.
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that the final collapse of the column occurs when the M-N curve of
the column reaches the interaction diagram (failure envelope). The
total solution time for this example was 18 CPU-seconds on a
UNIVAC 1108 computer.

The second example is a 180 hinged arch subjected to uniform
hydrostatic pressure. Since no test data or alternative analytical
results are available, the main purpose of this example is to demonstrate

various capabilities of the present approach. The dimensions
of the arch are given in Fig. 7. It is assumed to have a geometric
imperfection defined by e eQsin2a. The ultimate strain of the
steel is taken as e e + 0.005 0.0069. The arch is analyzedsu y J

both as an unreinforced concrete structure with perfectly linear
elastic material properties and as a reinforced concrete structure
with nonlinear material properties. The shape of the nonlinear
stress-strain relationship is assumed to be the same as for the
previous example, and the numerical values are given in Fig. 6. The
hydrostatic pressure is applied both as a conservative loading for
which the original direction of the force is kept during deformation
and as a nonconservative loading for which the water pressure
always is acting perpendicular to the deformed configuration. The
arch is divided into 12 equal elements.

The results obtained are shown in Figs. 6 and 7. In Fig. 6,
the horizontal displacement of node H, u is plotted against
the load intensity p. Curve shows the load-displacement
relationship for an elastic structure subjected to a nonconservative
load. The curve approaches the critical load level for linearized
buckling pcr 3EI/RQ3 418 N/mm. A similar curve for conservative
loading is marked © • Curve (3) and (4) represent a reinforced
concrete arch with conservative and nonconservative load, respectively.

Curve <D reaches its peak value at a load level of po -250 N/mm.

Material failure is reached at p - 140 N/mm 0.56 p Therms S3

corresponding values for curve © are p ^ 230 N/mm and

Pml( - 125 N/mm 0.54 PS1)- The curves representing nonconservative
load are located approximately 10 per cent lower than the
corresponding curves representing conservative load. This demonstrates
that practical design procedures ought to account for changes in
the direction of loads. From Fig. 6 it may also be seen that the
asymptotes of the elastic curves are located about 80 per cent
higher than the maximum points of the corresponding reinforced
concrete curves. Fig. 7 shows the relationship between moment (M)
and axial force (N) at the critical section (node 4) for the
reinforced concrete arch with conservative and nonconservative
loading, respectively. Also the corresponding interaction diagram
(failure envelope) is shown. The loading was applied in 11 to 22
load increments corresponding to a total solution time of 30 to
76 CPU-seconds on a UNIVAC 1108 computer.
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SUMMARY

The paper presents a method of nonlinear analysis for plane,
reinforced concrete frames. Both geometric and material nonline-
arities are accounted for. The method allows for incremental
application of the external loads and the structural behaviour
may be followed even beyond the point of maximum carrying capacity.
The analysis is based on a finite element formulation in which
the frames are modelled by small beam elements. The present method
has proved to be very efficient and accurate.

RESUME

Ce rapport présente une méthode de calcul non-linéaire pour
les cadres plans en béton armé. On tient compte des comportements
non-linéaires et de la géométrie et du matériau. Cette méthode
permet d'étudier le comportement d'une structure sous l'accroissement

de la charge extérieure, même au-delà du point où la
charge maximum est atteinte. Le calcul se base sur la méthode des
éléments finis: les cadres sont considérés comme un assemblage de
petits éléments de poutre. On a démontré que la méthode ci-dessus
était efficace et exacte.

ZUSAMMENFASSUNG

Der Beitrag stellt eine Methode vor, mit welcher eine
nichtlineare Berechnung ebener Stahlbetonrahmen möglich ist. Sowohl
die geometrischen Nichtlinearitären als auch diejenigen der
Baustoffe werden berücksichtigt. Die Methode gestattet stufenweises
Aufbringen der äusseren Belastung, und das Verhalten lässt sich
selbst über den Punkt der maximalen Tragfähigkeit hinaus
verfolgen. Die Berechnung benützt die Methode der Piniten Elemente,
wobei der Rahmen aus kleinen Balkenelementen zusammengesetzt wird.
Die vorliegende Methode hat sich als sehr leistungsfähig und genau
erwiesen.



Leere Seite
Blank page
Page vide


	Large deformation and stability analysis of reinfroced concrete frames considering material nonlinearities

