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Large Deformation and Stability Analysis of Reinforced Concrete Frames Considering
Material Nonlinearities

Calcul des grandes déformations et de la stabilité des cadres en béton armé, tenant
compte des comportements non-linéaires du matériau

Berechnung grosser Deformaticnen und der Stabilitat von Stahlbetonrahmen unter
Beriicksichtigung der Nichtlinearitaten des Materials

E. ALDSTEDT P.G. BERGAN
Research Fellow Associate Professor of Civil Engineering
The Norwegian {nstitute of Technology
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Introduction

It is widely recognized that the true behavior of reinforced
concrete is extremely complicated. Among the various physical
phenomena that cccur on a macro-scopic level in reinforced concrete,
the following will be mentioned: nonlinear compressive stress-strain
relationship of concrete; cracking of concrete; yielding of steel
reinforcement barsj; bond slip between reinforcement bars and concrete.
Geometric imperfections and second-order geometric effects are also
of considerable importance for beam, plate and shell structures.

The picture is further complicated by various time dependent pheno-
mena. In spite all of this, the analyses of most concrete struc-
tures today are based on greatly simplified models for the materials.

The finite element method has proved to be a very efficient tool
for analysis of a great variety of nonlinear problems [1], [2]. A
review of applications of the method to nonlinear analysis of con-
crete structures has been given by Scordelis [3]. Studies consider-
ing both material nonlinearities and large deformations have pre-
viously been reported by Berg et.al. [4] who analyzed concrete plates
and by Blaauwendraad { 5] and Aas~Jdakobsen and Grenacher [6] who
dealt with concrete frames.

In theory, the finite element method can be formulated so that
almost an unlimited number of complex physical and geometrical effects
may be incorporated in the numerical algorithms. A prerequisite
for this is of course that the various effects can be defined mathe-
matically. But at least as important as to include various physical
phenomena in the analytical model is to ensure that the method be-
comes economical and practical in use.

In the present paper an attempt is made to achieve a method of
analysis that is capable of accurately predicting the inplane be-
havior of plane, slender, reinforced concrete frames and arches
that are subjected to loads up to the ultimate carrying capacity.
Major efforts have been made to make the analytical model economi-

cal and efficient. The approach is based on the finite element method
utilizing a beam displacement model. The material properties of
concrete and steel reinforcement may be relatively general. The

loading , geometry, support conditions and distribution of rein-
forcement may also be arbitrary. The cross-sections are assumed to
be rectangular. Large deflections of the frame are also accounted
for. The present method is demonstrated by two numerical examples,
eccentric buckling of a column and stability analysis of an arch.
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Governing equations

In the proceeding, a simple but powerful approach for large
displacement analysis of frames will be followed. The structure
is assumed to be divided into finite elements. To every element
is "attached" a local Cartesian coordinate system going through the
end nodal points, see Fig. 1.
This coordinate system follows
the element during the deforma-
= tion. On the local element level
the deformations are assumed to
be small (small strains). How-
ever, forces and displacements
for each element are transformed
to a global coordinate frame in
which the equilibrium equations
for the entire system are assem-
bled. 1In effect, this approach
is a matter of updating the
nodal point geometry of the
X X structure in accordance with
_» the current deformations. The
geometric nonlinearities entering
this procedure are entailed in
the continuously changing trans-
formation matrices between local
and global systems (rotational

Initial
Configuration

Fig.1. Description of motion of an element
during deformation,

effect of elements).

Two equations are of great importance for a nonlinear analysis:
the equilibrium equations and the incremental form of the equi-
librium equations. The condition of equilibrium for an element can
be stated in terms of the virtual work principle

fo8edV - [T 8u;ds = 0O (1)
v S,

For a beam element ¢ is the axial stress, V the element volume,

Ti the surface traction which is prescribed on surface 5,, Sui

are the virtual displacements and &e the corresponding virtual
strain. Using the approach just described, Eq. (1) yields the small
displacement (secant) stiffness relation, i.e. the equilibrium
equation, referred to the local coordinate system in the current
deformed configuration. Eg. (1) may very well account for nonlinear
material effects.

By considering equilibrium of two configurations 1 and 2
of the element that are close to each other, an incremental form of
the virtual work principle may be obtained

[AcéedV + [o8AedV - [AT.6u.dS = 0 52
v \Y S,
where A denotes increment of quantities between the two configu-
rations. In accordance with the previous description Eq. (2) has

been linearized by neglecting the term fAcGAedV.
vV

The reference frame for Eq. (2) is the local coordinate system in
configuration 1, see Fig. 1. For a beam element the term &Ae may
be obtained from the nonlinear strain term which includes the rota-

tional effect %(g—‘;)z, so that
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Shwya _ 3 @y2y - gy 2w (3)

she = o[ 1(2Y 4 Hy2) = 53y 24w

9X X

Equation (2) yields the socalled incremental or tangent stiffness
relation which accounts for both nonlinear material properties and
geometric effects (geometric stiffness on linearized form).

Finite Element Model

The finite element ideali-
zation of the beams is here

zZ,w based on a pure displace-
f ment model [1l]. The axial
"1 Wo displacement along the x-
6 ( uy u3 Uz \x,u h axis of a beam element is
——.——H —_—— -
1 l] 3 2 93 ' defined by
% E=#1 lb] By = By (4
| where
N = 1~ LE(LI-E)] (5)
Fig.2. The beam element. u L, £ gT £)]
u = [u s u,, u,l (6)

The internal degree of freedom at the midplane, see Fig. 2, is intro-
duced in order that the strain due to axial deformation be of the
same degree as the strain due to flexure. The lateral displacement

w 1is defined by

w=Nw (7)
where

N =[1-382+28°% ,-28(1-£)%, 1-3(1-£)%+2(1-£)%,0E%(1-8)] (8)

W = [Wl,el,wz,ele (9)

Adopting Kirchhoff's hypothesis, the strain at an arbitrary point
within the beam element is given by

_ du

ax - Nu,xu = ZNW,XXW (10)
The comma denotes differentiation. The above model does not account
for shear deformations.

Assuming that forces act only at the nodal points of an element,
the element equilibrium equation is obtained by substitution of
Eq. (10) into Eq. (1).

NT S
fU U.X dav = Su = 5 (11)
vV T W

N

W, XX

=2

S 1s the nodal point force vector corresponding to the state of
stress o. The stress ¢ 1is given by the current strain, see the
next section.

The increment of the axial stress is related to the strain
increment through the equation

Ao = ETAE (12)
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where ET is the current tangent modulus. By substitution of

Eqs. (10) and (12) into Eq. (2), the incremental force-displacement
relationship for the element 1is obtained

T T
N N -zN N 0 0
J-E UWaX U,uX, u:% WeXX dV+NJ’ T dx g:’ gg =AS (13)
symm. , z2N N 2 |0 N N
WHyXX W,XX WX W,X

Here, N 1is the resulting axial force over the element cross section.
The second term of Eq. (13) is the geometric contribution to the
incremental force-displacement relationship. A similar incremental
relationship for the total structure is obtained by transformation
from the current local to the global coordinate system and using

a standard assemblage process.

Material properties

The method described herein allows for a general, nonlinear
stress-strain relationship for both concrete and reinforcement. The
concrete and the steel are assumed to be perfectly bonded.

In the computational procedure, it is assumed that there is a
unique relationship between stresses and strains (total deformation

formulation). The stress-strain curve for the concrete is identi-
fied by a set of discrete points, see Fig. 3. Linear interpolation
. between these points are used for
% a(Negative) intermediate values. The tangent mo-
—_— dulus needed in Eq. (13) is given in
/ - 2 bl :
a ’ 1 a similar way by utilizing d1§crete
2 /f I tangent values from the experimental
€cr I/ I (Negcﬁve)stress—straln curve. The tangept mo -
" S T— 1 | —» ~dulus may be negative. In tension
VE1€E0 €3 €4 €n €. the concrete is assumed to behave
(@) Uniaxial stress for concrete, linearly up to a cracking strain
B beyond which the concrete has
E- 4 (Positive) no strength. The computer program
H—< which was developed can also auto-
I \ matically generate the standard CEB-
I \\\ FIP design curve for concrete [7]
I S g (Negative) (@lso usea in the Norwegian building
er ¢ » 'code NS 3473).
cr -4 Ec The material properties for the
(b) Tangent modulus for concrete steel are obtained in a similar way

as for the concrete by identifying
discrete values from experimental
curves.

Fig.3. Material properties for
concrete,

Numerical solution

The major constituents in the solution process are the equi-
librium equation (11) and its incremental form Eq. (13). These
equations require 1ntegratlon to be carried out over the volume of
the beam elements. A Gaussian quadrature scheme is adopted for
this purpose. This integration is performed by utilization of 2
to 4 cross sections located at Gaussian p01nts along the longitudi-
nal axis of the beam element. Integration is also carried out over
the height of each section employing Gaussian integration for stress
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points in the compression zone. The material properties at these
points are obtained from diagrams like that of Fig. 3. The part of
the tension zone where the strain exceeds the cracking limit is
excluded from the integration. Several layers of reinforcement

can also be accounted for.

The response of the structure during increasing external loading
is basically determined by applying the external load in increments
and by performing equilibrium iterations at each new level of loading.
It may well happen that equilibrium of the structure is not satis-
fied after a new displacement vector has been obtained. The differ-
ence between the external forces acting on the structure and the
assemblage of element force vectors from Eq. (11) give rise to a
set of unbalanced forces. This residual force vector is utilized
in a Newton-Raphson iteration in which the gradient matrix is
supplied by Eq. (13). The iteration is terminated when the displace-
ments have converged or material rupture has occured. The material
properties at the integration points and the extension of the cracked
zones are constantly updated during solution according to the current
state of deformations. Also the local coordinate systems for the
elements are steadily updated to account for the change in geometry
of the frame.

The solution process is capable of proceeding beyond points of
maximum carrying capacity of the structure. The load-steps auto-
matically change sign after maximum point has been passed (reduc-
tion of external loading). This capability can be of great importance
for determining the safety of a design. Further details on the
solution procedure that is used may be found in Ref. [8].

Numerical Examples

The present method will be illustrated by two numerical
examples.

The first example is a hinged column subjected to eccentric
axial loading, see Fig. 4. The steel reinforcement is symmetric
and it is assumed to behave elastic-ideally plastic. Its modulus
of elasticity is E_ = 2.055105 N/mm?(29.2+10° psi) and its yield

strength is f_ = 461 N/mm?*(65500 psi). The compressive stress-

strain relationship of concrete is described by the standard CEB-
FIP curve [7] with an ultimate strain of By = -0.0035. The maxi-

mum compressive strength is taken as fC = 25,7 N/mm?(3660 psi)

corresponding to 80 per cent of the cube strength. The tensile
strenght of concrete is neglected. Half the total length of the
column 1s divided into six beam elements. The axial loading is
applied in 18 increments and an equilibrium iteration is carried
out at each level of loading. Fig. 4 shows the load-deflection
curve for the present analysis compared with test and analytical
results from Ref. [6]. The results obtained agree closely with the
two other curves. For all the curves the maximum point corresponds
to anaxial force of N = 242 kN (53.4 kips). To some extent, the
discrepancy between the test curve and the analytical curves may

be due to that the tensile strength has been set equal to zero.
Fig. 5 shows a graph of the relationship between moment (M) and
axial force (N) at the critical section of the column during de-
formation. The interaction diagram which represents material
failure is also plotted in the figure. It is clearly demonstrated
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that the final collapse of the column occurs when the M-N curve of
the column reaches the interaction diagram (failure envelope). The
total solution time for this example was 18 CPU-seconds on a
UNIVAC 1108 computer. o

The second example is a 180~ hinged arch subjected to uniform
hydrostatic pressure. Since no test data or alternative analytical
results are available, the main purpose of this example is to demon-
strate various capabilities of the present approach. The dimensions
of the arch are given in Fig. 7. It is assumed to have a geometric
imperfection defined by e = eosinZa. The ultimate strain of the
steel is taken as €y = Ey + 0.005 = 0.0069. The arch is analyzed
both as an unreinforced concrete structure with perfectly linear
elastic material properties and as a reinforced concrete structure
with nonlinear material properties. The shape of the nonlinear
stress-strain relationship is assumed to be the same as for the pre-
vious example, and the numerical values are given in Fig. 6. The
hydrostatic pressure is applied both as a conservative loading for
which the original direction of the force is kept during deformation
and as a nonconservative lcading for which the water pressure al-
ways is acting perpendicular to the deformed configuration. The
arch is divided into 12 equal elements.

The results obtained are shown in Figs. 6 and 7. In Fig. 6,

the horizontal displacement of node 4, Uy, is plotted against

the load intensity p. Curve (2) shows the locad-displacement
relationship for an elastic structure subjected toc a nonconservative
load. The curve approaches the critical load level for linearized
buckling Pop * SEI/RO3 = 418 N/mm. A similar curve for conservative

loading is marked @ . Curve (@ and (@ represent a reinforced
concrete arch with conservative and nonconservative load, respective-
ly. Curve (@) reaches its peak value at a load level of p03=250 N/mm.

- 140 N/mm = 0.56 Pg, - The
corresponding values for curve ()Aipe P ~ 230 N/mm and

Sh

Dy = 125 N/mm = 0.54 Py, - The curves representing nonconservative

locad are located approximately 10 per cent lower than the corre-
sponding curves representing conservative load. This demonstrates
that practical design procedures ought to account for changes in
the direction of locads. From Fig. 6 it may also be seen that the
asymptotes of the elastic curves are located about 80 per cent
higher than the maximum points of the corresponding reinforced con-
crete curves. Fig. 7 shows the relationship between moment (M) '
and axial force (N) at the critical section (node 4) for the re-
inforced concrete arch with conservative and nonconservative
loading, respectively. Also the corresponding interaction diagram
(failure envelope) is shown. The loading was applied in 11 to 22
load increments corresponding to a total solution time of 30 to

76 CPU-seconds cn a UNIVAC 1108 computer.

R

Material failure is reached at p

References

[1] ZIENKIEWICZ, O.C., The Finite ElLement Method in Engineening
Science, McGraw-Hill, London {(1971)

[2] ODEN, J.T., Findte Elements of Nonfinean Continua, McGraw-Hill,
New York (1871)




p(N/mm)
4
500 |-
3 ——
pcr=3EI/Ro-418 o —
o
- -
400 |- P )
/ # Material Properties :
//f Elastic : E_= 3.0-10% N/mm2
,;/ 4.26-106 psi )
300 L /, Reinforced : f_= 19.2 N/mm 2
i Concrete (2720 psi
#

® e e e e o

—— — — Y

f =320 N/mm2
(45400 ps; )

E = 1.67+10° N/ n?
(23.7+-100 psi )

)

200 LY
:;Mt:aferiol
failure
100 D Elastic. Conservative Load.
® Elastic. Nonconservative Load.
® Reinf, Concrete. Conservative Load,
@ Reinf. Concrete. Nonconservative Load.
0 | 1 ! x4
0 250 500 750 (mm)
Fig.6. Load - deflection curves for arch, ( Horizontal

displacement of node 4 )

z

Ro = 15700m

Xt

-

(618in.) A= Al = 6000mm 2

! ' 9.3 in.2)
. . €l ~
NE
Lt L ] o ﬂ'
. . S £
o &
P2, |1 80
=800} (23. 6in.)

@ N3z 3.9 MN (860/kips )

SS=——N.43%.6 MN (795 kips )

CID\See Fig.6. Rupture in

f’ensiie reinf.
|

1 M,
0 Tensi 1.0 1.5 2,0 {MNm)
ension
Fig.7. M -~ N relationships for arch.

89

SAANVHA J1IHINOD d3DHO4NIIH 40 SISATVYNY ALITIEVLS ANV NOILVWHO43d 394UV — |



[ 3]

[ 8]
[ 6]

[ 7}
[ 8]

E. ALDSTEDT — P.G. BERGAN 69

SCORDELIS, A.C., "Finite Element Analysis of Reinforced
Concrete Structures", presented at the June 1-2. 1972,
Speciality Conference on the Finite ELement Method in CAvil
Engineering, Montreal, Canada.

BERG, S., BERGAN, P.G., HOLAND, I., "Nonlinear Finite Element
Analysis of Reinforced Concrete Plates", Proceedings o4 the
Znd International Congernence on Structurnal Mechanics 4in
Reactor Technology, Vol. M, Berlin, Sept. 1973.

BLAAUWENDRAAD, Ir.J., "Realistic Analysis of Reinforced Con-
crete Framed Structures", HERON, Vol. 18, No. 4, 1972.
AAS-JAKOBSEN, K.A., GRENACHER, M., Berechnung unelastischen
Rahmen nach dex Theorie 2. Ondnung, Bericht Nr. 45, Institut
fir Baustatik, ETH, Zirich, Januar 1973.

CER-FIP, Internationaf Recommendations gfor the Design and
Construction o4 Conchete Strucitunres, English Edition, June 1970.
BERGAN, P.G., S@PREIDE, T., "A Comparative Study of Different
Numerical Solution Techniques as applied to a Nonlinear Struc-
tural Problem", Computer Methods in Applied Mechanics and
Engineening 2 (1973) 185 - 201.

SUMMARY

The paper presents a method of nonlinear analysis for plane,

reinforced concrete frames. Both geometric and material nonline-
erities are accounted for. The method allows for incremental
application of the external loads and the structural behaviour

may
The
the
has

be followed even beyond the point of maximum carrying capacity.
analysis is based on a finite element formulation in which
frames are modelled by small beam elements. The present method
proved to be very efficient and accurate.

RESUME

les

Ce rapport présente une méthode de calcul non-linéaire pour
cadreg plans en béton armé. On tient compte des comportements

non-linéaires et de la géométrie et du matériau. Cette méthode
permet d'étudier le comportement d'une structure sous l'accrois-
sement de la charge extérieure, méme au-dela du point ol la

charge maximum egt atteinte. Le calcul ge base sur la méthode des
éléments finis: les cadres sont considérés comme un assemblage de
petits éléments de poutre. On a démontré que la méthode ci-dessus
était efficace et exacte.

ZUS AMMENFASSUNG

Der Beitrag stellt eine Methode vor, mit welcher eine nicht-
lineare Berechnung ebener Stahlbetonrahmen mdglich ist. Sowohl
die geometrischen Nichtlinearitdren als auch diejenigen der Bau-
stoffe werden beriicksichtigt. Die Methode gestattet stufenweises
Aufbringen der Husseren Belastung, und das Verhalten l&8sst sich
selbst Uber den Punkt der maximalen Tragfghigkeit hinaus ver-
folgen. Die Berechnung beniitzt die Methode der Finiten Elemente,

wobei der Rahmen aus kleinen Balkenelementen zusammengesetzt wird.
Die vorliegende Methode hat sich als sehr leigstungsfihig und genau
erwiesen.
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