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Plastic H-Columns Under Repeated Biaxial Loading
Colonnes plastiques a profiles H soumises a des charges répétees biaxiales

Plastische Stiitzen mit H-Querschnitt unter wiederholter zweiaxiger Belastung

W.F. CHEN
Associate Professor
Department of Civil Engineering
Fritz Engineering Laboratory
{.ehigh University
Bethlehem, Pennsylvania
USA

INTRODUCTION: Moment-curvature-thrust relationships are of prime importance

in any apalysis of structural behavior. For a biaxially loaded steel H-column,
the appropriate set of loadings are bending moments M_ and M _, axial force P

and warping moment M__. The corresponding set of defgrmatioXs are bending
curvatures, o_ and ¢X¥ axial strain ¢ and warping curvature ¢__. This may be
demonstrated glearlyyby considering aosimple physical model as“thown in Fig. 1.
The biaxial load is seen to be decomposed into four components. The first three
are statically equivalent to an axial force 4P and two bending moments Mg and

M _ about two principal axis of the H-section., However, these three equiValent
sgstems do not produce the biaxial load 4P. It is necessary to consider a
fourth system which produces zero axial force and zero bending moment resultants
on the section. This fourth system termed warping moment, M__, causes the
column to warp or twist. xy

For the most part, plastic analysis and design of biaxially loaded columns
have in the past been directed toward the study of proportional, monotonically
increasing loading to failure [1]. This type of loading is not entirely realistic
for many applications, however. Herein a study is made of the relationships
between moments and curvatures for a relatively short steel column subject to
repeated and reversed compression combined with biaxial bending moments.

The term relatively '"short" steel columns referred to here means that the
effect of lateral deflections on the magnitudes of bending moment is negligible.
Furthermore, effects of local buckling are not included in the analysis.

STRESS-STRAIN RELATIONSHIPS INCLUDING HYSTERESIS: The stress-strain relationship
is assumed to be tri-linear as shown in Fig. 2. The curve is composed of three
regimes: elastic; plastic; and strain hardening. The plastic unloading behavior
is idealized as shown in the figure. If the material is unloaded from the plastic
regime, the material exhibits no Bauschinger effect. However, if the material

is unloaded from the strain hardening regime, some Bauschinger effects are ex-
hibited, This strain hardening, plastic unloading rule and Bauschinger effect
are interpreted clearly by the kinematic model of the parallelogram BD'B'D and
the straight line AA' (Fig. 2). Elastic loading or plastic unloading within the
line AA' does not change the condition at all (Fig. 2a). Plastic loading along
lines DB or D'B' changes the position of line AA' only (Fig. 2b). 8train
hardening along lines BC or B'C' translates the position of the parallelogram
BD'B'D in parallel to the lines BC and B'C' (Fig. 2c). In this case, the
elastic line AA' coincides with the line BD'. Positions of the lines BC and B'C'
do not change for any loading history.

Bg.1VB
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a) Elastic Loading
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b} Plastic Loading
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Fig. 1 Decomposition of a Biaxial Loading Fig. 2 Stress-Strain Model

MATHEMATICAL FORMULATION: Since only normal stress and normal strain are con-
sidered, deformation quantities related teo normal strain are taken as generalized
strairns of the H~section. This results in the following relationship between the
generalized strain {8} and the strain, e:

[
co<\= r% dA 1 strain at centroid
@ |= £ I Be dA curvature about x-axis
wy = ru J 3% dA curvature about y-axis
1 e ; ;
! ¢ny— A I 3% 3y dAJ warping curvature about the centroid
Strain distribution is assumed to be linear in x and y coordinate.
€=c + x my + y P, + Xy wxy (2)

The corresponding resultant forces or generalized stresses are determined from
the rate of internal energy dissipation

1')I=Id;:dA=éoIch+c;3XIcydA+c;Jy_fcdi+c;)ij‘o‘xydA (3)

This results in the following relationship between the generalized stress {f}
and the stress, o:

P =1l o dA axial thrust
M =) oy dA bending moment about x-axis
_ X
ff} = M [=1] ox dA bending moment about y-axis %)
y
M 1= I oxy dA warping moment about the centroid
X
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Because plastic behavior is load path dependent and usually requires step-
by-step calculations that follows the history of loading. For this reason, it
has proven useful to estabiish an analytical relationship of the generalized
stress=strain or moment-curvature relation in terms of the incremental changes
of {df} and {ds}. This leads to the linear relationship between these quantities

(df} = [K] {as} | (5)

The matrix [K] is defined as the tangent stiffness matrix as it represents
the tangent of the generalized stress-strain curve as well as the stiffness of the
cross section. A detailed description on the analytical derivation of this equa-
tion is given in Ref., 2,

METHOD OF SOLUTION: The numerical solution of Eq. 5 can be obtained by the tan-

gent stiffness method. Details of the method have been given in Ref. 3 for a
relatively short column and in Ref. 4 for the case of a long column: A brief
description of the tangent stiffness method will be given herein.
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Fig. 3 Tangent Stiffness Method Fig. 4 Tangent Stiffness Method with

Strain Hardening

Consider a generalized stress or a force vector f, a generalized strain or
a deformation vector § and their relationship is shown in Fig. 3. The column
segment has experienced loadings along the path 0OA. At point A, the current
force vector f,, deformation vector &, and the stiffness matrix K, are assumed
to be known, tﬁe problem is to find tﬁe corresponding deformation vector 63

when the force vector is increased from fA to fB

Since the deformation increment d§ can be calculated from the force increment
df_?r df = f, - f, using the tangent stiffness K, at the current state A, or-d51 =
KA df. The first approximate value of total deformation is obtained by &, =
8> + d5,. From this approximate deformation §,, the total strain distribution e
can be &etermined from Eq. 2 and hence the corresponding state of stress can be
determined. Integration of the stress over the entire cross section gives the
new internal force vector f, using Eq. 4. This new state is expressed by the
point 1 in Fig. 3. The new tangent stiffness K, at point 1 corresponding to the
state £, and &, can now be computed. The new internal force vector f. is now not
in equi}ibrium with the externally applied force vector fB. The first unbalanced
force vector df1 is computed from dfl = fB - fl.

The next step is to find a correction deformation vector d§, which wil} be
added to §, in order to eliminate the unbalance force f.. Vector d§, = K1 df. .
Repeating the same procedure for point 2 again, the second internal %orce vecto?

f2 and the unbalanced force vector df2 = fB = f2 are obtained. Repeating the

]
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same procedure as at point 2 until the unbalanced force df at point n becomes
zero or is within a prescribed tolerance limit, the final deformation vector is
then obtained by 5B R~ Gn.

During the procedure, the unbalance force vector df may be negative as shown
in Fig. 4. This happens when there is some strain hardening in the material. In
such a case, tangent stiffness rather then elastic unloading stiffness should be
used in the computations because this negative force vector is an imaginary un-
loading.,

In most cases, a few cycles of iteration are found to be sufficient to ob-
tain an accurate solution. Even with a large incremental force or a rather
accurate calculation of large deformation on a plastic plateau the solution will
generally converge within just a few more cycles of iteration.

HYSTERESIS DIAGRAMS: The moment-curvature diagrams for a column segment contain
considerable information about the behavior of a biaxially loaded long column.
In addition to providing the essential relationship between forces and deforma-
tions for a long column solution, the diagrams make it possible to determine the
energy Input to the segment through integration of the work done by the external
forces.

No Residual Stress
My /Moh s . ;
P/Py Y, Py With Residual Stress
Mx/Mpk
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Fig. 5 Repeated and Reversed Proportional Fig. 6 Moment-Curvature Hysteresis
Loading Diagram

‘Figure 5 shows a proportional loading case with the loads (P,M ,M ) being
repeated and reversed proportionally between 99% (point A) and -99%X(pgint B) of
the values (0.3,0.6,0.6) of the full plastic limit state (P_,M* ,M* ). Linear
strain hardening and linear residual stress distributions ate BSnstdered but the
warping deformation 9, is assumed to be completely restrained, the corresponding
warping moment Mx reqaired for such a restraint is therefore considered as a
reaction. Its magnitude is found to be the same at points A and B. The presence
of residual stress is seen to have some effects on the moment-curvature curves
as showm by the typical example of M_ vs. ¢ curve in Fig. 6, but the effect of
material strain hardening on the curves is Yound to be not significant.

The typical moment-curvature hysteresis loop shown in Fig. 6 is composed of
three portions: initial loading portion (0 » A), unloading (A + B), and reload-
ing portion (B - A). For each portion, a function similar to a Ramberg-Osgood
type of function may be used for curve-fitting. As an example, Fig., 7 shows a
typical example of the close curve-fitting for the M_ vs. @_ curve discussed in
Fig. 6. The Ramberg-Osgood function for the initialxloadiné portion is shown on
the top of the figure. The functions for the unloading portion and reloading
portion are identical in shape to the function shown, but enlarged by a factor
of two and shifting the origin.
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RESPONSE TO REPEATED AND REVERSED LOADING:

CHEN

Response of section under repeated

and reversed loadings is of major importance in the low-cycle fatigue and shake=-
down analysis. 1In these analyses, estimation of energy dissipation during the

loading cycle plays an important role,

$x My sa( Ma )

$x0 My Mxo

a=438  ¢y5-0.636 $px
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Fig. 7 Curve-Fitting by Ramberg~Osgood Fig. 8 Repeated and Reversed Non-
Proportional Loading

Type of Function

Figure 8 shows the load M_ fluctuating between some limits while the other
The half amplitude of

the limits for the moment M /M “is 0.6, 0%8,P6.9, 1.0 and 1.1 (M < and M__ de-
note initial yield Values).y sPhce the elastic region is bounded gy -0.3 gyM M < 0.3,

two loads are kept constant (PyP = 0,

plastic deformations are produced in all cases.

3, M_/M =

0.4).

Numerical results are illus%ra%%dm

in Fig., 8. 1In all cases, curvature ¢ decreases with loading cycles and tends to
e deformations ¢ e
dissipation are found to increase monotonically with thé loading cycles for large

converge to a certain limit value.

amplitudes but tend to converge for small amplitudes (My/Mpy

and ¢

and the energy

< 1.0).

SUBSEQUENT YIELD SURFACES: Since the loading condition is kept constant during
the repetition of loadings, shakedown is possible only when the subsequent yield
surface is transformed so that the loading points will eventually move within the

yield surface.

Figure 9 shows subsequent yield surfaces due to loadings P/P_= 0, M /M =
The dotted lines are the initial yiéldpéur—

A load point inside and outside of the

yield surface represent elastic and elastic-plastic states of stress, respectively.
No load point can move outside the limiting surface.

0.4 and M_/M  between 0.8 and -0.8.
face and ¥hep¥imiting yield surface.

After the first loading (point A), the yield surface translates so that the

load point A is now on the subsequent yield surface.

There are two interesting

points: (1) The opposite side of point A moves towards the origin (Bauschinger
Effect); (2) The subsequent yield surface has a corner at the loading point.
After the second loading (point B), the subsequent yield surface changes again

and both points A and B are now inside the surface.

Thus the repetition of load-

ing between A and B proceeds all in elastic regime and further plastic deforma-
tion has ceased, or the section has shaken dowm.

Figure 10 shows changes of the subsequent yield surface due to repeated
between 1.1 and ~1.1.

and reversed loading P/P_ = 0.3, M_/M

The repeated loading My Ys appliedxbegﬁeen the poi

= 0.4 and

MMy

Yand B.

When the amplitude
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of M. is small (M /M & 0, 8 Flg. 9) the subsequent yield surface tends to change

so that the columy sggment shakes down. When the amplitude is large (M M - =
1.1, Flg. 10), the tendency of shakedown is not observed
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Fig. 9 " Subsequent Yield Surface Flg. 10 Transformation of Subsequent

Yield Surface

CONCLUSIONS: Based upon the formulation (Eq. 5), a computer program was developed
to provide numerical results, It is found that (1) The method is extremely power-
ful and efficient for computer solutions of moment-curvature hysteresis loops;

(2) The mathematical representation of a hysteresis moment-curvature curve using the
Ramberg-Osgood relationship is highly satisfactory; and (3) The response of a

column segment subjected to repeated and reversed biaxial loading and the con-

cepts of a shakedown analysis can be interpreted from the viewpoint of tramsfor-
mation of the subsequent yield surfaces in the generalized stress space.
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W.F. CHEN

SUMMARY

A study is made of the relationships between moments and curvatures for a
relatively short steel H-column subject to repeated and reversed compression com-
bined with biaxial bending moments. Plastic unloading, residual stresses, strain
hardening and Bauschinger effect of the material are considered in the analysis.
Moment-curvature curves corresponding to several repeated and reversed loading
paths are presented.

RESUME

Dans ce rapport on étudie les relations moment-courbure pour une colonne 3
larges ailes en acier relativement courte, soumise i des efforts de compression
répétés et alternés, combinés avec des moments de flexion biaxiaux. Le décharge-
ment plastique, les tensions résiduelles, 1'écrouissage et 1'effet Bauschinger du
matériau sont considérés dans 1'analyse. On présente aussi certains diagrammes
moment-courbure correspondant & plusieurs types de charges répétées et alternées.

ZUSAMMENFASSUNG

Es wird eine Untersuchung der Beziehung zwischen Moment und Kriimmung
einer relativ gedrungenen Stahlstiitze mit H-Querschnitt unter wiederholter und
wechselnder Last, kombiniert mit Biegemomenten in beiden Richtungen vorgelegt.
Plastische Entlastung, bleibende Spannungen und der Bauschinger -Effekt werden in
der Berechnung beriicksichtigt, und Momenten-Kriimmungs -Kurven entsprechend
wiederholter und wechselnder Belastungen gezeigt.
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A Study of Cyclic Plasticity
Une étude sur la plasticité en régime cyclique

Eine Studie Giber zyklische Plastizitat

N.C. LIND Z. MRO2Z
Solid Mechanics Division Inst. of Fundamental Technical Research
University of Waterloo Polish Academy of Sciences
Ontario, Canada Warszawa, Poland

1, TINTRODUCTION

The plastic behaviour of structures under monotonic loading is usually
predicted with sufficient accuracy by simple theories of plasticity such as
flow rules associated with a single yield surface. For varying loads, however,
these theories do not represent the complex plastic behaviour with sufficient
fidelity. The theory of plasticity must be modified by introducing a suitable
set of internal state parameters that enter into the yield condition and the
constitutive relations. The mathematical structure can become quite complicated,
as has been demonstrated [1], and there is a particular need for simpler material
models that reflect the most essential aspects of plastic behaviour for a
reasonably wide class of problems but have sufficient simplicity and accuracy
for practical design. It is the aim of this paper to discuss a simplified theory
of cyclic plasticity suitable for solving boundary value problems of small
deformation behaviour of structures under cyclic proportional loading. We present
a stress-strain relationship suitable for cyclic proportional stressing employing
the Masing [27 hardening rule and two scalar state parameters (equivalent stress,
or equivalent strain, at the last two reversals) and show that a wide class of
problems of cyclic loading can be solved for this representation. TFor-line or
surface structures the formulation is readily transformed in terms of generalized
stresses and strains.

2. STRESS STRAIN REIATIONS

Consider a material with the uniaxial hardeming curve
o = £(%) (1)

relating stress ¢ and strain ¢ by a monotonic odd function f , with a reverse
loading curve given by the 'Masing transformation'" of Eq. 1, viz.

c-c = 2fCGfe-¢€ 1),e>0
. 2)
o - 0‘+ = 2f(%le - e‘+]),e <0 } *

Here, (¢ , ¢ ) and (e+, c+) are the points of strain and stress respectively at
the applicable sign reversal of stress rate (or equivalently, strain rate).
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FIG. 1. Uniaxial stress-strain curve and steady-state hystersis loops

In cyclic proportional deformation these four parameters are constant after the
first cycle. Point (¢7, o~ ) satisfies Eq. 2b, so that two scalars are sufficient
to characterize the stress strain cycle. Although this model is highly idealized
since it gives a steady loop after just one cyecle, it does provide a useful basis
for design or for more accurate analysis of cyclic creep or relaxation phenomena.

We generalize this description to three-dimensional stress states, assuming
that the principal stresses are proportional and remain constant in direction.
Define a suitable equivalent strain function :

£ = e(el, 32’ 83)3 (3)

symmetric in the indices and specializing to ¢ = €q if €y = €q = 03
if we calculate the strain rate ¢ from this equation, the constitutive relations
for three-dimensional states can be written formally as Fqs 1 and 2, with g and ¢

now denoting vectors (g = o> i = 1, 2, 3 ete.) and f denoting a vector

function. These constitutive relations are piecewise finite, and for cyclic
loading characterized completely by the functions fi’ and two "end" points of the

+ - -
stress path oy and oy (or, equivalently, €4 and e:). This extends the Masing

relationship (between Eq. 1 and 2) to cyclic proportional triaxial deformation.
3. SELF MAPPING OF BOUNDARY VALUE PROBLEMS

Consider the following class P(1,1) of boundary value problems (of geometric-
ally linear elastostatics):

A +X = 0, B§ = ¢, o = F(g) in V;
No = T in W' < v, (4)
M§ = D in vV - aV';

where A, B, N and M are linear (differential) operations; V is the region,bounded
by @V, occupied by the bedy in the unstressed state; §, ¢, and & are vector-
valued point functions in V (representing displacement, strain and stress
respectively); and X, T, and D are prescribed functions (representing body force,
surface traction and prescribed displacement respectively). Let a progression
P°(») of boundary values in class P(l,1) be defined by

[x,T,0] = [ax%,AT°,2D°], (5)
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where X°,T°,D° are constant. Assume that a unique solution exists, viz. the
progression

[65e,0] = [8°(\),e°(M)a” 7. (6)
Now consider the related class P(%,%) of boundary values obtained by replacing
the constitutive relation ¢ = F(eg) 1in Eq. 4 with

g/2 = F(c/2), (7}
and let a new progression P(y) of boundary value problems be defined by

[X,T,D] = [2pX0,2,T9,2uD°]. (8)
Then, P(y) has the solution

[85e;0] = [28%(w),26°u),20°()], (9

as is easily verified.

Now, let Eq. 5, with ) increasing from 0 to K+ represent the loading cycle for
a body governed by Eq. 4 with constitutive relation F as in Eq. 1; the ensuing
displacements, strains and stresses are given by Eq. 6. When the load factor
reverses, the corresponding values are given as
+ 4+ + +
[5 .50 ] = [0, 20D, °0M] | (10)
If we make the substitutions
+ + +
&§ - 8 *8g " © * e~ e ™e, (11)
the boundary value problem progression for increments of stress, strain and dis-
placement for the unloading cycle with ) decreasing from l+ to )~ 1is generated by
Eq. 8 with , representing ) -~ At . Eq. 9 gives the solution. The unloading path
for all points of the body is determined by the corresponding points on the
loading path. We conclude: If a material under cyclic proportional triaxial
deformation follows the Masing relatjonship, the stresses, strains and deformations
at all points in a body made of this material, subjected to cyclic proportional
loading, will also follow a Masing relationship.

4, SIMPLE MATERIALS

A convenient approximation to the uniaxial hardening curve is the power law

1/n 1/n
o i) | (12)
where ¢ and n are positive material comstants. The exponent in parenthesis is
a convenient symbolic notation which reduces to an ordinary exponent if n is an
odd integer.

= ¢ = c(signe)le

We may generalize this to complex stress states as follows. Denote the
principal shearing stresses and corresponding strains respectively by

- . - 2

where 1i,j,k 1is any permutation of 1,2,3.

Define the plastic potential as

n
- 2% . (mFl) | (n#l) T3(n+1)] , Fi5)

vt L1 Ty
Using Eq. 13 this gives the strains
n) '
g - o) ™)1 (15)

and the analogous expressions by cyclic permutation.

€y = %[031 - 02)(n) -
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Assume that for a certain value of 1, = 1,, = X(0 the further

3 3A
stress path corresponds to a change of sign of i3

while %, and i, remain positive. Then instead of Eq. 14 the stress potential

2 1
takes the form

14~ %24
from positive to negative

2T . (ntl)

<L c (n+l)]
n+l 1

W +

Tgn'+1)_ (16)

+ (13 - T3A)
yielding readily the stress-strain relations for the new path.

Alternatively we may derive a simplified hardening model already discussed
by Mrdz [2]. The state of hardening is assumed to be described with sufficient

accuracy in terms of a set of surfaces of constant hardening moduli K = Bdflae,

where Oc denotes the component of the stress increment along the normal to the
i

yield surface and e = (deijdeij)2 denotes the absolute value of the plastic

strain increment. Since these surfaces cannot intersect, the active surfaces are
assumed to translate with the stress point and become tangential along the stress
path. For a piecewise linear yield condition this model results in finite stress-
strain relations valid in particular sub-domains of stress space similar to the
model described above. Tig. 2 show the translation for two radial stress paths.

Uiy O3

(a) {b)
/)

- e b ~
CT. OE CT|

FIG, 2. Fields of hardening moduli after plastic loading
(a) along OA (b)) along OB

The postulated materials nave piecewise finite stress--strain relations that are
homogeneous functions of order n. The materials may be called simple, increment-
ally hyperelastic of order n [4]. For loading increment AX, the corresponding
stress increment is everywhere proportional to Al and the corresponding strain

Ax(n). If [§%,e°,0°] solves

(n)Do]

and deformation increments are proportional to

[XO,T°,D°], then [A(n)6°,k(n)e°,lc°] is the solution field for [AX®°,AT®,X
Thus, the entire solution for a cyclic loading (either traction-controlled:
D° = 0 or displacement-controlled: X°,T° = 0,0) can be derived from a single
equilibrium solution. This solution can be obtained for many structures of

practical interest, using a variety of numerical methods. We note, in particular
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that the unloaded state is stress free under cyclic proportional loading.
5. EXAMPLE : THICK-WALLED CYLINDER

Consider a long thick-walled tube of internal and external radii a and b,
subjected to intermal pressure p varying between the prescribed limits pt and
p". A simple, closed form cyclic solution can be obtained when only plastic
strains satisfying Eq. 15 are accounted for. Since the strain normal to the
plane of deformation vanishes, we have

u, du

+€r=— =0,u=

A
r @ dr r (173

€9

where u denotes the radial displacement and ¢ €. are principal strains in the

e’

N , ﬁ " \/ time

FIG. 3. Thick walled cylinder under cyclic pressure

plane (r,q) ; A denotes an integration constant, From Eq. 15 we have

= ' - 2 = i ' = o
€q Cllog = o) 5 &y C (o, a.) (18)
where C' = c(l + 2-n)/2. The inverse relations take the form
1/n 1/n
- = = o}
oy oy = Cleg) clyt™, (19)
where C = (C')_n. Using the equilibrium equation
do c_. "0
r,-t 8 - (20)
dr T

the stregs state within the tube is determined in the form

b.2/n

N F . 1 1 - €1 - b,2/n
(op304) = H3/m [ 1 1- @ -2/mP"] 1)
=) -1
a
where the boundary conditions o, = °P for r = a and o, = 0 for r =
have been satisfied, The displacement field is given by
B 2npnb2 1
Y T an. b2/n r’ 22)
Cn[(" - 1]
‘ + +
Consider now the unloading program. Denote by Ap = p-p, Au = u-u

o+

_ +
be., = e. " €. Aee €y » Instead of Eq. 19 we now have
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Ag
. - —8\1/n 1/n _ _ AA 1/n
bog - bo. = 20(50) D (beg) e I (23)
A
where D = 2 " C. The equilibrium equations now provide expressions for

stresses identical to Eq.21 with p replaced by Ap. The radial displacement for
any p satisfying p- =< p < p' equals

2 n
b"p a

2 ~2) : (24)

n n.b.2/n
cn [ - 1]
Since the stress state does not depend on constants D or C, upon removal of the
pressure both stresses vanish. Thus, no residual stresses are created for zero
pressure in the steady state. For further repetition of pressure between pT and

p~, the displacement and stress fields are described by Eqs.21 and 24,

6. CONCLUSION

Plastic analysis of practical structures under variable loading, however
difficult in general, is tractable for cyclic proportional loading when the
plastic behaviour of the material can be adequately described by a Masing-type
relationship with an incremental power-law, and when one solution to the
corresponding static nonlinear elastic boundary value problem can be produced.

An example is given herein; other examples (circular and annular plates, etc.)have
been presented by the authors elsewhere [4]. Experimental verification of the
practical validity of such analysis is currently underway.
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SUMMARY
Piecewise finite representations of material behaviour are proposed for
practical analysis of plastic metal behaviour under cyclic loading.

RESUME

Quelques représentations constitutives finies du matériau sont présentées
 pour l'analyse pratique du comportement plastique des structures sous charges
cycliques.

ZUSAMMENFASSUNG

Sttickweise endliche Modelle flir das Stoffverhalten werden zur praktischen
Berechnung zyklisch beanspruchter plastifizierender Metallkonstruktionen vorge -
schlagen.



Method of Analysis for Cyclically Loaded R.C. Plane Frames Including
Changes in Geometry and Non-Elastic Behavior of Elements under Combined
Normal Force and Bending

Méthode d’'analyse de cadres plans en b.a. chargés cycliquement, comprenant
les variations de géométrie et le comportement non-élastique d’éléments soumis
a effort normat et a flexion composés

Untersuchungsmethode fir zyklisch belastete ebene Stahlbeton-Rahmen
einschliesslich der Geometrie-Anderungen und des nicht-elastischen Verhaltens
von Elementen unter zusammengesetzten Axial- und Biegungskraften

Marco MENEGOTTO Paolo Emilio PINTO
Istituto di Scienza e Tecnica delle Costruzioni
Universita di Roma, ltalia

INTRODUCTION. The advances gained by structural analysis, coupled
with the availability of large capacity computers, could lead to the
idea that today the "exact" solution of any structural problem exi-
sts, and its obtainment is only a matter of assembling in a program
the appropriate ingredients, all of them already well established.
This is not the case for reinforced concrete structures in non
linear range: neither the constitutive laws of the materials nor the
behavior of the structural elements can be said to be conveniently
clarified. The method that will be briefly exposed in the following
(°) includes most of the ingredients necessary to be defined as "ge-
neral", but nevertheless its classification as "exact" is justified
only within certain simplifying hypotheses that are listed below wi-
thout comment:
- the constitutive 1aws of the materials are independent of time
- the contribution of concrete in tension is disregarded
- linear distribution of strain along the depht of section is assu-
med, excluding bond slip during all the loading history, and local
buckling of steel bars
- properties of the materials are assumed not to deteriorate after
repeated stressing, while Bauschinger effect on steel is considered
actions of shear stresses are disregarded
GENERAL DESCRIPTION OF THE METHOD. The procedure follows an. incre-
mental way. Each step requires solution of the set of equilibrium e-
quations: |k|, {AS}={AP} (1)
The vectors{as}tand{aP}contain the increments of nodal displace-
ments and external loads: both have 3n(n=number of nodes) dimension
and are referred to a global coordinate system z,y

(°) A more extended illustration is contained in ref.|11]
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The geometrical and mechanical behavior of the structure in the
course of each step is described by the stiffness matrix |k|_., which
is the result of the assembly of the stiffness matrices |x|determi-
ned for every individual member in which the structure has been dis-
cretized.

The essence of the method lies evidently on the calculation of
matrix |K|,for each step. The procedure requires an iteration, which
ends when two coincidental successive solutions{AS}are obtained for
the same{AP}from Eqs. (1).

Two causes of non-linearity are contained in |k|,: behavior of
materials and variations in the gecmetry of the structure. They can
be analized separately, and so will they be presented.

NON LINEARITY DUE TO INELASTIC BEHAVIOR OF THE ELEMENTS.
Constitutive laws of the materials. The calculation of the stresses
o for given ¢ is performed in two separate subroutines so that any
particular law can be inserted simply; figs.1 and 2 show the laws
presently adopted.

* STEEL
g =G/0
l /%0 CONCRETE L
1 '-L—_/J
O
o e i
| g 9, |
-5 - ; 2 3 4
= Ly
| ,? - / / ) e -E/eo
o5 A 5 ] etg'a_7€° ___,4.1_ S S / w ‘ o
Ys*: e*(z-—e*)‘ %1 / ",g,/’/ 0’=0-b)5:§ﬁﬁvi+b-€*
o*=c*(-at’+aq) 1 AN Ak
- 1 R(s) = Ro - L0k
FiG.1 FIG.Z

The diagram in fig.1 reproduces the well known Hognestad formula,
extended to general stress paths with straight unioading or reloading
lines, parallel to the initial tangent. The law for the steel is de-
scribed in detail elsewhere |7|. It can reproduce with good approxi-
mation the behavior of different types of steel: the constant b defi-
nes the slope of thé hardworking Tine; the exponent R, which varies
after every inversion, affects the curvature of the diagram, to repre-
sent the Bauschinger effect.

Stiffness matrix of an element. A matrix |k,|[defines the relation-
ship between the three nodal force components (incremental), and the
three nodal "deformations" {aS,}. This relationship is established in
the intrinsic coordinate system m,n. Elements must be such, that 2°
order effects within them are negligible (see fig.3).

First the flexibility matrix of the element is determined. The co-
Tumns of the three-by-three X, | lcontain the increments of nodal de-
formations versus the increments of the components of{AFn}. The coef-
ficients are calculated by numerical integration along the length of
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the element,applying separately the three components of{aF,}but con-
sidering the deformability due to their simultaneous application. The
matrix |k, |~lis a linearization of a ncn-linear step: its coefficients
are the exact ones, only if at the end of the step the values of the
nodal increments{aF,}result to be equal to those applied in calculat-
ing the matrix itself.

AN | Ae
Mi + AM{ {AFn} = | AM{ {L\.Sn}= Agi
| AMj Ag;

W

Fla.3

To perform the integration along the element, the current deforma-
bility of a suitable number of internal cross-sections must be deter-
mined, which is defined by the relationship: {ael}=|E| {AZ} (see fig.4)

Bg. 2 vB

#ﬁ— doi s
TR y P ;éff, T Ate AN
di_J 5 jAHi g {ae) = { ABC} {ax }={AM}
= | el =[]

where matrix |E|jof the section is generally variable from step to step.
The cross-section is subdivided into a number of concrete and steel a-
reas: the path of every area in the space o-¢ must be recorded, becau-
se it determines the behavior of the area for the Toad history.
Provided that Ac; and Ae; are the actual stress and strain varia-
tions due to application of combined AM and AN on the Z-th concrete or
steel areg its secant modulus E; for the current step will be defin-
ed: E; = AE. . Thus, the cross-section can be treated as if composed
by e1ast1¢ parts with varied moduli. The following relations can be
written, referring to the current homogenized cross-section centroid O:

Ae 0 AN
0 . o)
- ZA,SE',L : . (2)

which, transferring the vectors{Aeo},{AZ,}to the fixed geometric cen-
ter C, become:

heg (a35) a7 || A n e
= g 1 ' s = EAzE'Ldz (3)
AD e —— _ 2
¢ Ad J it J = z:AzEl-d?L-_%_
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During the step, a "general" iteration is performed to obtain the
solution of equations (1). Within each cycle of it, for each element
every cross-section is given a vector{Ar}, corresponding to the pro-
posed {AF,}, and, by "internal" iterations, relations (3) are solved,
yielding matrix |E|. Thus, the general iteration proceeds dealing al-
ways whith deformabilities updated with actual state and history of
stress.

It may be noted thet matrices |Elare symmetrical. The same proper-
ty consequently extends to all |k, |~%,|k[and to |k|, matrices.

NON LINEARITY DUE TO CHANGES IN GEOMETRY. Finite deflections of ela-
stic plane frames have been the object of recent extensive studies|8]
[10],]13]so that only a brief account of the relations employed will
be reported.

Prior to their assembly into the overall matrix IKIS, matrices
[Knlof individual elements must be trasferred from the local system
m,n to a global system xz,y. When the displacements of the elements du-
ring the load history cannot be neglected, the transformation from m,n
to x,y is non linear. The technique of linearization adopted is the
approximation of a first order differential expansion with finite in-
crements.

In order to pass from the intrinsic to the global system, an in-
termediate coordinate system u,v is employed.

{arx} = [axi avi amy x5 v amg)” {aru}= [au av ami Am;]
FIG.B {AS*}= [Axi Ayi A9y Axj By a9 |’ F16.6 {Asu}= [Au Av 8¢ A8iT

For finite displacements, the relationships between the componen-
ts of the vectors{s, }land{S,}are:

ez L=V (1-u)2+p2 $;= Bi—arctg'z—%; 6= ej—arctgl—g-; (4)

By differentiation, the preceding relations can be given the 1li-
near form: {AS,}=|4]| {as,}, with increments in place of differentials.

The relationship between the vectors of nodal forces in the two
systems is: {Fu}zlgl'{pn}; and, by diffentiating:

{aP, )= |A]|"(aF }+|D]| {as,} (5)

The matrices |A| and |D| have the expressions:
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Z"'u -
l-e l-e g 2
_ ~y ~(1~u)
|41 (i~el? {12)2 < ¢
- ~(1-~u)
[T-el? (t-e)? 7 1 5
dy,dy, 0 0O d11:72%—73 |v2(1-u)eU+{2(1~u)2+?}vV|
ol= | %2200 i)
(symm) O O 12_(2—@)1* |~ 2 P bt O
0 d22:73%;7? POl-u){(1-u)2+v2}U-v(1-u)2V|

Both matrices contain in their coefficients the components of the
displacements accumulated in the previous history; the "geometric"ma-
trix |D| contains also the accumulated force components U and V.

The transformation of displacements and forces from u,v to x,y is
accomplished by a matrix with constant coefficients |T|, defining the
initial position of the element (through its angle w with x axis).

Making substitutions, the stiffness relation |x,| {a5,}={sF } be-
comes: |KX]| {a5,}={4F } , with:

|k = (lz]" |4l &, | la] [z7[)+izl |p] [7] (7)

The matrix |K|{contains in |k _|the linearization of the mechanical
behavior, and in |4|and |D|the 11nearization of the kinematical beha-
vior. It has to be noted a difference between the two criteria of 1i-
nearization. The matrix |Kn|has a "secant" character, in what its coef-
ficients are checked with the situation at the end of each step. Tak-
ing into account possible inversions of strain variations in the areo-
las from step to step, this matrix could not be expressed as "tangent".
As much as X _{is concerned, the lenght of the step would be only limi-
ted by the possibility of missing strain inversions during the step it-
self.

The matrices |4A]and |D|on the other hand, by the way they have been
obtained, are "tangent initial" since their coefficients are calculated
with the values of variables at the beginning of each step. Therefore
the lenght of the step has to be commensured to the importance of the
effects of changes in geometry.

EXAMPLE. It has been chosen as example a frame tested by Ferguson and
Breen (Ref.|5]). Here the frame has been subdivided in 12 elements and
the loading paths of 3960 concrete and 264 steel areas were recorded.
The constants adopted for the materials were (kg/cm?): concrete: o =
280, initial modulus E=250000, 0(3,8%)=0,85-0,; steel: ¢,=3850, in E=
2050000, »=0.02, Ry,=20. In fig. 7 experimental and theoretical curves
are compared: the agreement is excellent. The curve(e) shows the first-
order non elastic analysis of the same problem.Ultimate stress diagrams
of two cross-sections appear in fig.9, while fig.8 shows the calculated
deflected shape in case (b).



20

| — METHOD OF ANALYSIS FOR CYCLICALLY LOADED R.C. PLANE FRAMES

%0 ] ‘A
d FAL.LOAD cALc. 40.3L (C) P+H P-H
E -’ ‘ 4 5 B 2H
-3 - i -3 . __—'»M
:a'l: P i N 419 -] LB LM Sy
] EXPER. 1170t (a) S L A
N @f FAIL: tRAD { cALC. :17at(b)
S o 94.3%_ PRS-k
a ades_ (@ | s
2 £ CALCULATED DEFLECTED
o] M 299 24202
hr LR R SHAPE FOR P =174t 124
& 3 H=001P
-d
3
= 74409 14-42%
i
> Q) EXPER.(REF[H])
sossesrve CILC.(b,) .(G)
V.. 8 - = 5]
1 2 3 4 5 213cm
F1a.7 DEFLECTION - NODE § (cm) F1G.8
e 1524
-+ A 247 177
. + + T X+ + s ]
e g | SECTL A SECT. B
2 ‘j{ Ag = 22142 cm? Ag = 23516 cm? «©)
\j{ -l ¢ + -~ 4+ 4+ + &
FIG.9 STRESS DIAGRAMS AT FAILURE (CALC) Kg/cm?

The same frame
dings,(case d): P=o,

has been submitted to two cyclical horizontal loa-
case e): P=6t). The influence of P is relevant

both in§ZH-§)anq(M-e)diagrams. Case e¢) has higher moments but overall
p]ast1?1zat1on is very Tow and the frame fails for instability.The col-
Tapse in case d)is due to attainment of limit strains on concrete.

.—;-P'
2T
/ L
4 ]
/7
g s DJ:Lzmgou &No_gr&g)__qﬁr%_
. e
24, 8 Jou -
| T/ . ® | vor. ® var N
Aol | = P > —
case(d) case(e)
! -{10 1 b1 } } -

FIG.10 - HOR.LOAD - DEFLECTION (NODE 5)

._Z_H.(vura

Nty =652

M“"I S0 S S Y
Niim=654
M)im=59.2

=0 | “case(e)— T

FIGIT - MOMENT -CURVATURE (SECT.A)



Marco MENEGQOTTO — Paolo Emilio PINTO 21

case (d) CASE (&)
' 2n _#‘?48
49 N=546t —' § 1834
:',,3;3 :m N=0A7t N=652t M=56.0tm N=6541
o 220 -aMr | M=-540 tm -3281 | M= -561tm B Wed 23679 M= -59.2tm
270
FIG.12 HISTORY OF STRESSES ON SECTION A (kg/cw?)

REFERENCES

[] | BERTERO, V.V,, BRESLER, B. - Seismic Behavior of Reinforced Concrete
Framed Structures. "IV World Conf.on Earth, Eng.'" - Chile, 1969,

|2] BLAAUWENDRAAD, IR, J. - Realistic Analysis of Reinforced Concrete Fra-
med Structures - '"Heron vol, 18,1972, n°4",

|3] CRANSTON, W. B, - A computer Method for Inelastic Analysis of Plane Fra-
mes, "C,C.A. Tech. Rep.'" TRA 386,1965,

| 4| DE DONATO, O, , MAIER, M,, - Mathematical Programming Methods for the
Inelastic Analysis of Reinforced Concrete Frames Allowing for Limit-
ed Rotation Capacity, '"Int, Journ.Num, Meth, Eng." Vol.4,1972,

| 5| FERGUSON, P. M, , BREEN J. E., - Investigation of the L.ong Concrete Column
in a Frame Subject to Lateral Loads, Symposium on Reinforced Concre-
te Columns - ACI publ, SP, 13,

|6| FERRY BORGES, J., ARANTES E OLIVEIRA, E,R, - Non linear Analysis of
Reinforced Concrete Structures. '"Mémoires A.I. P.C.", vol, 23, 1963,

|7 { GIUFFRE', A., PINTO, P,E., - Il Comportamento del Cemento Armato per
Scllecitazioni Cicliche di Forte Intensitda. '"Giornale del Genio Civile",
Maggio 1970,

|8] JENNINGS, A. - Frame Analysis Including Change of Geometry. ""Journ. of
Struct. Div. ", ASCE, vol, 94, March. 1968,

| 9| MACCHI, G, - Methodes de calcul des structures hyperstatiques, "C, E, B, Bul-
letin'' n, 53, 1964,

10l MALLET, R,H,, MARCAL, P, V, - Finite Element Analysis of Nonlinear Struc-
tures, '"Journ, of Struct, Div.", ASCE, vol, 94, Sept, 1968,

1] MENEGOTTO, M, , PINTO, P, E. - Method of Analysis for Cyclically Loaded
R.C. Frames Including Changes in Geometry and Non-elastic Behavior
of Elements under Combined Normal Force and Bending - Ist, Scienza e
Tecnica d, Costruzioni - Univ, of Rome - Rep.n°32, Oct, 1972,

N2 PARK, R.,KENT, D, C. ,SAMPSON, R. A, - Reinforced Concrete Members with
Cyclic Loading'", "Jnl of Struct, Div,'", ASCE, vol, 98 , July 1972,

ll 3| POWELL, G, H, - Theory of Nonlinear Elastic Structures. '""Journ, of Struct.
Div,", ASCE, vol, 95, Dec, 1969,

SUMMARY

The procedure is based on the stiffness method in incremental way, and has
been programmed for computer, The solution is obtained by the calculation of a lineari-
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zed stiffness matrix for every increment. The element matrices derive from an analysis
of the behavior of several internal cross-sections: these are discretized into concrete
and steel areolae, for each of which the loading path is recorded, following any non-
holonomic constitutive law. Geometric effects are included in the overall matrix by
adjusting the projection of elements displacements and forces at every step.

RESUME

Le procédé se base sur la méthode des déformations appliquée par incréments,
et a été programmé pour ordinateur. La solution s'obtient en calculant une matrice de
rigidité linéarisée i chaque incrément. Les matrices des éléments dérivent de
I'analyse du comportement d'un certain nombre de sections: celles-ci sont discretisées
en aréoles de béton et d'acier, dont 1'histoire de charge est mémorisée, suivant
une loi constitutive quelquonque., Les effets géometriques sont inclus dans la matrice
d'ensemble, par le réglage de la projection des déplacements et des forces des élé&-
ments a chaque pas,

ZUSAMMENFASSUNG

Das Verfahren stiitzt sich auf die Steifigkeitsmethode auf inkrementalem Wege
und wurde auf dem Computer programmiert. Die Losung ergibt sich durch Berechnung
einer linearisierten Steifigkeitsmatrix fiir jeden Zuwachs., Die Elementmatrizen
folgen aus der Analyse des Verhaltens einer bestimmten Anzahl innerer Querschnitte:
diese sind in Beton- und Stahlareolen diskretisiert, deren Belastung nach einem
konstitutiven Gesetz aufgezeichnet wurde. Die geometrischen Aenderungen sind in der
Gesamtmatrix durch Anpassung der Projektion der Elementverschiebungen und -kriéfte
bei jedem Schritt inbegriffen.
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1.INTRODUCTION

Failure modes of steel members and frames subject to repeated and reversed
loading can be classified into three categories,that is,low-stress high-cycle
fatigue,high-stress low—cycle fatigue and failure due to instability by the accu-
mulation of deformation. TFor aercdynamic excitation associated with wind turbu-
lence,it is usual to design the structures to resist elastically since the durat-
ion of it be substantially long and the response associated with rescnance will
tend to unlimited,accordingly high cycle fatigue problem may be paramount for such
a situation. On the contrary,the duration of the earthquake ground motion is very
short and the expected return period of the occurence of catastrophic earthquake
is very long(say more than 100 years),though variable in different zones. For such
a large but short term loading with very small expectation of occurence,it will
be reasonable to allow the structures to undergo substantial plastic deformation
provided that the human lives should not be lost by the collapse of the structures.
So far as available experimental results and actual experiences of earthquake
response indicated,it is very likely that the numbers of deformation response
accompanying large plastic strain will be limited to the order of ten,thence low-
cycle fatigue will not take place if severe buckle and stress concentration are
carefully avoided.

In this discussion,it is assumed that all kinds of buckling are properly
prevented until enough plastic deformation will develop. Under this condition,
principal objective is forcussed to the prediction of the load-deformation rela-
tionship of members and frames under repeated and reserved loading,which forms the
essential part of the dynamic response analysis of structures in inelastic region,
and of the evaluation of the incremental collapse load(overturning by instability)
of structures by earthquake. It commences with the description of the stress-
strain characteristics of steel material under cyclic and reversed loading and
then reports on a theoretical method for determining the moment-—curvature and
load-deflexion characteristics of steel members under monotonic loading. The
explanation of a technique to construct the load-deflexion relationship for cy-
clic and reversed loading directly from the obtained monotonic loading curve will
be succeeded. Finally, several experimental results of members and frames are
compared with this theoretical prediction.

2 .MATERTAL BEHAVIOR
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Load-deformation(or O—-€) relationship of a steel bar subject to alter-
native tension and compression in plastic region is shown in Fig.1(l). Let un-
loading point at i.cycle Ci and let the corresponding load point on the curve
of i+l.cycle C'i' Segment Cici+l is transfered rightward horizontally until C]!_
coincides with Ci' If this maneuver is worked out for i=l~n, a fictitious load-

deformation curve is obtained. This fictitious curve is compared with the
monotonic load-deformation curve of the same specimen in Fig.2. It can be seen
both are almost identical. Based upon this finding,the curve for cyclic loading
can be constructed from the monotonic locad-deformation(or 0-€)curve in a reverse
order as is illustrated in Fig.3. The Baushinger effect cannot be included in
this technique. Detailed discussion on material behavior including Baushinger
effect will be done elswhere of this symposium(2}.

Significant feature of the @ —-€ relationship for cyclic and reversed loading is
that the loop enlarges for every additional cycle. Obviously this phenomenon
comes from the effect of strain-hardening.

@) WL *ho
L :
fictitious curve 810
610"
4»104
0 Ae) g Tension Side
——————— monotonic
20} —o— fictitious
c=g 1 1 1 1 1 A-mm
, 0 02 04 06 08
compression
Fig.1l Stress-Strain Fig.2 Comparison with Fig.3 Construction
Curve for Steel for Monotonic and Fictitious of Cyclic Curve from
Repeated Loading Curve Monotonic Curve

3 .MOMENT-CURVATURE RELATIONSHIP

The load-deflexion characteristics of structural steel members are I.nainly
dependent on the moment-curvature (M~ )relationships of the sections since
most of the deformation arises from strains associated with flexure.
Based on O—€ relation shown in Fig.4, M- @ relationship for H-shaped sect.:ion is
numerically calculated and depicted in Fig.5(3),(4). Dashed lines in the figure

W
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Fig.4 O—-€ Relation Fig.5 M-<& Relation
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show the effect of residual stress, It can be seen the effect of residual stress
is negligible in the region of large curvature. For a member with substantial
axial thrust(P2 0.3Py),flexural rigidity in strain-hardening region is nearly

twice the value of that for a member with no axial thrust(beam).

4 .LOAD-DEFLEXION RELATIONSHIPS FOR MEMBERS AND FRAMES
4.1. Beams

When a member does not carry the axial compression,load-deflexion curve for
monotonic loading can be readily obtained by the integration of the curvature ob-
tained in chapter 3.

y= SS“’(M) dx dx (1)

Since the calculation of M—dp relation means a kind of geometrical transformation
of 0—€ relationship,mechanical characteristics of ¢=g relation will remain un-
altered in the expression of M-& relationship. Calculation of deflexion accord-
ing to eq.(l) concerns the moment distribution along the member length only,and
the relation between bending moment and applied force is linear,then the
mechanical characteristics of (-€ relation will remain unaltered in the load-
deflexion relation again. From above observations,it can be assessed that load-
deflexion curves for cyclic loading can be constructed from those for monotonic
loading by the same technique as described for material behavior in chapter 2.
Let OAU be the load-deflexion curve for monotonic loading in Fig.6,where U repre-
sents the maximum load attributed to local buckling or lateral torsional buckling
or some other causes. The curve for repeated and reversed loading can be con-
structed from OAU as follows; The beam is first subjected to an increasing trans-
verse load up to point B. The load is then removed at point C and re-applied in
the opposite direction. For further reversed loading,the response of the beam

is represented by O'A'D' which is identical to the virgin curve OAD. If the beam
is unloaded again at point D',the moment will be removed at point E'. The reload-
ing curve C'B'F' will be identical to CBF. This process is continued until point
U' is reached which corresponds to the maximum load point U of the monotonic curve.
4.2 ,Beam-Column

Though calculation of the deflexion becomes rather complicated due to the
existence of P- A effect, the inelastic behavior of beam-columns subject to mono-—
tonic lateral loads is fairly well understood. P-A effect may cause the insta-
bility of beam-columns.

When a beam-column is subjected to repeated and reversed lateral force H
under constant axial compressive force P,this P- A moment induces the additional
effect(3),which can be explained with reference to Fig.7. For simplicity of dis-
cussion,elastic component of the deformation is ignored. There is no lateral
deflexion along the column until the bending moment at the base reaches the plast-
ic moment Mpc' The corresponding lateral load is equal to Mpc/L' The response of

the columm for monctonic loading condition is given by OABDFU in Fig.8., If the
lateral load is removed after the column has reached a deflexion A ,there will be
a residual moment equal to PXA at the base of the columm, The horizontal force
that is required to remove this moment is

PA

H = -5 2
This equation is represented by line a-a' in Fig.8. Any point on this line de-
fines a residual moment free condition for a column. Instead of horizontal axis,
this line should be used as the base line in the analysis for the subsequent
cycles of load application. 1In the construction of cyeclic curve for beam-columns,
this is the only difference from the case of beanms.
The process of constructing the cyclic curve is illustrated in Fig.8. Note that
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the expansion of the loop is more pronounced than that for the case of beam.

For both beams and beam-columns,it has been shown that the collupse point for
cyclic loading can be predicted if the monotonic load-deflexion curves and their
terminal points(U) are known.
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Fig.6 Construction of Beam-Column Fig.8 Construction of
Cyclic Curve from Cyclic Curve from
Monotonic Curve of Monotonic Curve of
a Beam a Beam-Column

4.3. Frame

Examples of typical frame behavior subject to cyclic lateral loading are
shown schematically in Fig.9%*.
The behavior of frames which carry substantial vertical load is basically similar
to that of beam-column, but the shape of loop varies with material property and
loading condition. After attainment of full plastic moment,capacity of the
member section increases further due to the strain-hardening of the material,so
is the load carrying capacity of the member if it does not carry the axial comp-
ression. When this increasing rate overcomes the reducing rate due to P-A eff-
ect,slope in ipelastic region is positive and the loop expands for every additio-
nal cycle(al). When the increasing rate is smaller than the reducing rate due
to P-A effect,slope in inelastic region is negative but the loop expands(a2).
When there is no strain-hardening of the material ,member shows elastic perfectly
plastic behavior. 1In this case,slope is negative and the loop closes(a3).
Finally when the moment capacity decreases in plastic region by local buckling
or by some other causes,the slope is negative and loop diminishes(a4). The
behavior of frames which carry very small vertical loads or no vertical loads
is similar to that of beam,which is shown in (b) of this figure.

5.COMPARISON WITH TEST RESULTS

Available test results are compared with the prediction by the method de~
scribed in the foregoing chapters in Fig.10., Except for the elastic-plastic
transitive parts,for which Baushinger effect plays prominent role,theoretical
predictions show satisfactory agreement with test results. Introduction of
Baushinger effect and thus the modification of the curve must be made reflecting
the knowledge obtained from the experimental investigation.

* - compare with Fig.21 of "Experimental Studies concerning Steel Structure,their
Elements and Connections”, Introductory Report of this Symposium (p.56),which
seems to be incorrect.
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6, CONCLUSLON

1.Load-deflexion curves of steel members and frames subject to repeated and re-
versed loading have the property that the loop expands for every additional
cycle. provided that all kinds of buckling are properly prevented.

2.This phenomenon of expansion is associated with the property of strain-harden-
ing of steel material and/or P-A effect of the structural system.

3.The cyclic behavior can be predicted theoretically from the monotonic loading
curve if the loading conditions are well defined.

4.Baushinger effect is not taken into account in this theory. Introduction of
Baushinger effect and thus the modification of the curve must be made reflect-
ing the knowledge obtained from the experimental investigation.
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SUMMARY

Inelastic behavior of steel members and frames subject to repeated and
reversed loading was analysed, and a technique to construct the load-deflexion
relationship for cyclic loading directly from that for the monotonic loading condi-
tion was presented. The correlation between this theoretical prediction and the test
results were shown to be satisfactory.

RESUME

On analyse dans ce rapport le comportement inélastique d'éléments et de cadres
en acier soumis 4 des charges répétées et alternées et on présente une méthode per-
mettant de déterminer la relation charge-déformation pour des charges cycliques
directement A partir de celle obtenue pour des charges monotones. La concordance
entre les résultats théoriques et les résultats des essais est satisfaisante.

ZUSAMMENFASSUNG

Das inelastische Verhalten von Stahlstdben und Rahmen unter wiederholter
und wechselseitiger Belastung wurde untersucht und eine Methode zum Aufzeichnen
der Last-Ausbiegungs-Abhingigkeit fiir zyklische Belastung, direkt ausgehend von
der einseitigen, konstanten Belastung, angegeben. Es wurde gezeigt, dass der Unter-
schied zwischen dieser theoretischen Voraussage und den Versuchsresultaten inner-
halb befriedigender Grenzen liegt.
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1. introduction.

The architectural and civil engineering construction in Japan must be built up in the
natural environments under frequently experienced great earthquakes and typhoons that visit
our country at random or in autumn every year. Particularly in high storied buildings, since '
they are subjected to large repeated horizontal forces due to the earthquake and wind, there
are several occasions that braces are set into frames as the structural elements against the
external forces. (See Fig. 1)

Since, however, the brace bears a large axial force, it is needed to secure the rigidity and
ultimate strength, so that a large cross-sectional members must be used. As a result the
slenderness ratio {L/r) becomes comparatively small in the order of 30~70, and consequently

a brace on the compression side is apt to break down by plastic buckling. Fig.1 K-type

In order to clarify the mechanical behavior of a structure having such characteristics braveditames

analytically, this paper deals with a nonlinear analysis taking consideration of the nonlinearity
due to the yield of materials and the nonlinearity based on the finite deformation theory unable to be neglected in the
analysis of buckling, and thereby performs the analysis as mentioned below.

For the purpose, the behavior of compressive members with different slenderness ratio was first analyzed for
repeated loadings, and after making various checkings of the results (omitted in this paper), the analysis of the behavior
of 1 story 1 span frame provided with K-type braced as shown in Fig. 9 is made for the case in which a repeated
horizontal force is applied. ;

Following is a review of selected recent studies conducted in our country on this topic. Yamada, Tsuji, and Takeda
and Wakabayasi, Nonaka, Ogi, and Yamamoto studied the behavior of braces being subjected to repeated axial forces in
the elasto-plastic range by using a small experimental model. On the other hand, Matsui, Mitani, and Tsumatori have
studied the behavior of braces with various slenderness ratios in the state of buckling towards collapse state, taking
propagation of plastic region in axial direction of material into consideration and using a numerical analysis of C-D-C
method.

However, no exact analysis of braced frames has been reported yet , because it is extremely difficult to analyze the
elasto-plastic behavior under the condition of repeated loading accompanied by such an instability phenomenon as
buckling of braces.
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2. Several assumptions taken for this analysis.
a. The residual stress and the deflection in the initial period due to
méi
welding etc. are not taken into account. o

b. The member is assumed to be of such type that the beam theory

-
1

is applicable. But, in order to approximate the curves of each member
Amvig

after deformation, the member is divided into 5~15 elements (Fig. 2 &
9).

¢. In each element, only the bending deformation and the axial 27 B her. leiiin i Ui-itiel coordindles
deformation is considered and the shearing deformation is neglected. As \ wti

a result, the displacement functions used in this analysis are expressed by
Eq- (l)(See Flg 2). Hmmcriv——— X,,.

Sy 1 X o) o o} o
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(o}
»”
>
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>
w
3
R

..... (1)

where ma = { mo; m@; m; mey mds mas}T (2)

The relation between incremental displacement 2mu and ma of
element m is expressed by Eq. (3) by substituting coordinates x=+¢/2 at
both ends i and j of the element into Eq.(1).  (c: length of element)

d
Smu mT ma namely, ma = mT12mu,. . (3) 7“Element sction on the local coordinates

where  Amu = {Amuidmvitm i mujomvidmei}T ... 4) Fig. 2 Deformation & coordinates

d. The strain (2ex) in the element can be expressed by Eq. (5), taking a large deformation into consideration and
using the assumption that its cross section remains plane after deformation;

dou | 1 dav d?av
ey = EM Ly Sy )
da S .
Derivatives of —";q, dxv and ddxzv in Eq. (5) can be obtained by differentiating displacement function Eq. (1).

e. Following the assumptions ¢ & d, only ex and ox are considered in each element, and yielding occurs
according to their magnitude.

f.  As for the stress-strain relation of material, a hysteresis loop which is shown in Fig. 3 is used, considering the
strain-hardening and the Bauschinger-effect.

g. The distribution of stress intensity and strain in the cross section are considered by dividing the cross section
into 20 layers as shown in Fig. 4, and the values of stress and strain in each layer are considered by the values at the
each center of gravity.

STRESS

€ (strain) o (stress)
B
1‘: A tw
i ¢ (strain) o (stress)

Fig. 3 Relation of stress-strain Fig. 4 Distribution of stress & strain
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3. Nenlinear analysis based on the stationary principle of potential energy.

31

The strain energy mU which is stored in the element m by incremental displacements can be developed as follows,

mU = mU1 +mU2

where [ mU, = fff, ox*cexdxdydz

‘ dou | 1 dby d%av
- fefao Gt 3 () - g v| dadx

1
ma¥ ma; + TmaLAlma — mal ma,

[]

mU, fffv-%— E ( 2ex )? dxdydz

_ ! day d2ay |,
= fcfA -E-E{"a; — ———‘dx2 5 dadx

1 1
= _;m(!?nAzma e Tma'{nA3ma + —j—maTr,‘A4ma

................... (6)

(herein, term -;— (-dj—xv)2 in mU, is dropped because it is considered negligible.)

Symbols of ma,, ma,,and mA; ~ mA, in Eq. (7) and Eq. (8) are vectors and matrices given as follows;

fo 5
i o
ma; = [o(faoxdAa) ﬁ oydx ..... 9 may = fo(faoxydA)( 0y dx ... ... ... (10)
o o
o 2
L © 6x
[ o o o o o © o o 0 o o
0o 0o o o0 o o© o 1 o o o o
mA; = fc(fa0xda) [0 0 o © o o dx, mA;=f(aEda){o o o o o of dx
o o o 1 2x 3x? o o 0O O o0 o
o o o 2xaxtex?|-- 0D o o o o o ol---012)
o o o 3x*6x3® 9x* o o 0o © o o
[0 o o o ¢ o] © o o o o o
o 0o o o 2 6x o 0o 0o o o o
mA; = ((faEyda)|c o o o o o|dx, mAs = ((AEyida)lo o o o o o dx
O Q O 8] O @] O O Q o) o
o 2 o 06 o of---U3) o o o o 4 x| -04
j© 6x o o o O] © o o o [2x36x2

Equations from (9) to (14) include faoxdA, fox-ydA, SEdA, fE-ydA and fE-y®dA which are calculated on the
both ends of divided elements accor@ing to the method which is described in the assumption (g) and are integrated
inside of the elements assuming linear change in the respective axial directions of them. Here at the point situated in

plastie region which gx is beyond the yield point, E is set as Est in the calculation.

“After carrying out calculation mentioned above, the strain energy stored in an element due to incremental

displacement is given in Eq. (15).

mU = maT (ma; — mag) + maT (mA1 + mA, — mA3 + mA4) mo

it

AmuTmT'lT (mal - maz) + ‘AmuTmT'iT (mA] + mAz i mAa + mA4) mT"Amu

AmuT mfin +—; AmUTmKAmMU ... sr s s e SR e e R E G E S VR PR § (15)
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The potential energy of Ti+1 for the whole structure in (i+1) state is shown Eq. (17) by summing up strain energies
of all elements and works done by external forces. The displacement components of all elements must be transformed
into a global coordinate system using Eq. (16). (See Fig. 2)

Amug = LAmu namely, Amu = L']Amug ............................. (16)
where Amug : incremental displacement vector of element m in global coordinate.
m+1'= In +%AUgT K &ug + AUgT fin —OUT fex v iniminvrns vrrmem i s (17)
where K= r% mLITK !
fin = 2 mL 1L

As the potential energy is stationary in the equilibrium condition, 2ug can be obtained by the variational principle.
Namely, 61Ii+1=0 for any arbitrary §5ug results in the following equation.

Koug +fin —fex =0 L e (18)

Vector &ug is obtained by solving the simultaneous equation given in Eq. (18). The coordinate of each joint-point
can be adjusted using Aug .

The calculation of one step is completed when incremental strain 2ex is obtained by Eq. (5) and with it the strain
and stress at both ends of each element are adjusted.

The planned analysis is made possible by accumulating the calculation described above by the step-by-step method
and iterating technique.

The flow chart of this numerical analysis is shown in Fig. 5.

4. The elasto-plastic behavior of braced steel frames.
4-1) Objects of analysis.

The elasto-plastic behaviors of braced steel frames are analyzed numerically and compared with the experimental
results, assuming the condition under which a K-type braced steel frame is subjected to repeated horizontal forces as
shown in Fig. 9.

The divided state of elements is shown in Fig. 9, and it is taken into consideration such effects that a large
deformation could occur and complicated distribution of deformation in plastic region could be followed.

Further, behaviors under repeated loading are studied by increasing or decreasing displacements of loading-point in
a stepwise method to the ultimate state. In order to compare with the experimental results the following values of
yield-stress of steel members are used for the calculation.

column and beam: (H-194x150x6x9)  oy=3.04ton/cm?

brace: (H-100x100%6x8)  oy=2.86ton/cm?
START
5 '3 —
4-2) The results of the analysis and ﬁput I, Properties of material, Size By introducing the prescribed
discussions and shape of structure etc. deformation, the following formula
3 ’ i — * . is solved to determine ~u.
Flg. 6 shows the relation between Preliminary cak;ulam())n before loading However, during the calculation for
. . ex = u

horizontal external force and horizontal ~—=—=—== o convergence, the increased am(:lunt
def ti This i h that th nput 2, data for loading, Prescribed ok deforma'tlon &t dierpaint where
ormation. is tigure shows that the displacement, Load (Afex) the presc.nbed deformation was

overall behavior agrees sufficiently well EEHn nouterbe prcsent,

. : Yes~#Stop,
with the experimental result except scat-

tered differences. As for the largest load
the analytical result gives a little larger
value than the experimental result. This is
probably due to incompleteness of the
test specimen, namely the influence of
initial deformation and residual stress.

mk, mfin is calculaed for all eiements,
the total sum is taken by making it
correspond to the displacement vector,

then K, fin is calculated. Correction of the coordinate values

due to the shift of nodal point.
e e——

'he results of deformation, reactive forces,
stress in the elements etc. are printed out.

2¢ is obtained from Au and the e, o
at .the both ends of each element
are corrected.

Fig. 5 Flow chart
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The decrease of load after maximum loading (post-buckling of brace) is attained more suddenly in the analytical
result than in the experimental result. The reason for this is that the analysis is made for the model which is replaced by
beams with lengths which are spanning between nodal points, in other words, that some larger slenderness ratio is
estimated in the analysis than in the test specimen.

Fig. 7 shows corresponding deformations to the state marked with heavy dots in Fig. 6. The scale of the
deformation-figure is half of that of the model. The comparison of the final deformation form with Fig. 10 shows that
they both are of very similar pattern. Fig. 8 shows the change of the yielded area until buckling is first observed on the
brace of compressed side and also how yielded places occur as the deformation mode of braces changes.

5. Conclusion.

The numerical analysis of elasto-plastic behaviors of braced steel frames which are subjected to repeated horizontal
forces and its comparison with experimental results has ascertained usefulness of this analytical method. It can be
thought that this method of analysis generally makes it possible to analyze the elasto-plastic behaviors accompanied by
instability phenomena, which hitherto was considered to be difficult, and also possible to acquire the distribution of
stress inside of members, which is difficult to obtain from experiments.

=100

ig. 6 Relation of load-deflection

T: Tension yield C: Compression yield

Fig. 8
Spread of pastic zones

Fig. 9 Idealized model for the analysis Fig. 10 Specimen after experiment

Bg. 3 VB
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SUMMARY

This paper deals with a nonlinear analysis of K-type braced steel frames taking
consideration of both the nonlinearity due to the yield of materials and the nonlinearity
based on the finite deformation theory unable to be neglected in the analysis of instabili-
ty problems.

RESUME

Ce rapport traite 1'analyse élasto-plastique des cadres en acier avec contre-
ventement en K en considérant la non-linéarité due au fluage du matériau et celle
basée sur la théorie des déformations finies qui ne peut étre négligée dans les pro-
blémes d'instabilité.

ZUSAMMENFASSUNG

Dieser Bericht befasst sich mit einer numerischen Untersuchung des elasto-
plastischen Knickproblems in der Fachwerkebene von K -Fachwerkstidndern aus Stahl
unter der Einwirkung statisch wechselseitig wiederholter Horizontalkraft nach der
Theorie endlich grosser Verschiebungen, nebst Vergleich mit den Versuchsergeb-
nissen.
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Einleitung

Im Abschnitt 5.3 des Einfilihrungsberichtes zum Thema I stellt
R. PARK fest, daB bisher nur wenige Untersuchungen Uber das theore-
tisch zu erwartende Last-Verformungs-Verhalten von Stahlrahmen bei
nicht-proportionaler Belastung vorliegen. Im folgenden wird versucht,
einen Teil dieser Liicke zu schlieBen.

Bei den meisten bisher bekannten Ndherungsverfahren und genau-
eren Methoden zur Berechnung der Traglasten von Stahlrahmen wird
davon ausgegangen, dafi diejenigen Lasten, die zu der fiir die Trag-
last unglinstigsten Lastkombinationen gehBren, in einem festen Ver-
hdltnis zueinander gesteigert werden. Diese Voraussetzung wird auch
dann beibehalten, wenn die Belastung des Tragwerkes aus mehreren
Lasten verschiedenen Ursprungs besteht, obwohl sie in diesem Fall
tatsdchlich fast nie erfiillt wird. Um die tatsdchlichen Verhdlt-
nisse besser kennenzulernen, wurde das Last-Verformungs-Verhalten
von Stahlrahmen bel nicht-proporticnaler, einsinniger Laststeigerung
anhand von zZwel Beispielen untersucht.

Ziel der Untersuchung

Es soll festgestellt werden, wie sich bei nicht-proportionaler
Belastung die fiir die Bemessung verwendbaren charakteristischen
Lasten und die Endverformungen des Tragwerks gegeniilber den Werten
bei proportionaler Belastung dndern. Diese charakteristischen Lasten
sind
- die elastische Grenzlast (FlieBbeginn, ndherungsweise durch die

Bildung des ersten FlieBgelenks erfaft)
- die Traglast (h&chste bei stabilem Gleichgewicht gerade noch auf-
nehmbare Last) und die
- plastische Grenzlast (Last bei der Ausbildung des FlieBgelenk-
mechanismus) .
Entsprechend dem ilblichen Vorgehen sollen auch bei der nicht-pro-
portionalen Belastung die unabhdngig voneinander aufgebrachten Last-
anteile diejenigen Grenzen nicht iiberschreiten, die sich aus den
Endwerten der Lastanteile beim Erreichen der Traglast unter pro-
portionaler Belastung ergeben. Innerhalb dieser Schranken wird die
Belastung in beliebiger Folge, aber einsinnig bis zum Erreichen der
Traglast gesteigert, daB heift, es wird keine Abminderung der unab-
hdngigen Lastanteile zugelassen. Diese Voraussetzung ist natiirlich
nur dann von Bedeutung, wenn nicht-elastische Verformungen auf-
treten.

Flir diese Untersuchung muB der Einfluf der Verformungen auf das
Kriftegleichgewicht beriicksichtigt werden (Theorie 2. Ordnung), denn
ohne Beriicksichtigung der Verformungen (Theorie 1. Ordnung) ist die
Traglast immer identisch mit der plastischen Grenzlast und unab-
hdngig von der Belastungsfolge.



36 I — TRAGLASTEN VON STAHLRAHMEN BE| NICHT-PROPORTIONALER BELASTUNG

Untersuchungsbeisgpiele und Berechnungsverfahren

Als Beispiele wurden zwei rechteckige Portalrahmen mit einge-
spannten Stielflissen gewdhlt, die durch vertikale und horizontale
Lasten verschiedenen Ursprungs beansprucht sind. Die Abmessungen
und Belastungen der Rahmen sind aus den Bildern 1 und 3 ersichtlich,
die Querschnittsabmessungen sind:

Stiele: I = 1150 cm4, F =43 cm2; Riegel: I = 5790 cm4, F = 46 cm2
Es wurde Baustahl St 37 mit der Streckgrenze15F= 2,4 Mp/cm2
zugrunde gelegt.

: Der erste Rahmen (Bild 1) ist

Py 4 relativ "steif" (kurze Stiele, ge-
T ringe Stiel-Normalkrdfte) der
e __ .. . zweite (Bild 3} relativ "weich"
% ol / ! (lange Stiele, hohe Stiel-Normal-
38 Nl krdfte). Das Last-Verformungs-
Q g Verhalten dieser Rahmen wurde fiir
y 5 verschiedene Belastungsprogramme
"o & Lo P nach der Theorie 2. Ordnung unter
oTSR, 75 R Voraussetzung der FlieBgelenk-
251 R hypothese (elastisch-idealpla-
b stische Momenten-Krimmungs-Be-
- ieh ) mit einem Verfahren h
i I om Ll ziehung . er fahren nac
o [} der Deformationsmethode berechnet.
Hierbei wurden auch die L3ngen-
15+ dnderungen der Stiele und das Ent-
LAS GRAMM lastungsgesetz bei Riickdrehung
i @ 8 = a5 &, proportional. der FlieBgelenke entgegen der ur-
@R bisoSE B0, dann P 205 €. BbR By, spriinglich vorhandenen Verdrehungs-
Q@# bisBe .damn R. B. richtung berilicksichtigt. Das Be-
51 rechnungsverfahren ist in[1], [ 27,
Oy TSR, SHLR das dazu gehdrende Programmsystem
: in [2] im Einzelnen beschrieben.

° 005 m 0.1

BRLD 1: LAST - VERFORMUNGS -DIAGRAMM , .,STEIFER" RAHMEN1

Ergebnisse fiir proportionale Belastung

Die Ergebnisse werden einmal in der tiiblichen Form von Last-
Verformungs—-Linien dargestellt, zum anderen als Punkte und Linien-
zlige in der Lastebene &hnlich den bekannten Interaktionsdiagrammen
fir die Schnittlasten. Diese zweite Darstellung ist der Sonderfall
n = 2 der Darstellung einer von n Parametern abhingigen Belastung
im n-dimensionalen Lastraum. Jede Lastkombination wird in dieser
Lastebene eindeutig als ein Punkt abgebildet, jedes Lastprogramm
als ein Linienzug. o

In den Bildern 2 und 4 sind zur Orientierung die Grenzlasten
nach der Theorie 1. Ordnung gestrichelt eingetragen, soweit gie von
den entsprechenden Lasten nach der Theorie 2. Ordnung (ausgezogene
Linien) abweichen. Zusdtzlich ist am Linienzug der plastischen
Grenzlast der zu den einzelnen Abschnitten gehdrige Mechanismus
skizziert. Diese nach der Theorie 1. Ordnung ermittelten Linien be-
grenzen im Quadranten P.= O, P,> 0 zwei Bereiche: Die duBere Linie
der plastischen GrenzlaSt begrénzt nach dem Einzigkeitssatz der
Traglasttheorie den Bereich, in dem {liberhaupt nur Gleichgewicht
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mdglich ist. Innerhalb dieses Bereiches begrenzt die Linjie der
elastischen Grenzlast (hier nédherungsweise durch die Bildung des

[

RIE 1.ORDNUNG

B P 7 < AN 2
[ 2P i
3] ) - N /'/ % \
SO I S
-~ ' )
2 - ¢ =
Mp » ~

. FLIESSGELENKE 1D PUNKTEN
s 11 2 3 & s . N5
[z © a A x A
= 3 v -

8 9 1o

I
Y

i

BILD 2: LASTWEGE UND GRENZLINIEN IN DER LASTEBENE , ,STEIFER”RAHMEN 1

ersten FlieBgelenks erfaft) den Bereich, in dem bei der ersten Be-
lastung nur elastische Verformungen auftreten. Bel Anwendung der
Theorie 2. Ordnung ergeben sich zweili andere Linienziige, die nur
punktweise flir verschiedene Lastverh&ltnisse beil proportionaler Be-
lastung berechnet wurden. Der innere Linienzug der elastischen
Grenzlast begrenzt wieder den Bereich, in dem bei der ersten Be-
lastung nur elastische Verformungen auftreten. Fiir den vom &duBeren
Linienzug der Traglast begrenzten Bereich kann nur ausgesagt werden,
daf er alle bei proportionaler Belastung erreichbaren stabilen
Gleichgewichtszustdnde enthdlt.

Der Vergleich der Grenzlinien nach der Theorie 1. Ordnung und
nach der Theorie 2. Ordnung zeigt in dieser Darstellungsweise deut-
lich, daB weniger die elastische Grenzlast, sondern vielmehr die
plastische Grenzlast von den Verformungen des Systems beeinfluBt
wird. Weiterhin zeigt Bild 2, daf die nach Theorie 1. Ordnung er-—
mittelten Mechanismen nicht immer mit den nach der Theorie 2.
Ordnung bestimmten lUbereinstimmen. Die Ausz&hlung der FlieBgelenke
in Bild 4 zeigt, daB die Tragfdhigkeit des "weichen" Rahmens 2 beil
Anwendung der Theorie 2. Ordnung weitgehend nicht mehr durch die
Ausbildung eines Mechanismus, sondern durch Erreichen der Traglast
begrenzt wird.

Ergebnisse fiir verschiedene Belastungsprogramme

Als Endwert fiir die Lasten Pl’ P2 wurden die bei einer be-

stimmten proportionalen Belastung und stabilem Gleichgewicht gerade
noch aufnehmbaren Lasten gewdhlt. Bei dem "steifen" Rahmen 1 ist

diese Lastgrenze z.B. fiir P2 = 0,5 Pl die plastische Grenzlast, bei

dem "weichen" Rahmen 2 z.B. fiir P2 = 0,3 Pl

lastung wurde nun innerhalb der so festgelegten Lastgrenzen PlE’

die Traglast. Die Be-
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PZE’ die in den Bildern 2 und 4 durch Schraffur hervorgehoben sind,

auf verschiedenen Wegen gesteigert. Bleibende Verformungen der

(%)

THEORIE 1.ORDNUNG

; Mus AN
P TH. 2.0.
2Ey i » & LY - o N
5 . e : VA

Mp

0 Mp 2 4 6 P 8 R
BRD 4 : LASTWEGE UND GRENZLINIEN , ,WEICHER " RAHMEN 2

Rahmen k&nnen nur in der rechten oberen Ecke des Bereichs, in dem
durch die Linie der elastischen Grenzlast abgegrenzten Teilbereich
auftreten. Fir drei verschiedene, exemplarisch ausgewdhlte Lastwege

, C), C)(strichpunktiert in den Bildern 2 und 4), die im wesent-
lichen die Grenzen des zugelassenen Lastbereichs erfassen, ergibt
sich folgendes:

1. Bei einsinniger Laststeigerung bis zur Traglast sind keine Ent-
lastungen aufgetreten.

2. Bei allen Belastungsprogrammen wird dieselbe Traglast erreicht
(Bild 2, 4). Fir den steifen Rahmen ist wegen der Voraussetzung
der FlieBgelenkhypothese die Traglast identisch mit der plasti-
schen Grenzlast (Bild 1)}. Aus der Unabhingigkeit der Traglasten

5? von der Belastungs-

folge ist wegen der

Beliebigkeit des ge-

Z:Jk;__q_ Sl : _2 2 wihlten Lastpunktes
i 3 . ; PlE’ P2E zu schlieBen,
? 2 daB die nur punkt-
3R A l3ﬁ weise bei proportio-
naler Belastung be-
1 ; <reR 21/? 3 4 _T‘ rechnete Linie der
LATIERGLAR 45m Traglast in Bild 4
@ # =03F, proportional. A 5, [ den Bereich der lber-
Mp €] B bis B .dann P, . 7]r——7o m —7“ '|‘ haupt m&glichen
@ # bis B fannF, . ¢ Gleichgewichtslagen
© _ Fliefgelenk, Stetle n heghenzt. Sle ont-
' i e spricht insofern der
0 m 0.05 al os g Linie der plastischen
Grenzlast nach der
BILD 3 LAST ~VERFORMUNGS -DIAGRAMM ; ,, WEICHER" RAHMEN 2 Theorie 1. Ordnung.

3. Die zu den Traglasten geh&drigen Verformungen sind ebenfalls un-
abhdngig von der Belastungsfolge (Bilder 1, 3}.
4., Die elastische Grenzlast ist diejenige Last, die von allen
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charakteristischen Lasten am meisten vom Lastprogramm beeinfluft
wird (Bilder 1, 3). Das erste FlieBgelenk bildet sich bei den
durchgerechneten Beispielen immer in der rechten oberen Rahmen-
ecke. Auch alle folgende FliefBgelenke bilden sich = innerhalb des
durch die Schraffur begrenzten Bereiches - unabhdngig vom Bela-
stungsprogramm immer in derselben Reihenfolge (Bilder 2, 4).

5‘\ 5. Die plastische Grenz-
1 last ist ebenso wie

Be 3 die zugehdrige Endver-

' i e & 2 formung nur dann von

Bor 7 3 3 @0 2 der Lastfolge unab-

Z 2 hdngig, wenn sie bei
einsinniger Laststei-
gerung erreicht wird
und deshalb wegen der

" LASTPROGRAMM Voraussetzung der
G)§=ﬂﬁ.mwwﬁmm. FlieBgelenkhypothese
S @ £ bisB ,dannP, . mit der“Traglagt zu-
® £ bisk,  dannP . sammenfdllt (Blld 1.
Sie ist von der Last-
' o Flioﬂ'gelonk,Stelln n R folge abhingig, wenn
0 m 0.05 0.1 o5 & sie erst im instabilen
BILD §: LAST—VERFORMUNGS - DIAGRAMM ; . WEICHER " RAHMEN 2 Be?610h au“ftrltt
e (Bild 3), in dem

Gleichgewichtszustdnde
nur nach Abminderung der zur Traglast geh&drenden Lastanteile
moglich sind.

6. Wenn die plastische Grenzlast bei proportionaler Belastung erst
im instabilen Bereich auftritt, liegt der zugehdrige Punkt in der
Lastebene im Innern des Bereichs stabiler Gleichgewichtszustédnde,
der durch die Linien der Traglast begrenzt wird (siehe 2.). Es
ist deshalb nicht m&glich, bei einsinniger Belastung in vorge-
gebenen Grenzen die plastische Grenzlast auf irgendeinem Lastweg
zu erreichen, ohne vorher die Traglast erreicht zu haben. Die
Traglast liefert deshalb - im Rahmen der hier gemachten Voraus-
setzungen - eine sichere Angabe iiber die Tragfdhigkeit. Zum Ver-
gleich zeigt Bild 5 die Last-Verformungs-Linien flir proportiocnale
Belastung und zwel weitere Lastprogramme und , bei denen
die Endlasten nicht mehr durch die vorgegebenen Lastschranken PlE'

P2E’ sondern durch die zur proportionalen Belastung gehdrigen

Lastanteile P der plastischen Grenzlast gegeben sind. In

ler’ Facr
diesem Fall sind sowohl die Traglast als auch die zugehdrigen Ver-
formungen vom Lastweg abhdngig. Flir die plastische Grenzlast und
die zugehdrige Verformung trifft dies jedoch nur zu, wenn das Be-
lastungsprogramm zu Entlastungen nach bereits erfolgter plasti-
scher Deformation filhrt (Lastprogramm C) ). Treten auch bis zum
Erreichen der plastischen Grenzlast keine O6rtlichen Entlastungen
(Riickdrehung von FlieBgelenken) auf (Lastprogrmmn() ,C) ), so

sind die plastische Grenzlast und die zugehdrige Verformung un-
abhidngig vom Lastweg[3].

SchluBfolgerungen

In den durchgerechneten Beispielen sind, wenn von festen Last-
schranken ausgegangen wird, die Traglasten und die zugehbrigen Ver-
formungen unabhdngig von der Lastfolge und deshalb als Grundlage fiir
die Bemessung geeignet. Die plastischen Grenzlasten, soweit sie
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nicht mit den Traglasten zusammenfallen, und die zugeh&rigen Ver-
formungen unterscheiden sich fiir verschiedene Lastfolgen. Auch die
zugehdrigen Mechanismen kdnnen sich unterscheiden. Es bleibt weite-
ren Arbeiten vorbehalten zu untersuchen, inwieweit.diese Ergebnisse
verallgemeinert werden kdnnen. '
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ZUSAMMENFASSUNG

Es wird das Last-Verformungs-Verhalten von zwei rechteckigen Portalrahmen
mit der Theorie 2. Ordnung numerisch untersucht, Es ergibt sich, dass bei einsin-
niger nicht-proportionaler Belastung die Traglast unabhingig von der Lastfolge ist,
wihrend die plastische Grenzlast von der Lastfolge abhingt, wenn sie nicht mit der
Traglast zusammenfallt. Allein Traglast gibt deshalb eine sichere Schitzung der
Tragfihigkeit der Rahmen.

SUMMARY

The load-deflection relationship of two rectangular portal frames is investigated
numerically by second order elastic-plastic theory. It is found that under always in-
creasing but non-proportional loading conditions, the ultimate load is independent of
the load sequence, whereas the plastic limit load, if it does not coincide with the ulti-
mate load, depends on the load sequence. Therefore only the ultimate load gives a
reliable estimate of the load-carrying capacity of the structure.

RESUME

On examine numériquement le comportement charge -déformation de deux
portiques rectangulaires simples en tenant compte des effets du second ordre. On
constate que la charge limite est indépendante de la séquence de la mise en charge
en cas des chargements indépendants toujours croissants, tandis que la charge de
ruine plastique dépend de la séquence de la mise en charge dans les cas ol elle ne
coincide pas avec la charge limite. C'est pourquoi, seulement la charge limite per-
mettra une estimation stire de la capacité portante de la structure.
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Traglasten der Stahlstiitzen unter statischer und dynamischer Wirkung

Mit den Greenschen FunktionenK(x,g)und I"(x.£)gemiB Fig, 1

x,E §1cosw t

N v N Fig. 1

£ ==
M EP s — — =<K [ E)

e | ——————

lassen sich leicht die Biegemomente M(x) und die Biegelinien y (x| unter
beliebiger Last p(x) ermitteln:

Einfache Biegung:

Mo(x} =ofox.§}p(§)dg {1)
Druckbiegung und harmonischer Schwingung:
M (x) =0f¥'(x,‘§)p(§)d§ (1a)
Allgemeine Biegelinie: ; L
y (xd = [T, E) SRlEL e =[x g1 2B g (1)
Mix} - My{x) '
-——T°—— {1c)
mit Xx=E | [ﬁ% i%%%&simmm-gnh
(xE)= 9 sinhgx/l . 4 (2)
£ P @a—f‘%@z— sinh @211 £/ ] coswt

xZ € x mit £ vertauschen
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Das obere Vorzeichen gilt fiir N als Druckkraft, das untere fiir Zugkraft,
Es bedeuten:
.m Masse je Lingeneinheit
w - Kreisfrequenz einer erzwungenen harmonischen Schwingung
EI - Biegesteifigkeit des Stabes,

Aus der Gl, ( 2 ) kann man im Sonderfall N=0 ,w=0 die einfache KernfunktionKixg
bekommen.

Der kritische Fall ¢,=7 gem. Gl. ( 2a ), ergibt die allgemeine Euler-TLast:

2 &
N =L EIH- i) (3)
2
= Ny (1 -%’{0 ) (3a)
oder nachwy (als Resonanzzahl)
(.l)K-'lrIEEIH “m} {3b)
wenn
2 [ET ‘
Nio = EIZEI— ( Euler~Last ) {34d)
bedeuten.

Der Winkel ¢, bleibt kleiner als T , wenn N<Ny ist,.

Es ist noch darauf hinzuweisen, daB bei rollender Einzellast mit einer Geschwin-
digkeit V, und einer Einzelmasse mg gowie unter harmonischer Schwingung als
auch unter Normallast die Euler-Last noch weiter abgebaut wird, s. [4] :
2.2 2 3
w2 Vo i Vo i (.L) |
N, = 1- —-m — -m (4)
«Nid wZ  mPEL " er SunfEl ]

Fiir die praktischen Berechnungen lassen sich leichte N#herungsformeln aus den
Gl. ( 1 bis 1c ) mit Hilfe der Reihenentwicklungen angeben,

So lautet ein einfacher VergroBerungsfaktor:
1

t/f0 = > (5)
1-{w/ wkol“ 3 N/ Nko

wenn f, der Biegepfeil nach der linearen Theorie
und f die gréfte Amplitude bedeuten
Auch hier ist das obere Vorzeichnen fiir N als Druckkraft und das untere fiir

Zugkraft.

Fig. 2 soll eine auBermittig gedriickte Stiitze bedeuten, die unter harmonischer
Schwingung steht. Thre Randmomente konnen im Sonderfall den Trapezverlauf an-
nehmen,

Fig 2

Biegemomente beim gedriickten Stab
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Der allgemeine Verlauf lautet, wenn coswt=1 gesetzt

of

wird :

Wil = M sing(1-x/y ), 93

sinhg, (1-x/ () l .

Algigy sing, Py sinhp,
2 2 )
OF _ sinptfl-x/1}) , @? sinh@2{1-x/{]
Hp [ g sing, " @ 9L sinhg, ]

Als Stiitzenquerschnitt wird ein Sandwich-Profil s.

Fig.3, angenommen.

Hierbei wird die Querschnittsfestigkeit im plastischen Zustand nicht beeinfluBt.

Um storende Einfliisse zu vermeiden, wird Biegung nur

genommen sowie gleiche Randmomente M A=MB= M
MA Mg
N - T T~ —N
T f—c—o; wt
Sandwich-Profil Fig 3
Unfer Beachtung der Parameter
_ N 1 w M
MG S i nz"wK <Ti k- y
My = Y Gehoh ( Tragmoment )
Y <1

<1

in einer Ebene an-

A e

) ]\Fo l—“:YO‘F

Ow

L <1

( obere Schranke der Bruchlast )

( Abminderungsfaktor der Baustoffestigkeit

43

{6]

infolge Wechselwirkung als untere Schranke )

und der Querschnittswerte )
F. h
F=2F I- °2

sowie der Schlankkeitsgrad

1 21
X - -

\/' 1/F h

kann die Tragfihigkeit der Stiitze ermittelt werden. Sie ist gekennzeichnet durch
die Grenzspannung Y % und durch die maximale Durchbiegung f =y (1/2)

Die Durchbiegung kann aus Gl. ( lc ) ermittelt werden:

Ny(x) = M(x) — Mo(x)
wobei M(x) nach Gl. ( 6 ) und
Molx) = Mp { 1-x/L )+ Mp x/L

hat man dann:

2
N yix) =M [ ém—;q)
e

. 93 sinh@d1-x/1)+ sinhgyx/ |
+ sinhy,

Fiir MA= M B-——M

siny,

sings(1-x/1 ) +singp/1

- 1]

(8)
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Fiir xsl/2 hat man fiir die grifte Biegeordinate bezogen auf die Querschnittshthe h
die Beziehung:

2

£ ll l’ P, il \PZ 1 ]
h ;52 @" - 9)
‘P2+¥P? €os l.p/2 cosh Lpz/2
Diese nichtlineare Fumktion ist eine #duBere Gleichgewichtsaussage.
Die Winkel ¥, und @, lauten fiir das obere Vorzeichnen der Gl.( 2a ) u. ( 2b )
mit Einfithrung der Parameter ny und n,
_ ]/__ﬁr: ' AN EIzhﬁ
1 "l 2E V'n1+1/n1+l O.FF
(101
N/ e 2, b EI? 3
W2 = A/ 2E 2 EyZTor F2
In [1] ist der Sonderfall n,=0 , d,h. reine Knickbiegung bereits behandelt.
Der homogene Fall ( M MB =M = 0 ) ergibt sich aus Gl., ( 3a ) mit der
abgeminderten kritischen Last
N o ©E (o n2)
Die innere Gleichgewichtsaussage f/h erhdlt man aus der Bemessung fur die
Grenzspannung; - _
N M N M
—_— e —— = ——— -+ ='YGF (bZWA=.0(F) (12)
F W 2F h F,
Das vorhandene innere Moment M=M bezogen auf das Tragmoment M,
lautet jetzt:
M 1 O 1
o (-1._ ) {13}
My 2 2 6.~ Y
\P1 1 "PZ 1
¢%s ¢ cos @/2 T cosh @/2
1T mq LP”tp? y:
In Gl, ( 9 ) eingesetzt erhdlt man entsprechend:
= 1
L. - 215 L
h 9? 1 L9 1 q>1+xp2 cos«pﬁ G cosh g2~ 2M
gpf.up?lz cos §/2 P2.92 cosh @2 (14]

Diese Beziehung stellt in den Fig. 4 und 5 die Grenzkurven dar.
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Nz Wko M=lL My
_____ —_ '/—\
\'\__ _;_f_______———// N=n1 Nu
e 112 —
J
//___ K =01
e
St.52
A= 90
y =085
p =010
nz=konst.
L=
-
. - | =
1.0 14 f/h
Traglastkurven fiir n, = konst. Fig. 4
Anz-O,Sf(m )A n,=fln,)
N v
1,0 "\
Nk=0,7108 Ny~—7 nz=0,0
1 0.9 1 \ 07036 — 0.1
06823 — 0,2
- N \ 06468 — 0.3
SN 5870 0.4
o 05331 - 0.5
07 — :
SRS -0
03 0.6 SN ny=0 )
0,25 0.5 N 2 -
- flm)
02 0,4 1 St 52
A =90
okl 23 X\ RENZ KURVEN b4 =8'$5
05f K =Y
01 | 02 ] 22_ e )<G ny =Hn |
0,051 0.1 1
\\
T T T T T T T Al T T T ’
0 0 01 02 03 04 05 06 07 08 09 10 11 12 f/n
Traglastkurven fiir verinderliche n, = f( n, y Fig. 5
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ZUSAMMENFASSUNG

Ganz allgemein wird gezeigt, dass mit Hilfe der Integralgleichungstheorie
Traglasten bei Beriicksichtigung verschiedenartiger Einfliisse berechnet werden
konnen. Dies gilt auch fiir beliebige Systeme.

Die Berechnung wird an einer ausmittig beanspruchten Stahlstiitze mit Sand-
wichquerschnitt vorgefiihrt. Es wird die Abminderung dieser Spannungen, wenn die
Stiitze unter harmonischen Schwingungen steht, gezeigt. Dabei sind zweierlei Ein-
flilsse zu beachten:

1. geometrische: durch Zunahme der Verformung infolge Abnahme der
kritischen Last bei Beriicksichtigung von Schwingungen und Druckbiegung.

2. physikalische: durch Abnahme der Querschnittfestigkeit (Baustoffestigkeit)
infolge Wechselwirkung als einfache Abminderung.

Die Kurven gem. Fig. 4 und 5 konnen einen Hinweis auf die Traglasten ver-
mitteln, wobei viele storende Einfliisse wie Ddmpfung, Torsion und Kippen vernach-
lassigt wurden,

SUMMARY

It is shown that by use of the theory of the integral equation one can compute
the ultimate loads under consideration of various influences. This is valid for any
system,

The computation is demonstrated on the example of a steel column with sand-
wich-cross-section under an excentric force. The reduction of these stresses are
shown when the column is under harmonic vibration. Two influences are to be
considered:
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1. geometrical: by the increase of the deflection owing to the reduction of
the critical load considering vibration and bending under compression.

2. physical: by the decrease of the strength of the cross-section (strength of
material) owing to the alternating action as simple reduction,

The curves in Fig. 4 and 5 can give a hint of the ultimate load, whereby many
influences of damping, torsion and buckling are neglected.

RESUME

On montre, de maniere générale, le calcul des charges ultimes par la méthode
des équations intégrales en tenant compte des différentes influences, ceci restant
valable pour des systémes quelconques.

On présente ensuite le calcul d'une colonne en acier A section en sandwich avec
charge excentrique. On montre la diminution des tensions lorsque la colonne est
soumise & des vibrations harmoniques. On soulignera deux sortes d'influences:

1. Influences géométriques: i cause de l'augmentation des déformations due
4 la diminution de la charge critique en tenant compte des vibrations et de la flexion
due aux efforts de compression.

2. Influences physiques: & cause de la diminution de la résistance de la
section (résistance du matériau) due aux charges alternées.

Les courbes des figures 4 et 5 donnent une idée des charges ultimes, bien
que beaucoup d'influences génantes, tel que 1'amortissement, la torsion et le
renversement aient été négligées.
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INTRODUCTION

Although the stress-strain behaviour of metals under states of combined
stress has been studied experimentally for monotonically~increasing loads,
research into elastic~plastic material response for loadings of a repeated
nature has been mainly concerned with uniaxial stress states [1,2]. Apart
from a few recent investigations into low-endurance biaxial fatigue [3-5],
there is very little test data for cyclic loading involving multiaxial stress
states. Consequently, the major cbjective of the work initiated in this pap-
er will be to determine cyclic stress-strain characteristics for metals under
various states of biaxial stress in the plastic range. It is clear that such
experimental work is essential to the formulation of adequate material models
for the analysis of structural components subjected to complex, repeated loads
[6,7].

In this preliminary investigation, cyclic biaxial response is determined
for 2024-T351 aluminum by subjecting thin-walled cylinders to repeated axial
loading combined with alternating torsion. Thus, the fundamental variables
studied are axial stress o, shear stress 1, axial strain ¢ and shear strain
Y. For convenience, we introduce the quantities

o

n=? p =

1

< {m

which define a stress ratio and strain ratio, respectively. TFurthermore, as
a scalar measure of stress and strain under biaxial states, the following
conventional definitions of "effective stress" G and "effective strain" € are
adopted;

(S
i

- 2 2 . =

g = (¢" + 31 e = ( ) (2)

In this paper, results are presented for a series of fully-reversed strain-
controlled tests in which the amplitude of the effective strain, Ae, is the
controlling parameter and a constant strain ratio p is maintained during a

given test. Particular emphasis is given to the '"steady-state" response of
the material under cyclic biaxial loading.
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EXPERIMENTAL INVESTIGATION

a) Specimens and Apparatus

The thin-walled tubular specimens employed in this investigation were
machined from 1-% in. (38 mm.) diameter solid bars of 2024-T351 aluminum to the
dimensions shown in Fig. 1. The material was used as supplied and, after grin-
ding, the internal and external surfaces of the cylinders were polished in
order to prevent premature fatigue failures. A description of the pertinent
mechanical properties of the aluminum alley is given in Table 1.

1.070" + ,001

e

N [ o) ;

LA}
1.00" 1-170 + .OOl

6.50"

TABLE 1

Tensile Properties

Modulus of Elasticity Yield Strength Ultimate Strength % elongation
10,200 ksi 50.8 ksi 68.6 ksi 22
(717,000 kg/cm®) (3,570 kg/cm®) (4,820 kg/cn?)

All experiments were conducted using a specially-designed apparatus, which
operates in a standard close-looped (MIS) servo-controlled electro-hydraulic
testing system. This testing facility, which is described in detail elsewhere
[8], permits simultaneous application of repeated axial loading and cyclic tor-
sion to the tubular specimens, The axial load and torsion are controlled in-
dependently, and either the applied loading itself or the output (e,y) of the
transducers measuring the strain may be selected as controlling parameters.

b) Expernimental Proghamme

Due to possible frequency effects and the presence of "cyclic creep"
under load-controlled conditions, a series of fully-reversed constant—ampli-
tude strain-controlled tests was conducted. Cyclic stress-strain response
was thus determined under biaxial stress states for the following prescribed
strain ratios: p=0,%,1,2,»; where p=0,® correspond to pure torsion (0=0) and
axial stress (1=0), respectively.

For each predetermined value of p, two tests were performed: one for an
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effective strain range A€ = * 0.75% = 1.5%, and a second test for which AT =

* 1.02 = 2.0%. All tests were run at a frequency of 0.1 cycles per second and
during each test, axial load-deformation and torque-twist hysteresis loops
were recorded periodically using X-Y plotters. Although the prime purpose of
the experiments was to investigate material response prior to and including
steady-state conditions, the cyclic loading programme in each case was applied
until failure of the specimen occurred.

TEST RESULTS AND DISCUSSION

Results of a typical fully-reversed strain-controlled test are shown in
Fig. 2 where hysteresis loops obtained for combined axial load and torsion
(p=1) are reproduced for various cycles of deformation. For purposes of com-—
parison, the monotonic stress-stress curve under axial tension is also inclu-
ded in this figure. As cycling proceeds a progressive increase in stress
amplitude is evident, which indicates that this metal exhibits cyclic strain-
hardening characteristics under biaxial loading. Furthermore, although the
results for a given cycle show that the stress limits in torsion are essential-
ly equal, one observes that the stress limit in compression for the axial stress
o becomes greater than the tensile limit during cycling. This behaviour, ter-
med "mean stress relaxation', is apparently related to the "cyclic creep”
phenomenon, which should occur in a corresponding load-controlled test [1,2].

In Fig. 3, the stress limits in torsion and axial stress are plotted ag-
ainst the number of cycles for the effective strain amplitudes A€ = 1.5%, 2.0%
and various strain ratios. These curves indicate that, during an initial tran-
sitory period of cyclic strain-hardening under combined stress, the stress-
strain behaviour asymptotically approaches some limiting "steady-state" cyclic
response. In addition, from the difference in stress limits for a particular
cycle the amount of mean stress relaxation is readily obtained.

In order to characterize the material response under steady-state cond-
itions, "steady-state yield-interaction'" curves have been constructed (Fig. 4).
Using the 0.2% proof stress as the definition of yielding, the yield stress
components (Gy,Ty) obtained from the steady-state hysteresis loops are plotted

and compared to the initial yield curve. From these results it appears that,

in addition to the cyclic strain-hardening phenomenon mentioned above, another
type of hardening accompanies cyclic deformation - a hardening which is mani-
fested by an increase in yield stresses with increasing number of cycles. Yet,
in contrast to cyclic strain-hardening (where the stress amplitude increases
with increasing strain amplitude) the amount by which these steady-state yield
stresses jncrease is less for the higher wvalue of AE. However, in view of the
number of tests conducted in this preliminary investigation, and the particular
definition of yield adopted (0.2% offset), more experimental data must be gen-
erated and the implication of other yield definitions examined [8] in order to
confirm this trend. Further experiments are also required to determine "steady-
state yield curves" for a variety of strain-controlled and load-controlled cond-
itions and to assess whether interaction curves, such as those given in Fig. 4,
provide useful informatien for the analysis and design of structural elements
subjected to repeated loads.

In conclusion, the numbers of cycles to "failure" N, are listed in the

following table for the various applied strain amplitudes and prescribed strain
ratios.
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TABLE 2

Ae Ay AgE o Nf
+1.00% 0% 2.0% w 197
+0.96 +0.48 2.0 2 219
+0.87 +0.87 2,0 1 299
+0.65 +1.31 2.0 3 166"
0 .73 2.0 0 43"
+0.75 0 1.5 e 377
+0.72 +0.36 1.5 2 621
+0.65 +0.65 Toll 1 662
£0.49 +0.98 1.5 1 570
0 +1.30 1.5 0 324

* failed by buckling

It should be noted that, although most specimens exhibited fatigue fail-
ures, buckling cccurred for the higher amplitudes of torsion. Certain aspects
of this delayed-buckling phenomenon under cyclic torsion were briefly discus-
sed in [9].
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SUMMARY

The main objective of the work initiated in this paper is to determine stress-
strain characteristics for metals under various states of repeated biaxial loading in
the plastic range. In this particular investigation, the results of a series of constant-
amplitude, fully reversed strain-controlled tests are reported for 2024-T351 aluminum
under cyclic axial stress combined with alternating torsion. The observed cyclic
strain-hardening and steady-state response are discussed, and the notion of a "steady -
state yield-interaction" curve is introduced.

RESUME

L'objectif principal de 1'analyse amorcée dans ce travail est de déterminer les
caractéristiques tension-déformation des métaux soumis & différents états de charges
répétées biaxiales dans le domaine plastique. Dans cette étude particuliére, on
présente les résultats d'une série d'essais sur 1'aluminium 2024-T351 soumis & des
tensions axiales variant cycliquement, combinées avec des efforts de torsion alternés,
les déformations totalement inversées restant d'amplitude constante. On discute
ensuite 1'allure des courbes pour des déformations cycliques dans le domaine
d'écrouissage et pour 1'état stationnaire et on introduit la notion de courbe d'inter -
action des tensions de fluage i 1'état stationnaire.

ZUSAMMENF ASSUNG

Das Hauptziel der vorliegenden Arbeit ist die Bestimmung von Spannungs -
Dehnungs -Charakteristiken fiir Metalle unter verschiedenen Zustdnden wiederholter
zweiachsiger Beanspruchung im plastischen Bereich. In dieser speziellen Unter -
suchung werden die Resultate einer Serie mit konstanter Amplitude und vollstédndig
umgekehrter dehnungs-kontrollierter Versuche fiir Aluminium 2024-T351 unter
zyklischer axialer Spannung kombiniert mit wechselseitiger Torsion, aufgezeigt. Die
beobachtete zyklische Verfestigung und die Reaktion aus stetiger Belastung werden
diskutiert und der Ausdruck einer "stetigen Belastung-Fliessen-Interaktion"einge-
fiihrt.
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Introduction

The subject of shakedown on reinforced concrete beams, to
which Professor Park's survey paper made reference, has been
clouded by conflicting evidence; on one hand, early researchers
(1) claimed that the elastic-perfectly plastic theory of incre-
mental deformations was well able to predict the observed behavior
of concrete beams under variable repeated loading. On the other
hand, later work (2) indicated very little relationship between
the predictions of the classical theory, and experimental results,
and attributed this discrepancy variously to the effects of bond
deterioration (3) and strain-hardening of the steel (4).

In a further effort to clarify the matter, we consider in
this contribution the effect of concrete creep on the response
of concrete beams subject to alternating repeated loads, and on
the occurrence of shakedown. The approach consists of the follow-
ing phases:

1, Development of a general analysis for concrete beams under
arbitrary load histories, incorporating the effect of the time-
dependent response of the concrete.

2. Verification of the analytical predictions by appropriate
tests.

3. Use of the analysis to perform a study of the way in which
creep affects the incremental deformations of concrete beams under
cyclic leoading.

The steps, and the resulting conclusions, will be discussed short-
ly in the following.

General Analysis for Arbitrary Load History

Following earlier work (5), time-dependent moment-curvature
relations were established, based on classical concrete beam
theory of plane sections and the actual properties of the con-
stituent materials, of which steel was of the elastic-plastic-
strain hardening type, and the concrete was of stress-strain-time
relationships measured directly in the laboratory.
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With moment-curvature-time relations known for all beam sec-
tions, any framed structure can be analyzed by adjusting the dis~
tribution of moments at any point in time so as to satisfy equili-
brium and compatibility. Because of the non-linearity of the
system, an interative solution scheme was used, which incorpor-
ates the necessary checks for elastic or inelastic loading, elas-
tic unloading at any section, as well as attainment of the elastic
limit which shifts in magnitude according to the maximum moment
reached in prior load cycles (4). A computer program incorpora-
ting these features enables prediction of moments, curvatures,
and deflections at any stage of arbitrary load histories applied
to continuous beams. Effects of shear deformations or shear fail-
ure, or bond or anchorage deterioration, were not considered in
the analysis.

Experimental Verification

It is obvious that an analysis as full of gross assumptions
and simplifications as the one outlined must be checked by compar-
ison of theoretical and experimental results. For this purpose,
two-span continuous concrete beams were tested under a variety of
load histories consisting of cyclic and sustained loading (6).

The case presented here is typical of results obtained.
Fig. 1 shows the load history
which consisted of a first stage of
LOAD, kips (kN) rapid cyclic variation of load at
increasing levels, followed by a

1898 (8.44)

1.86! (8.29)
1824 (8.12) 20-~day period of two load levels
1787 {7.94) s N
1750 (7.78) | sustained alternately for five days
g2 (7an | each, and concluding with another
o T sequence of cyclically varying loads
o ATBH5 526, thys to failure.
Beams B-2 ond C- .
7 e _ Figs. 2, 3, and 4 show the ana-
— Sustained Loading lytical and observed load-deflection
M Rapid Cyclic Loading to Shokedown curves for the rapidly-cycled load-
Py= 1.424% (634 kN), Py = LGGI" (B.29KN) ing stages, and the deflection-time-
) curves for the sustained loading
Figure 1 stage. Good correlation is observ-

ed at all stages up to 98 per cent

of the predicted plastic limit load
for the two-span beam. By that time over 70 cycles of high loads
had been applied, and some evidence of bond deterioration was
apparent. Nevertheless, the observed deflections were less than
those predicted up to failure, which occurred under a load
slightly larger than the fully-plastic limit load.

It is concluded from this and other comparisons that the

analysis is well capable of predicting the response of such beams
to applied load histories.

Effect of Creep on Shakedown of Concrete Beams

Once the validity of the method of analysis of load history
effects was confirmed experimentally, it was utilized with some
confidence in a systematic exploration of the effects of creep
on the incremental deformations of continuous concrete beams under
repeated variable loading.

In tests, shakedown, or deflection stabilization of a struc-
ture is presumed to have occurred whenever the deformation incre-
ment between corresponding stages of two successive load cycles
vanishes. Any change of displacement due to creep will give the
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appearance of incremental deformations, unless considered in the
theory, or eliminated by appropriately fast rates of load cycling

The previously established analysis was used to investigate
the effect of creep on the displacements of a two-span continuous
beam of the same properties as that of the previous analysis,
under load cycles applied at various rates, and Fig. 5 summarizes
the results. The applied load, of magnitude Pmax=0.92 P, is

é&* DEFLECTION AT PUNT 2, inches rem) above the elastic-perfectly plastic
Pei7i0% -092 K, shakedown load, and the dash-dotted
line shows the linearly-increasing
L. R displacements predicted by classi-
(Etastic- Perrecty Plastic Taeory) cal theory of incremental deforma-
tions assuming perfect plasticity.
(6.0) Because of strain-hardening, the
// /ﬁﬂmﬂmwww beam will actually shake down in
wg | N ; the absence of creep, as shown by
(50) ] ' o the curve labeled "No Creep." Inter-
// \4g%imr i feyete mediate curves indicate the pre-
Ry | dicted increase in deflections for
[~ 58 Min feycle different rates of load cycling,
and demonstrate that the effect of
creep will tend to give the appear-

é%‘ // N \/\/‘%_mg; ance of perfectly-plastic incre-
/\/\/ mental deformations.
' | l It may be concluded that both

205 ] I S S e e A strain-hardening and creep should
® ® be included for a valid assessment

2.8
{7.0) 1

Upper Pornts Lowwr Poinl's

. ] [ of the occurrence of incremental
* 24 5 7% 1w cwies deformations in concrete structures
subject to cyclic overloads.
Figure 5. Theoretical Shakedown Including Creep
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SUMMARY

A general analysis for the flexural response of reinforced concrete beams to
arbitrary load and time histories is presented, and verified by comparison with
experimental results. This analysis is then used to evaluate the effect of creep on the
incremental deformations of concrete beams under variable repeated loading. It is
concluded that creep should be considered for a valid assessment of theories of
incremental deformation.

RESUME

Ce travail présente une méthode d'analyse générale pour 1'étude du comporte-
ment de poutres en béton armé soumises 3 la flexion, 4 un instant arbitraire du
processus de charge. Les résultats sont vérifiés par une série d'essais. Cette
méthode est ensuite utilisée pour évaluer 1'influence du fluage sur les déformations
additionnelles de poutres en béton armé soumises i des charges répétées variables.
Il en résulte que le fluage devrait étre pris en considération pour une conception
valable des théories sur les déformations additionnelles.

ZUSAMMENFASSUNG

Eine allgemeine Berechnungsmethode fiir das Biegeverhalten von Stahlbeton-
balken unter beliebiger Last und zeitlichem Verlauf wird dargestellt und durch Ver-
gleich mit experimentellen Resultaten bestitigt. Diese Methode wird dazu verwendet,
den Effekt des Kriechens auf die zunehmenden Deformationen von Betonbalken unter
variabler wiederholter Belastung zu ermittein, Daraus wird gefolgert, dass das
Kriechen beim brauchbaren Abschitzen der zunehmenden Deformationen beriicksichtigt
wexrden sollte.
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Intrcocduction

Numerous studies of the response of reinforced concrete mem-
bers to cyclic loadings, many of which have been summarized at this
meeting, have indicated that in general, the flexural strength of
under-reinforced beams remains unimpaired under histories of load-
ing consisting of a reasonable number of cycles. However, there
is a body of evidence indicating that their shear strength may suf-
fer under such loadings; a number of continuous beams (1), designed
to fail in flexure under monotonically increasing loads, actually
failed in a diagonal tension mode under cyclic loading which ap-
peared to be triggered by bond cracking of the concrete at the
level of the tensile steel. )

An explanation of such premature shear failures may be found
in the progressive deterioration of bond between reinforcing steel
and concrete under cycles of high loads. Since the tensile crack
pattern of concrete beams is closely associated with bond, it fol-
lows that any deterioration of the bond will affect the nature of
the tensile cracks. Recently developed methods of analysis (2,3)
can account for the effect of bond loss on the crack propagation
within the concrete in a rational manner.

Following this line of thought, the pilot study discussed in
this paper was divided in the following parts:

1. Experimental determination of the bond deterioration under
repeated loading.

2, Development of a theory of shear strength of concrete
beams which includes the effect of this bond deterioration.

3. Cyclic tests of concrete beams designed to fail in shear
to check predictions.

While the investigation is at present incomplete, we feel that it
is sufficiently important to focus attention on the importance of
shear strength under cyclic loadings to warrant presentation of
preliminary results,
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Pullout Tests

A theory of bond behavior of pullout specimens, as shown in
Fig. 1(a) under monotonic and cyclic loading is presented which may
help explain the relation between bond deterioration and opening of
tensile concrete cracks. Based on limited experimental evidence
(4) it is assumed that each point
along the embedment length of a bar

Loaded ey 7
pie et has a fixed capacity to develop bond
strength. When this capacity is
“*;[:““**“‘—‘—‘—— p reached, the strength begins to de-
teriorate. Bond failure of the
| Gmbwmer! lewth | specimen is possible only after all
@) Pul-007 SPECIEN points along the embedment, one after
the other, have achieved their full
B Gt dstribetm capacity. A plot of the peak
BT T e e 7 strength of all points will be call-
‘ *x¢4ﬁ3$ﬁﬂﬁ%ﬂ””” ed the "envelope curve', and is
/ St Enyaie e shown in Fig. 1(b). Under applied
2l Ertactme! tenglh e tension force, bond stresses will

develop, leading to a bond stress
distribution as shown by Curve A-B-C
in Fig. 1(b). The area under this
—Force distributin e fanson curve between the loaded end and any
. point is proportional to the force
i Fovee distribubion otk transferred to the concrete, and the
morement of tensin total area under the bond stress

(&) DiSTRIBUTION OF BOND SIRESSES

£z

| Embedment Length 1© curve is proportional to the total
mm%mammwngTh}m applied load. Thus, the force in
FIG. 1 - REPRESENTATIONK OF PULL-QUT SPECIMEN AND the tenS1on bar a.‘-t an}-r p01nt con be
PERTINENT CHARACTERISTICS IN ANALYSIS plotted as shown in Flg .1 (C) . The

area under this latter curve, in

turn, is proportional to the elonga-
tion of the bar. As long as the free end of the bar is prevented
from slipping, all of this elongation appears as slip of the loaded
end.

As the load on the bar is increased, the bond stress distribu-
tion changes, with those portions of the bar whose bond stress has
attained the envelope value subject to bond deterioration, and
others with ascending stresses, leading to a new bond stress dis-
tribution as shown by Curve A-B;-C of Fig. 1(b). The difference
between the area under the force diagram corresponding to this
stress distribution, E-F{-G in Fig. 1(c), and the previous one,
E-F-G, is proportional to the increment of slip at the free end
occurring due to the additional load. Under further increase of
applied load, the area under the envelope curve is swept, with
that bond stress distribution containing the largest area denoting
the maximum bond strength.

These concepts can also be used to explain the action under
cyclic loading. If the bar is subjected to repeated load of con-
stant magnitude, some bond deterioration will occur with each cycle
which will cause a redistribution of the bond stresses, shifting
the bond stress curve toward the free end while maintaining its
area constant. Thus, the area under the force diagram is increased,
denoting increasing bar slippage. It can also be seen that this
action may cause the envelope curve to be swept by successive bond
stress distributions, leading to eventual bond failure under ap-
plied load smaller, than one applied monotonically.

Pullout tests under monotonic and cyclic loadings were per-
formed on 54 specimens in order to determine strength and slip
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characteristics under both types of loading. The cyclic loads were
initially applied at low load levels, repeated until the slip
measurements showed stabilization, then increased by 1000 1b. in-
crements and the process repeated to failure. The points on curves
of cyclically applied load versus slip which indicate stabilization
were connected by curves called "load-slip curves under cyclic load~
ing"”. 1In Fig. 2 such curves are plotted for the case of specimens
with 3 inch embedment length, and compared with similar load-slip
curves for monotonic loading. These results are typical of many
(5), and indicate increased slip and reduced strength due to cyclic
loading, as predicted by the preceding theory.

Compin 1567 of MOS! FEpresenohve corves
for cycle and monorone: foad’

o0 a0/ ane i 2 22 | oo | 002 | a0
a0o 001 awe 00 adé
Slippage in irches

FIG. 2 - LOAD-LOADED END SLIPPAGE AND MOST REPRESENTATIVE CURVES FOR 3" EMBEDMENT LENGTH

Shear Strength of Beams under Cyclic Loading

Space limitations preclude adequate discussion of theories re-~
lating bond slip to shear failure of beams. Such theories have
been based on technical beam theory (2) and on finite element anal-
yses (3). The effect of bond deterioration which may result from
repeated load histories may be summarized as follows:

1. Relative displacement of crack edges may lead to increas-
ed dowel forces which in turn may cause dowel cracking parallel to
the tensile reinforcement.

2, Similarly, such widening of cracks may lead to aggregate
interlock cracking, as explained by Fenwick (6).

3. Lastly, it has been shown by Krahl et. al. (2) that pro-
pagation of diagonal cracks into the compression zone may result
from bond deterioration, leading to premature diagonal tension
failure.

Beam Tests

To gain some insight into the shear strength of beams under
cyclic loading, a series of ten simple beams, of concrete and re-
inforcement identical to that used in the pullout specimens, and
designed to fail in shear, was tested. Most of the beams had two
test sections at opposite ends of the span; one of these was test-~
ed monotonically, the other cyclically under 1000 1b. increments,
loads at each level being applied repeatedly until stabilization
of deflections. Instrumentation consisted of dial gages and gage
plugs for the determination of concrete strains.
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Fig. 3 shows a typical set of
load-deflection curves for monotoni-
cally and cyclically applied loads,

—a a8 and Fig. 4 shows some of the beams
& ; ] £ . after shear failure. A number of
s y [;11/f observations can be made on basis
o Of these and similar results:
Homolon Ny o 1. Shear failure under cyclic
" loading seems to occur as a conse-
S quence of aggregate interlock crack-
; £ ing; this occurs at a lower load
Apgregone imhck crockag applied cyclically than applied
monotonically.
2 2. Aggregate interlock crack-

ing seems to be somewhat more pro-
nounced in cyclic than in monotonic
o s s o pom pyoe loading. Prior to aggregate inter-
Detwction ioches lock cracking, load repetitions

cause only minimal crack propagation
and incremental deformations.

3. The effects of aggregate
interlock cracking and dowel cracking are dominant in controlling
the shear strength of beams under cyclic loading,

FIG. 3 = A TYPICAL LOAD-DEFLECTION CURVE FOR THE BEAMS

Conclusions

Present theories of flexural strength under cyclic load his-
tories must be supplemented by means of predicting the cyclic shear
strength under a variety of conditions. The tools for arriving at
such predictions are available, but much more work is needed before
the information can be applied to design of concrete structures.
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FIG. 4 - SHEAR FAILURE OF BEAMS

SUMMARY

The influence of bond deterioration on the shear strength of reinforced concrete
beams under cyclic loadings has been discussed. It was shown that this bond deteriora-
tion may lead to aggregate interlock cracking, to dowel cracking, and to propagation
of diagonal tensile cracks. A pilot series of beams was tested to obtain preliminary
information about these effects.

RESUME

L'influence de détériorations dans l'assemblage sur la résistance au cisaille-
ment de poutres en béton armé sous charge cyclique a été discutée. Il a été démontré
que ces déteriorations peuvent donner lieu & une accumulation de fissures enchainantes,
a la formation de fissures contigues et a la propagation de fissures de tension dia-
gonales. Des essais ont été faits sur un certain nombre de poutres en vue d'obtenir des
informations préliminaires sur ces effets.

ZUSAMMENF ASSUNG

Der Einfluss von Schdden im Verband auf die Schubfestigkeit von Stahlbeton -
balken unter zyklischer Belastung wurde diskutiert. Es wurde gezeigt, dass solche
Verbandschdden zur Anh&dufung ineinandergreifender Risse, zu zusammenhidngender
Rissbildung und zur Ausbildung diagonaler Streckrisse fiihren konnen. Eine Anzahl
Balken wurde gepriift, um Vorinformationen iiber diese Einwirkungen zu erhalten.
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Analytische und experimentelle Studie iber die Deformationsabschatzung
von Stahlbeton- und vorgespannten Stiitzen unter Erdbebenlasten
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Professor of Associate Professor Assistant Professor
Architectural of Architectural of Architecturai
Engineering Engineering Engineering
Japan

In the response analysis of middle or short height reinforced
concrete structures, it is most important precisely to evaluate
the stiffness degradation in the hysteresis loops because of their
frequency sensitivity. It is supposed that these stiffness degra-
dations are mainly caused by the shear deformation of reinforced
concrete structural elements.

This study points out that the difficulties exists on the lack
of the knowledges to estimate these shear deformations, such as the
slippage of the reinforcing bars or shear cracks in the columns..

The authors proposed a research hypothesis that the deforma-
tion of the reinforced concrete columns under combined shear and
flexure may be considered as the sum of individual deformation
under the respective forces. The results of comprehensive experi-
ments, including an elaborate measurement on the curvature distri-
bution and the bond characteristics of reinforcing bars, gave a
substantial support to this assumtion.

From the observed deformation mechanisms, a simple deformation
model for the analytical purpose could be proposed. In this model
the flexural deformation and the shear distortion may arise inde-
pendently.

BASIC EXPERIMENTAL STUDY
Materials

River sand, synthetic lightweight coase aggregate (expanded
shale) and portland cement were used. Mix proportion of concrete
was 1:2.1:1.43 and water cement ratio, 51% by weight ratio respec-
tively. Compressive strength of concrete at test was about 350
kg/cm® and the splitting tensile strength was about 19.7 kg/cm?.
Deformed bars of 19, 13, 10mm dia. (fy = 4600 kg/cm?) was used for
longitudinal reinforcing steel and rolind bars of 6mm dia. (fy =
2910 kg/cm?) were used for the lateral reinforcing steel.

Specimens
Fig. 1 shows the details of test specimens. To obtain the
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necessary informations the following widely ranged properties were
given to the tested columns.
1. Shear span ratio {a/D); 1.0, 2.0 and 3.0.
2. Amount of longitudinal reinforcement Pt; 1.9, 2.54 and 3.8% in
area ratio of gross steel.
3. Amount of lateral shear reinforcement Py; 0, 0.25, 0.37, 0.75
1.50% in area ratio.
Each specimen had a rectangular section BxD = 15cm x 20cm.
The number and the diameters of the longitudinal reinforcements
were intentionally chosen so as to yield the same total perimeter
Y = 24cm in both compressive and tensile zones of the column
respectively.

Test method

Monotonous loading tests were performed for all kinds of the
specimens and reversed repeated loading tests with constant ampli-
tude of the member rotation R = %t 0,01 rad. were performed only for
the specimens of F-series with Py = 3.8% in three kinds of shear
span ratios. For comparison pure flexural tests were also performed.
Fig. 2 shows the overall loading devices. Axial load was maintained
so as to yield net concrete stress fc'/6 during the test.

The curvature distribution were measured by the dial gages
attached to the 6mm dia. bolts buried in the specimen at intervals
of 10cm. The relative displacements over the story height 2a be-
tween inner loading points were recorded as the story deflection
§ or the member rotation. Also the strain distributions of the
longitudinal reinforcements were measured by the electric resist-
ance wire strain gages.

Test results

Fig. 3 shows the crack appearance of test specimens at the
ultimate stage under monotonous loading, and Fig. 4 to 8 show the
corresponding relationship between the shear force Q and the
measured story deflection &§. Fig. 11 a), 12 a) and 13 a) show the
Q-8 curves obtained from the reversed repeated loading tests for
series F in which the constant amplitude of the member rotation R
were t 0.01 rad.

Observed deformation mechanisms

Flexural story deflection 6f1 may be obtained by the integra-
tion of the curvature distributions of the specimens measured by
the attached dial gages. Shear story deflection §g5, and shear
strain y(Q) are defined by the following equations respectively.

Ssh = 8§ - 61, and y(Q) = 8sh/2a
In the case of the specimen with small shear span ratio, it
was recognized that the experimental curves were well agreed with
those calculated by the next equation before the diagonal cracks
appeared. Ec :

(Q) = 8Q/7Bd-G¢ Ge = IeED)

Fig. 9 and 10 show the results of the separation between
flexural and shear deformation for the specimens subjected to the
monotonous loading. Also Fig. 11 ¢), 12 ¢} and 13 c) show the
similar results for the specimens subjected to the reversed repeat-
ed loading.

Although the employed method of curvature measuring is not so
correct, remainders from the flexural deformation are large 1n
the case of specimens with small shear span ratios,.
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Fig. 14 a), 15 a) and 16 a) show the changes of strain distri-
bution of longitudinal reinforcing steels for the F-series specimens,
where the strains at the completion of axial load transferring are
defined zero. Also Fig. 14 b), 15 b) and 16 b) show the changes of
strain distribution of lateral shear reinforcements.

PROPOSED DEFORMATION MODEL FOR THE ANALYTICAL METHOD

This model shown in Fig. 17 represents the column deformation
as the sum of the rigid body rotation for flexure and shear dis-
tortion respectively. It may be considered that the reinforced
concrete prisms 2 d¢c x B assumed in the compressive and tensile
zones of the column may act the moment resisting role in flexure
and have the simplified hysteresis rule between the axial force
and the average strain as shown in Fig. 18.

Assuming that the distributions of the axial forces T{ and T¢
acted to these prisms are linear and the plane section is remained
plane after deformation, the concentrated displacements Atop and
Abottom may be obtained by the numerical integration of the strain
distributions. Increases of the displacements due to the slippage
of the longitudinal reinforcing bars are discarded in the present
analysis but these may be taken into account for changing the
assumption on the force distributions in the prisms.

Actual numerical computation may be carried out on the sim-
plified model with the divided prism elements as shown in Fig. 19.
Therefore, the depth of rotation centers of the critical
section in the n-th incremental stage of load may be expressed by

the following equation.
AD
yn = ( top )(D - 2-d¢) + dc (1)

An - An
top bottom
Neglecting the tensile stress of concrete but considering all
the compressive stress of the concrete above Y, the equivalence
conditions about the axial force N and the moment M of the column
are expressed as follos, referring to Fig. 19.
a) After crack development in the critical section

1
NI = T%l + z-(y - dc)'B'O’I% + TE]. (2)

_ n D-2dc 1 n.-n.(3D-10dc-2y)

MR = (TR~ TR)) - =55 + 5(y-dc) B-o} . Y (3)
b) Before crack development in the critical section.

N = T+ 3(6R + o) (0-4d0)B + THy 1 (2)"

MR = (TR - TR B;ZZig + (o~ of) (D-4dc) "B 5(D-4dc) (3)
shear force equivalence is

n
Qn = g = tn.B-y? + a.] ol - Ay (4)

oo : Effective coefficient of shear reinforcement

Any failure criterion of concrete under combined stress should
be considered.
Total story deflection is as prescribed.

n n
A -
g™ = 67, + 60y - [ SEOR_ AbOLEOM , yn(qy|za (5)
D - 2de¢

Succesive incremental calculation to the whole process produces
the n+l -th story deflection sn+l - sn 4 pg?
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CALCULATED RESULTS OF PRESTORING FORCE CHARACTERISTICS OF
A REINFORCED CONCRETE COLUMN

For an example the specific details of the columns specimen
F2 was given to the numeric calculation. The reinforced concrete
prisms in the compressive and tensile zones of the column have the
bredth B = 15cm and the depth 2d¢ = 5.1cm. Both prisms are divided
into four equal elements over the half distance of the story height.
The reinforcing bars considered are 2-deformed bars of nominal
diameter 19mm. The compressive strength fc' and tensile one fgp of
concrete are 329 kg/cm? and 26.3kg/cm® respectively. The yield
stress of the reinforcing bars is * 4600 kg/cm®. In present example
the shear force effects for the column and the failure criterion of
concrete under combined stress are dismissed but these factors may
be easily considered in the analysis using the experimentally
obtained results. Obtained hysteresis loop on the restoring force
characteristics of reinforced concrete column is shown in Fig. 20.
It is supposed that the difference between the experiment and
analysis is caused by omitting the shear force effects.

SUMMARY

The deformations of the reinforced concrete columns under combined shear
and flexure cannot be estimated only by flexural deformation. The correct solution to
this problem may be achieved by taking account for the three deformation factors,

i. e. conventional flexural deformation, the deformation due to the slippage of the
longitudinal reinforcement and the shear distortion. This study shows an analytical
method to estimate the column deformation, accompanying with the supporting
experimental results.

RESUME

Les déformations des colonnes en béton armé soumises a des efforts combinés
de cisaillement et de flexion ne peuvent pas &tre déterminées en ne tenant compte que
des déformations dues i la flexion. La solution correcte de ce probléme peut étre
obtenue en considérant les trois facteurs de déformation suivants: les déformations
dues i la flexion, celles résultant du glissement des armatures longitudinales et celles
dues au cisaillement. Cette étude présente une méthode analytique pour calculer les
déformations de la colonne ainsi que les résultats d'essais.

ZUSAMMENF ASSUNG

Die Deformation von Stahlbetonstiitzen unter kombiniertem Schub und Biegung
kann nicht allein nur aus der Biegedeformation geschitzt werden. Die korrekte Ldsung
des Problems lisst sich durch Beriicksichtigung der drei Deformationsfaktoren ge-
winnen: iibliche Biege -Deformation, Deformation infolge Schlupf der Lingseisen und
infolge Schub. Diese Studie zeigt eine analytische Methode zur Abschitzung der Sédulen-
deformation und die bestitigenden experimentellen Resultate.
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An Overall Ductility Factor for Coupled Shear Walls
Un coefficient général de déformabilité pour tes parois de cisaillement coupiées

Ein globaler Duktilitatsfaktor fir verbundene Schubwéande

J. GLUCK
D.Sc. Senior Lecturer
Department of Structures
Faculty of Civil Engineering
Technion, Israel Institute of Technology
Haifa, Israel

Introduction

From studying the response of structures to strong earthquake motions it
was concluded that the ability of the structure to dissipate energy by plastic
deformations is very important, since an elastic analysis according to codes
for earthquake resistant design is covering only moderate earthquake effects.
To resist strong earthquakes the structure has to dissipate energy mainly by
plastic deformations, since in modern structures the reserve of energy in non-
structural elements is negligible. A common used characteristic to measure
the ability of the structure to dissipate energy is the overall ductility factor,
defined as the ratio between the maximum displacement at ultimate stage and the
same displacement when at yield. In coupled shear walls the overall ductility
factor is a direct function of the rotational ductility factor of the coupling
beams defined as the ratio of the rotations at support section at ultimate, and
yield. Current researches [1], [2] have shown that standard reinforced deep
sprandels have a rotational ductility factor of 4 and with special diagonal
reinforcing it may reach the value of 12,

For evaluation of the overall ductility factor the laminar method of analysis
will be used. In this technique the coupling beams formed by vertically arranged
uniform openings in a wall are replaced by infinitesimal elastic laminas of an
equivalent stiffness. The displacement at yield will be involved with an elastic
analysis of the coupled shear wall, a problem well covered in the literature [3],
[4], while the displacementat ultimate stage requires an elasto-plastic analysis
not yet completely solved. The first object of this paper is to present a
solution for this problem. Approximative solutions for the elasto-plastic problem
have been presented [5], [6] for the particular case where ultimate stage is
reached when a collapse mechanism is formed by appearance of plastic hinges at
both ends of all coupling beams and one plastic hinge develops at the base of
each shear wall, In the most frequent cases the coupling beams may not supply the
rotational ductility factor required by the above mentioned collapse mechanism.

In this case ultimate stage is assumed to be reached when plastic hinges develop
at ends of the coupling beams only over part of the height while in the remaining
part they behave elastically. In the present paper this general case will be
considered, Charts for evaluation of the overall ductility factor are presented
for an upper triangle loading which is very often used to simulate the dynamic
effect of earthquake motion.
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Elastic Displacement

A prototype of a coupled shear wall is presented in Fig. 1 and its equivalent
laminar model in Fig. 2, Consideration of equilibrium and compatibility condition
yields the well-known differential equation of the elastic problem:

2 2 2 2
d°Q/de” - g%Q = v HM (1)
where Q = unknown axial force function acting in the shear wall, M_ = cantilever
o}
moment produced by external load, and

£ = x/H (2)
g% % (1%/1g+ 1/ap+ 1/, ) 1217/ (he®) (3
Y = 121 /(he31) (4)

in which H = height of the structure,f = span between shear wall center lines,

¢ = clear span of coupling beam, I* = reduced moment of inertia of coupling beam
allowing for shear distortion, I, = sum of moments of inertia of shear wall 1
and 2, Ay, Ay = cross setion areas of respectively shear wall 1 and 2, and

h = height of story.

/ﬂﬁz =L +I,
] }D f ) — -t
— =5 |
s R=IV
| ) % B | —Ah | =
| ; ¥
w !D ‘ h |: |
_7i_.__+ N Se—
3 | o e b o=
L N=
|A‘[:] e ] = T
O NI
O =R
L] R=
T 1 =
77 Et = 1 i
Lf_.t et
Fig, 1  Prototype of coupled Fig, 2 Laminar model of coupled
shear wall. shear wall,

The solution of Eq. 1 for the normal force function Q for an upper
triangle load pattern having the following moment variation
2 3
Moo= WH (E" - £7/3) (5)

where W = sum of lateral load, and satisfying the boundary conditions of the
structure may be written in the form

Q = v W HG
where _ 3 2 > 2
Q = C shB&+D chBE- [£°/3-£7+2(E-1)/B°1/8 (6)
in which
C = [(2/8%-1)/ch@+2(th8)/8]/8° (7)
D=- 2/8" (8)

The elastic displacement at the top of the wall is given by
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I)Ye max™ MH {-1/15+ntlC sh+D(chB-1)1+(1/5+2/8%)/3}/8°-F} ()
where )
F =n[C chB+D shB+(1/8+1/4)/B1/B-1/4 (11)

Elasto-Plastic Displacement

The general case where the rotational ductility factor of the laminas does
not enable an ultimate stage with full laminar plastification is considered. In
this case the ultimate stage will be reached when at the upper and lower zones or
the lower zone only the laminas will behave elastically, while in the middle zone
the laminas will have formed plastic hinges at their supports (see Fig. 3). To

express equilibrium and continuity it is

111 convenient to replace in the middle zone
the fixed ends of the lamina supports by
U hinges acted by known external moments
and shear forces representing the action
of the ultimate laminar shear. The ana-
& lytical scheme thus obtained will be
R: treated as an elastic system acted by
i lateral load and distributed shear and
Al moments at the hinged ends of the laminas

R of the middle zone, as shown in Fig. 4.

e

|
I
i
o

The govering differential equation of
the problem and boundary conditions will be
obtained by applying the Principle of Least
Work. The complementary energy will be
expressed as function of the three unknown
normal force functions acting along the
center lines of the shear walls in the
upper, middle and lower zones, denoted

rgspectively by Qs, Qn and Qj.

{=LOWER ZONE ——h——MIDDLE ZONE —=}-UPPER ZONE

N
3

Y <

A s e

Fig. 3 Laminar model with plastified
laminas in the middle zone.

The complementary strain energy may be expressed in the form
&1 3 2 * 2 2
2EU = H {fo [he” (QL) 7/ (121 )+ (M_-2Q) /1 +(1/A+1/A,)Q 1dE +
£2 3 2 * 2 2
fEl[hc Q) /(121 )+(M_-2Q ) /10+(1/A1+1/A2)Qm]dg +

£ S @ 28 )+ o202+ (/A + 1/ )01ED (12)
£s i 0 Q) 1+ (1A +1/A5)Q

The complementary energy as given in Eq. 12 is a function of , Qs> Qs’ Qs
» Qi and Q. According to the principle of Least Work the first variation of

tﬁe complementary energy with respect to the functions Qs, Q5. Qp, Qps Qi and Qi
must vanish. The ultimate laminar shear q; being known, the axial force function

in the middle zone may be expressed in the form
Q= Q,+a H(E-E)) (13)
After variation of Eq. 12 and substituting in it Eq. 13 and effectuating the
integration by part, results

o
(Q-87Q +YHM_)8Q_dE~ H(Q18Q,-Q}6Q;)
+[62(E2 £ )(Ql q,(E,-E )/szWHScc£3 £3)/3- (E3-£1) /12)160 -n%q  (8Q;-60,) -

1

_fgl(Q;-B Q; +¥H Mo)ﬁQidE-H QQGQH-H (QéﬁQZ_thQH) -0 (14)
where Q_, Q1 and Qy, Quy = the values of respectively Qg and Qj at ordinates
0, ElJ and (52, 1).
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As the variations 8Qg, 6Qj and 8Q; are arbitrary, Eq. 14 leads to the follow-
ing Euler Differential equations expressing compatibility at the upper and lower

. zones
i I
HE ]l g-8% sy = o (0 <E<Ep (15)
= I B ay-8%Q, +vit, = (< £< 1) (16)
] Ya_mf( CE J“{‘* ; and the follow1ng algebraic equation expressing
4 o e f;'j t the compatibility condition for the middle zone:
wi— & [~ < | B ) P i
PORERD | - - . i
| e e BB @ (5,8 )/2) yH (2563
g1 | D | - (E5-E{)/12) = 0 (17)
CHERTRE) winces
*-_.liiﬁﬁ ~— ___JL The physical meaning of this condition is
w 1 l zero relative vertical gap between upper and
3 | | lower limiting sections of the wall in the middle
] zone,
&1 |
8 | Assuming a variation of the Qg function so
L that 6Qu,=0, and 8Q;#0 and the variation of the
Qi function so that &Q2#0, and SQyA0, the
Fig, 4 Analytical model with following boundary conditions result
applied loads.
ppried foads Q=0 ; Q=0 (18), (19)
Q=0 5 Q=0 (203, (21)

Eq. 17 together with the following equilibrium equation at limiting section
between middle and lower zone
Q= Qu+ q H(E,~ Ey) (22)
will serve to determine the limiting ordinates 51 andEz.

The solution for the upper zone represented by Eq. 15 satisfying the boundary
conditions given by Eqs. 18 and 19, has the same form as that given by Eq. 6,
where the coefficients C and D are replaced by C and DS having the values:

[2(shSE )/B +(E -28, +2/8° )/B ]/(Bchﬁil) (23)
LH - 2/8 (24)

where _ 5
q,= q,/ (YWH™) (25)

The normal forces in the middle zone are given by Eq. 13.

The solution for the lower zone represented by Eq. 16 satisfying the boundary
conditions given by Eqs. 20 and 21 has as well the same form as that given by Eq.6,
where the coeff1c1ents C and D are replaced by C and D1 having the Values

c;=1(2/8%-1)/ (8%chg)- [ (2/8° ~1)chBE /(8 chB) (52-252+2/B /67
-q ]thB/(tthhB£ ~sh8€ )1/8 (26)
D;=[(2/8°-1)chBE, / (ch8)- (&2 2£2+2/B )-q ]/[B(thBChBEZ-shBE )1 @n

In the particular case when the plastlflcatlon of the coupling beam ends
extend until the top of the wall, there will be only two zones; a plastic one
in the upper part and an elastic one in the lower part, with the limiting section
having ordinate €,. The axial force in the plastified zone will be given by

Q, = 9,1 (28)
and that in the elastic zone will be the same as that of the lower zone,
mentioned above.

The elasto-plastic displacement at the top of the wall is given by

) &1
= H f ¢ dE + H fg ¢, d& + H fE ¢, df (29)

Yp max_
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where
EI ¢, = H /(M- QR)dE + F_ . (30)
Elo¢m = H I(Mo— le)dg + Fm (31)
E10¢i = H I(Mo— QiQ)dE + Fi (32)

in which Fg, Fp and Fi = constants of integration to be determined from the
following boundary conditions:

1. Full restrain at support: (¢i)€=1 =0 (33)
which leads to F.=n[(C.chB+D.shB)+(1/82+1/4)/B]/B-1/4 (34)
2. Continuity of deflectlon line at &= E (¢i)€=€2=(¢m)a=€2 (35)
which leads to —n{Q1§ +q, (52/2 g E )
-(C ChBE +D, shBE )/B [E /3- 52/12 2(& -£ )/B ]/B }+F (36)
3. Continuity of deflectlon llne atE = 61. (¢m) . _(¢s)g=g (37)
—n{(C chB£ +D shBE )/B 1 1
+[€ /3 5 /12 2(5 /2 E )/B ]/B Q1 1+q E /2} +F (38)
where
Ql = Ql/(YWH ) (39)

Substituting the corresponding relations in Eq. 29 and integrating yields

EI y = {n{ [c_shBE, +D_(chBE,~1)+C, (shB shBE )+D (chg- chBE )
o'p max 1, g 1
+(8;-E, )/12 (£7- 65)/60+1/15+(£1 £2-¢ /3+£2/3+2/3)/s 1782 g, (£2-82)/2
-3, [(£3 £5)/6- 1 (E1-65)/21}-1/15-F £ +F, (£,-E,)+F, (£,-1)] (40)
The overall duct111ty factor of the coupled shear wall will be now
Ho = yp max/ye max (41

20+

B
t2)]
Ho
15
LED) 507
o £:03 o[-
/' £:03
s- Lk sk - 04
o os 08
05 ;_g_-[ /87
2 — &
1 ! PR 1 L L1 i 1 ' i N " L 1 L 1 Lo
1] L 5 20 F&3 p [4] 5 0 5 20 5 j‘j
() (d)

Fig. 5 Overall ductility factor,
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function of B for various values of A=n/62 and €=qu/q

, where gq___= the maximum
. . max
elastic laminar shear.

max

An important factor to be considered is the rotational ductility factor of
the coupling beam end, which in fact limits the value of the ultimate laminar shear

qy to be taken in Eq. 40.

Considering the elastic wall rotations and extensional deformations it may be
shown easily that the plastic laminar rotation at any height £ as shown in Fig. 6
is given by:

b= $8/c - (dy+dy)/e - b (42)
where = the elastic rotation of the wall and ¢, = yield rotation of the coupling
beam, which is related to the ultimate laminar thear as follows

20+

&

Fig. 6 Deformed position of shear
wall and plastified lamina.

il
T
K.
-3 >
PRACTICAL RANGE

i ! i Il i 1 1 1 1 L

) 5 0 3 0 ER d)y:hczqu/ (12(EI™) (43)

Fig, 7 Rotational ductility factor
of coupling beam end.

The rotational ductility factor at the
support of the lamina will be

W= () o * 00/ (4

p max

where ¢p I the maximum value of the plastic rotation.

The graphs given in Fig. 7 may serve to determine the rotational ductility

factor as function of Bfor various values of qu/qmax
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SUMMARY

An analytical procedure for establishing the overall ductility factor for coupled
shear walls is presented. The continuum approach was applied by assuming an upper
triangle lateral load pattern, very often used to simulate earthquake motion effect.
Plastification of the coupling beam ends may be on part or over the whole height. The
graphs presented may be used for direct evaluation of the overall ductility factor and
associated with it the rotational ductility of the coupling beam end.
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RESUME

Ce travail présente une méthode analytique pour déterminer le coefficient
général de déformabilité des parois de cisaillement couplées. On utilise un processus
d'approximation en admettant un modele de charge latérale en triangle au sommet de
la paroi, modéle qui est souvent utilisé pour simuler les effets des mouvements
sismiques. La plastification des extrémités des barres de liaison peut étre admise
sur une partie ou sur toute la hauteur, Les diagrammes présentés peuvent étre
utilisés pour 1'évaluation directe du coefficient général de déformabilité et, associée
2 ce dernier, pour la détermination de la déformabilité rotationnelle de 1"extrémité
de la barre de liaison,

ZUSAMMENFASSUNG

Es wird eine analytische Methode zur Bestimmung eines globalen Duktilitits -
faktors fiir verbundene Schubwiande vorgelegt. Die Kontinuums -Ngherung wurde
unter Annahme einer nach oben zunehmenden dreieckigen horizontalen Last-Verteilung
angewendet, die sehr oft zum Simulieren von Erdbebeneffekten verwendet wird.
Plastifizierung der verbindenden Stabenden kann iiber einen Teil oder liber die ganze
Hohe auftreten. Die angegebenen graphischen Darstellungen konnen zur direkten
Ermittlung des globalen Duktilit4tsfaktors und mit ihm die Rotationsduktilitdt der
verbindenden Stabenden verwendet werden,
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Cydlic Load-deflection Curves of Multi-storey Strain-hardening Frames
Subjected to Dead and Repeated Alternating Lateral Loadings
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Zykllsche Lastausbiegungs-Kurven von mehrstocklgen aussteifenden Rahmen
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1 INTRODUCTION
A-rational theoretical 1nvest1gat10n of the nonlinear behavior
of :a framed structure subjected to complicated alternating repeated

.loads must be based upon (1) an accurate stress-strain relation of

Bg. 6 VB

the constituent structural material and the corresponding accurate
cross-sectional force-generalized strain relations and (2) an acc-
rate numerical method of analysis which is able to dincorporate
therein the complicated constitutive equations of the material and
of the members. So far as the overall nonlinear behavior of a ,
frame is to be investigated theoretically, any approximate formula-
tion for the problem (1) must always be made, with the aim of and
in a form convenient for, generating an accurate member-or element-
stiffness or flexibllity matrix which can be used on a computer
currently available. While some complicated equations may be in-
dispensable for describing complex nonlinear behaviors of a member
with a considerable accuracy, it will be necessary to dintroduce
some approximation in accordance with its alim.

The present contribution to the prepared discussion describes
first an efficlent compufational method of analyzing nonlinear
static and dynamic behaviors of multi-story plane steel frames.

The method takes 1nto account the gravity effect due to large de-
flecticn, incorporates the bilinear or nonlinear hysteretic stress-
strain relation for a structural steel and 1s able to trace gradual
spreading or diminishing of strain-hardening regions slong member
axes. Since the general idea of the authors' (Nakamura and Ishida)
method has been presented in [1], the details of the procedure of
generating an elastic-plastic member-stiffness matrix applicable to
incremental large deflection analysis are described here. It is at
this stage that the appropriateness of an approximate formulation
of the stress-strain relation and of the corresponding axial force-
moment~curvature relation 1s assessed with respect to i1ts applica-
bility to an overall frame. Although the numerical results in this
prepared discussion are based upon the bilinear hysteretic stress-
strain relation, the proposed method i1s of such a formulation that
is able to-incorporate a nonlinear hysteretic stress-strain rela-
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tion. The senior authors' (Yokoo and Nakamura) contribution to the
prepared discussion on Theme III presents a nonstationary hystere-
Ttic stress-strain relation and an approximate formulation of the
moment-curvature relation under the presence of an axial force with
the intention of dncorporating them in the present method of gen-
erating the member-stiffness matrix. Some numerical results of the
static load-deflection analysis of multi-story frames subjected to
dead and alternating repeated lateral loads and of the dynamic anal-
sils of the frames subjected to an amplified earthquake disturbance
of a recorded wave form are presented in order to illustrate the
efficiency of the method and to clarify the gravity effect and the
effect of strain-hardening.

2. ELASTIC-PLASTIC MEMBER-STIFFNESS MATRIX FOR INCREMENTAL LARGE
DEFLECTION ANALYSIS '

Each member having an idealized sandwich section is treated as
one element for its elastic response and then subdivided automati-
cally 1n the program into as many elements as are necessary as the
strain-hardening regions spread thereover. For the purpose of gen-
erating an accurate member-stiffness matrix, the transfer matrix
fechnique in a form extended so as to incorporate the effect of
accumulated large deflection, 1s applled to the member as a sub-
system consisting of one-dimensionally connected elements. The
essential steps of generating a member-stiffness matrix are as
follows:(1l) Derivation of an element-stiffness matrix [1] for a
cantilever element as shown in Fig.l in a local coordinate system,
in a form excluding the rigid-body displacements; (2) Transforma-
tion of the cantilever element-stiffness matrix into an expanded
form with respect to a global coordinate system of the member so as
to incorporate the rigid-body displacements; (3) Sequential inter-
connection of the expanded element-stiffness matrices by the trans-
fer matrix technique; (4) Transformation of the contracted transfer
matrix into the member-stiffness matrix with respect to the member
end forces and displacements. For the convenience of and in view
of the accuracy consistent with the numerical integration with re-
spect to time, the rate of g field variable is directly approxima-
ted by a finite increment and the problem for any incremental step
is lineariged without iteration for the nonlinear effect within the
step.

2.1 TRANSFORMATION OF INCREMENTAL ELEMENT-NODAL DISPLACEMENT VEC-
TOR
The nodal displacement vector {dzl= {u,, v, 6,37 for a canti-
lever element shown in Figs.l and 2 in the local coordinates is
transformed into the vector {D}={U,, TV 8as Ups Vp, @b}T in the
global coordinates by

{ag}=[[Tr1Ti -[Tg1T] {D}+[TR1TL2, 0, 0}T-(1, 0, 03T, (1)

where all the displacement components have been nondimensionalized
with respect to I, the length of the undeformed element and where

a,

o o0 1
The linear incremental transformation equation may be written as

{ada}=[[TRITi-[TRIT] {aD}+ [[ATRIT| -[ATRIT] {D}+[8TRIT{7 0 0)}T

-s -¢c 0 -s -¢ 0|[0o 0 0 0 o0 1]{D}.
[ATR1=| ¢ -8 0|ABp=| ¢ -8 O
0 0 0 0o 0 0

c -8 4]
[TR]=[8 c 0} » e = cos @, and s = sin @ (2)

where

NN e

3)
4)
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In view of Eq.(4), Eq.(3) may be reduced to the form

{adg }=[T]1{AD}, (5)
where [ [TR] }T 7 0 0
[ L] e 2 p i and [Hl=| ¢ 1 0
-[Tg1[H] (6a) -v, Itug 1 |. (6b)

2.2 TRANSFORMATION OF INCREMENTAI, ELEMENT-NODAL FORCE VECTOR

The transformation law between the nondimensionalized nodal
force vector {p,}={p, ¢, 7,1T for the cantilever element in the
local coordinatés and the vector {P}={P, 4, R, B, @ BR 1T in the
global coordinates may be written, dlrectly from the contragradient
law, as

{Py=[T]1T{p,}. (7)
Eq.(7) can of course be derived directly by writing equilibrium
equations. The linear incremental transformation equation may be
written as

{aP}=[T1T{Apg1+[AT]T{p,} (8)

The second term of the right hand side of Eq.(8) may be transformed
into the expression in terms of {AD}, i.e.

{AT}T{py}=[P_ 1{AD} (9)
where (0] ' {F.}
CB, T o 5 = s = e {Fy}T={-q, P, 0 @, -P,} (10a-~c)
S rT g, M, = -qgvg - Pgl(l+uy) |

>

2.3 EXPANDED ELEMENT-STIFFNESS MATRIX
Let [k] denote the 3x3 element-stiffness matrix in the local
coordinates, as has been derived in [1]. The stiffness equation

{Apa}=[K]{Ada}. : (11)

incorporates not only the effect of large deflectlon but also the
strain-hardening effect. Substitution of Egs.( 9), (11) and (5)
into Eqg.(8) provides

{aP}=[ky1{AD}, (12)
WHere  [kgl=[[TITIkI[TI+[P,]] (13)

is the desired expanded element-stiffness matrix In the global co-
ordinates.

2.4 TINCREMENTAL MEMBER-STIFFNESS EQUATICN

Eq.(12) may further be rewritten in terms of the state vectors
to define the fleld transfer matrix for the element. By applying
the standard procedure of the transfer matrix method to a member j
consisting of several elements, the field transfer matrix 1n terms
of the state vectors at the left and right ends of the member can
be derived. The resulting state equation may readily be reconvert-
ed into the desired incremental member-stiffness equation.

3. COMPUTATIONAL METHOD

The displacement increment method developed by the present
authors (Nakamura and Ishida [2,3]) in 1969 for the second-order
analysis of elastic-perfectly plastic frames, has been applied to
obtain load-displacement curves of the strain-hardening frames sub-
jected to plecewise proportional loading. The method is simply to
convert the ordinary system stiffness equation ;

(K {Aul=Ar{T} (14)

in terms of the nodal displacement vector {Au} and the nodal force



84 | — CYCLIC LOAD-DEFLECTION CURVES OF MULTI-STOREY STRAIN-HARDENING FRAMES

vector AA{f} prescribed by the load factor AA, into the form

[K*T{Au¥*}=-Au;{ky} (15)

WheTe  rxwI=[{iq}{kpdeeer o {ky 1 HE kg qee e len} ], (16a)

{Au¥}={Aug Augesrrbuz_7 -AX AugypqoeecAuy }T (16b)

and to solve Eq.(15) for a prescribed increment Au; of a represent-
ative displacement u; This method enables one to trace load-dis-

placement curves beyond their elastic-plastic limit polints at which
[k] becomes "singular" or computationally "nearly singular". For

dynamic analysis, Wilson-Clough's method of numerical integration
with respect to time has been utilized.

4. NUMERICAL RESULTS
4.1 VERIFICATION OF THE ACCURACY OF THE MEMBER-STIFFNESS MATRIX
Fig.l4 shows the load-deflection curve of a cantilever column
(shown in Fig.3) subjected to a constant axial force and a repeated
alternating lateral load. The numerical result agrees almost pre-
cisely with the analytical result due to Nakamura [4]. Fig.6 shows
the load-deflection curve for a roller-supported beam (Fig.5) sub-
Jected to a constant axial force and a repeated alternating lateral
load. The result appears to exhibit a fairly good numerical simu-
lation of the actual behavior shown in Fig.7 which was obtained
experimentally by the senior authors [5]. While the value 0.01E of
the linear strain-hardening coefficient has not been derived by any
approximation theory for equivalence and while the accuracy of sim-
ulation of the behavior near the shoulder portions can not be sald
to be good, yet the result seems to promise the effect of refine-
ment by incorporating the nonlinear hysteretic stress-strain rela-
tions for the flanges of equivalent sandwich sections.

4,2 NUMERICAL INVESTIGATION OF THE LARGE-DEFLECTION ELASTIC-
PLASTIC BEHAVIORS OF LINEAR STRAIN-HARDENING MULTI-STORY
FRAMES OF ONE-BAY
Fig.8 shows the dimensions of the model frame. Three frames

have been designed for the base shear coefficient values Sp=0.05,

0.10 and 0.15. The method of minimum weight design [6] was applied

in a modified form to the frames with the assumed inverted triangu-

lar lateral force distribution and with an aq priori estimate of the

PA-effect based upon a linear sidesway mode. The numbers in the

round bracket in Fig.8 denote the cross-sectional areas of the mem-

bers of the frame designed for Sp=0.10. Fig.9 shows the load-top

displacement curves of the three frames under uniformly distributed
one-way lateral loads. Fig.1l0 shows the overall force-displacement
curves [3] of the same result. Fig.ll and 12 show respectively the
load-top displacement curves and the corresponding overagll force-

displacement curves of the three frames under uniformly distributed
alternating lateral loads repeated with a constant top-displacement
amplitude. It can readlily be observed that the first maximum loads
are almost proportional tec Sp and that the load-displacement curves
for a frame deslgned for a smaller Sp exhlbit more deterioration.

The hysteresls loop for Sg=0.15 has converged more rapidly to a

steady-state loop, whereas the loop for Sp=0,05 exhibits a gradual

cyclic deterioration.

The numerical experiments for the effect of member stiffness
distribution on the hysteresls lcoops have also been carried out but
no significant effect has been found. Incidentally, the computa-

tion time for one 1lncremental step was about 1-2 sec. on a FACOM

230-60 computer.
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Member ) U, Uy

Fig.1 COORDINATES FOR A MEMBER AND FOR AN ELEMENT

Undeformed element

Deformed element

Fig.2 LOCAL AND GLOBAL COORDINATES FOR AN ELEMENT
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OF &4 CONSTENT AMPLITUDE
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4,3 RESPONSE ANALYSIS OF FRAMES SUBJECTED TO A STRONG-MOTION

EARTHQUAKE DISTURBANCE

The three frames with the dimensions shown in Fig.Y and de-
seribed in 4.2 have been subjected to the amplified earthguake ex-
citation of 1.0x with the wave patterns of VERNON S82°FE. The
stiffnesses of %he springs shown in Fig.l1l3 representing the founda-
tion stiffnesses were determined by Barkan's method. The internal
damping coefficients for the members and the foundation springs
were assumed to be 0.01 and 0,20, respectively. As an example of
the numerical results, the story shear-relative story displacement
diagram for Sg=0.05 has been shown in Fig.1l4.
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Fig.14 STORY SHEAR-STORY DISPLACEMENT DIAGRAM
FOR VERNON(S82°E) EXCITATION

SUMMARY

An efficient computational method of static and dynamic large-deflection
analysis of strain hardening plane frames has been outlined. The load-displacement
curves of a cantilever, a beam-column and three six-story frames of one-bay
subjected to alternating repeated loads have been presented and the effect of cyclic
alternating plastic deformation on the load-carrying behaviour of frames has been
investigated. The effect of gravity and of strain-hardening upon the response of
frames to an amplified earthquake disturbance has been clarified to some extent
through the numerical examples.
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RESUME

On esquisse dans cette étude une méthode d'analyse numérique pour le calcul
des cadres plans dont certaines sections travaillent dans le domaine d'écrouissage,
en considérant les grandes déformations statiques et dynamiques. On présente les
courbes charge-déplacement pour une poutre en porte 3 faux, une colonne et trois
portiques multiples 3 six étages et une travée, soumis a des charges alternantes
répétées. On étudie 1'effet des déformations plastiques alternées sur le comporte-
ment des portiques chargés. L'influence de la pesanteur et de 1'écrouissage sur le
comportement des portiques soumis i une perturbation sismique amplifiée a été
analysée jusqu'a un certain degré dans les exemples numériques.

ZUSAMMENF ASSUNG

Es wird eine leistungsfihige Computer -Methode zur Berechnung statisch und
dynamisch grosser Auslenkungen von versteifenden ebenen Rahmen vorgefiihrt, Die
Last-Ausbiegungskurven eines Kragarms, einer Stiitze und dreier zweistieliger sechs-
stockiger Rahmen unter wechselseitiger zyklischer Belastung werden gezeigt und
der Effekt von zyklischer wechselseitiger plastischer Deformation auf das Tragver-
halten der Rahmen untersucht. Die Wirkung der Gravitation und der Verfestigung
auf die Reaktion der Rahmen auf eine verstidrkte Erdbebensttrung wird zum Teil an
numerischen Beispielen erklart.
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