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An Overall Ductility Factor for Coupled Shear Walls

Un coefficient général de déformabilité pour les parois de cisaillement couplées

Ein globaler Duktilitätsfaktor für verbundene Schubwände

J. GLUCK
D.Sc. Senior Lecturer

Department of Structures
Faculty of Civil Engineering

Technion, Israel Institute of Technology
Haifa, Israel

Introduction

From studying the response of structures to strong earthquake motions it
was concluded that the ability of the structure to dissipate energy by plastic
deformations is very important, since an elastic analysis according to codes
for earthquake resistant design is covering only moderate earthquake effects.
To resist strong earthquakes the structure has to dissipate energy mainly by
plastic deformations, since in modern structures the reserve of energy in
nonstructural elements is negligible. A common used characteristic to measure
the ability of the structure to dissipate energy is the overall ductility factor,
defined as the ratio between the maximum displacement at ultimate stage and the
same displacement when at yield. In coupled shear walls the overall ductility
factor is a direct function of the rotational ductility factor of the coupling
beams defined as the ratio of the rotations at support section at ultimate, and
yield. Current researches [1], [2] have shown that standard reinforced deep
sprandels have a rotational ductility factor of 4 and with special diagonal
reinforcing it may reach the value of 12.

For evaluation of the overall ductility factor the laminar method of analysis
will be used. In this technique the coupling beams formed by vertically arranged
uniform openings in a wall are replaced by infinitesimal elastic laminas of an
equivalent stiffness. The displacement at yield will be involved with an elastic
analysis of the coupled shear wall; a problem well covered in the literature [3],
[4], while the displacementat ultimate stage requires an elasto-plastic analysis
not yet completely solved. The first object of this paper is to present a
solution for this problem. Approximative solutions for the elasto-plastic problem
have been presented [5], [ö] for the particular case where ultimate stage is
reached when a collapse mechanism is formed by appearance of plastic hinges at
both ends of all coupling beams and one plastic hinge develops at the base of
each shear wall. In the most frequent cases the coupling beams may not supply the
rotational ductility factor required by the above mentioned collapse mechanism.
In this case ultimate stage is assumed to be reached when plastic hinges develop
at ends of the coupling beams only over part of the height while in the remaining
part they behave elastically. In the present paper this general case will be
considered. Charts for evaluation of the overall ductility factor are presented
for an upper triangle loading which is very often used to simulate the dynamic
effect of earthquake motion.
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Elastic Displacement

A prototype of a coupled shear wall is presented in Fig. 1 and its equivalent
laminar model in Fig. 2. Consideration of equilibrium and compatibility condition
yields the well-known differential equation of the elastic problem:

d2Q/d£2 32Q y H2M
1 n Cl)

where Q unknown axial force function acting in the shear wall, M cantilever
moment produced by external load, and 0

Ç x/H
ß2= H2 (i2/I0+ 1/A1+ 1/A2 121*/(he3)

Y 12I*/(hc3lo)

(2)

(3)

(4)
in which H height of the structure,A span between shear wall center lines,
c clear span of coupling beam, I* reduced moment of inertia of coupling beam
allowing for shear distortion, I0 sum of moments of inertia of shear wall 1

and 2, Aj, A2 cross setion areas of respectively shear wall 1 and 2, and
h height of story.

A 12 I„=I, -I,

-dx F-.*.
* H

•777^rrrr

Fig. Prototype of coupled
shear wall.

Fig. 2 Laminar model of coupled
shear wall.

The solution of Eq. 1 for the normal force function Q for an upper
triangle load pattern having the following moment variation

Mo W H (Ç2 - £3/3) (5)
where W sum of lateral load, and satisfying the boundary conditions of the
structure may be written in the form

Q Y W H3Q

where
Q C shß?+D chgÇ- [Ç /3-Ç +2(Ç-l)/g ]/(3 (6)

in which

C [(2/ß2-l)/chß+2(thg)/ß]/ß3 (7)

D - 2/ß4 (8)

The elastic displacement at the top of the wall is given by
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EI Y
m

WH3/-l/15+nUC sh3+D(ch3-l)] + (l/5+2/ß2)/3}/ß2-F}
U G UldX 1

where
yH2ü,

F =n[C chB+D sh3+ (1/3+1/4) /3]/ß-1/4

(9)

(10)

(11)

Elasto-Plastic Displacement
The general case where the rotational ductility factor of the laminas does

not enable an ultimate stage with full laminar plastification is considered. In
this case the ultimate stage will be reached when at the upper and lower zones or
the lower zone only the laminas will behave elastically, while in the middle zone
the laminas will have formed plastic hinges at their supports (see Fig. 3). To

express equilibrium and continuity it is
convenient to replace in the middle zone
the fixed ends of the lamina supports by
hinges acted by known external moments
and shear forces representing the action
of the ultimate laminar shear. The
analytical scheme thus obtained will be
treated as an elastic system acted by
lateral load and distributed shear and
moments at the hinged ends of the laminas
of the middle zone, as shown in Fig. 4.

The govering differential equation of
the problem and boundary conditions will be
obtained by applying the Principle of Least
Work. The complementary energy will be
expressed as function of the three unknown
normal force functions acting along the
center lines of the shear walls in the
upper, middle and lower zones, denoted
respectively by Qs, Qm and Qi.
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Fig. 3 Laminar model with plastified
laminas in the middle zone.

The complementary strain energy may be expressed in the form

2EU H {/1[hc3(Q;)2/(12I*) + (Mo-^Qs)2/Io+(l/A1 + l/A2)Q2]dÇ +

Ç 2

/ç'[hc3(Qi;)2/(12I*) + (Mo-^Qm)2/Io+t1/Ai+1/A2)(^]d? +

/J1[hc3(Q!)2/(12lV(Mo-£Q.)2/Io+(l/A1 + l/A2)Q2]dO (12)

The complementary energy as given in Eq. 12 is a function of Qs» Qs» Qm»

Q', Qî and Qj. According to the principle of Least Work the first variation of
the complementary energy with respect to the functions Qs, q's, Qm, Qi and QÎ
must vanish. The ultimate laminar shear qu being known, the axial force function
in the middle zone may be expressed in the form

After variation of Eq. 12 and substitùting in it Eq. 13 and effectuating the
integration by part, results

-/1(Q"-32Q +YH2MQ)6Qsd£- H2(Q^ÔQ -QJÔQj)

+ [32(Ç2"?i)(Q1+qu°52^1)/2}'YWH3C^2-Çl)/3-(Ç2-5l)/12)]ÔQm"H2qu(6Qr6Q2)"

-/Çi(QV-ß Q4+YH Mo)6Q.dÇ-HzQ^ÔQH-Hz(Q'SQ^Q^) (14)

where Q0, Qi and Q2, Qh the values of respectively Qs and Qi at ordinates
(0, Çj) and (Ç2, 1).
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As the variations 6QS, and ÔQ^ are arbitrary, Eq. 14 leads to the following
Euler Differential equations expressing compatibility at the upper and lower

zones.
Q"-ß2Q +YH2M 0

QV-82Q +yH2M 0XI o

(o < <

Ç <

*1>

1)

(15)

(16)

Fig, 4 Analytical model with
applied loads.

and the following algebraic equation expressing
the compatibility condition for the middle zone:

B2(Ç2-Ç1)(Q1+quH(Ç2-Ç1)/2)-YWH3((Ç^)/3

-(^-?J)/12) 0 (17)
The physical meaning of this condition is

zero relative vertical gap between upper and
lower limiting sections of the wall in the middle
zone.

Assuming a variation of the Qs function so
that 5Qo=0, and ôQj/0 and the variation of the
Qi function so that <5Q2^0, and <5Qjj/0, the
following boundary conditions result

QJ= 0

QH= 0

(18),(19)
(20),(21)

V ° '
Q' 0 ;

Eq. 17 together with the following equilibrium equation at limiting section
between middle and lower zone

q2= QI+ VUV SP (22)

will serve to determine the limiting ordinates and£2>
The solution for the upper zone represented by Eq. 15 satisfying the boundary

conditions given by Eqs. 18 and 19, has the same form as that given by Eq. 6,
where the coefficients C and D are replaced by C and D having the values:

,3.^2 „ ,„2. - ,S
(23)Cs= [2(shg?1)/ßJ+(Ci-2C1+2/ß^)/3^qu]/(3ch3C1)S

Ds= - 2/34

where
q q„/(yWH

(24)

(25)
The normal forces in the middle zone are given by Eq. 13.
The solution for the lower zone represented by Eq. 16 satisfying the boundary

conditions given by Eqs. 20 and 21 has as well the same form as that given by Eq.6,
where the coefficients C and D are replaced by CL and having the values:

Ci={(2/32-l)/(32ch3)-[(2/32-l)ch3Ç2/(32ch3)-(ç2-2Ç2+2/32)/32

-qu]th8/(th3ch3£2-sh3C2)}/3 (26)

Da=[(2/32-l)chSC2/(32ch3)-(Ç2-2Ç2+2/32)-qu]/[3(th8ch8C2-sh852)] (27)
In the particular case when the plastification of the coupling beam ends

extend until the top of the wall, there will be only two zones; a plastic one
in the upper part and an elastic one in the lower part, with the limiting section
having ordinate £2. The axial force in the plastified zone will be given by

Qm qu"Ç (28)
and that in the elastic zone will be the same as that of the lower zone,
mentioned above.

The elasto-plastic displacement at the top of the wall is given by
Cz Ci

yn rr,^ H f1 + H <»mdÇ + H /r <p. dÇ (29)p max
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where
EI <j> H /(M - Q £)dÇ + F

os o s s
El

c

El

H /(Mo- <^Â)dÇ m
+ F

n

Q,S,)dÇ + F.H / (M vo V1 1

constants of integration to be determined from the
following boundary conditions:

(30)

(31)

(32)

in which Fs> Fm and F^

1. Full restrain at support:
which leads to

2. Continuity of deflection line at £

which leads to F

0»i)ç=i
Fi=n((Cichß+Dishß)+(l/32+l/4)/ß]/ß-l/4

*2"
=n(Ql2+q„(ç;/2-ç1ç9)

"mW
m -u-2' 12

-(C.chße.+D,shßC.)/ß-[C^/3-C/12-2CC,-CJ/ßZ]/ßZ}+F,

Continuity of deflection line at Ç
*1' (O

5=5, Ç=Ci

where

Fs=n{(Csch3C1+DsshßC1)/ß
+ [Sl/3-^/12-2(çJ/2-Ç1)/32]/32-Q1Ç1+quÇj/2} +Fn

Qj Q2/ (yWH3)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

Substituting the corresponding relations in Eq. 29 and integrating yields
.3 jEIn^ m„=WH (r|{ [C shSq+D (chßq-l)+C. (shß-shßC )+D. (chB-chgÇ

o p max .i s i | l i2 _ 3 2 _ i _._^..21,„ 2 ^+(q-qvi2-(q-ç5)/6o+i/i5+(q-q-q/3+^/3+2/3)/3"]/3"-Q1(q-q)/2
-qJ^-S^/ô- 1(Ç2-Ç2)/2]}-l/15-FsÇ1+Fm(Ç1-Ç2)+F.(Ç2-l)} (40)

The overall ductility factor of the coupled shear wall will be now

y y /y (41)Ko 'p max 'e max

The graphs shown in Fig. 5 a,b,c,d may serve to establish the value ofyQ as

Fig. 5 Overall ductility factor.
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function of ß for various values of X=r]/ß
elastic laminar shear.

and e=q /q where qnu "max "max the maximum

An important factor to be considered is the rotational ductility factor of
the coupling beam end, which in fact limits the value of the ultimate laminar shear
qu to be taken in Eq. 40.

Considering the elastic wall rotations and extensional deformations it may be
shown easily that the plastic laminar rotation at any height Ç as shown in Fig. 6

is given by:
<t>p= 4>Vc - (d1+d2)/c - <j)y (42)

where the elastic rotation of the wall and <j> yield rotation of the coupling
beam, which is related to the ultimate laminar shear as follows

Fig. 6 Deformed position of shear
wall and plastified lamina.

Fig. 7 Rotational ductility factor
of coupling beam end.

}>y=hc qu/(12(EI*) (43)

where

<P )/<P
y y

y (<J> +
p max

the maximum value of the plastic rotation.

The rotational ductility factor at the
support of the lamina will be

(44)

p max
The graphs given in Fig

factor as function of
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SUMMARY

An analytical procedure for establishing the overall ductility factor for coupled
shear walls is presented. The continuum approach was applied by assuming an upper
triangle lateral load pattern, very often used to simulate earthquake motion effect.
Plastification of the coupling beam ends may be on part or over the whole height. The
graphs presented may be used for direct evaluation of the overall ductility factor and
associated with it the rotational ductility of the coupling beam end.
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RESUME

Ce travail présente une méthode analytique pour déterminer le coefficient
général de déformabilité des parois de cisaillement couplées. On utilise un processus
d'approximation en admettant un modèle de charge latérale en triangle au sommet de
la paroi, modèle qui est souvent utilisé pour simuler les effets des mouvements
sismiques. La plastification des extrémités des barres de liaison peut être admise
sur une partie ou sur toute la hauteur. Les diagrammes présentés peuvent être
utilisés pour l'évaluation directe du coefficient général de déformabilité et, associée
à ce dernier, pour la détermination de la déformabilité rotationnelle de l'extrémité
de la barre de liaison.

ZUSAMMENFASSUNG

Es wird eine analytische Methode zur Bestimmung eines globalen Duktilitäts-
faktors für verbundene Schubwände vorgelegt. Die Kontinuums-Näherung wurde
unter Annahme einer nach oben zunehmenden dreieckigen horizontalen Last-Verteilung
angewendet, die sehr oft zum Simulieren von Erdbebeneffekten verwendet wird.
Plastifizierung der verbindenden Stabenden kann über einen Teil oder Uber die ganze
Höhe auftreten. Die angegebenen graphischen Darstellungen können zur direkten
Ermittlung des globalen Duktilitätsfaktors und mit ihm die Rotationsduktilität der
verbindenden Stabenden verwendet werden.
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