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Ill

RAPPORTS INTRODUCTIFS / EINFÜHRUNGSBERICHTE /INTRODUCTORY REPORTS

Stresses in Thin Cylindrical Webs of Curved Plate Girders

Contraintes dans les âmes minces cylindriques de poutres courbes
à âme pleine

Spannungen in dünnen, zylindrischen Stegen von gekrümmten
Vollwandträgern

1. Introduction
The title subject falls beyond the scope of the present

Colloquium on limit design of plane plate girders. Stresses and

displacements in thin cylindrical webs of curved plate girders
under design loads are analysed herein. However, in both analyses
one approaches the problem as a stress problem - without
bifurcation of equilibrium - on the basis of a geometrically nonlinear
theory of elastic plates and shells, respectively. Whereas

investigation of postcritical behaviour of plane webs is rather well
advanced, the present paper ought to be considered as a first
step toward a more comprehensive investigation of the title
problem.

The analysis of stresses and displacements m thin cylindrical
webs of curved plate girders is of practical interest to

designers of horizontally curved bridge girders in multi-girder
or box-type bridge structures. Curved girders are subjected to
stresses and displacemets under given dead and live loads. These

stresses and displacements can be calculated e.g. according to
the theory of torsion and bending of thin-walled girders with
nondeformable or deformable cross-section DJ Free transverse

displace® nts of a cylindrical web panel within its supporting
edges - which on two opposite sides are formed by curved flanges
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338 III - STRESSES IN THIN CYLINDRICAL WEBS OF CURVED PLATE GIRDERS

and by vertical stiffeners (Fig.1^ - give rise to a redistribution
of stresses and, consequently, to a deviation of the final stress
pattern from the original one calculated on the basis of torsion
bending theory.

The problem is treated as a so-called second-order-theory
stress problem within elastic range of material properties. Small

deflections, say, not exceeding half web thickness, are assumed.

Donnell-type equations describing bending of shallow cylindrical
shells are employed. Thus second-order effects due to the original
membrane stresses only are accounted for. Linearized relations do

not, however, constitute a serious limitation of the present solution.

Lore refined results can be obtained by a step-by-step pro-

2. Differential equations of the "Problem

A cylindrical panel (Fig.2) rigidly supported along curved

edges at the junction with flanges and fixed along straight
edges at vertical stiffeners is considered. The assumption of
absolutely rigid stiffeners means a simplification of analysis and an

oversimplification of the problem in many situations of practical
design. It allows, however, to expose more clearly the relative
importance of other parameters. Two kinds of sum ort along curved

edges ere considered: (1) simple (hinged) sunport, and (2) fixed
sum ort with unrestricted displacement in x-direction (Fig.2).

cedure.

Fig. 2
Fig. 1
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Load acting upon cylindrical web panel is formed by original
longitudinal stresses ëÇ{x) tïy(x)/t uniformly distributed over web
thickness t and varying linearly over web depthb (a bar is placed
over the symbol <T for distinction of the original stress pattern
from the final one which is denoted simply by <T without a bar).
The assumed stress pattern, constant in y-direction, corresponds
realistically with the performance of a web panel at midspan
sections of the girder where maximum bending and warping moments due

to continuous load occur and, accordingly, shear forces and secondary

torsion moments disappear. (This is, of course, not the case
with panels adjacent to intermediate supports of continuous girders

where large shear forces are present, and should be accounted
for, and, besides, the stresses vary markedly in y-direction
as well.)

Pertinent equations based on large deflections theory [2},
J3] relating normal displacement (V stress function with the
original membrane forces /?x and t read
as follows

+

+ £ (*Xt, - %f) #''+ £")*", ^ O

in which X Et-y 12 (1 -ve) is the plate bending stiffness and
f* denotes the radius of curvature of web panel. Derivatives with

respect to X and y are denoted as follows:
1 ê( / »•_ J} àx ' J " ày '

and, furthermore,

?*()-( )"+ /' 1

Pinal membrane forces are given by the relations

- "y + ?*> "xy* f'- (2)
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For a preliminary research pursued in this paper Eqs.(1) arè
to much involved. Linearized Donnell-type equations of small
deflections theory are deduced directly from Eqs.(1) by deleting
products of the unknowns (V and F Thus one obtains for the case
under consideration, with ftx 0, the equations

«y* - jrF"- *,(£*»"),*

rtr+s„'. o.
a)

Second-order effect is accounted for by a single load term

tip w" on the right-hand side of the first Eq.(3)«

For convenience in dealing with boundary conditions an
equivalent set of three differential equations with respect to displacement

components tf, f, W (Fig. 2) has been used - in conjunction

with Galerkin's method of solution. These equations are as

follows [43 :

if +
f-P if + ÙLÈ y, f* _2 r 1»' O,

X*)

Accordingly, membrane forces ff# f?y and ff^ and bending
moments ftf^ ft^ and flf^ are given by the relations J4]

tf)

and



RYSZARD DABROWSKI - JERZY WACHOWIAK 341

- - K (*"+ >>#"), >

xy - (S-?)#»'.

(6)

The most significant stress component, on the inward
and outward (with relation to the centre of curvature) web
surfaces is equal to

t=± i/2 ~tr'
(7)

(3)

in which is given by the second Eq. (5).

3. Galerkin's method of solution
The unknown displacement components 1/ W of Eq. (4)

are assumed in form of double series with unknown coefficients
as follows:

(/(X,?/ ZZ vm„ </„C*J, '

'(KP) ZZ ^%(yjv,cx),
"(*'(/) ZZ. (y) % (*).

O - »*/,*...)
Shape functions (/„, (y)-, (*> » r*Cx) are the sine and

cosine functions satisfying appropriate boundary conditions at
y ± &/2 and X SjS (Pig. 2). Shape functions /r^^and Cx)

are assumed in form of eigenfunctions of transverse vibrations-
of a beam with fixed or simply supported ends, respectively,
which comply with corresponding boundary conditions of the web

panel.

Taking t» 1, 2, 3> 4 and * 1, 2, 3, 4 one has to
determine 48 unknown coefficients of the series, Eqs.(8), from
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a set of 48 linear equations obtained by means of Galerkin's
method. The equations written down in general terms are as

follows [5] :

in which end denote left-hand sides of equilibrium
equations (4) expressed by the series, Eqs.(8), and (y>u)mn, (<Pv)mn

and (ft,,)#,/, are virtual displacements in x, y and z-direction,
complying with given boundary conditions. Clearly, these
displacements are selected as products of assumed shape functions:

respectively.
All calculations involved in determination of stresses and

displacements have been programmed for a digital computer [Vj •

Some numerical results are presented subsequently in Section 3.3.

3.1 Cylindrical panel fixed at vertical stiffeners and

simply supported along curved edges

Boundary conditions at 9 ±<?/2 are as follows: V V

/f * #f/= 0, and boundary conditions at X - 0,6: (/'= 1/ - (V

- w" 0. With newly introduced notations

the above conditions are satisfied by the following shape functions:

</Ja

JJA '"ty 0> *

JJ **9 0-
A J

(9)

F - x/6, 9 - yA

«m cos (2/n-t)irrj

(x) cos fl/Tf,

^(9) fin >

(x) Sîn t&f,

(to)

(/v- J
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cos m*itWm(y)
' cosh

% (*) sin o/rç.

Cosh 2/77*%-/l>

Wa)

in which

tt O, 7 5 28 for m 1,

/!)* 0j - 0,25 for /rt 2, 3, 4.

_2j_2 Cylindrical panel fixed at vertical stifpeners and

fixed along curved edges while free to move in x-direction
Boundary conditions at y ±a/£ stated in Section 3.1 do

apply again, and boundary conditions at' JC 0,6 taking the form
u'= y w - w'- 0 are satisfied by the shaoe functions, 3qs.

10 and by the following functions (y) and

(y) cos 2/n*?n -
605

cosh 2*j*Z'7,' cafh sv*r

w„(x) sin fi*Zj - sînh fj - y

- tnrfr-stnhrir
(UJS^ ^ „*zs)>

cos n z - cosh n*z

(//)

J
in 'which

M 0, 7520 for m 1,

<47% /W - 0,25 far >57 2, 3,

<7* 1, 5056 for /> - 1,

V* sa 0+0,5 for 0 2, 3,

4,

hi Numerical results expressed in terns of nondimensionai
parameters of web panel geometry

In Pig.3 there are shown normal displacements tr at middle
section of a square web panel (.0=4) for both sets of boundary
conditions stated in Sections 3*1 and 3.2 and three different
stress patterns characterized by the ratio of the upoer edge

stress to the lower edge stress, i.e. by S f equal
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Stress pattern (x)

w/t at middle section (a 0)

Fig. 3

Fig. 4
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W=- 0,445t

at y= 0 6-y/6-0 at y t a/2

Fig. 5

^/S0 at y i a/2

Fig. 6
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to -0,5, -1,0 and -2,0. The curves of Ht/t (solid lines) have

been calculated for indicated nondimensional parameters éfa
f> ffl à ft and the stress level - 10 2100 Kp/cm^, 4£_being

the higher of the absolute values of edge stresses and ^
Poisson's ratio equal if 0,3 has been assumed.

As seen from inspection of diagrams on left-hand side of
Pig.3, w/t-values for S -2 (solid line) fall beyond the range

of validity of (second-order) theory of small deflections. Of

course, they are somewhat exaggerated because for most of the

panel area the final membrane forces f^,<0*)|are smaller than
membrane forces \f^(x)\ assumed in the third Eq. (4) - see Pigs. 4 to 6

for comparison. Values obtained by first-order theory of cylindrical
shells (dashed lines in Pig. 3) do not convey a. true picture of

deformation of cylindrical web panels with relatively large radiuces
of curvature. Prom comparison of diagrams in Pig.3, & favorable
effect of fixity of web panel at the junction with curved flanges
on limiting deflections is evident.

The stresses are of primary interest to designers. Longitudinal

stresses in the middle '--eb surface and on the outward
and inward web surfaces are shown in Pigs. 4 to 6. The curves of

Pig. 4 pertain to stress pattern with £ -0,5- Stresses at end

section of the panel are plotted for both boundary conditions
considered. Diagrams of Pig.5 pertain to £ -1 and panels with simply
supported curved edges, while those of Pig.6 refer to panels with
fixed curved edges and two stress ratios: £ -1 and £ -2.

Extremal values of normal deflection tv with a corresponding
ordinate X at which these values do occur are assembled for comparison

in Tables 1 and 2, for two sets of boundary conditions
considered. Several values of parameters £ r/6 and t/é and two

stress levels: 10 2100 Kp/cm^ and ^*= (2/3)10 "^E 1400
p

Kp/cm are taken into account.

Tables 1 and 2 also comprise extremal values of stress
increase on either surface of web panel, in the tension and the

compression zone of the panel. The stress increase above the initial
value ££(*)= &p(x)/t at a distinct point with ordinate X is equal to



Tabla 1. Extremal values of normal displacement kr and of stress increase
in cylindrical web panels simply supported along curved edges

Nondimansianal
Stress
level

<r0

Extremal normal displacement Extremal stress increase
paraniet ers at middle section at middle section at end section

r/b a/b tA
in tension in compression in in comin in com¬

zone zone tension pression tension pression
(ta e) w/t ait x/b w/t art x/b zone zone wane zone

Stress pattern £ - 0,5

0,5
Î/Î00 2/3

1
0,016
0,022

0,25
0,25

-0,004
-0,006

0,85
0,85

0,083
0,077

-0,024
-0,023

0,189
0,184

-0,054
-0,054

1/150 2/3
1

0,047
0,063

0,25
0,25

-0,013
-0,019

0,85
0,85

0,102
0,090

-0,034
-0,034

0,259*
0,244*

-0,080
-0,080

1,0 1/100
1/150

1

1

0,130
0,318

0,30
0,30

-0,006
-0,018

0,90
0,90

0,101
0,091

-0,026
-0,021

0,328*
0,403*

-0,049
-0,072

0,5 t/150 1 0,021 0,25 -0,006 0,85 0,032 -0,012 0,084 -0,028
—-— ————— i

Stress pattern S - t,0 fj

0,5
1/100 2/3

1

0,013
0,019

0,20
0,20

-0,015
-0,022

0,80
0,75

0,071
0,068

-0,085
-0,089

0,162
0,159

-0,176
-0,180

33,3 1/150 2/3
1

0,040
0,056

0,20
0,20

-0,055
-0,092

0,80
0,80

0,094
0,087

-0,141
—0,160

0,228
0,21i8

-0,276
-0,293

1,0 1/100
1/150

1

1

0,069
0,186

0,20
0,20

-0,104
-0,445

0,75
0,75

0,073
0,082

-0,106
-0,193

0,223
0,305

-0,258
-0,395*

100 0,5 1/100
1/150

1

1

0,006
0,019

0,20
0,20

-0,008
-0,031

0,80
0,80

0,024
0,031

-0,031
-0,057

0,054
0,075

-0,061
-0,102

Stress pattern 6 * - 2,0

33,3 1,0 1/100
1/150

1

1
- -0,305

-4,700
0,65
0,65

0,143 -0,290
-2,518

0,192 -0,492*
-1,505*

S
«sj



348 III - STRESSES IN THIN CYLINDRICAL WEBS OF CURVED PLATE GIRDERS

add is related to stress level 0^

7ith regard to extremal values of normal stresses 0^ on web

surfaces the following observations should be made. As the extremal

value of â(fy in cylindrical panels simply supported along
curved edges occurs at some distance from the curved edge, the
sum \6"y( I at that point falls in most cases below 0Ç.

Exceptional cases are indicated by an asterik in Table 1. In
those cases extre isl values of the sum are higher than

In cylindrical panels fixed along curved edges bending
moments Wy do occur along those edges (with the exception
of corner points where #?y 0) and, accordingly, the sum

ithe curved edges is higher than (%. This being taken
into account, the extremal values of A/Fy at middle section given
in Table 2 refer to field or edge points of that section, wherever

the absolutely largest value does occur.

Normal stresses 0^ due to bending moments mr deserve

attention. For example, 0^ at upper edge of middle section of a

web panel with £ - 1, r/j 33,3, 1, t/à 1/150 according

to Table 2 is equal to 0; A<Ç/0 - 0,1 29 0;/y> - 0,43 0;
For £ - 2 it is even higher compare last line of Table 2

but still below the approximate upoer limit I/3/C'-»*) 0;= 1,81 £
derived from a solution to a case of rotational symmetry.

("Normal stresses 0^ due to bending moments at the joints of
web panels and flanges are of secondary importance as far as

ultimate strength of the girder is concerned. However, they
are significant in design of '-'elded joints for fatinue strength.)

Shear stresses 2^, «nx /t resulting from transverse deflection

of the cylindrical panel are,in the considered range of
curvatures, very small und amount to a few percent of 0^

4. Results and conclusions

Calculations based on second-order small deflections theory

for two stress levels, situated in the range of working and

yield stresses of structural steel, do not provide full insight
into behaviour of thin cylindrical webs in curved plate girders
with increasing load. Displacemets and stresses in the considered'

range increase virtually in proportion to load (i.e. to

stress level ^*) and to girder curvature (i.e. to 1 //*) • -"ore



Table 2. Extremal values of normal displacement Hf and of stress increase in
cylindrical web panels fixed along curved edges with free displacement in x-direction

Ifandimensional Stress Extremal normal displacement Extremal stress increase
parameters level at middle section at middle section at end section

« in tension in compression in tension in compression in in
r/b a/b t/b zone ZQQ9 ZcjbeO zone tension pression

10 B w/t at x/b w/t at x/b at x/b fay/Ob */b ZÜ&8 zone

Stress pattern £ - - 0,5

33,3 0,5
1

1/150
1/150

1

1

0,051
0,223

0,30
0,35

é>è
•*

*•

o
o

O
0,80
0,90

0,073
0,112

0,25
0

-0,022
-0,022

0,80
0,70

0,205
0,294

-0,053
-0,041

TOO 0,5
1

1/T50
1/150

1

1

0,017
0,079

0,30
0,35

-0,004 0,80 0,026
0,039

0,25
0

-0,00»
-0,007

0,80
0,70

0,070
0,108

-0,018
-0,015

Stress pattern 6 m - 1,0

33,3

0,5 1/100
1/Î50

1

1 *-

o
o

•»o
o

0,25
0,25

-0,0t8
-0,071

0,75
0,75

0,051
0,063

0,25
0,25

-0,068
-0,125

0,75
0,75

0,121
0,167

-0,138
-0,225

1,0 t/Too
1A50

1

1

0,036
0,101

0,25
0,25

-0,048
-0,197

0,70
0,70

0,065
0,088

0
0

-0,076
-0,129

1,0
1,0

0,137
0,186

-0,153
-0,227

100

0,5 1/100
1/150

1

1

0,004
0,014

0,25
0,25

-0,006
-0,024

0,75
0,75

0,018
0,023

0,25
0,25

-0,024
-0,044

0,75
0,75

0,041
0,057

-0,047
-0,077

T,0
T/100
1/150

1

1

o
o

o
o

0,25
0,25

-0,017
-0,070

0,70
0,70

0,022
0,029

0
0

-0,026
-0,045

1,0
1,0

0,047
0,071

-0,053
-0,076

Stress pattern 6 * - 2,0

33,3 1,0 1/100
1/150

1

1
- -0,154

-0,934
0,60
0,60

0,064
0,221

0,30
0,30

-0,145
-0,457

1,0
0,65

0,093
0,242

-0,285
-0,422
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relevant are the following observations: with increasing
distance between vertical stiffenerc deflections grow very markedly;
stresses do increase as well, but to a lesser degree. A reduction
of web thickness results in a very prenounced increase of deflections;

remarkably enough, bending stresses become higher as ^ell.

flexibility of vertical stiffeners in real structures would

cause a further increase of deflections and bending stresses at
middle sections of web panels. Only the results obtained by ordinary

(first-order) theory of cylindrical shells are available for
comparison. It can be be inferred from them that in moderately
stiffened cylindrical panels - as is the case with plane webs

designed for stability and not for ultimate strength - this
increase can be as high as by one third or more

In general, displacements and additional stresses due to
bending under design conditions remain within acceptable limits
in the parameter range considered. As evident fron figs.4 to 6,

the mean membrane stresses 0^ drop only slightly - as the

result of transverse web deflection - from the originally assumed

linear pattern. Consequently, the reduction of web-area

contribution to overall section modulus of the curved girder
amounts only to a few percent and is insignificant.

5. Scope of further research

A more intrinsic analysis by large deflections theory is
needed to clarify the nerfarmance of thin cylindrical webs

under loads well in excess of working loads - in particular,
when extremely thin webs are investigated. Presumably, for
higher loads, still within elastic range, deformed configuration
characterized by one half-wave in longitudinal direction changes

into another one with more half-^aves.

Web performance under an initial stress pattern which

includes lohgitudinal stresses ^ as well as shear stresses
remains to be investigat ed.

Experimental work is necessary, i.a. to check the influence

of plastic zones on ultimate strength of thin cylindrical webs.
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SUMMARY

Stresses and displacements in thin cylindrical webs of curved plate girders are
analysed on the basis of second-order theory of small deflections by means of
Galerkin's method. A cylindrical web panel (Fig. 2) rigidly supported along curved
edges and fixed along straight edges (at vertical stiffeners) is considered. Stresses
on middle web surface and on outward and inward web surfaces as well, at end and
middle section of the web panel, are shown in Fig. 4 to 6. Numerical results are
assembled in Tables 1 and 2.

RESUME

Les auteurs déterminent les contraintes et les déflexions de l'âme mince
cylindrique des poutres courbes, en utilisant la théorie du second ordre pour les petites
déformations à l'aide de la méthode de Galerkin. On considère un panneau d'âme
cylindrique appuyé le long des membrures et encastré au droit des raidisseurs
verticaux. Les figures 4 à 6 représentent les contraintes de la surface moyenne ainsi
que des surfaces intérieure et extérieure, aux extrémités et au milieu du panneau
d'âme. Les tableaux 1 et 2 contiennent des résultats numériques.



352 III - STRESSES IN THIN CYLINDRICAL WEBS OF CURVED PLATE GIRDERS

ZUSAMMENFASSUNG

Spannungen und Verformungen in dünnwandigen, kreiszylindrischen Stegen von
gekrümmten Vollwandträgern werden aufgrund der Theorie II. Ordnung für kléine
Verschiebungen, mit Hilfe des Galerkin'schen Verfahrens untersucht. Es wird eine
Teilschale (Fig. 2), die an gekrümmten Rändern starr gestützt und an geraden
Rändern (an den Vertikalsteifen) eingespannt ist, betrachtet. Spannungen in der Mittel-
fläche sowie an der äusseren und inneren Schalenoberfläche, im Endquerschnitt
bzw. Mittelquerschnitt der Teilschale, werden in Abb. 4 bis 6 gezeigt. Zahlenresultate

sind in den Tafeln 1 und 2 zusammengestellt.
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Strength of Thin Plate Girders with Circular or Rectangular Web Holes
without Web Stiffeners

Résistance des poutres à âme mince non-raidies, comportant des
ouvertures rondes ou rectangulaires

Festigkeit dünnwandiger, unversteifter Blechträger mit runden
oder rechteckigen Stegaussparungen

TORSTEN HÖGLUND
Techn. lie.

Department of Building Statics and
Structural Engineering of The Royal

Institute of Technology
Stockholm, Sweden

1. INTRODUCTION

The thin plate I-girder has become a frequently used element in roof con-
constructions. This has been possible by the use of rational methods of fabrication

and design. One essential point is to avoid web stiffeners, which have to
be manually fitted and welded and thus cause conciderable costs.

In modern buildings there are often a lot of service ducts and pipings
which due to limited construction height intersect the steel structure. The
necessary holes in the girder webs have previously been reinforced, mainly
due to the lack of knowledge of the buckling conditions of perforated webs.
In order to cut costs web stiffeners should be avoided even at such weakenings
as holes in the web.

The web of rolled beams are thick and it is usually sufficient to check
the stress concentrations around the holes. For thin plate girders web buckling

at the holes has to be considered. Only if the postbuckling strength is
made full use of web stiffeners around large holes can be avoided in plate
girders with thin web.

Very few investigations about buckling of thin plate girder webs with
holes has been published |1| and the author has not found any theoretical
investigations of the postbuckling strength in the literature. This paper
deals with experimental and theoretical study of the strength of statically
loaded plate I-girders with circular or rectangular web holes. Girders with
very thin web are treated. A more extensive report has been published in
Swedish [3]. The distance between holes and web stiffeners is supported to
be so large that the web alone must prevent the flanges from vertical buckling.

Session Bg. 23
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2. TEST PROGRAM AND TEST PROCEDURE.

A series of four girders of structural carbon steel with two, three or
four holes in the web of each girder were tested, see fig. 1. The depth to
thickness ratios of the web ranged from 200 to 300, cf fig. 2. The holes
were placed in sections loaded in shear only, bending only or a combination
of shear and bending.

Table 1. Cross sectional dimensions and constants and yield point of the
flange and the web material.

Test girder
h

cm

d

cm

b

cm
t
cm

h

ïï
Aw

cm2

I
X

cm11

cry kp/cm2

flange web

B2 59,0 0,292 20,2 0,86 202 17,24 36080 2750 3491
B3 59,0 0,293 20,0 0,88 202 17,30 36450 2750 3490
B4 60,0 0,200 15,1 0,61 300 12,00 20520 3040 2800
K1 60,0 0,286 22,6 0,99 210 17,16 46600 2944 4185

The girders were simply supported and loaded with gravity loads in nine or
six points with a spacing of 5/3 of the girder depth. The gravity loads were
produced by levers and scales with weights, see fig 3.
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Fig. 1 Test girders
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B4

c)
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Kl

d>

Fig. 2 a) Notations for cross section
b), c) och d) Girder cross sections for the
test girders.

The test girders were fabricated from fiamecut flange- and webplates
in an automatic welding machine. The holes were sawed and the edges around
the holes where grinded. Details of the test girders are given in table 1.

The surface strains at points around the holes in the web and in the
flanges were measured with electrical strain gauges. The web deflections near
the holes and the centerline deflection were measured with dial gauges.

1
nin i m n? ran nin n±n n

©—

n nin nm nin

s -©

j
1 Test girder
2 Lever
3 Ball joint
4 Fixed support
5 Movable support
6 Scale
7 Weights

3000

T"

250

<D-

J
Fig. 3 Test setup.
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3. TEST RESULT AND THEORY

Fig. 4, 5, 6 and 7 show the load deflection relationships of the test
girders. The shear buckling load, PTcr> f°r the web without holes calculated
under the assumption that the web is simply supported, very long and subjected
to constant shear, the buckling load in bending Pacr for the mid span of the
girders, the load PCTçU which gives the bending moment Oy*2I/h at the center of
the girders and the load Pgred which gives the reduced bending moment Mrec|

according to Basier and Thlirlimann |2| are given in the figures.

In fig. 4, 5, 6 and 7 are also given the ultimate loads for the girder
sections with the holes (P|jJ. for hole HI and so on).. Finally the web deflection

configurations at ultimate load and the stiffener arrangements round the
holes after a testcycle to ultimate load are indicated in the figures.

Table 2 gives a summary of test results.

In the following some typical results of measured strain distributions
and web deflection curves »re given.

Table 2 Summary of test results (IMp 2205 Äb)

Test girder Hole
P T T M o T a
Mp Mp kp/cm2 Mpm kp/cm2 Ty ay

HI 2,21 7,73 449 8,84 734 0,223 0,267
DO H3 2,27 7,94 461 9,08 753 0,229 0,274
DL H4 3,04 4,56 264 27,36 2270 0,131 0,825

H2 3,25 4,87 283 29,25 2430 0,141 0,883

H7 1,52 5,32 307 6,08 507 0,152 0,184
B3 H5 1,68 5,88 340 6,72 560 0,169 0,203

H6 3,02 1,51 87 30,20 2517 0,043 0,915

H8 1,07 3,74 312 4,28 636 0,193 0,209
B4 H9 1,40 0,70 58 14,00 2080 0,036 0,685

H9A 2,00 0 0 16,00 2380 0 0,783

HI 1 4,53 13,60 792 3,40 223 0,328 0,076
K1 H12 4,77 14,30 834 3,58 234 0,345 0,079

HI 3 4,71 9,42 543 16,49 1080 0,229 0,366

3.1 Circular holes.

1-11 _Sheir_force.

Fig. 8a shows the distribution of the tangential middle surface strains
in the web around the hole HI which was situated in a girder section
essentially subjected to shear. Two stages are shown; one at a load lower than
the buckling load and one near the ultimate load. When the load is small the
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DEFLECTION Vt [mm]

Fig. 4 Load-deflection curve of girder B2.

DEFLECTION Vt [mm]

Fig. 5 Load-deflection curve of girder B3.
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DEFLECTION Vt [mm]

Fig. 6 Load-deflection curve of girder B4.

DEFLECTION Vt [mm]

Fig. 7 Load-deflection curve of girder K1.
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maximum tangential compressive and tensile strain is about of the same size.
When the load is increased the compressive strain remains at a certain level
while the tensile strain increases rapidly because of redistribution of stresses

after web buckling and lokal yielding.

A model of a shear loaded girder section with a circular hole is shown
in fig. 9. The web is supposed to consist of tension fields with the stress
equal to the yield stress oy and compression fields with a stress estimated
as the elastic buckling stress for a web strip with the buckling length I,
see fig 9. The inclinations of the tension and compression fields are postulated

to be those which furnish the greatest total vertical shear component
of the fields.

The diagram in fig. 10 shows curves for the calculated ultimate load as
a function of the web slenderness ratio and the size of the hole. The results
of the tests of girders with circular web holes in sections essentially loaded
in shear are compared with calculated ultimate loads in fig. 10 and in table 3.

Fig 8 Web strains and web deflections at hole HI.
a) Tangential mean strains and principal mean stresses in the web

evaluated from measurements with strain rosettes.
b) Tangential strain in the points c4 and e8 see fig. a). e4f and e8f

are the strains in the front surface, e4B and e8B are the strains
in the back surface of the web. The dashed lines marked e4 and e8

are the mean stresses in point c4 and e8.
c) Web deflections in ten points near the hole.
d) Load-web deflection curves for points w2, w4 and w9, see fig. c)
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Fig. 9 Model for a girder with a circular web hole subjected to shearing force.

The theory and the tests show that the ultimate shear force is approximately
(1 - D/h) times the ultimate buckling shear force for the girder without

hole, where D is the diameter if the hole and h is the girder depth.

(cry*2600 kp/cm

Fig. 10 Calculated ultimate load as a function of hole-size and web slender-
ness ratio. Circular hole, shear.
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Table 3 Summary of test loads and theoretical ultimate loads for girderswith circular web holes loaded with shear forces.

Hole Girder
D

h

h

d

a)
T '
y

kp/cm2

T
b)

cr
kp/cm2

c)
a

V
T e>

u

ç =15

i-

It-

HI B2 0,51 202 2015 249 2,85 0,237 0,223 0,94
H3 B2 0,51 202 2015 249 2,85 0,237 0,228 0,96
H5 B3 0,67 202 2015 249 2,85 0,154 0,169 1,10
H8 B4 0,50 300 1617 113 3,78 0,187 0,193 1 ,03
HI 1 K1 0,25 210 2416 230 3,24 0,322 0,328 1,02
HI 2 K1 0,25 210 2416 230 3,24 0,322 0,345 1,07

a)T„ oJ/S for the web plate d^T+h predicated ultimate load.

(h)
12(1 - v2) 3"

y - y'" ^ ' th

Tcr 5'3^
17 E

o. (-r) e^T,, ultimate test load.u

cL.l/Sc\/JLV Tcr

3_. _]_2_Bend_i ngjiiomen t_

The distribution of the tangential middle surface strains in the web round
the hole H6, situated in a section essentially subjected to bending moment is
shown in fig 11a.

A possible mode of action is given in fig. 12. At a distance from the hole
the stresses are not influenced of the hole and the stress distribution will be
as shown to the right. As the web is thin the stress distribution on the
compression side is not triangular. The tension force Dj and the compression force
Ti corresponding to the parts of the stresses which cannot be transferred
through the hole will be transferres downward and upward respectively to the
remaining parts of the girder below and above the hole. The conditions of
equilibrium leads to compressive stresses along the line B-A' and tensile stresses
along A-B', which explains the tangential stress distributions in fig. 11a.

If the web is thin the compressive stress at C may produce buckling of the
web, which reduces the compressive stress along B-A* and increases the stress
at E.

On the compression side the stresses at E1 leads to buckling of the web
and an increase of the stresses in the compression flange. Furthermore the
web buckling at E' causes an upward deflection of the compression flange above
the hole. Downward buckling of the compression flange can take place at a
distance from the hole at point A' in fig. 12 but hardly just above the hole.

The reduction of the bending strength of a girder with a centrically
placed web hole is usually small because the flanges carry most of the bending
moment. For this to be true the size of the hole must be restricted to avoid
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Fig. 11 Web strains and web deflections near hole H6, Notations compare fig 8.

—i

Fig. 12 Stress model for a girder with a circular web hole. Bending moment.

torsional buckling, upward or downward vertical buckling and lateral buckling
of the compression flange over the hole. Such restrictions are given in fig. 13.
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<1

'

0̂ 0
i L ^ 4
; J

Allowable moment i ri the section through a hole:

MD Mall| ^ ~ "^T0T^ j Mall a^owable moment without hole

Ix moment of inertia for the cross-
section without hole.

Allowable shear force in the section through a hole:

TD (1 - £) Ta]1 when M < 0,6 MD

TD d - ~ 5^)-2.5-Tall when M > 0,6 MD

where

Tan + 0,10)h-d-o when 1 <a< 2,72
a2 y

T — h-d-a when 2,72 <a
a2 y

a °'35 J \f¥

g > 12d

D < 0,75h

c > D
I max

Fig. 13 Design rules for thin walled plate girders with circular web holes. [4]

A • 10Sj2ea_r_force_an_d_bend_i iig_momen t^.

The strength of a plate girder with a hole in a girder section subjected
to shearing force and bending moment can be given with an interaction method.
Fig. 14 shows possible interaction curves compared with test results.
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Fig. 14 Comparison between theory and test
results for girders with circular
holes.

3.2 Rectangular holes.

Stresses and web deflections are concentrated to the corners. A girder
with a rectangular web hole may be described as a vierendeel truss with
reduced bending capacity of the horisontal and vertical members at the
compression corners, see fig. 15.

The risk of vertical buckling or lateral buckling of the compression
flange is greater for girders with rectangular holes than for girders with
circular holes for the same size of the holes. The size of the hole must
therefore be restricted, see [3].

Fig. 15 Model for a girder with a rectangular web hole. Combined bending
and shear.
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SUMMARY

This paper deals with an experimental and theoretical study of the strength of
statically loaded plate I-girders with circular or rectangular web holes without web
stiffeners. Girders with very thin web are treated. The web depth to thickness ratio
ranges from 200 to 300. The load-carrying capacity is then delimited by web failure
in the postbuckling range.

RESUME

L'auteur présente une étude expérimentale et théorique de la résistance statique
des poutres en I non raidies, comportant des ouvertures rondes ou rectangulaires
dans les âmes. Il s'agit de poutres à âme très mince, le rapport de la hauteur à

l'épaisseur variant entre 200 et 300. La résistance ultime est ainsi limitée par la
ruine de l'âme dans le domaine de voilement post-critique.

ZUSAMMENFASSUNG

Dieser Bericht behandelt eine experimentelle und theoretische Untersuchung Uber
die Beanspruchung statisch belasteter Vollwandträger mit runden oder rechteckigen
Stegaussparungen, aber ohne Stegaussteifungen. Es werden Träger mit sehr dünnen
Stegen untersucht. Das Verhältnis der Stegdicke zur Höhe variiert zwischen 200 und
300. Damit ist die Traglast durch das Versagen des Steges im Uberkritischen Beul-
bereich beschränkt.
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INTRODUCTION

Les recherches expérimentales entreprises entre autres par MASSONNET

[1-2], COOPER et ROCKEY [5-6] ont prouvé que, pour les raidis-
seurs longitudinaux d'âmes fléchies, les rigidités relatives y
auxquelles conduit la théorie linéaire du voilement doivent être
considérablement augmentées pour que les raidisseurs conservent toute leur
efficacité dans le domaine post-critique. Une majoration des valeurs
y- théoriques est évidemment nécessaire aussi pour les semelles

comprimées de poutres-caissons raidies longitudinalement, poutres
dont l'emploi est fréquent dans la construction des ponts, des engins
de manutention lourds, des vannes, etc.

Le comportement post-critique de la semelle comprimée d'une poutre-
caisson fixe pratiquement la valeur du moment limite: les âmes sont
en effet très minces et n'apportent qu'une faible contribution à la
résistance, même lorsqu'elles sont convenablement raidies. Lorsque
les raidisseurs longitudinaux de semelle ne sont pas assez rigides,
la sécurité à la ruine d'une poutre-caisson diminue donc dangereusement

Pour dégrossir le problème, on a procédé à des essais préliminaires
sur des poutres dont la semelle comprimée est raidie de différentes
façons. On détermine ainsi expérimentalement l'ordre de grandeur de
la majoration de rigidité nécessaire pour assurer un comportement
optimum dans le domaine post-critique, jusqu'à la ruine.

CONSTITUTION DES POUTRES D'ESSAI ET MODE DE CHARGE

Les dimensions des poutres auscultées sont relativement modestes,
notamment en ce qui concerne la hauteur d'âme. Ces modèles ne
permettent donc pas d'étudier l'influence réciproque des âmes sur les
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semelles. Comme la constitution des semelles tendues ne modifie
pratiquement pas le comportement de la membrure comprimée, ces semelles
sont concentrées au bord des âmes, ce qui facilite la fabrication
ainsi que la pose de l'appareillage.
La figure 1 (page 369)donne les dimensions principales des deux
poutres du type A, comportant une semelle comprimée de 3 mm, raidie
par trois nervures espacées de 200 mm. Pour les deux poutres du type
B la disposition est analogue mais la membrure comprimée, forte de
4 mm, comprend seulement trois panneaux de 200 mm; la section est
ainsi la même que pour le type A. Les poutres A2 et B2 ont des rai-
disseurs longitudinaux en plats de 36-3, disposés d'un seul côté,
et des raidisseurs transversaux de 45-3. Pour les poutres Al et B1,
par contre, les raidisseurs sont beaucoup plus rigides.
Les efforts sont appliqués symétriquement, avec un bras de levier de
1,70 m (fig. 1); la partie centrale de la poutre, seule auscultée,
est ainsi soumise à une flexion pure. La figure 2 donne une idée
d'ensemble de l'essai sur la poutre A2.

CRITÈRE DE DIMENSIONNEMENT DU RAIDISSAGE DES POUTRES D'ESSAI

a) Rigidités y d'après la théorie linéaire du voilement

Les rigidités nécessaires dans le domaine post-critique sont à exprimer
en multiple des valeurs y classiques; il convient dès lors de

calculer d'abord ces rigidités y théoriques pour les raidissages
réalisés. On a utilisé à cet effet la méthode numérique présentée sous
[7j. Avec les abréviations bien connues

EJraid
Y n

1 (b largeur du panneau)
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f 3?3.1 d
à ^^1 (t épaisseur de la tôle)

on peut exprimer les résultats des calculs sous la forme suivante:

Poutres A: panneaux longueur a 900 mm, largeur b 800 mm,
avec trois raidisseurs longitudinaux équidistants

k <64 : )f= - 1,31 + .0,317 k + 0,00013 k2 + 1,266 • k • S

k kmax 64 : f* 19,5 + 81 & (rigidité optimum)

Poutres B: panneaux longueur a 900 mm, largeur b 600 mm,
avec deux raidisseurs longitudinaux équidistants

k < 36 : y= - 3,49 + 0,742 k + 0,00075 k2 + 2,25 • k

k 36 : Y* 24,2 + 816 (rigidité optimum)max "

Pour des raidisseurs possédant la rigidité optimum y* le voilement
de la membrure comprimée devrait se produire indifféremment, soit en
une onde transversale (panneau entier raidi), soit en quatre (A) ou
trois (B) ondes juxtaposées dont les axes des raidisseurs forment
les lignes nodales.

b) Raidisseurs transversaux

Ces raidisseurs sont choisis plus rigides que les longitudinaux, ceci
avant tout pour des raisons pratiques d'exécution (croisement des

raidisseurs), comme cela est aussi le cas en réalité. Le rapport des
rigidités atteint environ 2.

c) Hypothèses concernant le comportement à la ruine

Une analyse théorique du comportement effectif d'un panneau raidi
dans le domaine post-critique présente des difficultés sérieuses
(voir par exemple la réf. [8]). On se limitera ici à formuler des
hypothèses plausibles.
Pour des panneaux comprimés uniformément, non raidis longitudinale-
ment, on dispose des résultats de nombreux essais, en particulier
de ceux de WINTER [91• Avec la notion de largeur utile introduite
par VON KÄRMÄN [10] on obtient selon réf~ [11] une bonne concordance

avec les valeurs expérimentales moyennes en posant

br/b Gcr ' ®max

Dans cette expression (5cr désigne la contrainte critique selon la
théorie linéaire et ®max la contrainte au bord atteignant
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à la ruine la limite élastique 6p de la tôle.
Pour un panneau raidi, on admettra que le comportement optimum dans
le domaine post-critique est atteint lorsque chaque sous-panneau,
compris entre deux raidisseurs longitudinaux, travaille comme une
tôle comprimée appuyée uniquement sur ses bords et possède ainsi la
largeur utile br exprimée par la formule précitée (fig. 3). Ceci
n'est qu'une première approximation puisque les conditions au
contour, en particulier pour l'état de membrane qui se développe dans
le domaine post-critique, ne sont pas identiques.

fig. 3

A la ruine, la contrainte au bord de l'âme en contact avec la
membrure comprimée atteint également C5p. La répartition des contraintes

sur la hauteur de l'âme est par contre inconnue. Comme cet
élément, surtout si l'on tient compte du déplacement de l'axe nautre
dû à la réduction de la surface comprimée effective, est également
en danger de voilement, il serait imprudent de supposer une
plastification totale. Nous admettrons provisoirement une répartition
triangulaire, conforme aux règles de la Résistance des Matériaux.
Pour une largeur br connue, le moment maximum à la ruine max
est ainsi aisément calculable à partir des caractéristiques
géométriques de la section et de la limite élastique du matériau.

La rigidité optimale des raidisseurs dans le domaine post-critique
sera alors définie comme la rigidité permettant juste d'atteindre,
dans l'essai à la ruine, la valeur calculée Cette valeur
y*post-cr. est à comparer à celle de la théoriê linéaire, ce qui
fixe la grandeur du coefficient de majoration de MASSONNET

m ~ T post-cr.^ y linéaire
Pour des nervures dont la rigidité est inférieure à ^*post-cr. >

le calcul se fera de façon analogue: la rigidité "effective" sera
admise égale à y/m et la valeur du îfiinéaire Y"*linéaire)
ainsi obtenue fixera, à partir des relations du paragraphe a), le
coefficient de voilement k et la contrainte théorique Gcr
Avec la largeur utile correspondante br b <5 p' naturellement

inférieure à celle trouvée pour le raidissage optimum, on
calculera comme ci-dessus un moment de ruine Si les valeurs m

déterminées à partir des essais sur diverses poutres, concordent
dans le cadre de la dispersion inévitable, les hypothèses introduites

seront confirmées.
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DISPOSITIF EXPÉRIMENTAL

Les mesures portent sur les flèches d'un des panneaux centraux de
900 mm de longueur (voir fig. 1) ainsi que sur les allongements
spécifiques dans une section médiane. On a utilisé à cet effet
l'appareillage suivant:

Capteur inductif
Les déformations verticales du panneau de semelle comprimée,
relatives aux bords des âmes, sont mesurées dans sept sections transversales

à l'aide d'un capteur inductif relié à un coordinatographe
électronique dessinant directement, à l'échelle désirée, les courbes
de déformations. L'étude de ces flèches permet de suivre le processus

de voilement.

Tensomètres ohmiques

Ces tensomètres, collés dans la section de mesure médiane (voir fig.
1), servent à déterminer la répartition des allongements le long du
contour de la section. Pour éliminer l'influence des contraintes
locales de flexion, tous les extensomètres sont groupés par paires
de chaque côté des tôles. Les quatre tiges d'extrémité, reprenant
les réactions, sont également pourvues d'extensomètres, ce qui donne
un contrôle de l'effort appliqué.

RÉSULTATS EXPÉRIMENTAUX

Données caractéristiques

Poutre Largeur b Longueur a Epaisseur Raidisseur longitudinal
t (mesuré) Section Inertie Y" S

mm mm mm cnr 0

Al 800 900 3,2 60 x 2,9 21 87 0,068
A2 800 900 3,3 37 x 3»3 5,5 21 0,016
B1 600 900 1,0 renf. 58 165 0,123
B2 600 900 1,0 37 x 3,1 5,2 15 0,018

Résultats expérimentaux

Poutre Limite A la ruine Nombre de cloques Déformée
élastique Charge Moment sur b sur a initiale

t/cm2 t tcm mm

Al 2,95 12,1 2110 1 5 5

A2 3,0 8,0 1360 1 1 5

B1 2,9 11,5 2170 3 5 3

B2 2,9 8,8 1500 1 1 1
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Comparaison des valeurs calculées aux valeurs expérimentales

P. Moment Calculs pour
expér.

tcm Y/m k O'er b

Al 2110 17,4 46 1,40 0

A2 1360 4,2 14,5 0,47 0

Bl 2470 33 35 2,48" 0

B2 1500 3 7,6 0,64 0

m 5

by/t> M th

2060

1390

2650

1440

Théorie linéaire sans réduct.

M
n.*4,35r

87

21

165

15

k

64

58

36

21,5

Scr

1,95
1,87
2,50*
1,82

1820

1760

2450

1590

1350

1310

1810

1180

Dans le calcul des moments de ruine on a tenu compte des bandes

extérieures (largeur 2 x 6,5 mm) qui travaillent de toute façon
à la limite élastique. Pour les nervures longitudinales, on a admis
en première approximation la même efficacité que pour la tôle. Pour
des contraintes critiques (Scr* dépassant la limite de proportionnalité

CTp admise à 2 t/cm2, on a réduit les valeurs selon les
indications des règles DIN 4ll4, Ri 7.42 (module d'Engesser-Kârmân).

L'examen des tableaux précédents montre que les poutres à raidis-
seurs plus rigides (Al et Bl) se comportent nettement mieux que les
autres. Il n'existe de plus aucune relation directe entre les
valeurs expérimentales à la ruine et celles données par la théorie
linéaire du voilement, sans réduction des rigidités y; ceci ressort
particulièrement bien de la comparaison des poutres Al et A2. La
théorie linéaire conduit ici à des moments critiques pratiquement
égaux pour les deux poutres, ce qui est normal puisque même la rigidité

y de la poutre A2 atteint pratiquement la valeur optimale y*.
Un renforcement des raidisseurs (poutre Al) ne devrait dès lors pas
amener d'augmentation substantielle de la résistance; en réalité,le rapport des moments de ruine vaut 1,55. Comme une partie non
négligeable de la flexion est reprise par les âmes, ceci surtout pourla poutre A2 qui est fortement dissymétrique à l'état de ruine, ilest plus juste de comparer les efforts de compression dans la
membrure comprimée ou, ce qui revient au même, les largeurs utiles
expérimentales; ce rapport dépasse 1,8.

Pour expliquer le comportement totalement différent des poutres Al
et A2, le plus simple est de comparer l'allure des déformations et
des allongements. Dans le sens transversal la poutre A2 a voilé en
une seule onde (fig. 4), la poutre Al par contre en quatre ondes,
avec lignes nodales au droit des raidisseurs (fig. 5), bien que ladéformation initiale comprenne une seule onde. La figure 6 montrel'allure des déformations le long du raidisseur central, avec de
grandes déflexions pour la poutre A2 et des valeurs pratiquement
négligeables pour Al. En fonction des charges appliquées, les
déformations au droit des raidisseurs et en travée diffèrent également:
pour A2 (fig. 7a) toutes les déformations ont la même allure et
atteignent rapidement des valeurs considérables, tandis que pour Al
(fig. 7b) les raidisseurs restent pratiquement rectilignes, avec
même au début une tendance à des déflexions de sens inverse; de
plus, les déformations des panneaux sont de beaucoup inférieures à
celles de la poutre A2.
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a) Poutre A2 b) Poutre Al
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Pour les allongements au bord de la semelle comprimée (fig. 8a)
resp. tendue (fig. 8b) en fonction de la charge, l'allure est en
principe la même, mais le diagramme A2 s'incurve déjà à partir de
5 t pour arriver rapidement à la limite élastique.

Progression des allongements dans la section de P

fig. 8a Semelle comprimée fig. 8b Semelle tendue

Les diagrammes les plus instructifs sont certainement ceux donnant
la répartition des allongements dans une section transversale, avec
les charges en paramètres. Pour A2 (fig. 9a) on remarquera la poche
centrale qui se creuse de plus en plus, avec des allongements qui
finissent même par décroître; à la ruine les efforts de compression
sont concentrés le long des âmes et le panneau se comporte donc dans
l'ensemble comme une plaque non raidie (voir par exemple [9] ce
qui montre bien que la rigidité des nervures est insuffisante dans
le domaine post-critique. Pour la poutre Al, par contre, la répartition

est beaucoup plus régulière (fig. 9b) et les poches se forment
ici entre les raidisseurs; même pour une tôle parfaitement soutenue
tous les 200 mm, le rapport de la largeur à l'épaisseur est en effet
tel que la largeur utile à la ruine serait inférieure à 1, de l'ordre
de 0,85. De plus, comme les raidisseurs n'ont pas tout-à-fait la
rigidité optimum, compte tenu du facteur de majoration m d'environ
5 (k 46 au lieu de 64, voir tableau), il existe également une poche

générale, d'ailleurs assez peu marquée. La figure semble aussi
montrer que les déformation initiales (de l'ordre de l'épaisseur),
n'influent guère sur l'allure des répartitions à la ruine et ne
devraient donc pas jouer un rôle important.

Comme il est prévu de publier ailleurs un compte-rendu plus détaillé
des essais, nous renonçons à analyser les résultats des poutres B,
la comparaison étant semblable à celle des poutres A.
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f 200 M 200 200 f g°° f j,
200 200 j 200

^
200

^

p 0 T
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%o ' '

7,5

11,9

Répartition des allongements dans la section médiane du panneau
comprimé (feuillet moyen), pour div. valeurs des charges appliquées

fig. 9a Poutre A2 fig. 9b Poutre Al

CONCLUSIONS GÉNÉRALES

a) Valeur expérimentale du coefficient m Tpost-cr.^ Y linéaire

La comparaison des valeurs calculées aux valeurs expérimentales des
moments de flexion montre une concordance satisfaisante lorsque l'on
donne au coefficient m une valeur moyenne de 5• Le nombre d'essais
réalisés est évidemment insuffisant pour généraliser ce résultat.
On peut toutefois remarquer que les quatre poutres étudiées couvrent
un domaine assez vaste, tant pour ce qui concerne la géométrie des
panneaux que pour la rigidité relative des raidisseurs. Pour calculer

la résistance à la ruine d'un panneau raidi comprimé, nous
proposons donc, dans l'attente de résultats plus nombreux, de diviser
par 5 la rigidité effective des raidisseurs et de calculer la
contrainte de voilement 6cr à partir de cette valeur y réduite.
La formule précitée de von Karman donnera alors la largeur effective

du panneau et fixera ainsi la grandeur du moment limite.
Pour dimensionner les raidisseurs dans une construction nouvelle,
on procédera de façon analogue, c'est-à-dire qu'on multipliera par
5 les rigidités théoriques données par la théorie linéaire; ceci
vaut aussi bien pour la rigidité optimale y* correspondant à
kmax 9ue P°ur des rigidités plus faibles, conduisant à des coefficients

de voilement k inférieurs à celui du voilement en ondes
transversales juxtaposées.

b) Contrôle au voilement habituel, sans réduction des rigidités

Pour les poutres A2 et B2, à raidisseurs non renforcés, les moments
expérimentaux à la ruine sont inférieurs aux moments critiques de
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la théorie linéaire; pour A2 le rapport Mruine^cr th est
inférieur à 0,8. Même le moment admissible, pour une sécurité au voile-
ment de 1,35 (DIN 4114, 17.4), atteint pratiquement la valeur à la
ruine! Le contrôle au voilement habituel conduit dès lors dans ce
cas à une sécurité effective à la ruine de l'ordre de 1, alors que
l'on devrait avoir de l'ordre de 1,7- Il est donc urgent de modifier
certains règlements dangereux lorsqu'on les applique à des tôles
raidies comprimées.

Si, par contre, l'on tient compte du facteur m 5, une sécurité
de 1,35 par rapport à Gcr paraît suffisante, puisque l'on dis-
pose de la réserve post-critique donnée par le rapport "V CTp/(5cr'.
Pour un raidissage très serré, conduisant à des valeurs (5cr
proches de Gp cette réserve devient cependant insuffisante;
dans ce domaine, il paraît prudent d'augmenter quelque peu le
facteur de sécurité.

c) Dimensionnement des raidisseurs au flambement

Un dimensionnement des raidisseurs longitudinaux au flambement,
comme cela a été proposé en 1916 déjà par Rode, n'est pas en accord
avec les résultats expérimentaux. Avec une largeur utile de 20 t,
comme proposé par divers auteurs, on obtient les élancements
suivants :

Les rapports des contraintes critiques au flambement correspondantes,
données par la droite de Tetmajer, la parabole de Johnson etc.,

ne correspondent pas aux valeurs expérimentales et surestiment la
résistance. Pour les poutres A2 et B2, on remarque même que l'élancement

est inférieur pour A2, c'est-à-dire que la résistance
devrait être ici plus grande, alors que c'est le contraire qui s'est
produit. Le calcul des raidisseurs au flambement, qui ne tient
compte ni du nombre de raidisseurs, ni de leur disposition dans le
panneau, ni du rapport a/b ne saurait résoudre correctement le
problème du dimensionnement de ces raidisseurs.

Al A2

46 78

B1 B2

36 84
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RESUME

Pour les semelles comprimées de poutres-caissons, les rigidités de la théorie
linéaire sont nettement insuffisantes dans le domaine post-critique. Pour les conditions
des quatre essais réalisés, le coefficient m 7 post-cr./T linéaire est de l'ordre
de 5. Un dimensionnement des raidisseurs longitudinaux partant de leur résistance
au flambement n'est par contre pas en accord avec les résultats expérimentaux.

ZUSAMMENFASSUNG

Für gedrückte Gurtbleche von Kastenträgern genügen die sich aus der linearen
Beultheorie ergebenden Steifigkeitswerte im Uberkritischen Bereich bei weitem nicht
mehr. Unter den Bedingungen der vier durchgeführten Versuche beträgt der
einzuführende Vergrösserungsfaktor m 7 überkr./ 7 linear rund 5. Eine Bemessung
der Längssteifen aufgrund ihrer Knickfestigkeit steht dagegen mit den Versuchsergeb-
nissen nicht im Einklang.

SUMMARY

For stiffened compression flanges of box-girders the required longitudinal stiffness

based on the linear theory of plate buckling is by much insufficient in the post-
critical range. Under the conditions of the four performed tests the factor m 7

post-cr. / 7 linear reaches about 5. On the other hand, proportioning requirements
of the longitudinal stiffeners based on their buckling loads do not seem to agree with
the test results.
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