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Simpl\) Supported Long Thin Plate I-Girders without Web Stiffeners
Subjected to Distributed Transverse Load

Poutres longues & Ame mince sans raidisseurs, simplement appuyées et
soumises a une charge uniforme :

Einfach gelagerte, lange, diinnwandige Blechtrager ohne Stegaussteifungen,
unter gleichmassiger Belastung

TORSTEN HOGLUND
Techn. lic.
Department of Building Statics and
Structural Engineering of the
Roval Institute of Technology
Stockholm, Sweden

1. INTRODUCTION

During the last ten years there has been a marked increase in the use of
welded thin plate I-girders especially in roof constructions. This has been made
possible by the use of rational methods of fabrication and design. One essential
point is ~ in spite of the thin web - to avoid web stiffeners, which have to be
manually fitted and welded and thus cause considerable costs.

The simply supported girder is a common element in roof constructions. When
the load is sufficiently distributed along the girder no other vertical web
stiffeners than at the supports are needed. When the girder is subjected to a
few concentrated loads vertical web stiffeners are required to prevent web cripp-
ling.

This investigation deals with long simply supported plate girders with web-
-stiffeners at the supports loaded with distributed transverse loads. The web
is then subjected to varying shear forces, distributed edge loading and bending
stresses simultaneously. Tne simple cases of loading, constant shear, bending
moment or edge loading have been studied but not this combination of all three.

Granholm [9] hai made tests on web crippling and he has given the empirical
formula P = 85 000 d¢ (d in cm gives P in kp) for the buckling Toad. This formu-
la has been confirmed by Bergfeldt and Hovik [5]. See fig. 1.

Shear loaded welded girders with large distance between web stiffeners
(a/h > 2.6) have been tested by Wdstlund and Bergman [17} Basler et al [1],
Granholm [9], Cooper [7], Nishino-Okumara [12], Fuiji [8]. The test girders have
been loaded with constant shear forces, in some tests combined with bending mo-
ment, see fig. 2 and 3.

Theoretical solutions for an infinitely long plate subjected to the action
of shearing forces along the edges have been obtained by Kromm and Marguerre
[10], Bergman [6] and Skaloud [15]. These theories which are based on the dif-
ferential equations for large deflections gives informations of bending and
membrane stresses in the elastic postbuckling range.
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The research work at Lehigh University [1,2,3,4,7] on plate girders with
transverse stiffeners with a spacing less than three times the girder depth
(a/h < 3) has resulted in specifications for such girders [18]. The influence
of the stiffeners of the flanges has been studied e.g. by Bergman [6], Fuiji [8],
Rockey and Skaloud [13,14].
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Fig. 1 Test results on web crippling. [5], [9].
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Fig. 2 Test results of welded plate girders Fig. 3 Test results of
subjected to shear. Th = theoretical welded plate girders
‘ultimate load, see fig. 19. subjected to bending and

shear. Granholm [9].
T, = hd 1,y where 7 5, = allowable shear stress according to [19].
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In Sweden special specifications for the design of welded plate girders in
roof constructions mainly loaded with dead load [19] have been in use since 1966.
The draft of these specifications which contains rules for the complete design
of plate girders with thin web was worked out by H. Nylander and the author by
order of Grdnges Hedlund AB, Stockholm. This paper is a part of the basis for
these specifications. In fig. 1 and 2 test results are compared with the allow-
able load Pz171 regarding to web crippling and the allowable shear stress T31]
according to these specifications. In fig. 3 test results for girders loaded
%n]bending and shear are compared with an interaction curve according to Basler
4].

2.  TEST PROGRAM AND TEST PROCEDURE

Three girders of structural carbon steel were tested, two with 9 m span and
one with 6 m span, see fig. 4.
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Fig. 4a Distribution of load, shearing forces and bending moment for the test
girders,
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Fig. 4b-c-d. b) Notations for cross section. c) and d) Girder cross sections
for the test girders.
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The girders were simply supported and loaded with nine or six gravity
loads with a spacing of 5/3 of the girder depth. The gravity loads were produced
by levers and scales with weights, see fig. 5. The test girders were fabricated
of flame cut flange and web plates in an automatic welding machine.
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Fig. 5 Test setup.

Table 1., Cross sectional properties and yield point of the flange and the
web material,

I o kp/cm?
. h d b t  h X y <P
Test girder cm cm cm cm d cm* flange web
B1 60.0 0.286° 22.6 0.99 210 46600 2944 4185
B4 60.0 0.200 15.1 0.61 300 20500 3040 2800
K1 60.0 0.286 22.6 0.99 210 46600 2944 4185

Details of the test girders are given in table 1.

The surface strains were measured with electrical strain gauges at
points near the supports on the web, on the stiffeners and on the flanges.
The out of plane deflections of the web were determined with a photogrammetic
method.
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Fig. 6, 7 and 8 show 1oad versus midspan deflection curves for the test
girders. The following reference loads are given in the figures:

= shear buckling Toad for the web calculated under the assumption
that the web is simply supported, very long and subjected to pure

= the buckling load in bending for the web at midspan section of the

Prcr
shear
ocr girders
e the bending moment oyI/(h/Z) at midspan.

The ultimate Toads are denoted PR} and PE}. The web deflection configuration
at ultimate load is indicated in the figures.

LOAD P [Mp]

LOAD P [Mp]

w

Poa=325
32Dt = S -
317 - - - v om0 1
i Pye=4.25 / ttear.“/
~ 299 : 10
L 283 go/
= 247
=210 —
¥1.73
=138 ——
=099
L T S T S S S S
/ Al __ T
o062 28/ Mt n———— hn
// )
b 180
/ 1 L i 1 1 1
0 10 20 30 40 50 60
DEFLECTION V, [mm]
B 4 P98 1
Pl
A

152 ——
133
-1

077

= 0.64

40 50
DEFLECTION V, [mm]

Fig. 6 Load-deflection curve
of test girder B1.

Fig. 7 Load-deflection curve
of test girder B4.



90 | — SIMPLY SUPPORTED LONG THIN PLATE I-GIRDERS

—_—
- R= 664

K1
TPk

i

l-528 —— /Vueor, 2

= 509 —— /

F ! j{
190 ——

LOAD P [Mp]

S
L S T — / °5///
355 ——— / : -5/ , K 1

—
N
:‘-—-

3l

8

0 ' L ! Fig. 8 Load-deflection curve

of test girder KI.
DEFLECTION Vg [mm)]

3.  TEST RESULT

Prior to testing, the initial deformations of the web plate were determi-
ned by photogrammetric method. The testing procedure consisted of taking new
photos, dial gauges and strain readings at each load level.

The web of test girder Bl was at support A stiffened with two web, stif-
feners and with ‘a single stiffener at support B.

Fig 9 and 11 show the deformation of the web of girder Bl at different
Toads. The principal stresses in the middle surface calculated from strain mea-
surements at six points of the web are shown with stress vectors. Typical
curves for the relation between the principal stresses and the Toad for two
points in the web, one at each support, are shown in fig 10 and 12. As in
other tests the compressive principal stress o, reached a certain value near
the shear buckling stress and remained approximately at this level up to the
maximum load.

The web of test girder B4 and Kl was stiffened with two stiffeners at
both supports. Fig. 13 shows the web defiection and fig. 14 the flange strains
at support of girder B4.

The ultimate load for the three test girders varied from 3.7 to 4.7 times
the shear buckling Toad, se table 2.
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Fig. 9 Web deflection (in mm) and principal stresses in the web of test girder
B1 at support A.
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Fig. 10 Principal stresses in the web of tes?%
girder B1 at support A as a function of
the load P.
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Fig. 11 Web deflection (in mm) and principal stresses in the web of test girder
B1 at support B.
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Fig. 13 Web deflection (in mm) of the test girder BA4.
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Table 2. Summary of test results

; h % Ter Pbr Ty Ty

Test girder d  kp/em?  kp/em? o Mp .y ?; ;ZF

B1 210 2420 231 3.24 3.25 853 0.35 3.69

B4 300 1620 113 3.78 1.58 529 0.37 4.68

K1 210 2420 231 3.24 5.28 924 0.38 4,00
Ty = oy//? P o= /Tcr/ry » Py, = ultimate load (1Mp = 2205 2b)
T, = Maximum shear force at ultimate load.(1 kp/cm?=14,2 2b/sq in)

4, THEORY

In order to obtain an intelligible model of the shear loaded girder the
web is replaced with a system of bars shown in fig. 15, The angle between the
tension bars and the flanges is denoted B and the compression bars are perpen-
dicular to the tension bars.

When the angle B is decreased the buckling load T__. for the bar system is

increased. The stress . in the compression bars for the buckling Toad is almost



94 | — SIMPLY SUPPORTED LONG THIN PLATE I-GIRDERS

independent of B and approximately the same as the shear buckling stress T
for the infinitly long web plate. This is still valid then the deflections®’
become large. For a given bar system the load increases only a 1ittle when
the deflections become large.

Fig. 15 Bar system for a girder subjected to shear.

Fig. 16 Bar system for a simply supported girder with distributed transverse
load.

For the simply supported girder with distributed load the inclination of
the bars is varied along the girder length because the shear force varies. The
stresses in the compression bars are assumed to be less than or equal to t
except at the upper corners at the supports where the bars are shorter and

can resist stresses larger than Teps

cr

b)

Fig. 17 Strong web stiffener Fig. 18 Weak web stiffener
a) Calculated distribution of shear stresses between the flanges and
the web. b) Distribution of flange stresses.
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Fig. 19 Calculated ultimate load for girders with strong web
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Fig. 20 Calculated ultimate load for girders with weak web
stiffeners and strong web stiffeners at the supports.
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Some results of the calculations for two cases are shown in fig. 17 and 18,
The distribution of the shear forces between the web and the flanges, the web
and the stiffeners (fig. 17a and 18a) is different for the two cases depending
on the different bending stiffness of the web stiffeners at the supports. The
strong web stiffeners (fig. 17) can resist the horisontal stress components of
the tension and compression bars and the tension bars can be distributed over
the girder depth. When the stiffeners are weak (fig. 18) the tension bars must
be concentrated to the upper corners at the supports. Fig. 17b and 18b show the
corresponding flange forces.

The tests confirm the theory with regard to stresses in the web, the flanges
and the web stiffeners except in one respect:

The measured principal compression stresses are greater than the shear buckling
stress for a long, simply supported panel with constant shearing force, which
may be part of the explanation of the fact that the theory underestimates the
ultimate load, see fig. 19 and 20.
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SUMMARY

Tests were performed on long simply supported thin plate I-girders with web
stiffeners only at the supports. The girders were loaded with nine or six gravity loads.
The depth to thickness ratio of the web ranged from 200 to 300. A theory is briefly
presented where the web is assumed to be composed of a system of compression and
tension bars.,

RESUME

Des essais ont été effectués sur des poutres 4 Ame mince simplement appuyées,
avec raidisseurs aux appuis seulement. On a chargé les poutres par neuf ou six
charges concentrées. Le rapport entre la hauteur et 1'épaisseur de 1'aAme variait entre
200 et 300. On en présente une théorie en supposant que 1'Ame soit composée d'un
systéme de barres de tension et de compression.

ZUSAMMENF ASSUNG

Es wurden Versuche an langen, diinnen, einfach gelagerten I-Vollwandtrédgern
durchgefiihrt, welche lediglich an den Enden Stegaussteifungen besassen. Man belastete
die Triger mit sechs oder neun konzentrierten Kraften. Das Verhiltnis der Hohe zur
Dicke variierte zwischen 200 und 300. Es wird kurz eine Theorie vorgelegt, unter
der Annahme, der Steg bestehe aus einem System von Zug- und Druckstében.

Session Bg. 7
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