Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 10 (1971)

Artikel: Zerlegbare Stahlhochstrasse in Belgrad

Autor: Pavlovi, Zvonimir

DOI: https://doi.org/10.5169/seals-11184

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zerlegbare Stahlhochstrasse in Belgrad

Dismountable Viaduct of Steel Construction in Belgrad

Auto-pont démontable en construction d'acier à Belgrade

ZVONIMIR PAVLOVIĆ

Dipl.-Ing. Professor an der Universität Belgrad, Jugoslavien

Die heutige und besonders auch die zukunftige Entwicklung des ober-und unterirdischen Verkehrs in Belgrad verlangt, dass der Verkehr sowohl in den Innenstadt als auch in den Vororten schnell

und vorübergehend umgelenkt

wird.

Mitte 1969 hat man sich entschlosses über eine neugebaute zweispurige Schnellstrasse am rechten Ufer der Sawe, unweit des Messengeländes eine Stahlhochstrasse für vorlaüfig fünf Jahre zu bauen.

Die ca 200 m lange

Stahlhochstrasse überquert die Schnellstrasse in einer Kurve mit einem Radius von 120 m.Sie hat eine Längsnei-gung von 5,5% und eine Quer-neigung von 2%.

Die Strassenbaudirektion Belgrad hat Angebote von drei Firmen erhalten:

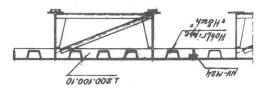
M.A.N.; Gustavsburg: Das System mit vollwandigen und fachwerkartigen Hauptträgern, welches uns Herr dr. Kunert in seinem Beitrag gezeigt hatte;

Bild 1. Ansicht der Hochstrasse

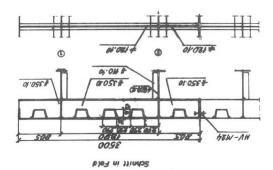
WAAGNER-BIRO, Wien : Nach der Lizenz von Krupp, Schnellbrücke Typ Rheinhausen 2;

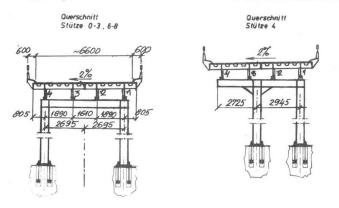
WIENER BRUECKENBAU, Wien: Nach der Lizenz von den Rheinischen Stahlwerken . Dortmund .

Von technischer Seite gesehen hatten alle drei Angebote, mit ihren Vor- und Nachteilen, die gestellte Aufgabe gelöst. Für die



Vergabe an die Firma Wiener Brückenbau waren vorwiegend kaufmännische Ueberlegungen massgebend.

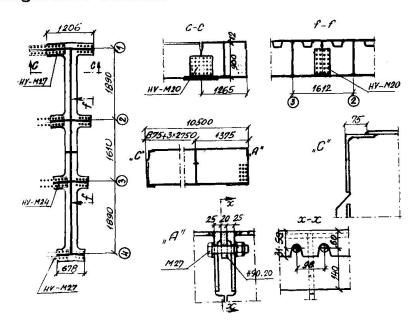

Technische Einzelheiten


Bd.2 Brückenteile

Schnitt über Stützen

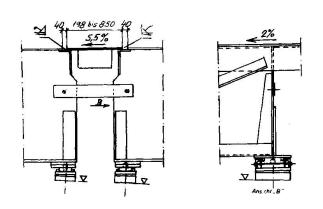
Bd.3 Querschnitte der Brückenteile

Bd.4 Querschnitte der Hochstrasse


Die ausgefürte Stahlhochstrasse ist für die
Brückenklasse 30 nach
DIN 1072 bemessen. Als
max. Einzellast sind 13,0
Mp berücksichtigt. Neben
den DIN 1072 sind noch
folgende Vorschriften
berücksichtigt worden:
DIN 1073,4114,4101 und
17100 und jugoslawiche
Vorschriften für Windund Erdbebenbelastung.

Für die tragende Konstruktionsteilen wird im wesentlichen St52-3 verwendet.Das Fahrbahnblech und der Schrammbord bestehen aus St37-2.

Die Stahlchochstrasse besteht aus einem Einfeldträgersystem mit Stützweiten 10,50 8x22,3 10,5 m.Die reine Fahrbahnbreite ist 6,4 m.Die Fahrbahn wird durch Schrammbord und Leitschwellen an beiden Seiten begrenzt.

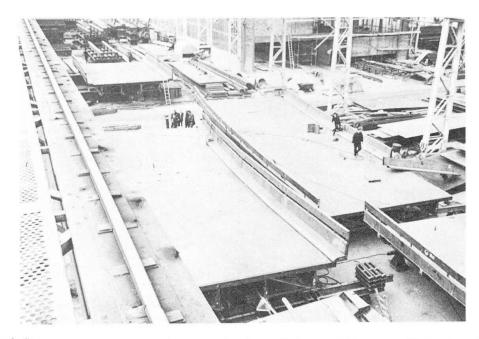

Die Einfeldträger
bestehen aus 10,5 m langen und 3,5 m breiten
Brückenteilen. Diese Brückenteile sind als Deckbrücke ausgebildet und
haben zwei vollwandige
Hauptträger. Das 12 mm
dicke Deckblech der orthotropen Fahrbahnplatte
wird durch länglaufende
Hohlrippen und durch
Querträger unterstützt.
Die Bauhöhe des Ueberbaues beträgt ca 93 cm.

Die Querschnitte der Stahlchohstrasse zeggt Bild 4.Es ist mit diesem System möglich in Zukunft eine Wiederverwendung beim Bau der Fussgängerunterführungen und U-Bahn in Belgrad. Durch Kombinationen von vier 10,50 m Brückenteilen und einem Keilstück in Trägermitte entsteht ein Brückenträger vom ca 22,00m Spannweite und 7,00m Breite. Alle Verbindungen sind mit HV-Schrauben durchgeführt worden.

Bd.5 Der Stoss in Brückenträgermitte

Die Anpassung an den Kreisbogen erfolgt poligonal. Die trapezformigen Zwischenstücke befinden sich in Trägermitte und an den Uebergängen über den Stützen.

Bd.6 Uebergangblech über den Stützen


Als Stützenkonstruktionen werden stählerne Portalrahmen verwendet, die zum Kreisbogen radial angeordnet sind.

Die Ausbildung der Uebergangsbleche über den Stützen ermöglichen,trotz der statischen Wirkung als Einfeldträger,die Uebertragung der Längskräfte auf die Wiederlager.

In Brückenmitte, über Stütze 4, würde eine zusätzliche Fahrbahndehnunsübergang angeordnet. Es besteht aus einer dreiteiligen Schleppblechkonstruktion.

Die Schrammborde mit den Geländer sind aus dem abgekantetem Stahlblech angefertigt und mit der Tragkonstriktion durch HV-Schrauben verbunden worden. Die Entwässerung erfolgt durch den inneren Schrammbord.

Nach sehr sorgfältiger Werkstattfertigung wurde eine Probemontage in Werk der Wiener-Brückenbau vorgenohmen/Bd.7/. Aus diesem Gründen konnte die Montage ohne Schwierigkeiten durchgefürt werden.

Bd.7 Probemontage in Werk der Firma Wiener Brückenbau

Auf der Baustelle mussten von der Firma Mostogradnja-Belgrad nur folgende Arbeiten durchgeführt werden:

-Das Verschweissen der Rhamenriegeln mit den Stielen; -Die zu ca 22 m langen und 3,5 m breiten Brückenteilen verbundenen Elemente wurden mit dem Autokran auf die Stützen gelegt und verschweisst. Danach wurden Übergangsbleche über Stützen verschweisst;

-Die Schrammborde und Geländer wurden nach der Montage des Tragwerkes eingebaut.

Nach dem Sandstrahlen des Fahrbahnbleches wurde ein zwei-

schichtige Haftbelag aus Teer-Epoxi-Harz aufgebracht.

Um die Haftung des 5 cm starken Fahrbahnbelages aus Gussasphalt zu gewährleisten, wurde in die obere Schichte des Haftbelages Quarzsand eingestreut.

ZUSAMMENFASSUNG

In Belgrad, am rechten Ufer der Sawe, unweit des Messegeländes, überquert eine ca. 200 m lange zerlegbare Stahlhochstrasse für vorläufig fünf Jahre, die Schnellstrasse in einer Kurve mit einem Radius von 120 m. Sie hat eine Längsneigung von $5,5\,\%$ und eine Querneigung von $2\,\%$.

SUMMARY

In Belgrad, on the right bank of the Save river, near the Fair area a dismountable steel viaduct of about 200 m is crossing, provisionally for 5 years the main road in a curve of 120 m radius. Its longitudinal gradient is 5.5 % and the transversal 2 %.

RESUME

A Belgrade, sur la rive droite de la Save, près du terrain de la Foire, un autopont démontable de 200 m de longueur environ croise, provisoirement pour un délai de 5 ans, la grande route dans une courbe de 120 m de rayon. Sa pente longitudinale est de 5,5%, la pente transversale de 2%.

Leere Seite Blank page Page vide