Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band: 6 (1970)

Artikel: Ein Nähernugsverfahren zur Berechnung der Verbund- und

vorgespannten Konstruktionen

Autor: Djuri, Milan

DOI: https://doi.org/10.5169/seals-7803

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ein Näherungsverfahren zur Berechnung der Verbund- und vorgespannten Konstruktionen

An Approximate Method for Calculation of Composite and Prestressed Structures

Une méthode approchée pour le calcul des constructions mixtes acier-béton et en béton précontraint

MILAN DJURIČ Prof., Dr. sc. techn. Universität Beograd Jugoslawien

1. Beziehung zwischen Spannungen und Dehnungen des Betons

Bei der Berechnung der vorgespannten und der Verbundkonstruktionen wird noch immer die von Dischinger vorgeschlagene Beziehung zwischen Spannungen und Dehnungen des Betons angenommen. Diese Beziehung wird zumeist in Form einer Differentialgleichung geschrieben, kann aber auch in Form einer Integralgleichung angeschrieben werden, und zwar:

/1/
$$\varepsilon_b = \frac{G_b}{E_h} + \frac{1}{E_h} \int_0^{\varphi} \sigma_b \, d\varphi + \varepsilon_s,$$

wo durch $\varphi = \varphi(t)$ das Kriechmass und durch $\varepsilon_s = \varepsilon_s(t)$ das Schwindmass des Betons bezeichnet wird. Dabei wird gewöhnlich vorausgesetzt, dass

121
$$\varepsilon_s = -\frac{\varepsilon_{sk}}{\varphi_k} \varphi(t)$$

ist, wo durch $\varphi_{\mathcal{K}}$ das Endkriechmass und durch $\varepsilon_{\mathcal{S}_{\mathcal{K}}}$ das Endschwindmass des Betons bezeichnet ist.

Es hat sich leider gezeigt, dass zahlreiche Probleme der vorgespannten und der Verbundkonstruktionen mit einer solchen Beziehung zwischen Spannungen und Dehnungen nicht gelöst werden können. Deshalb ist man gezwungen, sich mit angenäherten Lösungen zu begnügen.

In dem hier vorgeschlagenen Näherungsverfahren wird die Integralgleichung /l/ durch eine gewöhnliche algebraische Gleichung ersetzt, die sich ergibt, wenn der Wert des Integrals in der Gleichung /l/ bestimmt wird unter Voraussetzung, dass die Spannung im Beton von Werte σ_{60} im Zeitpunkt t=0 bis zum Wert σ_{6} im Zeitpunkt t, eine lineare Funktion der Veränderlichen φ ist, d.h. wenn in die Gleichung /l/ eingetragen wird:

$$\int_0^{\varphi} \sigma_b \, d\varphi = \frac{\sigma_{bo} + \sigma_b}{2} \, \varphi.$$

Mit den Bezeichungen

/4/, /5/
$$E_{b\varphi} = \frac{2}{2+\varphi} E_{b}$$
, $S = \frac{\varphi}{2+\varphi}$,

kann die Gleichung /l/ in folgender Form geschrieben werden:

$$66 + 96_{bo} = F_{b\varphi} (\varepsilon - \varepsilon_s).$$

Die Lösungen, die sich ergeben, indem man von der obigen Gleichung ausgeht, sind einfach und stets ausreichend genau, in bezug auf die Genauigkeit, mit der die Materialkonstanten bestimmt werden können und die Genauigkeit, mit der die Gleichung /l/ das reelle Verhalten des Betons derstellt.

2. Grundlegende Bezeichungen

Es - Elastizitätsmodul des Stahls,

£, - Elastizitätsmodul des Betons,

Ebo - fiktiver Elastizitätsmodul des Betons, Gleichung /4/,

 E_c - Vergleichs-Elastizitätsmodul. Für Verbundkonstruktionen ist $E_c = E_{s}$, für vorgespannte Konstruktionen ist $E_c = E_{sp}$,

 $V_{\partial} = E_{\partial}/E_{c}$, $V_{b} = E_{b\varphi}/E_{c}$ - Verhältnisse der Elastizitätsmoduli, E_{∂} - Querschnittsfläche des Stahls mit dem Schwerpunkt E_{∂} ,

C - Abstand der Schwerpunkte 7 und 76, positiv wenn der Schwerpunkt 7 unter dem Schwerpunkt 76 liegt,

 $F_{or} = V_o F_o$, $F_{for} = V_b F_b$ - reduzierte Querschnittsfläche des Stahls bzw. des Betons,

- ideelle Querschnittsfläche, Fi = Far + Fbr

y - Abstand der Querschnittspunkte von der zur Biegungsebene senkrechten Achse durch den Schwerpunkt des ideellen Querschnittes 7: Die Abstände des Schwerpunktes 7: von den Schwerpunkten 70 und 76 sind: $y_a = F_{br}C/F_{c}$ und

 $I_a, I_b - \begin{array}{c} y_b = F_{ar} C/F_L \\ \end{array},$ Trägheitsmomente des Stahl- bzw. Betonteiles des Querschnittes in bezug auf die Schwerpunkrachsen durch T_a und T_b ,

 $I_{\partial r} = V_{\partial I_{\partial r}} = V_{\partial I_{\partial r}} - \text{reduziertes Trägheitsmoment des Stahls bzw. des Betons,}$

 $I_i = I_{ar} + F_{ar}y_a^2 + I_{br} + F_{br}y_{br}^2$ Trägheitsmoment des ideellen Querschnittes.

Die eingeführten Bezeichnungen unterscheiden sich von den in der Theorie der vorgespannten und der Verbundkonstruktionen üblichen Bezeichnungen nur dadurch, dass die Betonfläche nicht nach dem reellen Elastizitätsmodul des Betons E_6 , sondern nach dem fiktiven Modul E_{60} reduziert wird. Da der Modul E_{60} eine Funktion von φ bzw. von t ist, so sind auch die Grössen ν_b , F_{6n} , I_{6n} , F_6 , I_6 , I_6 , I_6 , I_6 , I_6 , sowie die Grössen ν_a , ν_b Funktionen von ν_b bzw. von t

3. Spannungen und Verformungsgrössen

Der Bernoullischen Voraussetzung über ebenbleibende Querschnitte gemäss können, im Falle ebener Biegung, die Dehnungen in der Richtung der Stabachse in folgender Form dergestellt werden:

$$(7) \quad \varepsilon = \varepsilon_T + \partial \ell y,$$

wo $\mathcal{E}_{\mathcal{T}}$ die Dehnung im Schwerpunkt des ideellen Querschnittes $\mathcal{T}_{\mathcal{E}}$ ist, und \mathcal{H} die Krümmungsänderung der Stabachse. Die Spannungen im Stahl werden, laut Hooke-schem Gesetz, durch den Ausdruck:

/8/
$$\sigma_a = E_a(\varepsilon_T + \varepsilon_Y)$$

gegeben, während die Spannungen im Beton, gemäss der Gleichung /6/, durch den Ausdruck:

gegeben wedren. Die Verformungsgrössen $\mathcal{E}_{\mathcal{T}}$ und \mathcal{H} in dem Querschnitt mit den Querschnittskräften \mathcal{N} und \mathcal{M} ergeben sich aus den Gleichgewichtsbedingungen:

/10/
$$\int_{\partial} \sigma_{\partial} dF + \int_{b} \sigma_{b} dF = N,$$

$$\int_{\partial} y \sigma_{\partial} dF + \int_{b} y \sigma_{b} dF = M,$$

wo der Index 3 bzw. 6 unterhalb des Integralzeichens bezeichnet, dass das Integrationsgebiet der Stahl- bzw. der Betonteil des Querschnittes ist. Wenn die Gleichungen /8/ und /9/ in die Gleichungen /10/ eingetragen werden, ergibt sich:

$$\mathcal{E}_{T}\left(E_{\partial}\int_{\partial}^{d} dF + E_{b\varphi}\int_{b}^{d} dF\right) + \partial \mathcal{E}\left(E_{\partial}\int_{\partial}^{d} y dF + E_{b\varphi}\int_{b}^{d} y dF\right) =$$

$$= N + \rho \int_{b}^{d} \sigma_{bo} dF + E_{b\varphi} \varepsilon_{s} \int_{b}^{d} dF,$$
/11/
$$\mathcal{E}_{T}\left(E_{\partial}\int_{\partial}^{d} y dF + E_{b\varphi}\int_{b}^{d} y dF\right) + \partial \mathcal{E}\left(E_{\partial}\int_{\partial}^{d} y dF + E_{b\varphi}\int_{b}^{d} y dF\right) =$$

$$= M + \rho \int_{b}^{d} y \sigma_{bo} dF + E_{b\varphi} \varepsilon_{s} \int_{b}^{d} y dF.$$

Nach den Bezeichungen im vorangehenden Abschnitt ist:

$$E_{\partial}\int_{\partial}dF + E_{b\varphi}\int_{b}dF = E_{\partial}F_{\partial} + E_{b\varphi}F_{b} = E_{c}F_{i},$$

$$/12/\qquad E_{\partial}\int_{\partial}ydF + E_{b\varphi}\int_{b}ydF = E_{\partial}F_{\partial}y_{\partial} + E_{b\varphi}F_{b}y_{b} = 0,$$

$$E_{\partial}\int_{\partial}y^{2}dF + E_{b\varphi}\int_{b}y^{2}dF = E_{\partial}(I_{\partial} + F_{\partial}y_{\partial}^{2}) + E_{b\varphi}(I_{b} + F_{b}y_{b}^{2}) = E_{c}I_{i}.$$
Die Integrale:

$$\int_{b} G_{bo} dF$$
 und $\int_{b} y G_{bo} dF$,

an der rechten Seite der Gleichung /ll/ haben einfache Bedeutungen. Das erste stellt die Resultierende der inneren Kräfte die von Beton im Zeitpunkt t=0 aufgenommen werden dar, während das zweite das Moment in bezug auf den Schwerpunkt des ideellen Querschnittes

 \mathcal{T}_i derselben Kräfte darstellt. Die Resultierende wird mit \mathcal{N}_{bo} und das Moment wird mit $\mathcal{M}_{bo} + \mathcal{N}_{bo} \mathcal{Y}_{bo}$ bezeichnet, wo \mathcal{M}_{bo} das Moment der vom Beton im Zeitpunkt t = 0 aufgenommenen inneren Kräfte in bezug auf den Schwerpunkt des Betons \mathcal{T}_b ist. Damit wird:

/13/
$$\int_{b} G_{bo} dF = N_{bo}$$
, $\int_{b} y G_{b} dF = M_{bo} + N_{bo} y_{bo}$.

Wenn man nebst den bisher eingeführten Bezeichnungen noch die Bezeichnung:

/14/
$$N_{SK} = E_{b\varphi}F_b E_S = -E_{b\varphi}F_b \frac{E_{SK}}{\varphi_K} \varphi$$
,

einführt, so können die Gleichungen /ll/ auch in folgender Form angeschrieben werden:

/15/
$$E_c F_i E_T = N + g N_{bo} + N_{sk}$$
,
 $E_c I_i = M + g (M_{bo} + N_{bo} y_{bo}) + N_{sk} y_{bo}$.

Wird die Summe der Kräfte an der rechten Seite der ersten von diesen Gleichungen als eine fiktive Normalkraft \mathcal{N}_{φ} und die Summe der Momente an der rechten Seite der zweiten von diesen Gleichungen als ein fiktives Biegungsmoment \mathcal{M}_{φ} aufgefasst:

/16/
$$N_{\varphi} = N + P N_{bo} + N_{sk}$$
,
 $M_{\varphi} = M + P (M_{bo} + N_{bo} y_{bo}) + N_{sk} y_{ba}$,

so sind die Verformungsgrössen ${\cal H}$ und ${\cal E}_{{\cal T}}$ durch folgende Ausdrücke angegeben:

/17/
$$\varepsilon_T = \frac{N\varphi}{E_c F_i}$$
, $\partial e = \frac{M\varphi}{E_c I_i}$

Wenn men diese Werte für $\mathcal{E}_{\mathcal{T}}$ und $\partial \mathcal{E}$ in die Gleichungen /8/ und /9/ einführt, so ergibt sich:

/18/
$$\sigma_{b} = V_{b} \left(\frac{N_{\varphi}}{F_{i}} + \frac{M_{\varphi}}{I_{i}} y \right),$$

$$\sigma_{b} = V_{b} \left(\frac{N_{\varphi}}{F_{i}} + \frac{M_{\varphi}}{I_{i}} y \right) - \rho \sigma_{bo} - E_{b\varphi} \varepsilon_{s}.$$

Aus den Gleichungen /17/ und /18/ wir folgern, dass in einem Verbund- oder vorgespannten Träger im Zeitpunkt t die Verformungsgrössen $\mathcal{E}_{\mathcal{T}}$ und $\mathcal{D}_{\mathcal{E}}$ gleich sind und die Spannungen $\mathcal{E}_{\mathcal{E}}$ und $\mathcal{E}_{\mathcal{E}}$ proportionell sind den entsprechenden Einflüssen in einem Träger von gleichartigem Material, mit einheitlichem Elastizitätsmodul $\mathcal{E}_{\mathcal{C}}$, mit den Querschnittsbeiwerten $\mathcal{F}_{\mathcal{C}}$ und $\mathcal{I}_{\mathcal{C}}$ und mit den fiktiven Querschnittskräften \mathcal{N}_{φ} und \mathcal{M}_{φ} , die durch die Gleichungen /16/ angegeben sind.

Um aus den Gleichungen /16/, /17/ und /18/ die Verformungsgrössen und die Spannungen im Zeitpunkt t zu berechnen, ist es erforderlich, die Grössen G_{bo} , N_{bo} und M_{bo} zu kennen. Die erwähnten Grössen ergeben sich aus den vorangehenden Gleichungen, wenn man für t=0: $\varphi=0$, $F_{b\varphi}=E_b$, $\varphi=0$, $N_{SK}=0$ stellt, sowie dass

 $N=N_Q$ und $M=M_Q$ ist:

/19/
$$G_{ao} = V_a \left(\frac{N_o}{F_{io}} + \frac{M_o}{I_{io}} y_o \right), \quad G_{bo} = V_b \left(\frac{N_o}{F_{io}} + \frac{M_o}{I_{io}} y_o \right),$$

/20/
$$N_{bo} = N_o \frac{F_{bro}}{F_{io}} + M_o \frac{F_{bro} y_{bo}}{I_{io}}$$
, $M_{bo} = M_o \frac{I_{bro}}{I_{io}}$.

In den obigen Gleichungen sind F_{bro} und I_{bro} Querschnittswerte des Betons, reduziert nach dem reellen Elastizitätsmodul des Betons E_{b} und F_{lo} , I_{lo} die Querschnittswerte des entsprechenden ideellen Querschnittes.

4. Statisch unbestimmte Träger

Infolge des Schwindens und des Kriechens des Betons, unter Einwirkung einer ständigen Belastung, ändern sich im Laufe der Zeit die Verformungen der Verbund- oder vorgespannten Konstruktionen. Deshalb ändern sich in den statisch unbestimmten Verbund- oder vorgespannten Trägern auch die statisch unbestimmten Grössen X_K , $K=1,2,\ldots N$, und damit auch die Querschnittskräfte:

$$/21/ N = N_{\phi} + \sum_{k=1}^{n} X_{k} N_{k}, \qquad M = M_{\phi} + \sum_{k=1}^{n} X_{k} M_{k},$$

wo N_{\varnothing} , M_{\varnothing} Querschnittskräfte des Gleichgewichtszustandes $\chi_{\kappa}=0$, und N_{κ} , M_{κ} Querschnittskräfte des Selbstspannungszustandes $\chi_{\kappa}=1$, sind.

Die statisch unbestimmten Grössen X_k , $k=1,2,\ldots n$, werden aus n Gleichungen des Prinzips der virtuellen Kräfte:

122/
$$\int (N_i \varepsilon_T + M_i \partial e) ds = \sum_j C_{ji} c_j$$
, $i = 1, 2, ... n$,

berechnet, in denen C_{ii} Reaktionen, und N_i , M_i Querschnitts-kräfte des Selbstspannungszustandes $X_i = 1$ bezeichnen, während E_{7} und E_{7} die wirklichen Verformungsgrössen und E_{7} die wirklichen Stützenverschiebungen des Trägers sind.

In den Gleichungen /17/ und /18/ wurde nichts von den Querschnittskräften vorausgesetzt so dass dieselben auch dann gültig sind, wenn die Kräfte // und // mit der Zeit sich ändern, d.h. sowohl für statisch bestimmte als auch für statisch unbestimmte Träger. Laut Gleichungen /21/, Gleichungen /16/ und Gleichungen /17/ sind die Verformungsgrössen & und & in einem statisch unbestimmten Träger durch folgende Ausdrücke angegeben:

/23/
$$\mathcal{E}_{T} = \frac{1}{f_{c}f_{c}} \left(N_{\phi}^{\prime} + \sum_{k=1}^{n} \chi_{k} N_{k} \right), \quad \partial e = \frac{1}{f_{c}I_{c}} \left(M_{\phi}^{\prime} + \sum_{k=1}^{n} \chi_{k} M_{k} \right),$$

worin

$$N_{\phi}^{i} = N_{\phi} + PN_{bo} + N_{sk},$$

$$/24/$$

$$M_{\phi}^{i} = M_{\phi} + P(M_{bo} + N_{bo} y_{bo}) + N_{sk} y_{bo},$$

ist.

Wenn die Gleichungen /23/ in die Gleichungen /22/ eingetragen werden ergibt sich:

$$\frac{\sum_{k=1}^{n} X_{k} \left(\int \frac{M_{i}M_{k}}{E_{i}I_{i}} ds + \int \frac{N_{i}N_{k}}{E_{c}F_{i}} ds \right) + }{125/}$$

$$+ \int \frac{M_{i}M_{\phi}}{F_{c}I_{i}} ds + \int \frac{N_{i}N_{\phi}}{E_{c}F_{i}} ds - \sum_{j} C_{ji}c_{j} = 0,$$

Mit den Bezeichnungen:

$$\delta_{ik} = \int \frac{M_i M_k}{E_c I_i} ds + \int \frac{N_i N_k}{E_c F_i} ds,$$

$$\delta_{i\phi} = \int \frac{M_i M_{\phi}}{E_c I_i} ds + \int \frac{N_i N_{\phi}}{E_c F_i} - \sum_{i} C_{ii} c_{ij},$$

können die Gleichungen /25/ in folgender Form geschrieben werden:

127/
$$\sum_{k=1}^{n} X_{k} \delta_{ik} + \delta_{i\phi} = 0, \qquad i = 1, 2, ... n.$$

Daraus wir folgern, dass die statisch unbestimmten Grössen in einem Verbund- oder vorgespannten Träger im Zeitpunkte t gleich sind den statisch unbestimmten Grössen eines statisch unbestimmten Trägers aus gleichartigem Material, mit einheitlichem Elastizitätsmodul $E_{\rm C}$, mit den Querschnittswerten $E_{\rm C}$ und $E_{\rm C}$, sowie mit den Einflüssen im Hauptsystem $E_{\rm C}$ und $E_{\rm C}$ die durch die Gleichungen /24/ angegeben sind.

5. Träger mit zusammengesetztem Stahlquerschnitt

Der Stahlquerschnitt des Verbundträgers wird oft aus mehreren Teilen zusammengesetzt: Blech oder Walzträger, schlaffe Bewehrung und Drähte bzw. Vorspannstähle, mit den Querschnittsflächen F_n , F_m , F_ρ , mit den Trägheitsmomenten I_n , I_m , I_p in bezug auf die Achse durch den Schwerpunkt T_n , bzw. T_m und T_p , und mit den Elastizitätsmoduli E_n , E_m und E_p .

Es ist leicht zu beweisen, dass auch für diesen Fall sämtliche bisher abgeleiteten Gleichungen gelten, wobei darin $\mathcal{F}_{\mathcal{P}^{n}}$ die ideelle Stahlfläche bezeichnet, und zwar:

/28/
$$F_{an} = F_{nn} + F_{mn} + F_{pn}$$
,
/29/ $F_{nn} = \nu_n F_n$, $F_{mn} = \nu_m F_m$, $F_{pn} = \nu_p F_p$,
/30/ $\nu_n = \frac{E_n}{E_c}$, $\nu_m = \frac{E_m}{E_c}$, $\nu_p = \frac{E_p}{E_c}$,

und $I_{\partial r}$ das Trägheitsmoment der ideellen Stahlfläche in bezug auf den Schwerpunkt I_{∂} :

/31/
$$I_{ar} = I_{nr} + I_{mr} + I_{pr} + F_{nr}(e_n - e_a)^2 + F_{mr}(e_m - e_a)^2 + F_{pr}(e_p - e_a)^2$$
,
/32/ $I_{nr} = V_n I_n$, $I_{mr} = V_m I_m$, $I_{pr} = V_p I_p$.

Der abstand e_{o} des Schwerpunktes T_{o} von der Achse, die in den Abständen e_{n} , e_{m} , e_{ρ} von den Schwerpunkten T_{n} , T_{m} , T_{ρ} verläuft, wird aus der Gleichung:

1331
$$F_{nr}(e_n - e_a) + F_{mr}(e_m - e_a) + F_{pr}(e_p - e_a) = 0$$
.

bestimmt.

Mit der ideellen Stahlfläche F_{ar} , dem Trägheitsmoment derselben Fläche I_{ar} in bezug auf die durch den Schwerpunkt T_a verläufende Achse, wird die Schwerpunktslage des ideellen Verbundquerschnittes $T_{\mathcal{L}}$ berechnet, die Beiwerte $F_{\mathcal{L}}$ und $I_{\mathcal{L}}$, ferner die fiktiven Kräfte N_{φ} und N_{φ} , die Verformungsgrössen $\mathcal{E}_{\mathcal{T}}$ und $\mathcal{E}_{\varepsilon}$, sowie die Spannungen im Beton G_b aus den vorhin abgeleiteten Gleichungen, während die Spannungen in den Stahlteilen des Trägers durch die Gleichungen:

gegeben sind.

6. Einfluss der Vorspannungskräfte

Die Vorspannung von Trägern wird gewöhnlich mittels Spanndrähte durchgeführt die sich in Röhren befinden, welche eine von den übrigen Teilen des Trägers unabhängige Drahtverformung sichern. Bei einer derartigen Vorspannungsweise im Moment der Vorspannung, d.h. im Zeitpunkt t=0 ist die Spannkraft P eine äussere auf den spannstahllosen Querschnitt einwirkende Kraft. Der Spannstahl ist in diesem Augenblik bloss ein dem Träger die Kraft P vermittelndes Element. Dementsprechend ergeben sich die Spannungen im Zeitpunkt t=0 infolge der Vorspannung, wenn in die Gleichung /19/ $N_0=-P$ und $M_0=-Py_{PO}$ eingetragen wird:

135/
$$G_{00} = -V_0 P\left(\frac{1}{F_{i0}} + \frac{y_{po}y_o}{I_{i0}}\right), \quad G_{bo} = -V_{bo} P\left(\frac{1}{F_{i0}} + \frac{y_{po}y_o}{I_{i0}}\right),$$

wo \mathcal{F}_{io} und \mathcal{I}_{io} Querschnittswerte des ideellen spannstahllosen Querschnittes sind.

Nachdem die Drähte gespannt und verankert sind, werden die Röhre mit Zementmörtel injiziert. Der Spannstahl wird zu einem Teil des Trägers, der ihren weiteren Verformungen Folge leistet, und damit die ursprüngliche Spannung P/F_o im Laufe der Zeit stetig ändett. Die Aenderung dieser Spannung ist dem Dehnungs-unterschied $\mathbf{E}-\mathbf{E}_o$ in den Zeitpunkten \mathbf{t} und $\mathbf{t}=\mathbf{0}$ proportionell, so dass die Spannung im Spannstahl im Zeitpunkt \mathbf{t} gleich wird:

/36/
$$\mathcal{G}_{p} = \frac{p}{F_{p}} + F_{p}(\varepsilon - \varepsilon_{o}).$$

Wenn man diese Gleichung sowie die Gleichungen:

/37/
$$G_n = E_n \varepsilon$$
, $G_m = E_m \varepsilon$, $G_b = E_{b\varphi} \varepsilon - \rho G_{bo}$,

in Bedingungen:

$$\int_{n}^{6} G_{n} dF + \int_{m}^{6} G_{m} dF + \int_{p}^{6} G_{p} dF + \int_{b}^{6} G_{b} dF = 0,$$

$$\int_{n}^{6} G_{n} y dF + \int_{m}^{6} G_{m} y dF + \int_{p}^{6} G_{p} y dF + \int_{b}^{6} G_{b}^{2} y dF = 0,$$

einführt, schliesst man daraus, dass auch für die durch die Vorspannungskraft hervorgerufenen Verformungsgrössen $\mathcal{E}_{\mathcal{T}}$ und $\boldsymbol{\mathcal{P}}$ e die Gleichungen /17/ gelten , damit

/38/
$$N\varphi = -P + \int_{P} E_{p} E_{o} dF + 9 \int_{b} G_{bo} dF,$$

$$M\varphi = -P y_{po} + \int_{P} E_{p} E_{o} y dF + 9 \int_{b} G_{bo} y dF,$$

ist. Die Grösse E_{p} Eo ist die Spannung, die von dem Spannstahl aufgenommen werden würde, wenn derselbe im Zeitpunkt t=0 der Verformung des Trägers folgen würde. Das Integral dieser Spannungen im Ausdruck für N_{φ} ist die Rezultierende N_{φ} , und das Integral der statischen Momente dieser Spannungen in bezug auf den Schwerpunkt des ideellen Querschnittes im Ausdrucke für N_{φ} ist das Moment $N_{\varphi} + N_{\varphi} + N_{\varphi}$

139/
$$\int_{P} E_{p} E_{o} dF = N_{po} = -P V_{p} \left(\frac{F_{p}}{F_{io}} + \frac{F_{p} y_{po}^{2}}{I_{io}} \right),$$

$$\int_{P} E_{p} E_{o} y dF = M_{po} + N_{po} y_{po} = -P y_{po} \frac{I_{pr}}{I_{io}} + N_{po} y_{po}.$$

Wenn die Gleichungen /39/ und die Gleichungen /13/ in die Gleichungen /38/ eingetragen werden, erhält man:

/40/
$$N_{\varphi} = -P + N_{PO} + P N_{bo}$$
,
 $M_{\varphi} = -P y_{p} + M_{PO} + N_{PO} y_{PO} + P (M_{bo} + N_{bo} y_{bo})$.

Die statisch unbestimmten Grössen infolge Vorspannung des Trägers bekommt man aus den Gleichungen /27/, wenn man in die Gleichung /26/ für die fiktiven Querschnittskräfte N_{φ} und M_{φ} die Grössen N_{φ} und M_{φ} , die durch die Gleichungen /40/ gegeben sind, einführt.

ZUSAMMENFASSUNG

In diesem Beitrag wird eine Methode zur Berechnung der Verbund- und vorgespannten Konstruktionen, unter Berücksichtigung der Einflüsse des Schwindens und Kriechens des Betons, vorgeschlagen. Dabei wird die Spannungs-Dehnungs-Beziehung des Betons in Form einer algebraischen Gleichung angenommen.

SUMMARY

The paper deals with a method for the calculation of composite and prestressed structures, taking into consideration the influences of shrinkage and creep. The stress-strain relationship used for the concrete is in the form of an algebraic equation.

RESUME

Dans cet article, on présente une méthode pour le calcul des constructions mixtes acier-béton et en béton précontraint, en prenant en considération les effets du fluage et du retrait du béton. La relation entre les contraintes et les déformations est admise sous la forme d'une équation algébrique.